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Kōta Yoshioka

Dedicated to Shigeru Mukai for his sixtieth birthday

Abstract.

We shall study the chamber structure of positive cone of the al-
banese fiber of the moduli spaces of stable objects on an abelian surface
via the chamber structure of stability conditions.

§0. Introduction

The space of stability conditions on an abelian surfaces X is studied
by Bridgeland in [8]. In particular, he completely described a connected
component Stab(X)∗ consisting of stability conditions σ such that the
structure sheaves of points kx (x ∈ X) are stable of a fixed phase φ. In
the space of stability conditions, there is a natural action of the universal

cover G̃L
+
(2,R) of GL+(2,R). In our situation, Stab(X)∗/G̃L

+
(2,R)

is isomorphic to NS(X)R × Amp(X)R as stated in [8, sect. 15]. In par-

ticular, if NS(X) = ZH, then Stab(X)∗/G̃L
+
(2,R) is isomorphic to the

upper half plane H. For the stability conditions σ(β,ω) corresponding
to (β, ω) ∈ NS(X)R × Amp(X)R, moduli spaces of σ(β,ω)-semi-stable
objects are extensively studied in [18], [19] and [28]. In particular, the
projectivity of the moduli spaces are proved for a general σ(β,ω). We
also constructed ample line bundles on the moduli spaces. As a conse-
quence of these results, we also got some results on the moduli spaces of
Gieseker semi-stable sheaves. Indeed for a parameter (β, ω) = (β, tH)
(t � 0) called the large volume limit, Bridgeland stability coincides
with Gieseker stability. For the study of Gieseker stability on abel-
ian surfaces, Fourier-Mukai transforms are very important tool, though
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Gieseker stability is not preserved in general. For the proof of projectiv-
ity of the moduli space of Bridgeland semi-stable objects, we constructed
a Fourier-Mukai transform which induces an isomorphism to a moduli
space of Gieseker semi-stable objects. In this sense, Bridgeland stability
is regarded as a minimal generalization of Gieseker stability preserved
by Fourier-Mukai transforms.

In this note, we continue to study the moduli spaces of Bridgeland
semi-stable objects. In particular, we shall study the birational ge-
ometry of the moduli spaces. Before explaining our main results, we
prepare some notation and explain some results in [19]. For the alge-
braic cohomology groups H∗(X,Z)alg := Z ⊕ NS(X) ⊕ Z�X , let 〈 , 〉
be the Mukai pairing, where �X is the fundamental class of X. For
x = x0 + x1 + x2�X with x0, x2 ∈ Z and x1 ∈ NS(X), we also write
x = (x0, x1, x2). For E ∈ D(X), v(E) = ch(E) denotes the Mukai
vector of E. For v ∈ H∗(X,Z)alg, M(β,ω)(v) denotes the moduli space
of σ(β,ω)-semi-stable objects E with v(E) = v. M(β,ω)(v) is a projec-
tive scheme if (β, ω) is general ([19, Thm. 1.4]). If v is primitive and
〈v2〉 ≥ 6, then as a Bogomolov factor, we have an irreducible symplectic
manifold K(β,ω)(v) which is deformation equivalent to the generalized
Kummer variety constructed by Beauville [5]. K(β,ω)(v) is a fiber of the
albanese map of M(β,ω)(v). We also have an isometry

θv,β,ω : v⊥ ∩H∗(X,Z)alg → NS(K(β,ω)(v))

where NS(K(β,ω)(v)) is equipped with the Beauville-Fujiki form. For a

Mukai vector v of a coherent sheaf (i.e., v = v(F ), F ∈ Coh(X)), Mβ
H(v)

denotes the moduli space of β-twisted semi-stable sheaves E with v(E) =

v. If β = 0, then we denote it by MH(v). Since Mβ
H(v) = M(β,tH)(v)

(t � 0), a fiber Kβ
H(v) of the albanese map is K(β,tH)(v).

In [19, sect. 5.3], we relate the ample cone of K(β,ω)(v) to a chamber
structure of NS(X)R×Amp(X)R. In this note, we refine this correspon-
dence. For a Mukai vector v ∈ H∗(X,Z)alg, we shall construct a map
from our space of stability conditions NS(X)R × Amp(X)R to the pos-
itive cone P+(v⊥)R of v⊥. This map is surjective up to the action of
R>0 on P+(v⊥)R. More precisely, we slightly extend the map in order
to treat the boundary of positive cone. In order to state the precise
statement (Proposition 0.1), we need more notation.

We fix a norm || || on NS(X)R. For the closure Amp(X)R of the
ample cone of X, we set

C(Amp(X)R) :={x ∈ Amp(X)R | ||x|| = 1},
H :=NS(X)R × C(Amp(X)R)× R≥0.
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Then we have an embedding NS(X)R×Amp(X)R → H by sending (β, ω)
to (β, ω/||ω||, ||ω||).

For v = (r, c1, a) ∈ H∗(X,Z)alg, we set

P+(v⊥)R :=

{
x ∈ H∗(X,Z)alg ⊗ R

∣∣∣∣∣ x ∈ v⊥, 〈v2〉 ≥ 0,

〈x, rH0 + (H0, c1)�X〉 > 0

}
,

where H0 is an ample divisor on X. P+(v⊥)R is the closure of the
positive cone P+(v⊥)R of v⊥.

For (β,H, t) ∈ H, we set

ξ(β,H, t) :=

(
r
t2(H2)

2
+ 〈eβ , v〉

)
(H + (β,H)�X)

− (c1 − rβ,H)

(
eβ − t2(H2)

2
�X

)
.

Then ξ(β,H, t) ∈ P+(v⊥)R.

Proposition 0.1 (Proposition. 3.11). We have a surjective map

Ξ : H → P+(v⊥)R/R>0

(β,H, t) �→ R>0ξ(β,H, t).

Moreover if tH is ample, then ξ(β,H, t) belongs to the positive cone of
v⊥.

We introduce the wall and chamber structures on H and P+(v⊥)Rand
show that they correspond each other. By using these descriptions, we
also study the movable cone of K(β,ω)(v).

Let W be the set of Mukai vectors v1 such that

(0.1) 〈v1, v − v1〉 > 0, 〈v21〉 ≥ 0, 〈(v − v1)
2〉 ≥ 0.

Then we have a chamber structure on P+(v⊥)R by the set of walls

{v⊥1 | v1 ∈ W}.
Theorem 0.2 (Theorem 3.31). Assume that (β,H, t) ∈ H satisfies

ξ(β,H, t) �∈ ∪v1∈Wv⊥1 . Let I be the set of primitive and isotropic Mukai
vectors u with 〈u, v〉 = 0, 1, 2. Let D(β, tH) be the connected component
of P+(v⊥)R \ ∪u∈Iu

⊥ containing ξ(β,H, t). Then

Mov(K(β,tH)(v))R = θv,β,tH(D(β, tH)).

Moreover

θv,β,tH(H∗(X,Z)alg ∩ D(β, tH)) ⊂ Mov(K(β,tH)(v)).
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In the movable cone of K(β,tH)(v), Hassett and Tschinkel [9, Thm.
7, Prop. 17] introduced the chamber structure. The chamber structure
of D(β, tH) by {v⊥1 | v1 ∈ W} corresponds to the chamber structure of
the interior of Mov(K(β,tH)(v)) via θv,β,tH .

As an application of our results, we get a result on the birational

structure of Mβ
H(v).

Proposition 0.3 (Proposition 3.39). Let (X,H) be a polarized abel-

ian surface and v a Mukai vector such that 2	 := 〈v2〉 ≥ 6. Then Mβ
H(v)

is birationally equivalent to Pic0(Y ) × Hilb�Y if and only if there is an
isotropic Mukai vector w ∈ H∗(X,Z)alg with 〈v, w〉 = 1, where Y is an
abelian surface.

This result also follows from a characterization of the generalized
Kummer variety by Markman and Mehrotra [16]. Proposition 0.3 gives
an affirmative solution of a conjecture of Mukai [24].

Corollary 0.4 (Corollary 3.42). Let (X,H) be a principally polar-
ized abelian surface with NS(X) = ZH. Let v = (r, dH, a) be a Mukai

vector with 	 := d2 − ra ≥ 3. Then Mβ
H(v) is birationally equivalent to

X ×Hilb�X if and only if the quadratic equation

rx2 + 2dxy + ay2 = ±1

has an integer valued solution.

We also study the location of walls. If rkNS(X) ≥ 2, we show that
the stabilizer of v in the group of autoequivalences is infinite. Hence
if there is a wall, then we can generate infinitely many walls by the
action of autoequivalences. We also show that there is an example of X
and v such that there is no wall, which implies that the ample cone of

Kβ
H(v) is the same as the positive cone and the autoequivalences act as

automorphisms of Mβ
H(v).

The study of the movable cone is motivated by recent works [1]
and [3]. They studied the movable cones of the moduli spaces for the
projective plane and a K3 surface by analyzing the chamber structure of
Bridgeland’s stability. For an irreducible symplectic manifold, Markman
[14] studied the movable cone extensively. In particular, he obtained a
numerical characterization of the movable cone. In this sense, our result
(Theorem 3.31) gives concrete examples of his results. In particular, we

give a moduli-theoretic explanation of birational models of Kβ
H(v).

Let us briefly explain the contents of this note. In section 1, we
introduce some notations and recall known results on irreducible sym-
plectic manifolds. In particular, we define our parameter space of sta-
bility condition and the wall for stability conditions. We also give a
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characterization of the walls in terms of Mukai lattice (Proposition 1.3).
In section 2, we shall study the cohomological action of the autoequiv-
alences of D(X), which will be used to study the set of walls. We first
treat the case where rkNS(X) = 1. In this case, we can use the 2 by
2 matrices description of the cohomological action of the Fourier-Mukai
transforms in [27]. We then describe the stabilizer group Stab(v) of a
Mukai vector v. By using it, we shall construct many autoequivalences
fixing v for all abelian surfaces.

In section 3, we relate our space of stability condition with the pos-
itive cone of the moduli spaces. We first construct a map from the
space of stability conditions to the positive cone. Then we describe the
nef cone of the moduli spaces. In subsection 3.3, we study the diviso-
rial contractions of the moduli spaces. Then we get the description of
movable cones (Theorem 3.31).

In section 4, as an example, we treat the case where NS(X) = ZH.

In this case, the boundaries of P+(v⊥)R are spanned by two isotropic
vectors v±. For a Mukai vector v = (r, dH, a), we show that v± are not

defined over Q if and only if
√〈v2〉/(H2) �∈ Q. For the rank 1 case,

this condition is equivalent to the existence of infinitely many walls [28].
According to Markman’s solution [14] of the movable cone conjecture
of Kawamata and Morrison ([11], [21]), we have infinitely many walls
under this condition. By our correspondence of the space of stability
conditions and the positive cone, we see that the accumulation points
correspond to the two boundaries R>0v± which are the accumulation
points set of walls. Thus we get an explanation of the existence of
accumulation points in terms of the positive cone. For the general cases,
if
√〈v2〉/(H2) �∈ Q, then we show that infinitely many Fourier-Mukai

transforms preserve v as in the rank 1 case. So there are infinitely many
walls if there is a wall. However as in the case where rkNS(X) ≥ 2, we
have an abelian surface and a Mukai vector v such that there is no wall
for v. In section 5, we shall explain how our result on the movable cone
follows from Markman’s general theory. In appendix, we shall study the
base of Lagrangian fibrations.

After we wrote the first version of this note, Bayer and Macri [4]
completed their study of the birational geometry of moduli spaces over
K3 surfaces. In particular, they completely described the nef cone and
the movable cone of the moduli spaces. Moreover the results are gener-
alized to deformations of the moduli spaces [2], [20].

Acknowledgement. The author is supported by the Grant-in-aid for
Scientific Research (No. 22340010, No. 26287007), JSPS. The author
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§1. Preliminaries

1.1. Notation.

We denote the category of coherent sheaves on X by Coh(X) and
the bounded derived category of Coh(X) by D(X). A Mukai lattice

of X consists of H2∗(X,Z) :=
⊕2

i=0 H
2i(X,Z) and an integral bilinear

form 〈 , 〉 on H2∗(X,Z):

〈x0 + x1 + x2�X , y0 + y1 + y2�X〉 := (x1, y1)− x0y2 − x2y0 ∈ Z,

where x1, y1 ∈ H2(X,Z), x0, x2, y0, y2 ∈ Z and �X ∈ H4(X,Z) is the
fundamental class of X. We also introduce the algebraic Mukai lattice
as the pair of H∗(X,Z)alg := Z⊕NS(X)⊕Z and 〈 , 〉 on H∗(X,Z)alg.
For x = x0 + x1 + x2�X with x0, x2 ∈ Z and x1 ∈ H2(X,Z), we also
write x = (x0, x1, x2). For E ∈ D(X), v(E) := ch(E) denotes the Mukai
vector of E.

For E ∈ D(X × Y ), we set

ΦE
X→Y (x) := RpY ∗(E⊗ p∗X(x)), x ∈ D(X),

where pX , pY are projections from X × Y to X and Y respectively. Let
Eq(D(X),D(Y )) be the set of equivalences between D(X) and D(Y ).
We set

Eq0(D(Y ),D(Z))

:=
{
Φ

E[2k]
Y→Z ∈ Eq(D(Y ),D(Z))

∣∣∣E ∈ Coh(Y × Z), k ∈ Z
}
,

E(Z) :=
⋃
Y

Eq0(D(Y ),D(Z)),

E :=
⋃
Z

E(Z) =
⋃
Y,Z

Eq0(D(Y ),D(Z)).

Note that E is a groupoid with respect to the composition of the equiv-
alences.

As we explained in the introduction, Stab(X)∗/G̃L
+
(2,R) is isomor-

phic to NS(X)R×Amp(X)R. Let us briefly explain a stability condition
σ(β,ω) associated to (β, ω) ∈ NS(X)Q × Amp(X)Q. Let T(β,ω) be a full
subcategory of Coh(X) generated by torsion sheaves and μ-stable tor-
sion free sheaves E with (c1(E) − rkEβ, ω) > 0, and let F(β,ω) be a
full subcategory of Coh(X) generated by μ-stable torsion free sheaves E
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with (c1(E)− rkEβ, ω) ≤ 0. (T(β,ω),F(β,ω)) is a torsion pair of Coh(X).
Let A(β,ω) be its tilting. Thus,

A(β,ω) :=

{
E ∈ D(X)

∣∣∣∣∣H
i(E) = 0, i �= −1, 0,

H−1(E) ∈ F(β,ω), H
0(E) ∈ T(β,ω)

}
.

Let Z(β,ω) : D(X) → C is a group homomorphism called the stability
function. In terms of the Mukai lattice (H∗(X,Z)alg, 〈 , 〉), Z(β,ω) is
given by

Z(β,ω)(E) = 〈eβ+
√−1ω, v(E)〉, E ∈ D(X).

Then Z(β,ω)(E) ∈ H ∪ R<0 for 0 �= E ∈ A(β,ω). We define the phase
φ(β,ω)(E) ∈ (0, 1] of 0 �= E ∈ A(β,ω) by

Z(β,ω)(E) = |Z(β,ω)(E)|eπ
√−1φ(β,ω)(E).

Then (A(β,ω), Z(β,ω)) is the stability condition σ(β,ω). In particular, kx
is a stable object of the phase φ(β,ω)(kx) = 1.

Definition 1.1. (1) An object 0 �= E ∈ A(β,ω) is σ(β,ω)-semi-
stable if

φ(β,ω)(F ) ≤ φ(β,ω)(E)

for all proper subobject F �= 0 of E. If the inequality is strict,
then E is σ(β,ω)-stable.

(2) An object 0 �= E ∈ D(X) is σ(β,ω)-semi-stable (resp. σ(β,ω)-
stable), if there is an integer n such that E[−n] ∈ A(β,ω) and
E[−n] is σ(β,ω)-semi-stable (resp. σ(β,ω)-stable).

1.2. A parameter space of stability conditions.

For an abelian surface X, the ample cone Amp(X) is described as

Amp(X) = {x ∈ NS(X) | (x2) > 0, (x, h) > 0},
where h ∈ NS(X) is an ample class of X. We set

Amp(X)k := {x ∈ NS(X)k | (x2) ≥ 0, (x, h) > 0},
where k = Q,R. For a cone V ⊂ Rm, we set C(V ) := (V \ {0})/R>0.
We fix a norm || || on Rm and identify C(V ) with {x ∈ V | ||x|| = 1}.
Then we have a bijection V \ {0} → C(V )×R>0 by sending x ∈ V \ {0}
to (x/||x||, ||x||).
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We have a map

C(Amp(X)R)× R≥0 → Amp(X)R ∪ {0}
(L, t) �→ tL

which is bijective over Amp(X)R and the fiber over 0 is Amp(X)R×{0}.
Thus C(Amp(X)R)× R≥0 is a partial compactification of Amp(X)R.

We set

H := NS(X)R × C(Amp(X)R)× R>0,

H := NS(X)R × C(Amp(X)R)× R≥0.

We have an identification

(1.1)
H → NS(X)R ×Amp(X)R

(β,H, t) �→ (β, tH)

and these spaces are our parameter space of stability conditions and its
partial compactification.

Let us introduce a wall and chamber structure on H.

Definition 1.2 (cf. [28, Defn. 2.7]). Let v be a Mukai vector.

(1) For a Mukai vector v1 satisfying

(1.2) 〈v1, v − v1〉 > 0, 〈v21〉 ≥ 0, 〈(v − v1)
2〉 ≥ 0,

we define the wall Wv1 as

(1.3) Wv1 := {(β,H, t) ∈ H | RZ(β,tH)(v1) = RZ(β,tH)(v)}.
(2) W denotes the set of Mukai vectors v1 satisfying (1.2).
(3) A chamber for stabilities is a connected component of H \

∪v1∈WWv1 .
(4) We also have a wall and chamber structure on NS(X)R ×

Amp(X)R via (1.1), which is the same as was introduced in
[28], [19].

(5) We say that (β,H, t) ∈ H (resp. (β, ω) ∈ NS(X)R×Amp(X)R)
is general, if it is in a chamber.

As we explained in [28], [19, Prop. 5.7] implies that if (β,H, t) ∈
Wv1 , there is a properly σ(β,tH)-semi-stable object E with v(E) = v. In
general, Wv1 may be an empty set. We have the following characteriza-
tion for the non-emptiness of the wall whose proof is given in subsection
3.2.
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Proposition 1.3. Let v1 be a Mukai vector satisfying (1.2). Then
Wv1 ∩ H �= ∅ if and only if

(1.4) 〈v, v1〉2 > 〈v2〉〈v21〉.
Corollary 1.4. Let w be an isotropic Mukai vector. If 〈v2〉/2 >

〈w, v〉 > 0, then w satisfies (1.2) and Ww∩H is non-empty. In particular,
if 〈w, v〉 = 1, 2 and 〈v2〉 ≥ 6, then w satisfies (1.2) and Ww ∩ H �= ∅.

We set v1 := (r1, ξ1, a1). Then the defining equation of Wv1 is

det

(
a− (ξ, β) + r (β2)−t2(H2)

2 a1 − (ξ1, β) + r1
(β2)−t2(H2)

2−(ξ − rβ,H) −(ξ1 − r1β,H)

)
=(ξ1 − r1β,H)a− (ξ − rβ,H)a1 + (r1ξ − rξ1, β)(β,H)

+ (ξ, β)(ξ1,H)− (ξ1, β)(ξ,H)− (r1ξ − rξ1,H)
(β2)− t2(H2)

2
= 0.

(1.5)

Lemma 1.5. (1) If r1ξ − rξ1 �= 0, then

Wv1 �⊃ {(β,H, t) ∈ H | (ξ − rβ,H) = 0}.
(2) If r1ξ − rξ1 = 0, then

Wv1 = {(β,H, t) ∈ H | (ξ − rβ,H) = 0}.
Proof. (1) Assume that r1ξ − rξ1 �= 0. Then we can take H ∈

Amp(X)Q with (r1ξ − rξ1,H) �= 0. We take β ∈ NS(X)Q with (ξ −
rβ,H) = 0. Then we have (ξ1−r1β,H) �= 0. Since Z(β,tH)(v) �= 0, (1.5)
implies that (β,H, t) �∈ Wv1 . Since the hypersurface (ξ − rβ,H) = 0 is
irreducible, we get the claim.

(2) If r1ξ − rξ1 = 0, then (1.5) implies that(r1
r
a− a1

)
(ξ − rβ,H) = 0.

Since v1 �∈ Qv, Wv1 is defined by (ξ − rβ,H) = 0. Q.E.D.

Remark 1.6. The assumption of Lemma 1.5 (2) is equivalent to
�⊥X∩v⊥ = v⊥1 ∩v⊥. Indeed �⊥X∩v⊥ = v⊥1 ∩v⊥ is equivalent to Qv+Qv1 =
Qv +Q�X . Since v1 �∈ Qv, it is equivalent to v1 ∈ Qv +Q�X .
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1.3. Facts on irreducible symplectic manifolds.

For a smooth projective manifold M , Amp(M)k ⊂ NS(M)k denotes
the ample cone of M and Nef(M)k ⊂ NS(M)k denotes the nef cone of
numerically effective divisors on M , where k = Q,R.

Definition 1.7. Let M be a smooth projective manifold.

(1) (a) A divisor D on M is movable, if the base locus of |D| has
codimension ≥ 2.

(b) Mov(M)k ⊂ NS(X)k (k = Q,R) denotes the cone gen-

erated by movable divisors and Mov(M)R the closure in
NS(X)R.

(2) For an irreducible symplectic manifold M , qM denotes the
Beauville-Fujiki form on H2(M,Z). Then the positive cone is
defined as

P+(M)k := {x ∈ NS(X)k | qM (x, x) > 0, qM (x, h) > 0}
where k = Q,R and h is an ample divisor on M . We also set

P+(M)k := {x ∈ NS(X)k | qM (x, x) ≥ 0, qM (x, h) > 0}.
Remark 1.8. By the definition, Mov(M)Q = Mov(M)R ∩ NS(M)Q.

We note that Mov(M)Q is contained in P+(M)Q by works of Huy-

brechts ([10], [9, Thm. 7]). There is a different argument in [14, Lem.
6.22] based on results of Boucksom [7].

1.4. Moduli spaces

Definition 1.9. A Mukai vector v := (r, ξ, a) ∈ H∗(X,Z)alg is
positive, if

(i) r > 0 or
(ii) r = 0 and ξ is effective or
(iii) r = ξ = 0 and a > 0.

Definition 1.10. Let v ∈ H∗(X,Z)alg be a Mukai vector.

(1) If v is positive, then let Mβ
H(v) be the moduli space of β-

twisted semi-stable sheaves E on X with v(E) = v. If β = 0,

then we also denote Mβ
H(v) by MH(v).

(2) M(β,ω)(v) denotes the moduli space of σ(β,ω)-semi-stable ob-
jects E with v(E) = v.

Remark 1.11. (1) If H is general in Amp(X), then Mβ
H(v)

does not depend on the choice of β.
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(2) If v is positive, then M(β+sH,tH)(v) = Mβ
H(v) for some (s, t).

Thus twisted semi-stability is a special case of Bridgeland
semi-stability.

Assume that v is primitive and (β, ω) is general with respect to v.
We fix E0 ∈ M(β,ω)(v). Let

ΦP
X→X̂

: D(X) → D(X̂)

be the Fourier-Mukai transform by the Poincare line bundle P on X×X̂,

where X̂ := Pic0(X) is the dual of X. Then we have an albanese map

a : M(β,ω)(v) → X × X̂ by

a(E) := (det(ΦP
X→X̂

(E − E0)),det(E − E0)) ∈ X × X̂

([19, Rem. 4.10]). a is an étale locally trivial fibration.

Definition 1.12. Assume that v is primitive and 〈v2〉 ≥ 6.

(1) K(β,ω)(v) denotes a fiber of the albanese map M(β,ω)(v) →
X × X̂. If v is positive, then we also denote a fiber of a :

Mβ
H(v) → X × X̂ by Kβ

H(v).
(2)

(1.6) θv,β,ω : v⊥ → H2(M(β,ω)(v),Z) → H2(K(β,ω)(v),Z)

denotes the Mukai’s homomorphism. If there is a universal
family E on M(β,ω)(v), e.g., there is a Mukai vector w with
〈v, w〉 = 1, then

θv,β,ω(x) = c1(pM(β,ω)(v)∗(ch(E)p∗X(x∨)))|K(β,ω)(v),

where pX , pM(β,ω)(v) are projections from X ×M(β,ω)(v) to X

and M(β,ω)(v) respectively.

Theorem 1.13 ([19, Prop. 5.16]). For v ∈ H∗(X,Z)alg, M(β,ω)(v)
is a smooth projective symplectic manifold which is deformation equiva-

lent to Hilb
〈v2〉/2
X ×X. Assume that 〈v2〉 ≥ 6.

(1) K(β,ω)(v) is an irreducible symplectic manifold of

dimK(β,ω)(v) = 〈v2〉 − 2

which is deformation equivalent to the generalized Kummer
variety constructed by Beauville [5].

(2)

θv,β,ω : (v⊥, 〈 , 〉) → (H2(K(β,ω)(v),Z), qK(β,ω)(v))

is an isometry of Hodge structure.
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§2. Fourier-Mukai transforms on abelian surfaces.

2.1. Cohomological Fourier-Mukai transforms

We collect some results on the Fourier-Mukai transforms on abelian
surfaces X with rkNS(X) = 1. Let HX be the ample generator of
NS(X). We shall describe the action of Fourier-Mukai transforms on the
cohomology lattices in [27]. For Y ∈ FM(X), we have (H2

Y ) = (H2
X).

We set n := (H2
X)/2. In [27, sect. 6.4], we constructed an isomorphism

of lattices

ιX : (H∗(X,Z)alg, 〈 , 〉) ∼−−→ (Sym2(Z, n), B),

(r, dHX , a) �→
(

r d
√
n

d
√
n a

)
,

where Sym2(Z, n) is given by

Sym2(Z, n) :=

{(
x y

√
n

y
√
n z

) ∣∣∣∣∣x, y, z ∈ Z

}
,

and the bilinear form B on Sym2(Z, n) is given by

B(X1,X2) := 2ny1y2 − (x1z2 + z1x2)

for Xi =

(
xi yi

√
n

yi
√
n zi

)
∈ Sym2(Z, n) (i = 1, 2).

Each ΦX→Y gives an isometry

ιY ◦ ΦH
X→Y ◦ ι−1

X ∈ O(Sym2(Z, n)),(2.1)

where O(Sym2(Z, n)) is the isometry group of the lattice (Sym2(Z, n), B).
Thus we have a map

η : E → O(Sym2(Z, n))

which preserves the structures of multiplications.

Definition 2.1. We set

Ĝ :=

{(
a
√
r b

√
s

c
√
s d

√
r

) ∣∣∣∣∣ a, b, c, d, r, s ∈ Z, r, s > 0

rs = n, adr − bcs = ±1

}
,

G := Ĝ ∩ SL(2,R).

We have a right action · of Ĝ on the lattice (Sym2(Z, n), B):
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(
r d

√
n

d
√
n a

)
· g := tg

(
r d

√
n

d
√
n a

)
g, g ∈ Ĝ.(2.2)

Thus we have an anti-homomorphism:

α : Ĝ/{±1} → O(Sym2(n,Z)).

Theorem 2.2 ([27, Thm. 6.16, Prop. 6.19]). Let

Φ ∈ Eq0(D(Y ),D(X))

be an equivalence.

(1) v1 := v(Φ(OY )) and v2 := Φ(�Y ) are positive isotropic Mukai
vectors with 〈v1, v2〉 = −1 and we can write

v1 = (p21r1, p1q1HY , q
2
1r2), v2 = (p22r2, p2q2HY , q

2
2r1),

p1, q1, p2, q2, r1, r2 ∈ Z, p1, r1, r2 > 0,

r1r2 = n, p1q2r1 − p2q1r2 = 1.

(2) We set

θ(Φ) := ±
(
p1
√
r1 q1

√
r2

p2
√
r2 q2

√
r1

)
∈ G/{±1}.

Then θ(Φ) is uniquely determined by Φ and we have a map

θ : E → G/{±1}.
(3) The action of θ(Φ) on Sym2(n,Z) is the action of Φ on

H∗(X,Z)alg:

ιX ◦ Φ(v) = ιY (v) · θ(Φ).
Thus we have the following commutative diagram:

E
θ

�� η
����

���
���

���
��

Ĝ/{±1} α
�� O(Sym2(n,Z))

(2.3)

From now on, we identify the Mukai lattice H∗(X,Z)alg with

Sym2(n,Z) via ιX . Then for g ∈ Ĝ and v ∈ H∗(X,Z)alg, v · g means
ιX(v · g) = ιX(v) · g.
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For an isotropic Mukai vector v = (x2, xy√
n
HX , y2) = x2e

y
x
√

n
H
, v·g =

(x′2, x′y′
√
n
HX , y′2), where (x′, y′) = (x, y)g.

We also need to treat the composition of a Fourier-Mukai trans-
form and the dualizing functor DX . For a Fourier-Mukai transform
Φ ∈ Eq0(D(X),D(Y )), we set

θ(Φ ◦ DX) :=

(
1 0
0 −1

)
θ(Φ) ∈ Ĝ/{±1}.

Then the action of θ(Φ ◦ DX) on Sym2(Z, n) is the same as the action
of Φ ◦ DX .

2.2. A stabilizer subgroup.

We keep the notation in subsection 2.1. In particular, we assume
that rkNS(X) = 1. Let v := (r, dH, a) be a primitive Mukai vector with

r �= 0. We shall study the stabilizer of ±v ∈ H∗(X,Z)alg/{±1} in Ĝ.
Assume that(

x z
y w

)(
r d

√
n

d
√
n a

)(
x y
z w

)
= ε

(
r d

√
n

d
√
n a

)
and xw − yz = ε. Then we have

rx2 + 2d
√
nxz + az2 = εr,

ry2 + 2d
√
nyw + aw2 = εa,

rxy + d
√
n(xw + zy) + azw = εd

√
n,

xw − yz = ε.

(2.4)

Hence

y(rx+ 2d
√
nz) + (az)w = rxy + 2d

√
nzy + azw = 0.

We note that
(rx+ 2d

√
nz, az) �= (0, 0)

by
x(rx+ 2d

√
nz) + z(az) = εr �= 0.

We set y := −λaz and w := λ(rx+ 2d
√
nz). Then

ε = xw − yz = λ(rx2 + 2d
√
nxz + az2) = λεr.

Hence λ = 1/r. Therefore

(2.5) y = −a

r
z, w = x+ 2d

√
n
z

r
.
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Conversely for x, z with

(2.6) rx2 + 2d
√
nxz + az2 = εr,

we define y, w by (2.5). Then (2.4) are satisfied. We note that (2.6) is
written as

(x+ d
√
n z

r )
2 − 	( zr )

2 = ε.

We set X := x+ d
√
n z

r and Z := z
r . Then

(2.7) X2 − 	Z2 = ε

and (
x y
z w

)
=

(
X − d

√
nZ −aZ

rZ X + d
√
nZ.

)
= XI2 + ZF,

where

(2.8) I2 :=

(
1 0
0 1

)
, F :=

(−d
√
n −a

r d
√
n

)
.

We have F 2 = 	I2. We set

Stab0(v) :={g ∈ Ĝ | g(v) = (det g)v}
={g ∈ Ĝ | g = XI2 + ZF}.

Stab0(v) is a normal subgroup of Stab(v) of index 2. Indeed for g ∈
Stab(v), we have g(v) = η(g)(det g)v and η(gg′) = η(g)η(g′), g, g′ ∈
Stab(v). Thus ker η = Stab0(v). We get a homomorphism

ϕ : Stab0(v) → R

XI2 + ZF �→ X + Z
√
	.

Proposition 2.3. Assume that
√
n	 �∈ Q.

(1) For XI2 + ZF ∈ Stab0(v), X + Z
√
	 is an algebraic integer

such that (X + Z
√
	)2 ∈ Q(

√
n	).

(2) imϕ ∼= Z⊕ Z2.

(3) ϕ is injective or kerϕ = {√	
−1

F} if
√
	
−1

F ∈ Stab0(v). In
particular, if n = 1 and 	 > 1, then ϕ is injective.

Proof. We set α := X + Z
√
	. Assume that XI2 + ZF ∈ Ĝ. Then

x2, y2, xw, yz,
xy√
n
,
xz√
n
,
yw√
n
,
zw√
n
,∈ Z.
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Hence

2(X2 + d2nZ2) =x2 + w2 ∈ Z,

X2 − d2nZ2 =xw ∈ Z,

r2
XZ√
n

=r
xz√
n
+ dz2 ∈ Z,

which impy that

(2.9) X2 + 	Z2,
XZ√
n

∈ Q.

We note that α satisfies the equation

α2 − 2Xα+ ε = 0.

Since 2X = x+ w is an algebraic integer, α is an algebraic integer. By
(2.9),

α2 = (X2 + 	Z2) + 2
XY√
n

√
n	 ∈ Q(

√
n	).

Thus (1) holds.
(2) We first prove that imϕ �= {±1}. We take a solution (p, q) ∈ Z⊕2

of p2 − n	q2 = 1 such that q �= 0. We set X := p and Z := q
√
n. Then

(2.10) XI2 + ZF =

(
p− dnq −aq

√
n

rq
√
n p+ dnq

)
satisfies all the requirements. Therefore imϕ �= {±1}. By the Dirichlet
unit theorem, the torsion part of imϕ is {±1}. Since α2 is a unit of

the ring of integers of Q(
√
n	), the rank of imϕ is 1, which implies the

claim.
If α = X + Z

√
	 = 1, then α2 = 1 implies that XZ = 0. If Z = 0,

then X = 1. If X = 0, then Z
√
	 = 1. Therefore the first part of the

claims holds.
Assume that n = 1 and 	 > 1. Then

1√
	
F =

1√
	

(−d
√
n −a

r d
√
n

)
.

Hence 	 | a2, 	 | r2, 	 | d2n. Since v is primitive, a2, r2, d2 are relatively
prime. Hence 	 | n, which is a contradiction. Therefore the second part
also holds. Q.E.D.
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We set

Stab0(v)
∗ :=

{(
x y
z w

)
∈ Stab0(v)

∣∣∣∣xw − yz = 1, y ∈ √
nZ

}
.

All elements of Stab0(v)
∗ come from autoequivalences of D(X) (see

Lemma 2.5 below). Stab0(v)/Stab0(v)
∗ is a finite group of type

(Z/2Z)⊕k.
If

A :=

(
x y
z w

)
∈ Stab(v) \ Stab0(v),

then

A =

(
x 1

r (az + 2d
√
nx)

z −x

)
.

In particular, A2 = ±I2.

Example 2.4. Assume that n = 1. Then

XI2 + ZF ∈ GL(2,Z) = Ĝ ⇐⇒ X ± dZ, aZ, rZ ∈ Z.

Assume that 2 | r and 2 | a. Then the primitivity of v implies that

2 � d. Hence 	 = d2 − ra ≡ 1 mod 4. Then O := Z[ 1+
√
�

2 ] is the ring of
integers. We note that X ± dZ, aZ, rZ ∈ Z imply that 2dZ, aZ, rZ ∈ Z.
Since gcd(r/2, a/2, d) = 1, we have 2Z ∈ Z. Then X − dZ ∈ Z implies

that X − Z ∈ Z. Therefore X + Z
√
	 ∈ O with (2.7). Conversely for

X + Z
√
	 ∈ O with (2.7), we have X ± dZ, aZ, rZ ∈ Z. Therefore the

fundamental unit of O is the generator of imϕ.

2.3. The case where rkNS(X) ≥ 2.

Assume that rkNS(X) ≥ 2. Let v = (r, ξ, a) be a Mukai vector
with 〈v2〉 = 2	. By using Proposition 2.3, we shall construct many
autoequivalences preserving v. Assume that ξ ∈ Amp(X) and set ξ =
dH, where H is a primitive and ample divisor. Let L := Z⊕ZH ⊕Z�X
be a sublattice of H∗(X,Z)alg.

Lemma 2.5. Let v0 = (p2n, pqH, q2) be a primitive and isotropic
Mukai vector with n = (H2)/2 and gcd(pn, q) = 1.

(1) MH(v0) ∼= X.
(2) For an isotropic vector v1 ∈ H∗(X,Z)alg with 〈v0, v1〉 = 1,

there is a Fourier-Mukai transform Φ : D(X) → D(X) such
that Φ(−�X) = v0 and Φ(v(OX)) = v1. Moreover we have the
following.
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(a) Φ is unique up to the action of Aut(X)× Pic0(X)× 2Z,
where 2k ∈ 2Z acts as the shift functor [2k] : D(X) →
D(X).

(b) If v1 ∈ L, then we can take Φ such that Φ(L) = L and
Φ|L⊥ is the identity.

Proof. (1) We fix a stable sheaf E with v(E) = v0. Let P be
the Poincaré line bundle on X × Pic0(X). Then we have a surjective
homomorphism Pic0(X) → MH(v0) by sending y ∈ Pic0(X) to E ⊗
P|X×{y} ∈ MH(v0) ([22]). So we get an isomorphism Pic0(X)/Σ(E) →
MH(v0), where

Σ(E) := {y ∈ Pic0(X) | E ⊗P|X×{y} ∼= E}.
Let Tx : X → X be the translation by x. For a divisor D on X,
φD : X → Pic0(X) denotes the homomorphism such that φD(x) =
T ∗
xOX(D)⊗OX(−D). We set K(D) := kerφD. If (D2) > 0, then φD is

finite and #K(D) = d2, where d := (D2)/2. For D = pqH, [22, Thm.
7.11] implies that φpqH(Xp2n) = Σ(E), where Xm denotes the set of m-
torsion points of X, which is the kernel of m : X → X the multiplication
by m ∈ Z>0. Hence we have a morphism φ : X → MH(v0) such that

φ(x) = E ⊗ T ∗
x (OX(pqH))⊗OX(−pqH), x ∈ X

and φ induces an isomorphism

X/(Xp2n +K(pqH)) ∼= X̂/Σ(E) ∼= MH(v0).

Since K(pqH) = (pq)−1(K(H)), n(K(H)) = 0 and (pn, q) = 1, we have
a sequence of isomorphisms

X/(Xp2n +K(pqH))
p2n→ X/p2nK(pqH) = X/q−1(0)

q→ X.

Therefore MH(v0) ∼= X.
(2) By our assumption, we have a universal family E onX×MH(v0).

By (1), we have an isomorphism

X ×MH(v0) → X ×X.

Thus we may assume that E ∈ Coh(X ×X). Then we have an equiva-
lence

Φ : D(X) → D(X)

such that Φ(Cx) = E|X×{x}[1] for x ∈ X. Since 〈Φ−1(v1),Φ
−1(v0)〉 =

1, rkΦ−1(v1) = 1. Let p2 : X × X → X be the second projection.
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Replacing E by E ⊗ p∗2(L) (L ∈ Pic(X)), we have Φ−1(v1) = v(OX).
Thus the first claim holds.

(a) If Φ′ : D(X) → D(X) also satisfies the same properties, then
Φ−1Φ′(�X) = �X and Φ−1Φ′(v(OX)) = v(OX). Hence Φ−1Φ′ is the
Fourier-Mukai transform whose kernel is OΓ ⊗ p∗2(N)[2k], where N ∈
Pic0(X) and Γ is the graph of g ∈ Aut(X). Hence

Φ′(E) = Φ(g∗(E ⊗N))[2k], E ∈ D(X).

(b) We take a complex E1 ∈ D(X) with v(E1) = v1. For a S-flat
coherent sheaf F on X × S with F|X×{s} ∈ MH(v0) (s ∈ S), we set

LF := det pS∗(F
∨ ⊗ E1).

If we replace F by F⊗L∨
F, then we have LF = OS . We set E1 := E⊗P.

Then by the identification X ∼= MH(v0) in the proof of (1), we have

(1× φpqH)∗(E1 ⊗ L∨
E1

) ∼= (1× p2nq)∗(E),

where E is the universal family in (2) which is normalized to satisfy
LE

∼= OX . Indeed Φ(v(OX)) = v(E1) implies that

c1(LE) = −c1(Φ
E∨[1]
X→X(E1)) = −c1(v(OX)) = 0.

Hence E′ := E⊗ L∨
E also satisfies v(Φ

E′[1]
X→X(OX)) = v1.

We set β := q
pnH. For G ∈ D(X) with

v(G) = reβ + a�X + dH +D + (dH +D,β)�X , D ∈ H⊥,

Lemma 2.6 below implies that

(p2qn)∗(v(ΦE∨
X→X(G)))

=φ∗
pqH(v(RpPic0(X)∗(E

∨
1 ⊗G)⊗ LE1))

=φ∗
pqH(v(ΦP∨

X→Pic0(X)(E
∨ ⊗G)⊗ LE1))

=(p2qn)∗(p2na+ r
p2n�X − dH +D)⊗ φ∗

pqH(v(LE1)).

(2.11)

In order to complete the proof of the claim, we need to show that
φ∗
pqH(LE1) ∈ (p2qn)∗(L). We take integers x, y with ypn − xq = ±1.

Then we have v1 = (x2, xyH, y2n). Hence

v1 = x2eβ ± x

pn
(H + (H,β)�X) +

1

p2n
�X .
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Applying (2.11) to v(OX) = ΦE∨
X→X(v1), we have

(p2qn)∗(v(OX)) =(p2qn)∗(1 + x2

p2n�X ∓ x

pn
H)⊗ φ∗

pqH(v(LE1))

=(p2qn)∗(v(OX(∓ x

pn
H)))⊗ φ∗

pqH(v(LE1)).

Therefore the claim holds.
Q.E.D.

Let m : X ×X → X be the addition map. Then

m∗(OX(pqH))⊗ p∗1(OX(−pqH))⊗ p∗2(OX(−pqH))) ∼= (1× φpqH)∗(P).

We shall compute φ∗
pqH(ΦP∨

X→Pic0(X)
(w)) for w ∈ H∗(X,Z).

Lemma 2.6. We set β := q
pnH. For

u := reβ + a�X + (dH +D) + (dH +D,β)�X , D ∈ NS(X)Q ∩H⊥,

we have

φ∗
pqH(ΦP∨

X→X(v∨0 u)) = (p2qn)∗(p2na+ r
p2n�X − dH +D).

Proof. Let e1, e2, e3, e4 be a basis of H1(X,Z) such that c1(H) =
e1 ∧ e2 + ne3 ∧ e4. In

H∗(X ×X,Z) = H∗(X,Z)⊗H∗(X,Z),

we identify ei ⊗ 1 with ei and denote 1⊗ ei by fi. Then

c1(m
∗(OX(H))⊗ p∗1(OX(−H))⊗ p∗2(OX(−H)))

=(e1 + f1) ∧ (e2 + f2) + n(e3 + f3) ∧ (e4 + f4)

− (e1 ∧ e2 + ne3 ∧ e4)− (f1 ∧ f2 + nf3 ∧ f4)

=e1 ∧ f2 + f1 ∧ e2 + n(e3 ∧ f4 + f3 ∧ e4) =: η.

We denote the class by η. Then we see that

η2

2!
=− (e3 ∧ e4)

∗ ∧ (f1 ∧ f2)− n2(e1 ∧ e2)
∗ ∧ (f3 ∧ f4)

+ n((e2 ∧ e4)
∗ ∧ (f2 ∧ f4) + (e1 ∧ e4)

∗ ∧ (f1 ∧ f4)

+ (e2 ∧ e3)
∗ ∧ (f2 ∧ f3) + (e1 ∧ e3)

∗ ∧ (f1 ∧ f3)),

η4

4!
=n2(e1 ∧ e2 ∧ e3 ∧ e4) ∧ (f1 ∧ f2 ∧ f3 ∧ f4),
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where {(ei ∧ ej)
∗ | i, j} is the dual basis of {ei ∧ ej | i, j} via the

intersection pairing. We note that H⊥ is generated by

e1 ∧ e2 − ne3 ∧ e4, e2 ∧ e4, e1 ∧ e4, e2 ∧ e3, e1 ∧ e3.

Then we see that

φ∗
pqH(ΦP∨

X→Pic0(X)(v
∨
0 u))

=p2∗(p∗1(p
2ne−β(reβ + a�X + (dH +D + (dH +D,β)�X))epqη)

=p2∗(p∗1(p
2n(r + a�X + dH +D))epqη)

=p2n2(pq)2(−dH +D) + p2na+ p6n3q4r�X .

Since (p2qn)∗(xi) = (p2qn)2ixi for xi ∈ H2i(X,Q), we get the claim.
Q.E.D.

By Lemma 2.5, every member of Stab0(v)
∗ comes from an autoe-

quivalence of D(X) and we have a homomorphism

Stab0(v)
∗ → O(H∗(X,Z)alg).

Lemma 2.7. For a Mukai vector v = (r, ξ, a), assume that (ξ2) > 0.
We set ξ := dH, where H is a primitive ample divisor and d ∈ Z. If√〈v2〉/(ξ2) �∈ Q, then there is an autoequivalence Φ : D(X) → D(X)
such that Φ acts on L := Z⊕ZH⊕Z�X as an isometry of infinite order
and Φ(v) = v.

Proof. By the proof of Proposition 2.3 (2), Stab0(v)
∗ contains an

element g of infinite order. By Lemma 2.5, we have a Fourier-Mukai
transform Φ : D(X) → D(X) inducing the action of g on L. Q.E.D.

§3. The space of stability conditions and the positive cone of
the moduli spaces.

3.1. A polarization of M(β,tH)(v).

We shall explain a natural ample line bundle on the moduli space
M(β,tH)(v), which is introduced in [19] and [3].

For v = (r, ξ, a), we set

dβ :=
(ξ − rβ,H)

(H2)
, aβ := −〈eβ , v〉.

Then

v = reβ + aβ�X + dβH +Dβ + (dβH +Dβ , β)�X , Dβ ∈ NS(X)Q ∩H⊥.
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Let

ξω :=
(ω2)

2dβ

(
r(H + (H,β)�X) + dβ(H

2)�X
)

− 1

dβ

(
aβ(H + (H,β)�X) + dβ(H

2)eβ
) ∈ H∗(X,Z)alg ⊗ R

be a vector in [19, Defn. 5.12], where ω = tH.

Definition 3.1. For (β,H, t) ∈ NS(X)R ×Amp(X)R ×R≥0, we set

ξ(β,H, t) :=dβξω

=

(
r
t2(H2)

2
+ 〈eβ , v〉

)
(H + (β,H)�X)

− (ξ − rβ,H)

(
eβ − t2(H2)

2
�X

)
.

Assume that r �= 0. We set δ := ξ
r . Then v = reδ + aδ�X . For

β = δ + sH +D with D ∈ NS(X)R ∩H⊥, we set

dβ =
r(δ − β,H)

(H2)
, aβ = aδ +

((β − δ)2)

2
r.

ξ(β,H, t) =r

(
t2(H2)− ((β − δ)2)

2
+

〈v2〉
2r2

)
(H + (δ,H)�X)

− r(δ − β,H)
(
eβ − aβ

r
�X

)
=r

(
(ω2)− ((β − δ)2)

2
+

〈v2〉
2r2

)
(H + (δ,H)�X)

− r(δ − β,H)
(
(β − δ + (β − δ, δ)�X) +

(
eδ − aδ

r
�X

))
.

Assume that r = 0. Then we also have

ξ(β,H, t) =− aβ(H + (H,β)�X)− dβ(H
2)

(
eβ − t2(H2)

2
�X

)
=((ξ, β)− a)(H + (H,β)�X)− (ξ,H)

(
eβ − t2(H2)

2
�X

)
.

Lemma 3.2.

R>0ξ(β,H, t) = R>0Im(Z(β,tH)(v)
−1eβ+

√−1tH).
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Proof.

Z(β,tH)(v) =
r

2
t2(H2)− aβ + (ξ − rβ, tH)

√−1

For the complex conjugate Z(β,tH)(v) of Z(β,tH)(v), we have

Im(Z(β,tH)(v)e
β+

√−1tH)

=

(
r
t2(H2)

2
− aβ

)
t(H + (β,H)�X)− (ξ − rβ, tH)

(
eβ − t2(H2)

2
�X

)
=tξ(β,H, t).

Hence the claim holds. Q.E.D.

Remark 3.3. The expression of ξ(β,H, t) in Lemma 3.2 appeared
in [3]. The difference of the sign comes from the difference of θv and
θv,β,tH .

Remark 3.4. Assume that r = 0 and t > 0. Then

{ξ(β,H, st) | s ≥ 1} = ξ(β,H, t) + R≥0�X

and

lim
t→∞ ξ(β,H, t)/t2 = (ξ,H)

(H2)

2
�X .

If ξ is effective, then we have a morphism Mβ
H(v) → HilbξX by sending E

to the scheme-theoretic support Div(E) and θv(�X) comes from HilbξX .

Since M(β,tH)(v) = Mβ
H(v) for t � 0 and (ξ,H) > 0, θv,β,tH((ξ,H)�X)

is base point free for t � 0.

We shall remark the behavior of ξ(β,H, t) under the Fourier-Mukai
transforms. Let

Φ : D(X) → Dα1(X1)

be a twisted Fourier-Mukai transform such that

Φ(r1e
γ) = −�X1 , Φ(�X) = −r1e

γ′
,

where α1 is a representative of a suitable Brauer class. Then we can
describe the cohomological Fourier-Mukai transform as

Φ(reγ + a�X + ξ + (ξ, γ)�X) = − r

r1
�X1 − r1ae

γ′
+

r1
|r1| (ξ̂ + (ξ̂, γ′)�X1),

where

ξ ∈ NS(X)Q, ξ̂ :=
r1
|r1|c1(Φ(ξ + (ξ, γ)�X)) ∈ NS(X1)Q.
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Remark 3.5. By taking a locally free α1-twisted stable sheaf G with
χ(G,G) = 0, we have a notion of Mukai vector, thus, we have a map
([18, Rem. 1.2.10]):

vG : Dα1(X1) → H∗(X1,Q)alg.

For (β, ω) ∈ NS(X)R ×Amp(X)R, we set

ω̃ :=− 1

|r1|
((β−γ)2)−(ω2)

2 ω̂ − (β − γ, ω)(β̂ − γ̂)(
((β−γ)2)−(ω2)

2

)2
+ (β − γ, ω)2

,

β̃ :=γ′ − 1

|r1|
((β−γ)2)−(ω2)

2 (β̂ − γ̂)− (β − γ, ω)ω̂(
((β−γ)2)−(ω2)

2

)2
+ (β − γ, ω)2

.

(3.1)

Then (β̃, ω̃) ∈ NS(X1)R ×Amp(X1)R.
By [19, sect. A.1], we get the following commutative diagram:

D(X) ��

Z(β,ω)

��

Dα1(X1)

Z(β̃,ω̃)

��
C

ζ−1

�� C

where

ζ = −r1

(
((γ − β)2)− (ω2)

2
+
√−1(β − γ, ω)

)
.

Proposition 3.6. For (β,H, t) ∈ NS(X)R × Amp(X)R × R>0, we

have R>0Φ(ξ(β,H, t)) = R>0ξ(β̃,H1, t1), where t1H1 = t̃H.

Proof.

R>0Φ(ξ(β,H, t)) =R>0Φ(Im(Z(β,tH)(v)
−1eβ+

√−1tH))

=R>0Im(Z(β,tH)(v)
−1Φ(eβ+

√−1tH))

=R>0Im(Z
(β̃,t̃H)

(Φ(v))−1ζ−1ζeβ̃+
√−1t̃H)

=R>0ξ(β̃,H1, t1).

Q.E.D.
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Remark 3.7. We have a commutative diagram

v⊥ Φ ��

θv,β,ω

��

Φ(v)⊥

θ
Φ(v),β̃,ω̃

��
NS(K(β,ω)(v)) Φ∗

�� NS(Kα
(β̃,ω̃)

(Φ(v)))

whereKα
(β̃,ω̃)

(Φ(v)) is the Bogomolov factor of the moduli of σ(β̃,ω̃)-stable

objects Mα
(β̃,ω̃)

(Φ(v)). Then we have

R>0Φ∗(θv,β,ω(ξ(β′,H ′, t′))) = R>0θΦ(v),β̃,ω̃(ξ(β̃
′,H1, t1)),

where t1H1 = t̃′H ′.

3.2. Stability conditions and the positive cone.

Assume that r �= 0. We note that ξ(β,H, t) ∈ �⊥X if and only if
δ − β ∈ H⊥. In this case, we have ((δ − β)2) ≤ 0, which implies that

(ω2)− ((β − δ)2)

2
+

〈v2〉
2r2

> 0.

Therefore we get the following claim.

Lemma 3.8.

ξ(β,H, t) ∈ �⊥X ⇐⇒ ξ(β,H, t) = r(η + (η, δ)�X), η ∈ Amp(X)R

Moreover
η ∈ Amp(X)R ⇐⇒ H ∈ Amp(X)R.

Lemma 3.9. Assume that (β − δ,H) �= 0 and set

η := β − δ +
1

(β − δ,H)

(
t2(H2)− ((β − δ)2)

2
+

〈v2〉
2r2

)
H.

Then

(1) (η2) ≥ 〈v2〉
r2 . Moreover

(η2) =
〈v2〉
r2

⇐⇒
{
(H2) = 0 or

t = 0 and ((β − δ)2) = 〈v2〉
r2 .

(2) (β − δ,H)(η,H ′) > 0 for H ′ ∈ Amp(X)R which is sufficiently
close to H.
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Proof. (1)

(η2) =((β − δ)2) + 2

(
t2(H2)− ((β − δ)2)

2

〈v2〉
2r2

)
+

(H2)

(β − δ,H)2

(
t2(H2)− ((β − δ)2)

2
+

〈v2〉
2r2

)2

=t2(H2) +
〈v2〉
r2

+
(H2)

(β − δ,H)2

(
t2(H2)− ((β − δ)2)

2
+

〈v2〉
2r2

)2

≥〈v2〉
r2

.

Moreover the equality holds if and only if (β,H, t) satisfy (i) or (ii).
(2) It is sufficient to prove (β − δ,H)(η,H) > 0. If (H2) = 0, then

(β − δ,H)(η,H) = (β − δ,H)2 > 0. Assume that (H2) > 0. We set
β − δ = sH +D (s ∈ R, D ∈ H⊥). Then

(β − δ,H)(η,H)

=
1

2

(
(β − δ,H)2 − (H2)(D2) + t2(H2)2 +

(H2)〈v2〉
r2

)
> 0.

Q.E.D.

Definition 3.10. We set

P+(v⊥)k :=

{
x ∈ H∗(X,Z)alg ⊗ k

∣∣∣∣∣x ∈ v⊥, 〈x2〉 > 0,

〈x, rH0 + (rH0, δ)�X〉 > 0

}
,

P+(v⊥)k :=

{
x ∈ H∗(X,Z)alg ⊗ k

∣∣∣∣∣x ∈ v⊥, 〈v2〉 ≥ 0,

〈x, rH0 + (rH0, δ)�X〉 > 0

}
,

where k = Q,R and H0 ∈ Amp(X)Q.

We take a norm || || on NS(X)R defined over Q and regard the cone

C(Amp(X)R) in subsection 1.2 as a subset of Amp(X)R (subsection 1.2):

C(Amp(X)R) = {L ∈ Amp(X)R | ||L|| = 1}.
Under this identification, ξ(β,H, t) is defined for

(β,H, t) ∈ H = NS(X)R × C(Amp(X)R)× R≥0.

For the embedding

NS(X)R × Amp(X)R → H
(β,H) �→ (β,H/||H||, ||H||),
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we have

R>0ξ(β,H, t) =R>0ξ(β,H/||H||, ||H||t),
(β,H, t) ∈NS(X)R ×Amp(X)R × R≥0.

Proposition 3.11. We have a map

Ξ : H → C(H∗(X,Z)alg ⊗ R)
(β,H, t) �→ R>0ξ(β,H, t)

whose image is the positive cone C+ := C(P+(v⊥)R) of v⊥. Moreover
if tH is ample, then ξ(β,H, t) belongs to the interior of C+.

Proof. By Proposition 3.6, it is sufficient to prove the claim for
r �= 0. An element

(3.2) u = ζ + (ζ, δ)�X + y(eδ + 〈v2〉
2r2 �X) ∈ v⊥ ∩H∗(X,Z)alg ⊗ R

satisfies 〈u2〉 ≥ 0 and 〈u, rH+(rH, δ)�X〉 > 0 if and only if (ζ2) ≥ y2 〈v2〉
r2

and (ζ, rH) > 0. We first assume that y �= 0. We set ζ
y := xH + D

(x ∈ R, D ∈ H⊥) and

σ± := ±
√

〈v2〉 − r2(D2)

r2(H2)
.

Then the conditions are x ≥ σ+ if ry > 0 and x ≤ σ− if ry < 0. If y = 0,

then the condition is (ζ2) ≥ 0 and (ζ, rH) > 0, that is, rζ ∈ Amp(X)R.
We shall first prove that im(Ξ) contains C+. We shall find (β,H, t)

such that β = δ + sH +D, (s ∈ R, D ∈ H⊥) and

R>0ξ(β,H, t) = R>0u.

We set

g(s, t) :=
(H2)(s2 + t2) + 〈v2〉

r2 − (D2)

2s(H2)
.

Then g(s, 0) define continuous functions from (0,∞) to [σ+,∞) and from
(−∞, 0) to (−∞, σ−]. Hence we can take s ∈ R with x = g(s, 0). For
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β := δ + sH +D, we have

ξ(δ + sH +D,H, 0)

r(β − δ,H)

=
1

(β − δ,H)

(
− ((β − δ)2)

2
+

〈v2〉
2r2

)
(H + (H, δ)�X)

+ (β − δ + (β − δ, δ)�X) +
(
eδ − aδ

r
�X

)
=g(s, 0)(H + (H, δ)�X) + (D + (D, δ)�X) +

(
eδ − aδ

r
�X

)
=

u

y
.

Since r(β − δ,H)y = rsy(H2) and sx = sg(s, 0) > 0,

rxy = (ζ, rH)/(H2) > 0

implies that r(β − δ,H) and y have the same sign. Thus

R>0ξ(δ + sH +D,H, 0) = R>0u.

If y = 0, then Lemma 3.8 implies that

ξ(δ, rζ, t) =
r4t2(ζ2) + 〈v2〉

2
(ζ + (ζ, δ)�X) ∈ R>0u.

Hence u ∈ imΞ. Conversely for ξ(β,H, t), Lemma 3.8 or Lemma 3.9
implies that ξ(β,H, t) ∈ C+. Therefore the claim holds. Q.E.D.

Remark 3.12. If u in (3.2) belongs to H∗(X,Z)alg ⊗Q and satisfies
〈u2〉 > 0, then there is (β,H, t) such that Ξ(β,H, t) = u, β,H ∈ NS(X)Q
and t2 ∈ Q: Indeed if u ∈ H∗(X,Z)alg, then we may assume that

H ∈ NS(X)Q. For g(s, 0) ∈ Q, we can take (s′, t′) such that s′, t′2 ∈ Q
and g(s′, t′) = g(s, 0). Hence the claim holds.

Proposition 3.13. (β,H, t) ∈ Wv1 (see Definition 1.2) if and only
if ξ(β,H, t) ∈ v⊥ ∩ v⊥1 .

Proof. We note that (1.5) is written as

det

(
a− (ξ, β) + r (β2)−t2(H2)

2 a1 − (ξ1, β) + r1
(β2)−t2(H2)

2−(ξ − rβ,H) −(ξ1 − r1β,H)

)

=

(
((δ−β)2)−t2(H2)

2 − 〈v2〉
2r2 〈−eβ + t2(H2)

2 �X , v1〉
−(ξ − rβ,H) −〈H + (H,β)�X , v1〉

)
=〈ξ(β,H, t), v1〉.

(3.3)

Hence the claim holds. Q.E.D.
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Proof of Proposition 1.3. By Proposition 3.13 and Proposition 3.11,

it is sufficient to find the condition P+(v⊥)R ∩ v⊥1 �= ∅. We set η :=
〈v2〉v1 − 〈v1, v〉v ∈ v⊥. Then v⊥1 ∩ v⊥ = η⊥ ∩ v⊥. Since the signature of
v⊥ is (1, rkNS(X)), the condition is (η2) < 0. Since

〈η2〉 = 〈v2〉(〈v21〉〈v2〉 − 〈v1, v〉2),
we get the claim. Q.E.D.

Definition 3.14. (1) A connected componentD of P+(v⊥)R\
∪v1∈Wv⊥1 is a chamber.

(2) D(β,H, t) is a chamber such that ξ(β,H, t) ∈ D(β,H, t).

D(β,H, t) consists of x ∈ P+(v⊥)R such that 〈ξ(β,H, t),±v1〉 > 0
implies 〈x,±v1〉 ≥ 0, that is, 〈ξ(β,H, t), v1〉〈x, v1〉 ≥ 0.

Proposition 3.15 ([19, Thm. 1.6]). We fix a general (β,H, t).

(1) Assume that (β′,H ′, t′) belongs to a chamber and H ′ ∈ Amp(X)Q,

t′2 ∈ Q, β′ ∈ NS(X)Q. Then θv,β′,t′H′(ξ(β′,H ′, t′)) is an am-
ple Q-divisor of K(β′,t′H′)(v).

(2) We have a surjective map

ϕ(β,H,t) : H → C(P+(K(β,tH)(v))R)

such that

ϕ(β,H,t)((β
′,H ′, t′)) := R>0θv,β,tH(ξ(β′,H ′, t′)).

(3) Let C be a chamber in H. Then Ξ(C) is the chamber D(β′,H ′, t′)
((β′,H ′, t′) ∈ C) in C+ and

θv,β,tH(D(β,H, t)) = Nef(K(β,tH)(v))R.

Proof. (1) Since (β′,H ′, t′) is general, we may assume that dβ′(v) �=
0. If dβ′(v) > 0, then the claim is a consequence of [19, Thm. 1.6]. If
dβ′(v) < 0, then we apply [19, Thm. 1.6] to M(β′,t′H′)(−v). Since ξω for
v is the same as that for−v and θ−v,β′,t′H′ = −θv,β′,t′H′ , −θv,β′,t′H′(ξt′H′)
is ample, which implies that dβ′θv,β′,t′H′(ξt′H′) is ample.

(2) Since θv,β,tH : P+(v⊥)R → P+(K(β,tH)(v))R is an isomorphism,
the claim follows from Proposition 3.11.

(3) By (1) and (2), θβ,H,t(D(β,H, t)) is contained in Nef(K(β,tH)(v))R.
Then the claim follows from [19, Cor. 5.17 (2)]. More precisely, we

proved that ξ(β′,H ′, t′) ∈ P+(v⊥)R ∩ v⊥1 ∩ D(β,H, t) gives a contrac-
tion under the assumption dβ′ > 0. For the case where dβ′ < 0, we
get the claim by the same reduction in (1). We next treat the case
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where dβ′ = 0. If r1ξ − rξ1 �= 0, then Wv1 does not contain the set
dβ′ = 0 by Lemma 1.5 (1). For a general point of Wv1 , we can apply [19,

Cor. 5.17 (2)]. Hence for any ξ(β′,H ′, t′) ∈ P+(v⊥)R ∩ v⊥1 ∩D(β,H, t),
θv,β,tH(ξ(β′,H ′, t′)) gives a contraction.

If r1ξ − rξ1 = 0, then Wv1 is the set dβ′ = 0 by Lemma 1.5 (1). In
this case, θv,β,tH(ξ(β′,H ′, t′)) gives a contraction. Q.E.D.

Corollary 3.16. For (β′,H ′, t′) ∈ D(β,H, t) with 〈ξ(β′,H ′, t′)2〉 >
0, θv,β,tH(ξ(β′,H ′, t′)) gives a birational contraction of K(β,tH)(v).

Proof. We first note that the canonical bundle of K(β,tH)(v) is

trivial. By Proposition 3.15 (3) and 〈ξ(β′,H ′, t′)2〉 > 0, we can apply
the base point free theorem to get the claim. Q.E.D.

The following result describe the exceptional locus of the contrac-
tion.

Proposition 3.17. Assume that (β′,H ′, t′) ∈ D(β,H, t)\D(β,H, t).
We set

M(β,tH)(v)
∗ :={E ∈ M(β,tH)(v) | E is σ(β′,t′H′)-stable },

K(β,tH)(v)
∗ :=M(β,tH)(v)

∗ ∩K(β,tH)(v).

If 〈ξ(β′,H ′, t′)2〉 > 0, then θv,β,tH(ξ(β′,H ′, t′)) is ample over K(β,tH)(v)
∗.

Thus the exceptional locus of the contraction by θv,β,tH(ξ(β′,H ′, t′)) is
contained in K(β,tH)(v) \K(β,tH)(v)

∗.

Proof. Since 〈ξ(β′,H ′, t′)2〉 > 0, we can take a general (β1,H1, t1)
such that β1,H1 ∈ NS(X)Q, t

2
1 ∈ Q and

ξ(β′,H ′, t′) = xξ(β,H, t) + (1− x)ξ(β1,H1, t1), x ∈ (0, 1).

Since
M(β,tH)(v)

∗ ⊂ M(β,tH)(v) ∩M(β1,t1H1)(v),

we have

θv,β,tH(x)|M(β,tH)(v)∗ = θv,β1,t1H1(x)|M(β,tH)(v)∗ , x ∈ v⊥,

where

θv,β,tH(x) := c1(pM(β,tH)(v)∗(ch(E)p∗X(x∨)) ∈ NS(M(β,tH)(v)),

(cf. Definition 1.12). Since θv,β,tH(ξ(β,H, t)) and θv,β1,t1H1(ξ(β1,H1, t1))
are ample divisors on M(β,tH)(v) and M(β1,t1H1)(v) respectively,
θv,β,tH(ξ(β′,H ′, t′)) is ample over M(β,tH)(v)

∗. Q.E.D.
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3.3. The movable cone of K(β,tH)(v).

Definition 3.18. We set

Ik :=

{
w

∣∣∣∣∣ w ∈ H∗(X,Z)alg is primitive,

〈w2〉 = 0, 〈v, w〉 = k

}
,

I :=
2⋃

k=0

Ik.

By the classification of walls in [18], the following is obvious.

Lemma 3.19. For v1 ∈ I1 and w1 ∈ W with

w1 �∈ {iv1, v − iv1 | 1 ≤ i ≤ 〈v2〉/2},
v⊥1 ∩ w⊥

1 ∩ P+(v⊥)R = ∅.
Proof. If v⊥1 ∩ w⊥

1 ∩ P+(v⊥)R �= ∅, then we have ξ ∈ H∗(X,Z)alg
such that ξ ∈ v⊥1 ∩ w⊥

1 ∩ v⊥ and 〈ξ2〉 > 0. Since v1 ∈ I1, we have a
decomposition v = 	v1 + v2 where 〈v21〉 = 0, 〈v1, v2〉 = 1 and 	 = 〈v2〉/2.
Then we have a decomposition

ξ⊥ = (Zv1 ⊕ Zv2) ⊥ L.

Since 〈ξ2〉 > 0, L is negative definite. We set

w1 :=xv1 + yv2 + η,

w2 :=(	− x)v1 + (1− y)v2 − η,

where x, y ∈ Z and η ∈ L. By replacing w1 by w2 if necessary, we
may assume that y ≥ 1. Since w1 ∈ W, 〈w2

1〉 ≥ 0, 〈w2
2〉 ≥ 0 and

〈w1, w2〉 > 0. Thus we have 2xy + (η2) ≥ 0, 2(	 − x)(1 − y) + (η2) ≥ 0
and y(	− x) + x(1− y)− (η2) > 0. On the other hand,

y(	− x) + x(1− y)− (η2) ≤y(	− x) + x(1− y) + 2(	− x)(1− y)

=	(2− y)− x.

If y ≥ 2, then xy ≥ −(η2)/2 ≥ 0 implies that x ≥ 0. Hence 〈w1, w2〉 ≤ 0.
If y = 1, then 〈w2

2〉 ≥ 0 implies that η = 0. Hence w2 = (	 − x)v1 with
0 ≤ x < 	, which is a contradiction. Therefore v⊥1 ∩ w⊥

1 ∩ P+(v⊥)R =
∅. Q.E.D.

Remark 3.20. For w ∈ I0, we have Ww = Rw ∩ P+(v⊥)R.

We also have the following result.
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Proposition 3.21. Assume that v is a primitive Mukai vector with
	 := 〈v2〉/2 ≥ 4. For v1, w1 ∈ I2 with w1 �∈ Zv1,

v⊥1 ∩ w⊥
1 ∩ P+(v⊥)R = ∅.

Proof. If v⊥1 ∩ w⊥
1 ∩ P+(v⊥)R �= ∅, we can take ξ ∈ H∗(X,Z)alg

such that ξ ∈ v⊥1 ∩ w⊥
1 ∩ v⊥ and 〈ξ2〉 > 0. Then v − 	v1, v − 	w1 ∈

ξ⊥∩v⊥∩H∗(X,Z)alg. Since ξ
⊥∩v⊥∩H∗(X,Z)alg is negative definite, we

have 〈v−	v1, v−	w1〉2 ≤ 〈(v−	v1)
2〉〈(v−	w1)

2〉. Moreover if the equality
holds, then v − 	v1 = ±(v − 	w1) by 〈(v − 	v1)

2〉 = 〈(v − 	w1)
2〉 = −2	.

In this case, we have v1 = w1 or 2v = 	(v1 + w1). By the primitivity of
v and 	 ≥ 4, the latter case does not occur. Hence we have

4	2 =〈(v − 	v1)
2〉〈(v − 	w1)

2〉
>〈v − 	v1, v − 	w1〉2 = (	2〈v1, w1〉 − 2	)2.

Thus −2	 < 	2〈v1, w1〉 − 2	 < 2	, which implies that 0 < 	〈v1, w1〉 < 4.
Since 	 ≥ 4, this does not occur. Therefore the claim holds. Q.E.D.

Remark 3.22. If rkNS(X) ≥ 2, then I0 �= ∅ if and only if #I0 = ∞.

Definition 3.23. Let v be a primitive Mukai vector. For u ∈ I1∪I2,
we set

du := v − 〈v2〉
〈v, u〉u.

Lemma 3.24. Let u be an isotropic Mukai vector with 〈v, u〉 = 1, 2.

(1) du is a primitive vector with 〈d2u〉 = −〈v2〉.
(2) du defines a reflection of the lattice v⊥:

Ru : v⊥ → v⊥

x �→ x− 2〈du,x〉
〈du,du〉du.

Proof. (1) We set du = kd1, k ∈ Z. Then 〈v2〉 = k2〈d21〉 +
2k	 2

〈v,u〉 〈d1, u〉 ∈ 2kZ. Hence v = kd1 + 〈v2〉
〈v,u〉u is divisible by k. By

the primitivity of v, k = 1. 〈d2u〉 = −〈v2〉 is easy.
(2) For x ∈ v⊥, we have 〈du, x〉 = − 〈v2〉

〈v,u〉 〈x, u〉. Hence

Ru(x) = x− 2

〈v, u〉 〈x, u〉du ∈ H∗(X,Z)alg.

Obviously Ru preserves the bilinear form. Therefore Ru is an isometry
of v⊥. Q.E.D.
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Proposition 3.25. Let v1 be an isotropic Mukai vector such that
〈v, v1〉 = 1. Then

(1) v = 	v1 + v2, where 	 := 〈v2〉/2, 〈v22〉 = 0 and 〈v1, v2〉 = 1.
(2) We set Y := MH(v1) and let

Φ : D(X) → D(Y )

be a Fourier-Mukai transform such that Φ(v1) = (0, 0,−1)
and Φ(v2) = (1, 0, 0). Then the contravariant Fourier-Mukai
transform Ψ := [1] ◦ Φ−1 ◦ DY ◦ Φ gives an isometry Ψ of
H∗(X,Z)alg such that

Ψ|v⊥ = Rv1 .

Proof. We have a decomposition

H∗(X,Z)alg = (Zv1 + Zv2) ⊥ L,

where L is a lattice with Φ(L) = NS(Y ). Hence we see that

Ψ(w) =w, w ∈ L,

Ψ(v1) =− v1,

Ψ(v2) =− v2.

Since v, dv1 ∈ (Zv1 + Zv2), we get the claim. Q.E.D.

Definition 3.26. Let W be a wall for v. Let (β,H, t) be a point of
W and (β′,H ′, t′) be a point in an adjacent chamber. Then we define
the codimension of the wall W by

codimW := min
v=
∑

i vi

⎧⎨⎩∑
i<j

〈vi, vj〉 −
(∑

i

(dimMβ′
H (vi)

ss − 〈v2i 〉)
)

+ 1

⎫⎬⎭ ,

where v =
∑

i vi are decompositions of v such that φ(β,tH)(v) =
φ(β,tH)(vi) and φ(β′,t′H′)(vi) > φ(β′,t′H′)(vj), i < j.

If codimW ≥ 2, then the proof of [18, Prop. 4.3.5] implies that

dim{E ∈ M(β′,t′H′)(v) | E is not σ(β,tH)-stable } ≤ 〈v2〉.

Proposition 3.27. Let v be a primitive Mukai vector with 〈v2〉 ≥ 6.
Let W be a wall for v and take (β,H, t) ∈ W such that β ∈ NS(X)Q and
H ∈ Amp(X)Q.
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(1) W is a codimension 0 wall if and only if W is defined by v1
such that

v = 	v1 + v2, 〈v21〉 = 〈v22〉 = 0, 〈v1, v2〉 = 1, 	 = 〈v2〉/2.
(2) We take (β±, ω±) from chambers separated by the codimen-

sion 0 wall W in (1). We may assume that φ(β+,ω+)(E1) <
φ(β+,ω+)(E) for E1 ∈ M(β,ω)(v1) and E ∈ M(β+,ω+)(v). Then
(a) θv,β±,ω±(ξ(β,H, t)) give divisorial contractions.
(b) Let D± ⊂ M(β±,ω±)(v) be the exceptional divisors of the

contractions. Then D± are irreducible divisors such that

(D±)|K(β±,ω±)(v) = ±2θv,β±,ω±(dv1) ∈ NS(K(β±,ω±)(v)).

Proof. (1) is a consequence of [18, Lem. 4.3.4 (2)].
(2) Let Φ : D(X) → D(Y ) be the Fourier-Mukai transform in Propo-

sition 3.25. By [18, Prop. 4.1.4], Φ induces an isomorphism

M(β+,ω+)(v) → Pic0(Y )×Hilb�Y .

By using the Hilbert-Chow morphism Hilb�Y → S�Y , we have a divisorial
contraction

M(β+,ω+)(v) → Pic0(Y )×Hilb�Y → Pic0(Y )× S�Y.

By using Lemma 3.28, we get the claim (a). Since DY ◦ Φ gives an
isomorphism

M(β−,ω−)(v) → Pic0(Y )×Hilb�Y

by [18, Prop. 4.1.4], we also get the claim (a). (b) is a consequence of
Lemma 3.28 below. Q.E.D.

Lemma 3.28. Let v = (1, 0,−	) be a primitive Mukai vector with
	 ≥ 3. We set v1 = (0, 0,−1) and v2 = (1, 0, 0). Then

dv1 = v − 2	v1 = (1, 0, 	).

For the Hilbert-Chow morphism Hilb�X → S�X, the exceptional divisor
D is divisible by 2 and satisfies

D|KH(v) = 2θv((1, 0, 	)) = 2θv(dv1).

Proposition 3.29. Let v be a primitive Mukai vector with 〈v2〉 ≥ 6.
Let W be a wall for v and take (β,H, t) ∈ W such that β ∈ NS(X)Q and
H ∈ Amp(X)Q.
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(1) W is a codimension 1 wall if and only if W is defined by v1
such that
(i) v = v1 + v2, 〈v21〉 = 0, 〈v22〉 ≥ 0, 〈v, v1〉 = 2 and v1 is

primitive or
(ii) v = v1 + v2 + v3, 〈v2i 〉 = 0 (i = 1, 2, 3), 〈v1, v2〉 =

〈v2, v3〉 = 〈v3, v1〉 = 1.
For the second case, 〈v2〉 = 6, Wv1 and Wv2 intersect trans-
versely and (β,H, t) ∈ Wv1 ∩Wv2 .

(2) Assume that (β,H, t) belongs to exactly one wall W . We
take (β±, ω±) from chambers separated by the codimension
1 wall W in (1). In the notation of (1), we may assume
that φ(β+,ω+)(E1) < φ(β+,ω+)(E) for E1 ∈ M(β,ω)(v1) and
E ∈ M(β+,ω+)(v). We set

D+ := {E ∈ M(β+,ω+)(v) | Hom(E1, E) �= 0, E1 ∈ M(β,ω)(v1)},
D− := {E ∈ M(β−,ω−)(v) | Hom(E,E1) �= 0, E1 ∈ M(β,ω)(v1)}.

Then
(a) D± are non-empty and irreducible divisors.
(b) (D±)|K(β±,ω±)(v) = ±θv,β±,ω±(dv1) ∈ NS(K(β±,ω±)(v)).

In particular, D± are primitive.
(c) θv,β±,ω±(ξ(β,H, t)) gives contractions of D±.

Proof. (1) The classification of codimension 1 walls in [18, Lem.
4.3.4 (2), Prop. 4.3.5] imply that W is defined by v1 with the required
properties. It is easy to see that v1, v2, v3 spans a lattice of rank 3 and
v⊥1 ∩ v⊥2 = Z(v3 − v1 − v2). Hence Wv1 and Wv2 intersect transversely.

(2) D+ = θv,β+,ω+(dv1) is a consequence of [18, Lem. 4.5.1] and
D− = −θv,β−,ω−(dv1) follows from [18, Prop. 4.5.2]. By Lemma 3.24
(1), D± are primitive.

The non-emptiness and the contractibility of D± are showed in the
proof of [19, Cor. 5.17]. Q.E.D.

Remark 3.30. For the wall W in Proposition 3.29, we have an iso-
morphism

f : M(β+,ω+)(v) → M(β−,ω−)(v)

such that f∗ ◦ θv,β+,ω+ = θv,β−,ω− ◦ Rv1 : Indeed we have a map f as
a birational map. We set ω+ := tH+. Then θv,β+,ω+(ξ(β+,H+, t)) ∈
NS(M(β+,ω+)(v)) is relatively ample over X × X̂. Since

θv,β−,ω−(Rv1(ξ(β+,H+, t))) ∈ NS(M(β−,ω−)(v))
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is relatively ample over X × X̂, f is an isomorphism. For the wall
W in Proposition 3.27, we also have a similar isomorphism f by using
Fourier-Mukai transform Ψ in Proposition 3.25.

The following results fit in the general result of Markman [13] on
the movable cone of irreducible symplectic manifolds.

Theorem 3.31. Let (X,H) be a polarized abelian surface X. Let
v be a primitive Mukai vector with 〈v2〉 ≥ 6. We take (β,H, t) ∈ H =
NS(X)R×C(Amp(X)R)×R>0 such that ξ(β,H, t) ∈ P+(v⊥)R\∪u∈Wu⊥,
where W is the set of Mukai vectors satisfying (1.2). Thus (β, tH) is
general (see Definition 1.2).

(1) Let D(β, tH) be a connected component of P+(v⊥)R \∪u∈Iu
⊥

containing ξ(β,H, t) (cf. Definition 3.18). Then

Mov(K(β,tH)(v))R =θv,β,tH(D(β, tH)).

Moreover

θv,β,tH(H∗(X,Z)alg ∩ D(β, tH)) ⊂ Mov(K(β,tH)(v)).

(2) We choose u ∈ Ii (i = 1, 2). Let x ∈ H∗(X,Z)alg ∩ D(β, tH)
be a general element of the boundary defined by 〈x, u〉 = 0.
Then
(a) θv(x) defines a divisorial contraction from a birational

model K(β′,t′H′)(v) of K(β,tH)(v).
(b) The exceptional divisor of the contraction is primitive in

NS(K(β,tH)(v)) if u ∈ I2, and the exceptional divisor is
divisible by 2 in NS(K(β,tH)(v)) if u ∈ I1.

Proof. (1) We note that

Mov(K(β,tH)(v))R ⊂ C(P+(K(β,tH)(v))R) = θv,β,tH(P+(v⊥)R)

and

(3.4)
⋃

ξ(β′,H′,t′)∈D(β,tH)

D(β′,H ′, t′) = D(β, tH).

Assume that ξ(β′,H ′, t′) ∈ D(β, tH). Since there is no wall of codi-
mension 0,1, we have a natural birational identification K(β,tH)(v) · · · →
K(β′,t′H′)(v) with an identification NS(K(β,tH)(v)) → NS(K(β′,t′H′′)(v)).
Hence ⋃

ξ(β′,H′,t′)∈D(β,tH)

θv,β,tH(D(β′,H ′, t′)) ⊂ Mov(K(β,tH)(v))R
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and

θv,β,tH(D(β, tH))

=
⋃

ξ(β′,H′,t′)∈D(β,tH)

θv,β,tH(D(β′,H ′, t′)) ⊂ Mov(K(β,tH)(v))R.

Assume that ξ(β′,H ′, t′) �∈ D(β, tH). We set

ηx := xξ(β′,H ′, t′) + (1− x)ξ(β,H, t), x ∈ [0, 1].

If θv,β,tH(ξ(β′,H ′, t′)) is movable, then Lx := θv,β,tH(ηx) is movable
for 0 ≤ x ≤ 1. We take an adjacent wall u⊥ (u ∈ I) of D(β, tH)
separating ξ(β′,H ′, t′) and ξ(β,H, t). Then we find x0 ∈ Q∩ (0, 1) such
that 〈ηx0 , u〉 = 0. Let D(β1,H1, t1) ⊂ D(β, tH) be the chamber such
that ηx ∈ ξ(D(β1,H1, t1)) for x

′ < x < x0 with x′ < x0. Since all walls
W between η0 and ηx0 satisfy codimW ≥ 2, we have a natural birational
map ϕ : K(β,tH)(v) · · · → K(β1,t1H1)(v) which induces a commutative
diagram

v⊥ v⊥

θv,β,tH

⏐⏐# ⏐⏐#θv,β1,t1H1

NS(K(β,tH)(v))
ϕ∗−−−−→ NS(K(β1,t1H1)(v))

Since (η2x0
) > 0, ϕ∗(Lx0) gives a divisorial contraction of K(β1,t1H1)(v).

Let C(⊂ K(β1,t1H1)(v)) be a general curve contracted by ϕ∗(Lx0). Since
L1 = θv,β,tH(ξ(β′,H ′, t′)) is movable, ϕ∗(L1) is also movable. Hence we
may assume that C is not contained in its base locus. Then (ϕ∗(L1), C) ≥
0. Since (ϕ∗(Lx), C) > 0 for x′ < x < x0, we have (ϕ∗(Lx0), C) > 0,
which is a contradiction. Hence θv,β,tH(ξ(β′,H ′, t′)) is not movable.

Assume that ξ ∈ H∗(X,Z)alg belongs to D(β, tH). We take

D(β′,H ′, t′) containing ξ by (3.4). If (ξ2) > 0, then Corollary 3.16
implies that θv,β,tH(ξ) gives a birational contraction of K(β′,t′H′)(v).
Hence it is movable.

If (ξ2) = 0, then see Proposition 3.38. Therefore (1) holds.
(2) is a consequence of Proposition 3.27 and 3.29. Q.E.D.

Remark 3.32. For u ∈ I0, u
⊥ is a tangent of P+(v⊥)R.

Corollary 3.33. Keep notations in Theorem 3.31.

(1) Let (K,L) be a pair of a smooth manifold K with a trivial
canonical bundle and an ample divisor L on K. If K is bira-
tionally equivalent to K(β,tH)(v), then there is ξ(β′,H ′, t′) ∈
D(β, tH) such that K ∼= K(β′,t′H′)(v) and R>0L corresponds
to R>0θv,β,ω(ξ(β

′,H ′, t′)).
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(2) Let (M,L) be a pair of smooth manifold M with a trivial
canonical bundle and an ample divisor L on M . If M is bira-
tionally equivalent to M(β,tH)(v), then there is ξ(β′,H ′, t′) ∈
D(β, tH) such that M ∼= M(β′,t′H′)(v) and R>0L corresponds
to R>0θv,β,ω(ξ(β

′,H ′, t′)) up to line bundles coming from the
albanese variety Alb(M(β′,t′H′)(v)).

Proof. (1) Since the canonical bundles of K and K(β,tH)(v) are
trivial, we have a birational map

f : K · · · → K(β,tH)(v)

with an isomorphism f∗ : NS(K) → NS(K(β,tH)(v)). Then f∗(L) ∈
Mov(K(β,tH)(v))Q. We take (β′,H ′, t′) ∈ H such that

f∗(L) ∈ R>0θv,β,tH(ξ(β′,H ′, t′))

and β′,H ′ ∈ NS(X)Q (see Remark 3.12). Assume that ξ(β′,H ′, t′) ∈
D(β1,H1, t1)(⊂ D(β, tH)). We take an ample divisor L0 on K such that
f∗(L0) ∈ θv,β,tH(D(β1,H1, t1)). For the birational map g : K(β,tH)(v) →
K(β1,t1H1)(v), L1 := (g ◦ f)∗(L0) is ample. We note that g ◦ f induces
an isomorphism⊕

n≥0

H0(K,OK(nL0)) ∼=
⊕
n≥0

H0(K(β1,t1H1)(v),OK(β1,t1H1)(v)(nL1)).

Then the ampleness of L0 and L1 imply that g ◦ f : K → K(β1,t1H1)(v)
is an isomorphism. Since L is ample, θv,β,tH(ξ(β′,H ′, t′)) is also ample
on K(β1,t1H1)(v), which implies that ξ(β′,H ′, t′) ∈ D(β1,H1, t1). Hence
K ∼= K(β1,t1H1)(v)

∼= K(β′,t′H′)(v).
(2) For a birational map ϕ : M · · · → M(β,tH)(v), we have a com-

mutative diagram

M
ϕ· · · −→ M(β,tH)(v)⏐⏐# ⏐⏐#

Alb(M)
η−−−−→ Alb(M(β,tH)(v))

where η is an isomorphism.
Let K be a smooth fiber of the albanese map of M . Then the

canonical bundle of K is trivial. For a general smooth fiber K, ϕ induces
a birational map K → K(β,tH)(v). There is ξ(β

′,H ′, t′) ∈ D(β, tH) such
that for the birational map ψ : M(β,tH)(v) · · · → M(β′,t′H′)(v), ψ ◦ ϕ
indices an isomorphism K → K(β′,t′H′)(v). Thus (ψ ◦ϕ)∗(L)|K(β′,t′H′)(v)
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is ample. Since the albanese map of M(β′,t′H′)(v) is isotrivial, (ψ◦ϕ)∗(L)
is relatively ample over Alb(M(β′,t′H′)(v)). As in the proof of (1), by
looking at relative global sections, we see the ψ ◦ ϕ is an isomorphism.

Q.E.D.

Corollary 3.34. Keep notations in Theorem 3.31

(1) Assume that I1 = I2 = ∅, that is,
min{〈v, w〉 > 0 | 〈w2〉 = 0} ≥ 3.

Then
D(β, tH) = P+(v⊥)R.

In particular, Mov(K(β,tH)(v))Q = P+(K(β,tH)(v))Q.

(2) Assume that I1 = ∅ and I2 �= ∅, that is,
min{〈v, w〉 > 0 | 〈w2〉 = 0} = 2.

For every divisorial contraction from a birational model
of K(β,tH)(v), the exceptional divisor is primitive in
NS(K(β,tH)(v)).

(3) Assume that I1 �= ∅, that is,
min{〈v, w〉 > 0 | 〈w2〉 = 0} = 1.

Then there is a divisorial contraction from a birational model
of K(β,tH)(v) such that the exceptional divisor is a prime di-
visor and divisible by 2 in NS(K(β,tH)(v)).

Let us study the structure of walls in a neighborhood of a rational

point of P+(v⊥)R\P+(v⊥)R. Let A be a compact subset of P+(v⊥)R and

u an isotropic Mukai vector in the boundary of P+(v⊥)R. Let uA be the
cone spanned by u and A. We note that WA := {v1 ∈ W | A ∩ v⊥1 �= ∅}
is a finite set. We fix a point a ∈ A which does not lie on any wall and
assume that there is no wall between u and a (cf. Remark 3.37).

Lemma 3.35. v1 ∈ W satisfies v⊥1 ∩ uA �= ∅ if and only if v⊥1 ∩
(A ∪ {u}) �= ∅.

Proof. Assume that w ∈ v⊥1 ∩ uA. We take w′ ∈ A such that w
belongs to the segment uw′ connecting u and w′. Assume that 〈v1, u〉 �=
0. If v⊥1 ∩A = ∅, then 〈v1, u〉〈v1, w′〉 < 0. Since there is no wall between
u and a, we have 〈v1, u〉〈v1, a〉 > 0. Then w′ and a are separated by the
hyperplane v⊥1 . Therefore there is a point x ∈ A with x ∈ v⊥1 , which is
a contradiction. Hence v⊥1 ∩A �= ∅. Q.E.D.



512 K. Yoshioka

Proposition 3.36. (1) {v1 ∈ W | v⊥1 ∩ (uA \ {u}) �= ∅} is a
finite set.

(2) There is an open neighborhood of u such that

{v1 ∈ W | v⊥1 ∩ U ∩ (uA \ {u}) �= ∅} ⊂ u⊥.

In particular the set of walls is finite in U ∩ uA and all walls
pass the point u.

Proof. By Lemma 3.35,

{v1 ∈ W | v⊥1 ∩ (uA \ {u}) �= ∅} ⊂ WA.

Hence (1) holds. (2) easily follow from (1). Q.E.D.

Remark 3.37. Assume that eβ satisfies 〈eβ , v〉 = 0. Then we can set
v = reβ + ξ + (ξ, β)�X . We set

B := {v1 ∈ W | eβ ∈ v⊥1 }.
For v1 ∈ B and v2 := v − v1 ∈ B, we can set

v1 :=r1e
β + ξ1 + (ξ1, β)�X ,

v2 :=r2e
β + ξ2 + (ξ2, β)�X .

Since 0 < 〈v1, v2〉 = (ξ1, ξ2), ξ1 �= 0 and ξ2 �= 0. If (β, ω′) belongs to
the wall defined by v1, then (ξ21), (ξ

2
2) ≥ 0 implies that both of nξ1 and

nξ2 are effective, or both of −nξ1 and −nξ2 are effective, where n is the
denominator of β. In particular, |(ξ1,H)| < |(ξ,H)| for all ample divisor
H. Then we also see that the set of ξ1 is finite.

If r1 = r (ξ1,H)
(ξ,H) , then |r1| < |r|. Therefore

B′ := {v1 ∈ B | (r1ξ − rξ1,H) = 0 for some H ∈ Amp(X)Q }
is a finite set. We take H ∈ Amp(X)Q such that (H, r1ξ − rξ1) �= 0 for
all v1 ∈ B′. Then (β,H, t) (t � 1) belongs to a chamber.

Proposition 3.38. Let u be a primitive and isotropic Mukai vec-

tor with u ∈ P+(v⊥)R. We take (β,H, t) ∈ H \ ∪v1∈WWv1 such that
ξ(β,H, t) and u are not separated by a wall. Then θv,β,tH(u) gives a

Lagrangian fibration K(β,tH)(v) → P〈v2〉/2−1.

Proof. We take a Fourier-Mukai transform Φ : D(X) → D(X)
such that rkΦ(u) �= 0. Since Φ induces an isomorphism M(β,tH)(v) →
M(β1,t1H1)(Φ(v)) with R>0Φ(ξ(β1,H1, t1)) = R>0ξ(β,H, t), we may as-

sume that rku �= 0. Then we have u = reβ
′
with r �= 0. We take
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w = ±u with rkw > 0 . We set Y := MH(w) and let E be the universal
family as twisted objects. Then we have (twisted) Fourier-Mukai trans-

forms Φ
E∨[k]
X→Y : D(X) → Dα(Y ), where α are suitable 2-cocycles of O×

Y

defining E∨ and k = 1 for (δ − β′,H) > 0, k = 2 for (δ − β′,H) < 0.

We set v′ = Φ
E∨[k]
X→Y (v). Since (β̃, t̃H, s) does not lie on any wall for

s ≥ 1, we have M
(β̃,st̃H)

(v′) ∼= Mα
t̃H

(v′) for s ≥ 1, where Mα
t̃H

(v′) is the
moduli space of semi-stable α-twisted sheaves on Y ([30]). Thus we get
an isomorphism M(β,tH)(v) → Mα

t̃H
(v′) with rk v′ = 0. We note that

the scheme-theoretic support Div(E) of a purely 1-dimensional sheaf
is well-defined even for a twisted sheaf. Hence we have a morphism
f : Mα

t̃H
(v′) → HilbηY by sending E ∈ Mα

t̃H
(v′) to Div(E), where HilbηY

is the Hilbert scheme of effective divisors D on Y with η = c1(D).
For a smooth divisor D, f−1(D) ∼= Pic0(D). Hence f is dominant,
which implies f is surjective. Therefore we get a surjective morphism
M(β,tH)(v) → HilbηY . Combining with the properties of the albanese
map, we have a commutative diagram:

M(β,tH)(v) −−−−→ HilbηY

a

⏐⏐# ⏐⏐#
X × X̂ −−−−→ Pic0(Y )

.

Hence we get a morphism K(β,tH)(v) → P(H0(Y,O(D))), where D ∈
HilbηY . Then we see that θv,β,tH(u) comes from P(H0(Y,O(D))). Thus
θv,β,tH(u) gives a Lagrangian fibration. Q.E.D.

As we shall see in appendix, the fiber ofK(β,tH)(v)→P(H0(Y,O(D)))
is connected.

3.4. The birational classes of the moduli spaces of rank 1
sheaves.

Proposition 3.39. Let (X,H) be a polarized abelian surface. Let

v = (r, ξ, a) be a Mukai vector such that 2	 := 〈v2〉 ≥ 6. Then Mβ
H(v)

is birationally equivalent to Pic0(Y ) × Hilb�Y if and only if there is an
isotropic Mukai vector w ∈ H∗(X,Z)alg with 〈v, w〉 = 1, where Y is an
abelian surface.

Proof. By using a Fourier-Mukai transform, we may assume that
r > 0. If there is an isotropic Mukai vector w with 〈v, w〉 = 1, then

Mβ
H(w) is a fine moduli space and the claim follows by [31, Cor. 0.3].

Conversely if Mβ
H(v) is birationally equivalent to Pic0(Y ) × Hilb�Y ,

then we have a birational map f : Kβ
H(v) → KH′(1, 0,−	), where H ′ is
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an ample divisor on Y . Then we have an isomorphism f∗ : NS(KH(v)) →
NS(KH′(1, 0,−	)). By the isomorphism f∗, the movable cones are iso-
morphic. By Thoerem 3.31, I1 �= ∅. Q.E.D.

Remark 3.40. Proposition 3.39 also follows from [16, Lem. 4.9]. In-
deed they characterize the generalized Kummer variety in terms of the
class of the stably prime exceptional divisor δ such that 2δ should cor-
responds to the diagonal divisor. It implies the existence of an isotropic
vector w in Proposition 3.39.

Remark 3.41. If

min{〈v, w〉 > 0 | 〈w2〉 = 0} ≥ 3,

then Mβ
H(v) is not birationally equivalent to any moduli space Mβ′

H′(v′)
on an abelian surface Y with rk v′ = 2.

The following result was conjecture by Mukai [24].

Corollary 3.42. Let (X,H) be a principally polarized abelian sur-
face with NS(X) = ZH. Let v = (r, dH, a) be a Mukai vector with

	 := d2 − ra ≥ 3. Then Mβ
H(v) is birationally equivalent to X × Hilb�X

if and only if the quadratic equation

rx2 + 2dxy + ay2 = ±1

has an integer valued solution.

Proof. Primitive isotropic Mukai vectors are described as w =
±(p2,−pqH, q2), p, q ∈ Z and

〈v, w〉 = ∓(rq2 + 2rpq + ap2).

Hence the claim follows from Proposition 3.39. Q.E.D.

Remark 3.43. We assume that (X,H) is a principally polarized
abelian surface with NS(X) = ZH. If 	 = 1, 2, then Mukai proved

Mβ
H(v) ∼= X ×Hilb�X (see [28, section 7]).

3.5. Walls for X with rkNS(X) ≥ 2.

We shall show that there are many walls by using Fourier-Mukai
transforms. We set

Q� := {ξ ∈ NS(X)R | (ξ2) = 2	}.
Lemma 3.44. We set v = (r, ξ0, a) (r �= 0) and 	 := 〈v2〉/2. An

isotropic vector w ∈ H∗(X,Z)alg ⊗ R satisfies 〈w, v〉 = 0 if and only if

w = (rkw)eξ0/r+ξ with rξ ∈ Q� or w = (0, ξ, (ξ, ξ0)/r) with (ξ2) = 0.
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Proof. Assume that rkw �= 0 and set w = (rkw)eξ0/r+ξ. Since
v = reξ0/r − �

r�X , the condition is

0 = 〈eξ0/r+ξ, v〉 = −r
(ξ2)

2
+

	

r
.

Thus rξ ∈ Q�.
If rkw = 0, then we set w = eξ0/r(0, ξ, a) with (ξ2) = 0. Then the

condition is a = 0, which implies w = (0, ξ, (ξ, ξ0)/r). Q.E.D.

Lemma 3.45. Assume that rkNS(X) ≥ 2. For ξ0 ∈ NS(X) and
an ample divisor ξ, there is ξ1 ∈ NS(X) such that ξ1 = ξ0 + r(kξ + η)

(k � −(η2), η ∈ NS(X)) and
√

2�
(ξ21)

�∈ Q.

Proof. We take an integer k1 � 0 such that ((ξ0 + rk1ξ)
2) > 0. If√

2	((ξ0 + rk1ξ)2) �∈ Z, then ξ0 + rk1ξ satisfies the claim. Assume that

a :=
√
2	((ξ0 + rk1ξ)2) ∈ Z. We take η ∈ NS(X) with 〈η, (ξ0+rk1ξ)〉 =

0. Then ξ1 := (rk2 +1)(ξ0 + rk1ξ)− rη satisfies 2	(ξ21) = (rk2 +1)2a2 +
2	r2(η2). If 2	(ξ21) = x2, x ∈ Z, then

−2	r2(η2) = ((rk2 + 1)a− x)((rk2 + 1)a+ x) > (rk2 + 1)a.

Hence for k2 � 0,
√

2�
(ξ21)

=

√
2�(ξ21)

(ξ21)
�∈ Q. Q.E.D.

Proposition 3.46. Assume that rkNS(X) ≥ 2. For v = (r, ξ0, a)

with 〈v2〉 = 2	, if 	 ≥ r > 0, then ∪u∈Wu⊥ contains P+(v⊥)R\P+(v⊥)R.

Proof. Since 	 ≥ r, u := (0, 0,−1) satisfies (1.2) and (1.4). Hence
u defines a non-empty wall u⊥.

We shall use Lemma 3.44 to show the claim. For rξ ∈ Q�, we

take rξ1 ∈ NS(X)Q in a neighborhood of rξ. Then
√

2�
(ξ21)

ξ1 ∈ Q� is

also sufficiently close to rξ. Replacing ξ by −ξ if necessary, we assume
that rξ1 is ample. We take a primitive and ample divisor H such that

dH = ξ0+r(kξ1+η) (k � 0) and
√

2�
(H2) �∈ Q. Then limk→∞

√
2�

(H2)H =√
2�
(ξ21)

ξ1. In particular, for any open neighborhood U of rξ, we can take

an ample divisor H such that
√

2�
(H2)H ∈ U . We set L := Z⊕ZH⊕Z�X .

For v′ := vekξ1+η = (r, dH, a′) ∈ L, Lemma 2.7 implies we have an
autoequivalence Φ of D(X) such that Φ(v′) = v′ and Φ|L is of infinite

order. We set ζ± := e
1
r

(
d±
√

2�
(H2)

)
H
. Then R>0ζ± are the fixed rays of

Φ in LR ∩ P+(v⊥)R and the rays defined by Φn(u)⊥ converge to the

fixed rays. Hence ζ± ∈ ∪n∈ZΦn(u)⊥. We set Ψ := e−(kξ1+η)Φekξ1+η ∈
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Eq(D(X), v), where Eq(D(X), v) is the set of autoequivalences of D(X)
fixing v. Since(

d±
√

2	

(H2)

)
H = ξ0 ±

√
2	

(H2)
H + r(kξ1 + η),

e
1
r

(
ξ0±

√
2�

(H2)
H
)
∈ ∪n∈ZΨn(u)⊥. Hence eξ0/r±ξ ∈ ∪Φ∈Eq(D(X),v)Φ(u)⊥.

For ξ ∈ Amp(X) with (ξ2) = 0, we have (0, ξ, (ξ, ξ0)/r) ∈ (0, 0,−1)⊥.
Therefore the claim holds. Q.E.D.

Lemma 3.47. Assume that v1 defines a wall for v. Then (〈v2〉 +
〈v21〉)/2 ≥ 〈v, v1〉 > 〈v21〉. In particular, 〈v2〉 > 〈v, v1〉 > 〈v21〉.

Proof. Since 〈v − v1, v1〉 > 0, we have 〈v, v1〉 > 〈v21〉. Since 0 ≤
〈(v− v1)

2〉 = 〈v2〉+ 〈v21〉− 2〈v, v1〉, we get the first claim. Then we have
〈v2〉 > 〈v21〉, which implies the second claim. Q.E.D.

Lemma 3.48. Let X be an abelian surface with NS(X) = ZH ⊥ L,
where H is an ample divisor and L is a negative definite lattice. Assume
that (H2) = 2	(4	ra + 1), r, a ∈ Z>0. We set v := (2	r,H, 2	a). Then
〈v2〉 = (H2) − 8	2ra = 2	 and there is no wall for v. In particular,
Amp(KH(v)) coincides with its positive cone.

Proof. We note that 〈v, w〉 ∈ 2	Z for all w ∈ H∗(X,Z)alg. By
Lemma 3.47, there is no wall for v. Q.E.D.

Remark 3.49. If
√〈v2〉(H2) = 2	

√
4	ra+ 1 �∈ Q or rkNS(X) ≥ 2,

then there are infinitely many autoequivalences of D(X) preserving v.

Proposition 3.50. Assume that rkNS(X) ≥ 2 or
√〈v2〉/(H2) �∈

Q. If there is no wall for v, then Aut(MH(v)) contains an automorphism
of infinite order.

Proof. We may assume that v = (r, ξ, a), where ξ is ample. We
take g ∈ Stab0(v)

∗ of infinite order. Then there is an autoequivalence
Φ of D(X) which induces g. Then Φ induces an isomorphism MH(v) →
MH(v). Q.E.D.

If M(β,tH)(v) is birationally equivalent to MH(1, 0,−	), we can get
a more precise description of the stabilizer group. Since there is an
autoequivalence Φ : D(X) → D(X) with Φ(v) = (1, 0,−	), it is sufficient
to treat the case v = (1, 0,−	).

Proposition 3.51. We set v = (1, 0,−	).
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(1) A Fourier-Mukai transform Φ : D(Y ) → D(X) with the condi-
tion Φ((1, 0,−	)) = (1, 0,−	) corresponds to a decomposition

(3.5) v = 	u1 + u2, 〈u1, u2〉 = 1, 〈u2
1〉 = 〈u2

2〉 = 0,

where u1 = Φ(−�Y ) and u2 = Φ(v(OY )).
(2) For the decomposition (3.5), one of the following holds.

(i)

u1 = (p2s, pqξ, q2t), u2 = −(q2t, 	pqξ, 	2p2s),

where p, q, s, t ∈ Z satisfy 	sp2 − tq2 = 1 and ξ is a
primitive divisor with (ξ2) = 2st > 0.

(ii)

	 = 1, u1 = (0, ξ,−1), u2 = (1,−ξ, 0),

where (ξ2) = 0.
(3) For the case (i) of (2), if t = 1, then Y ∼= X.

Proof. (1) Since v = 	(−�Y ) + v(OY ), we have

v = Φ(v) = 	Φ(−�Y ) + v(OY ).

Since �Y and v(OY ) are isotropic vector with 〈−�Y , v(OY )〉 = 1, we
get the decomposition (3.5). Conversely for the decomposition (3.5), we
have an equivalence Φ : D(Y ) → D(X) such that u1 = Φ(−�Y ) and
u2 = Φ(v(OY )), where Y = MH(±u1) and H is an ample divisor on X.

(2) We first assume that rku1 �= 0. We set u1 = (px, pqξ, y), where
ξ ∈ NS(X) is primitive and gcd(x, qξ) = 1. Since u1 is primitive,
gcd(p, y) = 1. Assume that q2(ξ2) �= 0. Then p2q2(ξ2) = 2pxy implies
that p | x and q2 | y. So we write u1 = (p2s, pqξ, q2t) with (ξ2) = 2st.
Since 1 = 〈v, u1〉, we have p2s	− q2t = 1. We set u2 := v − 	u1. Then

u2 = (1− 	sp2,−	pqξ,−	(1 + q2t)) = −(q2t, 	pqξ, 	2p2s).

If st < 0, then we have (p2s	, q2t) = (1, 0) or (p2s	, q2t) = (0,−1). Since
rku1 �= 0, we have p2 = s = 	 = 1 and q = 0. Since q2(ξ2) �= 0, this case
does not occur. Therefore st > 0.

If q2(ξ2) = 0, then y = 0 and p = ±1. Hence u1 = ±(x, qξ, 0).
Since 1 = 〈v, u1〉 = ±	x, x = ±1 and 	 = 1. Thus u1 = (1, qξ, 0) and
u2 = (0,−qξ,−1). By exchanging u1 by u2, we have (ii).

We next assume that rku1 = 0. We set u1 = (0, D, y). Then
1 = 〈v, u1〉 = −y. Hence u1 = (0, D,−1) with (D2) = 0. Then (i) holds,
where t = −1, q2 = 1 and pq is the multiplicity of D. (3) If (ξ2) = 2s,
then Lemma 2.5 implies the claim. Q.E.D.
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Remark 3.52. In [27], the condition v = 	u1 + u2 with 〈u1, u2〉 = 1,
〈u2

1〉 = 〈u2
2〉 = 0 is called numerical equation and plays important role

for the study of stable sheaves.

For m ∈ Q, we set

Q�,m := {ξ ∈ NS(X)R | ξ ∈ √
mNS(X)Q, (ξ

2) = 2	}.
Q�,m = Q�,m′ if and only if

√
m ∈ Q

√
m′. For ξ ∈ Q�,m, we take an

ample divisor H with Q ξ√
m

∩ NS(X) = ZH. If p2	(H2)/2 − q2 = 1

has an integral solution (p, q), then there is an autoequivalence Φ in
Proposition 3.51. In particular, if

√
m �∈ Q, then there are infinitely

many Φ in Proposition 3.51.

Lemma 3.53. (1) Each Q�,m is a dense or empty subset of
Q�.

(2) ∪√
m �∈QQ�,m is dense in Q�. In particular, there are many

autoequivalences Φ in Proposition 3.51.

Proof. (1) We set Q+
� := Q� ∩ Amp(X)R and Q+

�,m = Q�,m ∩ Q+
� .

ThenQ� = Q+
� ∪−Q+

� andQ�,m = Q+
�,m∪−Q+

�,m. Assume thatQ�,m �= ∅.
We take ξ0 ∈ Q+

�,m and set

Bξ0 := {η ∈ ξ⊥0 | −(η2) < 2	}.
Then we have a bijective correspondence

Q+
� → Bξ0

ξ �→ η,

where

η =
2	ξ − (ξ, ξ0)ξ0
2	+ (ξ0, ξ)

,

ξ =
4	

(η2) + 2	
η +

2	− (η2)

2	+ (η2)
ξ0.

Then Q+
�,m corresponds to η ∈ √

mNS(X)Q. Therefore Q�,m is dense
in Q�.

(2) is a consequence of Lemma 3.45 and (1). Q.E.D.

§4. The case where rkNS(X) = 1.

4.1. The walls and chambers on the (s, t)-plane.

From now on, let X be an abelian surface such that NS(X) = ZH,
where H is an ample generator. We set (H2) = 2n. Let H := {(s, t) |
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t > 0} be the upper half plane and H := {(s, t) | t ≥ 0} its closure. We

identify NS(X)R × C(Amp(X)R) × R≥0 with H via (sH,H, t) �→ (s, t).
We shall study the set of walls.

Lemma 4.1 ([12], [28, Cor. 5.10]). If
√
	/n ∈ Q, there are finitely

many chamber.

By this lemma, it is sufficient to treat the case where
√
	/n �∈ Q.

Proposition 4.2. Assume that n ≤ 4. Let v := (r, dH, a) be a
primitive Mukai vector with 〈v2〉 > 0. Then there is an isometry Φ of
H∗(X,Z)alg = Z⊕3 such that Φ(v) = (r′, d′H, a′) with r′a′ ≤ 0.

Proof. We may assume that r �= 0. Replacing v by −v, we may
assume that r > 0. By the action of emH , we may assume that |d| ≤ r/2.
Since d2n− ra > 0, we have n/4 ≥ (d/r)2n > a/r. By our assumption,
we have a < r. If a > 0, then we apply the isometry ϕ : (r, dH, a) �→
(a,−dH, r). Applying the same arguments to ϕ(v), we finally get an
isometry Φ such that Φ(v) = (r′, d′H, a′) with r′a′ ≤ 0. Q.E.D.

Corollary 4.3. Assume that n ≤ 4. Let v := (r, dH, a) be a primi-

tive Mukai vector with 〈v2〉 > 0. If
√
	/n �∈ Q, then there are infinitely

many isotropic Mukai vectors u such that 〈u, v〉 > 0 and 〈(v− u)2〉 ≥ 0.
In particular, there are infinitely many walls for v.

Proof. We first show that there is a Mukai vector u satisfying the
requirements. We may assume that ra ≤ 0. If ra = 0, then 〈v2〉 =
d2(H2). Hence ra < 0. Then u = (0, 0, 1) or (0, 0,−1) satisfies the
requirements.

Since
√
	/n �∈ Q, Stab0(v)

∗ contains an element g of infinite order.
Then gn(u) (n ∈ Z) also satisfies the requirements. Q.E.D.

Remark 4.4. The condition (H2) ≤ 8 in Corollary 4.3 is necessary
by Lemma 3.48.

4.2. An example

Assume that n := (H2)/2 = 1. We set v := (2,H,−2). Then
	 := 〈v2〉/2 = 5. We set

g :=

(
0 1
1 1

)
, h :=

(
0 −1
1 0

)
.

In this case, we have

Stab0(v) ={±gn | n ∈ Z},
Stab(v) =Stab0(v)� 〈h〉,
h−1gh =− g−1.
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Let C0 is a line defined by

s =
1

2
.

It is the wall defined by v0 := (0, 0,−1). Let C−1 is a circle defined by

t2 + s(s+ 2) = 0.

It is the wall defined by v−1 := (1, 0, 0) = v0 · g−1. We set vn := v0 · gn
and let Cn be the wall defined by vn.

Lemma 4.5. {Cn | n ∈ Z} is the set of walls for v.

Proof. It is sufficient to prove that there is no wall between C−1

and C0. If a Mukai vector w := (r′, d′H, a′) defines a wall for v and
the wall Ww lies between C−1 and C0. Since C−1 passes (0, 0), Ww

intersects with the line s = 0. Hence we get d′, 1 − d′ > 0, which is a
contradiction. Q.E.D.

Proposition 4.6. (1) For (s, t) �∈ ∪n∈ZCn,

M(sH,tH)(2,H,−2) ∼= MH(2,H,−2).

(2) Let (r, dH, a) be a primitive Mukai vector such that 2 | r, 2 | a
and d2 − ra = 5. Then

MH(r, dH, a) ∼= MH(2,H,−2).

Proof. (1) Let C be the chamber between C0 and C−1. Then
∪n∈Zg

n(C) = H \ ∪n∈ZCn. Let Ψ : D(X) → D(X) be a contravari-
ant Fourier-Mukai transform inducing g. Since Ψ preserves the stability,
the claim holds.

(2) By the action of GL(2,Z), w := (r, dH, a) is transformed to
(1, 0,−5) or (2,H,−2) ( [27, Prop. 7.12]). Since 2 | 〈w, u〉 for all u ∈
H∗(X,Z)alg, w := (r, dH, a) is transformed to (2,H,−2). Then the
claim follows from (1). Q.E.D.

4.3. Divisors on the moduli spaces M(sH,tH)(v).

Definition 4.7. Let v = (r, dH, a) be a Mukai vector with r > 0
and set 	 := 〈v2〉/2 = d2n− ra. We set

s± :=
d

r
± 1

r

√
	

n
.
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Lemma 4.8. We take g ∈ Stab0(v)
∗ such that the order is infinite.

Then (s±, 0) are the fixed points of the action of g on (s, t)-plane. In
particular, if there is a wall, then (s±, 0) are the accumulation points of
the set of walls.

We set (β, ω) := (sH, tH). Then v = (r, dH, a) is written as

v = reβ + dβ(H + (β,H)�X) + aβ�X ,

where

dβ =d− rs,

aβ =− 〈eβ , v〉 = a− (dH, β) +
(β2)

2
r.

Definition 4.9. We set

ξ(s, t) :=ξ(sH,H, t)

=
(
r(s2 + t2)n− a

)(
H +

2dn

r
�X

)
− 2n(d− rs)

(
1− a

r
�X

)
.

(4.1)

We consider the circle

Cv,λ : t2 + (s− λ)

(
s− 1

rλ− d

(
λd− a

n

))
= 0, λ ∈ R,

that is, RZ(sH,tH)(v) = RZ(sH,tH)(e
λH), where λ �= d/r. We note that

(λ, 0) ∈ Cv,λ and (d− rs)(d− rλ) > 0 for (s, t) ∈ Cv,λ. For (s, t) ∈ Cv,λ,
we see that

ξ(s, t) = (d− rs)

(
rλ2n− a

d− rλ

(
H +

2dn

r
�X

)
− 2n

(
1− a

r
�X

))
.

Hence R>0ξ(s, t) = R>0ξ(λ, 0) and is determined by λ. If

Cv,λ = {(s, t) | RZ(sH,tH)(v) = RZ(sH,tH)(v1)},
that is, Cv,λ is the wall defined by a Mukai vector v1 := (r1, d1H, a1),

then rλ2n−a
d−rλ = ra1−r1a

r1d−rd1
∈ Q. Thus ξ(s, t)/(d− rs) ∈ H∗(X,Q)alg.

Lemma 4.10.

ξ(s±, 0) = 2

(
	

r
± n

d

r

√
	

n

)(
H +

(dH,H)

r
�X

)
± 2n

√
	

n

(
1− a

r
�X

)
and satisfy 〈ξ(s±, 0)2〉 = 0. Thus ξ(s±, 0) define isotropic vectors in
v⊥ ⊂ H∗(X,Z)alg ⊗ R.
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Proof.

〈ξ(s±, 0)2〉=4

(
	

r
± n

d

r

√
	

n

)2

(2n) + 4	n
2a

r
∓ 8

(
	

r
± n

d

r

√
	

n

)√
n	

d

r
(2n)

=4

(
	

r
± n

d

r

√
	

n

)(
	

r
∓ n

d

r

√
	

n

)
(2n) + 4	n

2a

r

=4
	2

r2
(2n)− 4n

d2

r2
	(2n) + 4	n

2a

r

=4
	

r2
(	− d2n)(2n) + 4

	

r2
(ra)(2n) = 0.

Therefore we get the claim. Q.E.D.

Proposition 3.15 is written as follows.

Proposition 4.11. (1) If (s, t) belongs to a chamber and
s, t2 ∈ Q, then θv,sH,tH(ξ(s, t)) is an ample Q-divisor of
K(sH,tH)(v).

(2) We have a bijective map

ϕ : [s−, s+] → C(P+(K(sH,tH)(v))R)

such that

ϕ(λ) := R>0θv,sH,tH(ξ(λ, 0)).

(3) Nef(K(sH,tH)(v))R = ϕ(D(sH,H, t) ∩ [s−, s+]).

Proof. (1) is obvious. (2) We note that f(λ) := (rλ2n−a)/(d−rλ)
gives a bijective map

f : [s−, s+] → [ 2
√
n�
r − 2dn

r ,∞] ∪ [−∞,− 2
√
n�
r − 2dn

r ]

and ⋃
λ∈[s−,s+]

Cv,λ = R2 \ {(s−, 0), (s+, 0)},

where we identify ∞ with −∞, λ = d/r corresponds to ±∞ and Cv,d/r

is the line s = d/r. Since Cv,λ∩ [s−, s+] = {λ}, [s−, s+] is the parameter
space of Cv,λ. Since ξ(s, t) is determined by f(λ), Proposition 3.15
implies ϕ is bijective.

(3) is a consequence of Proposition 3.15 (1) and (2). Q.E.D.
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4.4. The movable cone of K(sH,tH)(v).

Lemma 4.12. Let v be a Mukai vector with 〈v2〉 = 2	.

(1) I0 �= ∅ if and only if
√
	/n ∈ Q.

(2) Assume that
√
	/n �∈ Q. Then Ik �= ∅ if and only if #Ik = ∞.

In this case, (s+, 0) and (s−, 0) are the accumulation points
of ∪w∈Ik

Ww.

Proof. Since x ∈ H∗(X,Z)alg ⊗ R satisfies 〈x2〉 = 〈x, v〉 = 0 if and
only if x ∈ Rξ(s±, 0). Hence (1) holds. By Proposition 2.3, Stab0(v)
contains an element g of infinite order. Hence (2) is obvious. Q.E.D.

Proposition 4.13. Let v be a primitive Mukai vector with 〈v2〉 ≥ 6.
Let W ⊂ H be a wall for v and take (s, t) ∈ W such that s ∈ Q. Then
W is a codimension 1 wall if and only if W is defined by v1 such that
v = v1 + v2, 〈v21〉 = 0, 〈v, v1〉 = 2, v1 is primitive and there are σ(β,ω)-
stable objects Ei with v(Ei) = vi for i = 1, 2.

Proof. Since NS(X) = ZH, there is no decomposition v = u1+u2+
u3 such that 〈u2

i 〉 = 0 (i = 1, 2, 3) and 〈ui, uj〉 = 1 (i �= j). Then the
classification of codimension 1 walls in [18, Lem. 4.3.4 (2), Prop. 4.3.5]
imply that W is defined by v1 with the required properties. Q.E.D.

Theorem 4.14. Let (X,H) be a polarized abelian surface X with
NS(X) = ZH. Let v be a primitive Mukai vector with 〈v2〉 ≥ 6. Assume

that
√
	/n �∈ Q.

(1) Assume that I1 = I2 = ∅, that is,
min{〈v, w〉 > 0 | 〈w2〉 = 0} ≥ 3.

Then the movable cone of K(sH,tH)(v) is the same as the pos-
itive cone of K(sH,tH)(v). In this case, there is an action of
birational automorphisms such that a fundamental domain is
a cone spanned by rational vectors.

(2) Assume that I1 = ∅ and I2 �= ∅, that is,
min{〈v, w〉 > 0 | 〈w2〉 = 0} = 2.

Then the movable cone of K(sH,tH)(v) is spanned by two vec-
tors, which give divisorial contractions. Moreover the excep-
tional divisors are primitive in NS(K(sH,tH)(v)).

(3) Assume that I1 �= ∅, that is,
min{〈v, w〉 > 0 | 〈w2〉 = 0} = 1.
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Then the movable cone of K(sH,tH)(v) is spanned by two vec-
tors, which give divisorial contractions. Moreover one of the
exceptional divisors is divisible by 2 in NS(K(sH,tH)(v)).

Proof. (1) Let Φ : D(X) → D(X) be a Fourier-Mukai transform
preserving ±v. We set (s′H, t′H) := Φ((sH, tH)). Then we have an iso-
morphism Φ : M(sH,tH)(v) → M(s′H,t′H)(v), which induces a birational
map

M(sH,tH)(v)
Φ→ M(s′H,t′H)(v) · · · → M(sH,tH)(v).

Since θv : v⊥ → NS(K(sH,tH)(v)) is compatible with respect to the
action of Φ, we have an action of Stab0(v)

∗ on NS(K(sH,tH)(v)). Since√
	/n �∈ Q, Lemma 2.7 implies that Stab0(v)

∗ contains an element g of
infinite order. Hence the claim holds.

(2) and (3) are consequence of Corollary 3.34. Q.E.D.

Remark 4.15. By Lemma 3.48, there are v satisfying (1). For v =

(2,H,−2k), we have 〈v2〉 = 2(n+ 4k) and case (2) holds, if
√
	/n �∈ Q.

If rk v = 1, then case (3) holds.

Proposition 4.16. Let v be a primitive Mukai vector with 〈v2〉 ≥ 6.

Assume that
√
	/n ∈ Q.

(1) There is at most one isotropic Mukai vector v1 with 〈v, v1〉 =
1, 2.

(2) If there is a vector v1 of (1), then

P+(v⊥)R = Mov(K(sH,tH)(v))R ∪Rv1(Mov(K(sH,tH)(v)R)

and the two chambers are separated by d⊥v1
.

(3) If there is no v1 of (1), then P+(v⊥)R = Mov(K(sH,tH)(v))R.

Proof. (1) Since
√
	/n ∈ Q, there are two isotropic Mukai vectors

w1, w2 such that

{x ∈ H2(X,Z)alg | 〈x, v〉 = 〈x2〉 = 0} = Zw1 ∪ Zw2.

Then v⊥⊗Q = Qw1+Qw2. We may assume that 〈w1, w2〉 < 0. Let v1 be
an isotropic Mukai vectors such that 〈v, v1〉 = 1, 2. Since 〈v, dv1〉 = 0, we
set dv1 := aw1+bw2 (a, b ∈ Q). Then we have 2ab〈w1, w2〉 = −〈v2〉 < 0.
By Lemma 3.24 (2), Rv1 preserves {±w1,±w2}. Since

Rv1(w1) = w1 − 1

a
(aw1 + bw2) = − b

a
w2,

Rv1(w1) = ±w2. If Rv1(w1) = w2, then we have Rv1(w1+w2) = w1+w2.
Hence 〈dv1 , w1 + w2〉 = 0. Since 〈(w1 + w2)

2〉 = 2〈w1, w2〉 < 0 and
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〈d2v1
〉 < 0, v⊥ is negative definite, which is a contradiction. Therefore

Rv1(w1) = −w2. Then we see that w1+w2 ∈ Zdv1 . If 〈v, v2〉 = 1, 2, then
the primitivities of dv1 and dv2 imply that dv1 = ±dv2 . If dv1 = −dv2 ,
then we see that

v =
〈v2〉
4

(
2

〈v, v1〉v1 +
2

〈v, v2〉v2
)
.

Since 〈v2〉 ≥ 6 and v is primitive, this case does not occur. Therefore
dv1 = dv2 , which implies that v1 = v2.

(2) and (3) are obvious. Q.E.D.

Remark 4.17. Theorem 4.14 and Proposition 4.16 are compatible
with Oguiso’s general results [26, Thm. 1.3].

§5. Relations with Markman’s results.

In this section, we shall explain the relation between our results and
Markman’s general results [13], [14], [15].

Definition 5.1. Let M be an irreducible symplectic manifold and
h an ample class.

(1) An effective divisor E is prime exceptional, if E is reduced
and irreducible of qM (E2) < 0.

(2) Let e ∈ NS(M) be a primitive class. e is stably prime ex-
ceptional, if qM (e, h) > 0 and there is a projective irreducible
symplectic manifold M ′, a parallel-transport operator

g : H2(M,Z) → H2(M ′,Z),

and an integer k, such that kg(e) is the class of a prime ex-
ceptional divisor E ⊂ M ′.

Let SpeM be the set of stably prime exceptional divisors ofM . Then
Markman described the interior of the movable cone in terms of SpeM .

Theorem 5.2 ([14, Prop. 1.8, Lem. 6.22]). Let M be an irreducible
symplectic manifold and Mov(M)0 the interior of Mov(v)R. Then

Mov(M)0 = {x ∈ P+(M) | qM (x, e) > 0 for all e ∈ SpeM}.
Let M be an irreducible symplectic manifold which is deformation

equivalent to the generalized Kummer variety KH(1, 0,−	) of dimension
2	 − 2. We shall explain the description of SpeM . For e ∈ H2(M,Z)
with qM (e2) = −2	, we set

div qM (e, •) := min{qM (e, x) > 0 | x ∈ H2(M,Z)}.
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As an abstract lattice, the cohomological Mukai lattice H2∗(X,Z) =⊕2
i=0 H

2i(X,Z) is independent of the choice of an abelian surfaceX. We

denote this lattice by Λ̃. It is a direct sum of 4 copies of the hyperbolic
lattice. Since M is deformation equivalent to KH(1, 0,−	), by using a

parallel-transport, we have a primitive embedding H2(M,Z) → Λ̃. The

O(Λ̃)-orbit of the embedding is independent of the choice of a parallel-
transport by similar claims to [14, Thm. 9.3, Thm. 9.8]. For M =
KH(v), it is the embedding

H2(KH(v),Z)
θ−1
v→ v⊥ ⊂ H2∗(X,Z)

([14, Example 9.6]). We fix an embedding and regard H2(M,Z) as a

sublattice of Λ̃. Let Zv be the orthogonal compliment of H2(M,Z)

in Λ̃. Then 〈v2〉 = 2	. Since 〈v, e〉 = 0, e ± v are isotropic. We define
(ρ, σ) ∈ Z>0×Z>0 by requiring that (e+v)/ρ and (e−v)/σ are primitive
and isotropic. We also set r := ρ/ gcd(ρ, σ) and s := σ/ gcd(ρ, σ). If
	 | div qM (e, •), then r and s are relatively prime integers with rs =
	, 	/2, 	/4. We set rs(e) := {r, s}.

Proposition 5.3 ([15]). Let M be an irreducible symplectic mani-
fold of dimM = 2	− 2 which is deformation equivalent to KH(1, 0,−	).

(1) For e ∈ SpeM , qM (e2) = −2	 and 	 | div qM (e, •).
(2) For e ∈ H2(M,Z) with qM (e2) = −2	 and 	 | div qM (e, •),

the orbit of e of the monodromy group action is classified by
rs(e) := {r, s} and div qM (e, •).

For each value of {r, s} with rs ∈ {	, 	/2, 	/4}, the same examples
in [13, sect. 10, 11] show that there are KH(v) with dimKH(v) = 2	−2
and e ∈ NS(KH(v)) such that div qM (e, •) = 	, 2	 and rs(e) = {r, s}.
Then we also get the following description of SpeM .

Proposition 5.4. Let M be an irreducible symplectic manifold of
dimM = 2	−2 which is deformation equivalent to KH(1, 0,−	) and h an
ample divisor on M . A divisor e with qM (e, e) = −2	 and qM (e, h) > 0
is stably prime exceptional if and only if

(1) div qM (e, •) = 2	 and {r, s} = {1, 	} or
(2) div qM (e, •) and {r, s} are one of the following.

(a) div qM (e, •) = 2	 and {r, s} = {2, 	/2}, 	 ≥ 6, 	 ≡ 2
mod 4.

(b) div qM (e, •) = 	 and {r, s} = {1, 	}, 	 ≥ 3, 2 � 	.
(c) div qM (e, •) = 	 and {r, s} = {1, 	/2}, 	 ≥ 2, 2 | 	.
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If M = K(β,ω)(v) for some v, then we shall explain that the case

(1) corresponds to the codimension 0 wall u⊥ (u ∈ I1) and the case (2)
corresponds to the codimension 1 wall u⊥ (u ∈ I2).

(1) We first assume that u ∈ I1. Since du = v−2	u, v+du = 2(v−	u)
and v − du = 2	u. Since 〈du, 〉 = −2	〈u, 〉 on v⊥, div qKH(v)(du, •) =
2	. Since 〈v+du, u〉 = 2, v+du is primitive, which implies that {ρ, σ} =
{2, 2	}. Therefore {r, s} = {1, 	}.

(2) We next assume that u ∈ I2. In this case, we have du =
v − 	u. Thus v + du = 2v − 	u and v − du = 	u. We shall compute
div qKH(v)(du, •). We first note that 〈du, 〉 = −	〈u, 〉 on v⊥. Since
H∗(X,Z) is a 4 copies of hyperbolic lattice, there is an isotropic Mukai
vector λ ∈ H2∗(X,Z) with 〈u, λ〉 = 1. Then

H2∗(X,Z) = (Zu+ Zλ)⊕ (Zu+ Zλ)⊥.

We set

(5.1) v := 2λ+ au+ ξ, a ∈ Z, ξ ∈ (Zu+ Zλ)⊥.

Then xλ+yu+zη (x, y, z ∈ Z, η ∈ (Zu+Zλ)⊥) belongs to v⊥ if and only
if xa+ 2y + z〈ξ, η〉 = 0. If 2 � ξ, then the unimodularity of (Zu+ Zλ)⊥

implies that we can take η with 2 � 〈ξ, η〉. We take z ∈ Z such that
y = −(a+z〈ξ, η〉)/2 ∈ Z. Then λ+yu+zη ∈ v⊥ and 〈du, λ+yu+zη〉 =
−	〈u, λ + yu+ zη〉 = −	. Therefore div qKH(v)(du, •) = 	. If 2 | ξ, then
the primitivity of v implies that 2 � a. Hence xλ+ yu+ zη ∈ v⊥ satisfies
2 | x. Then we have

〈du, xλ+ yu+ zη〉 = −	〈u, xλ+ yu+ zη〉 = −	x〈u, λ〉 ∈ 2	Z.

Hence div qKH(v)(du, •) = 2	. Therefore div qKH(v)(du, •) = 2	 if and
only if there is a ∈ Z such that 2 | (v − au).

We next compute {r, s}. We take w such that Zu+Zw is a saturated
sublattice of H∗(X,Z)alg containing v. For the notation of (5.1), w =
2λ+ ξ or 2w = 2λ+ ξ. Thus they are distinguished by div qKH(v)(du, •).
We set v = au + bw (b = 1, 2). Then v + du = (2a − 	)u + 2bw. We
note that 	 = 2a + b2〈w2〉/2 by b〈u,w〉 = 2. If 2 � 	, then v + du
is primitive, which implies that {ρ, σ} = {1, 	}. In this case, b = 1
and div qKH(v)(du, •) = 	. Assume that 2 | 	. Then (v + du)/2 =
(a − 	/2)u + bw ∈ H∗(X,Z)alg. If b = 1, then (v + du)/2 is primitive,
which implies {ρ, σ} = {2, 	}. If b = 2, then the primitivity of v implies
that 2 � a. Then 	 ≡ 2 mod 4 and (v+du)/4 ∈ H∗(X,Z)alg is primitive,
which implies {ρ, σ} = {4, 	}. Therefore {r, s} satisfies (a), (b) or (c).
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§6. Appendix

6.1. The base of Lagrangian fibrations

Let Φ
E∨[k]
X→Y : D(X) → Dα(Y ) be the Fourier-Mukai transform in the

proof of Proposition 3.38. Then we have an isomorphism

φ : M(β,tH)(v) → Mα
t̃H

(v′)

and a morphism
f : Mα

t̃H
(v′) → HilbηY .

We set v′ := (0, η, b), b ∈ Z and H ′ := t̃H. Since a : M(β,tH)(v) → X×X̂
is the albanese map,

a′ : Mα
H′(0, η, b) → M(β,tH)(v)

a→ X × X̂

is the albanese map. Then

Mα
H′(0, η, b) → HilbηY → Pic0(Y )

induces a morphism g : X × X̂ → Pic0(Y ) with a commutative diagram

Mα
H′(0, η, b)

f−−−−→ HilbηY

a′
⏐⏐# ⏐⏐#

X × X̂
g−−−−→ Pic0(Y ).

Let Kα
H′(0, η, b) be a fiber of Mα

H′(0, η, b) → X × X̂. Since HilbηY →
Pic0(Y ) is a P(η2)/2−1-bundle, we have a morphism

Kα
H′(0, η, b) → P(η2)/2−1.

We shall prove the following.

Proposition 6.1. The fiber of Kα
H′(0, η, b) → P(η2)/2−1 is con-

nected.

For D ∈ HilbηY , f
−1(D) consists of α-twisted stable sheaves E such

that E is an OD-module. We take an effective divisor D ∈ HilbηY . Since

a fiber ofKα
H′(0, η, b) → P(η2)/2−1 is a fiber of f−1(D) → X×X̂, we shall

study the map f−1(D) → X×X̂. For the connectivity of fibers, we may

assume that D is a general member of HilbηY . Indeed since P(η2)/2−1 is
a normal variety over a field of characteristic 0, the connectivity of the
generic fiber implies the connectivity for all fibers.

The following well-known result is due to Reider.
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Proposition 6.2. Let X be an abelian surface defined over an alge-
braically closed field k and D a divisor on X. If (X,D) �∼= (C1×C2, C1+
kC2) and (D2) > 4, then |D| is base point free. Moreover |D| is fixed
point free, if (X,D) �∼= (C1 × C2, C1 + kC2) and (D2) = 4.

Lemma 6.3. For a general point of HilbηY , D is a normal crossing
divisor such that each component Di is smooth and the configuration is
tree.

Proof. We take a line bundle L on Y with c1(L) = η. If |L| is base
point free, then Bertini’s theorem implies that a general member of |L|
is a smooth divisor. Assume that |L| has a base point. Then Proposition
6.2 implies that (i) (η2) = 4 and L does not have a fixed component or
(ii) there is an elliptic curve C on Y with (η, C) = 1. In the first case,

K(L) := {x ∈ Y | T ∗
x (L)

∼= L}
is a subgroup of order 4. Let Bs(L) be the set of base points. Then by
the action of K(L), Bs(L) is invariant. Therefore #Bs(L) ≥ #K(L).
Since L does not have a fixed component, 4 ≥ #Bs(L). Therefore Bs(L)
consists of 4 points. For two D,D′ ∈ |L|, D and D′ intersect transver-
sally. Therefore D is smooth at base points. By using Bertini’s theorem,
D is smooth for a general member of |L|. For case (ii), there is an elliptic
curve C ′ such that (C,C ′) = 1 and η = C + nC ′, where n = (η2)/2.
Since nC ′ is linear equivalent to

∑n
i=1 Ci with Ci ∩ Cj = ∅ (i �= j), we

get the claim. Q.E.D.

6.2. Moduli of twisted-stable sheaves on D

By Lemma 6.3, we shall study f−1(D) for a normal crossing divisor
D =

∑m
i=0 Di such that Di are smooth curves and the configuration of

Di is tree. We may assume thatD = D0+D1+· · ·+Dm and p1, p2, ..., pm
are the singular points of D such that pi = Dϕ(i) ∩Di with ϕ(i) < i.

By looking at the dual graph of irreducible components, we have
the following lemma.

Lemma 6.4. For each singular point pi, we have a unique decom-
position D = Ai +Bi with Ai ∩Bi = {pi}.

Lemma 6.5. In the free abelian group generated by D0, D1, .., Dm,
we have

ZD + ZA1 + · · ·+ ZAm = ZD0 ⊕ ZD1 ⊕ · · · ⊕ ZDm.

Proof. Before proving this lemma, we note that ZD+ZAi = ZD+
ZBi. Thus the left hand side is independent of the choice of Ai in the
decomposition D = Ai +Bi.
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For each Di, let pn1 , ..., pnt ∈ Di be the singular points of D. Then
we have the decompositions D = Anj + Bnj with Anj ∩ Bnj = {pnj}.
We may assume that Di ⊂ Anj for all j. Then D = Di+

∑
j B

nj . Hence∑m
i=0 ZDi ⊂ ZD +

∑m
i=1 A

i, which implies the claim. Q.E.D.

Definition 6.6. Let β be a Q-Cartier divisor on D.

(1) For a subdivisor D′ ⊂ D, β(D′) :=
∫
D′ β ∈ Q denotes the

degree of β|D′ ∈ H2(D′,Q).
(2) For a coherent sheaf E on D, we set χ(E(−β)) := χ(E) −

β(Div(E)).

Definition 6.7. We have a surjective homomorphism

degm : Pic(D) → ⊕m
i=0 Zδi

E → ∑m
i=0 deg(E|Di

)δi.

Indeed for a smooth point pi ∈ Di, we have a Cartier divisor and get a
line bundle OD(pi) on D. Then degm(OD(pi)) = δi.

Definition 6.8. Let H ′ be an ample divisor on D. A purely 1-
dimensional sheaf E on D is β-twisted semi-stable, if

χ(F (−β))

(Div(F ),H ′)
≤ χ(E(−β))

(Div(E),H ′)

for all 0 �= F ⊂ E. If the inequality is strict for all proper subsheaf F ,
then E is β-twisted stable.

Since H2
ét(D,O×

D) = 0, by refining the covering of D, we have an
αD-twisted line bundle L on D which induces an equivalence

Cohα(D) → Coh(D)
E �→ E ⊗ L∨.

Let G be a locally free α-twisted sheaf defining twisted semi-stability of
f−1(D). Then G′ := G|D⊗L−1 is a locally free sheaf on D. We set β :=

c1(G
′)/ rkG′ ∈ H2(D,Q). Thus we have an isomorphism f−1(D) →

Mβ
D(v), where Mβ

D(v) is the moduli space of β-twisted sheaves on D

with v(E) = v and the polarization is H ′
|D. We shall describe Mβ

D(v).

Let x be a smooth point of D. Then the stalk Ex is a free OD,x-
module. Since Div(E) = D, the classification of finitely generated OD,x-
module implies that Ex

∼= OD,x.

Proposition 6.9. Assume that β is general, that is, Mβ
D(v) consists

of β-twisted stable sheaves.
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(1) Mβ
D(v) is non-empty and consists of line bundles on D.

(2) Mβ
D(v) is isomorphic to

∏
i Pic

0(Di). In particular, Mβ
D(v) is

an abelian variety.

For the proof of Proposition 6.9, we first prove the following.

Lemma 6.10. Mβ
D(v) consists of locally free OD-modules.

Proof. For E ∈ Mβ
D(v), assume that E|Di

is torsion free. Then E|Di

is a locally free sheaf of rank 1 on Di. By using Nakayama’s lemma, we
have a surjective homomorphim OX,x → Ex for all x ∈ Di. Then we
have a surjective homomorphism OU → E|U for a neighborhood U of
x. Since E is an OD-module, we have a surjective homomorphism ψ :
OD∩U → E|U . Since E is a locally freeOD-module overX\∪j �=kDj∩Dk,
Supp kerψ ⊂ ∪j �=kDj ∩Dk. Hence ψ is an isomorphism. Therefore it is
sufficient to show the torsion freeness of E|Di

. Assume that the torsion
module T of E|Di

is not zero. Then there is a component Dj such that

Tpi �= 0 at pi ∈ Di ∩ Dj . We take the decomposition D = Ai + Bi

with Ai ∩ Bi = {pi} in Lemma 6.4. We may assume that Di ⊂ Ai and
Dj ⊂ Bi. Let T ′ be the torsion submodule of EAi . Then T is a direct
summand of T ′ with Tpi = T ′

pi
. For the morphism E → E|Ai/T ′, the

kernel contains a submodule F fitting in an exact sequence

0 → (E|Bi/T ′′)(−pi) → F → T ′ → 0,

where T ′′ is the torsion submodule of E|Bi . Then we have

χ((E|Bi/T ′′)(−pi − β)) + χ(T ′)
(Bi,H ′)

=
χ(F (−β))

(Bi,H ′)
<
χ(E(−β))

(D,H ′)

<
χ((E|Bi/T ′′)(−β))

(Bi,H ′)

Since χ((E|Bi/T ′′)(−pi − β)) + χ(T ′) ≥ χ((E|Bi/T ′′)(−β)), we get a
contradiction. Therefore E|Di

is torsion free, and we complete the proof.
Q.E.D.

We next characterize the Mukai vectors of E|Di
for E ∈ Mβ

D(v). We

set v(E|Ai) = (0, Ai, ai) and v(E|Bi) = (0, Bi, bi). Since E|Bi(−pi) is a
subsheaf of E and E|Bi is a quotient of E, we have

(6.1)
bi − 1− β(Bi)

(Bi,H ′)
<

χ(E)− β(D)

(D,H ′)
<

bi − β(Bi)

(Bi,H ′)
.

Hence

(6.2) bi = min

{
n ∈ Z

∣∣∣∣n >
(χ(E)− β(D))(Bi,H ′)

(D,H ′)
+ β(Bi)

}
.
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Conversely if (6.2) holds for a line bundle E on D, then we shall
prove that E is β-twisted stable.

We first note that (6.1) holds and

(6.3)
ai − 1− β(Ai)

(Ai,H ′)
<

χ(E)− β(D)

(D,H ′)
<

ai − β(Ai)

(Ai,H ′)
.

For an exact sequence

0 → E1 → E → E2 → 0

such that E1 and E2 are purely 1-dimensional and E1 is β-twisted stable,
Div(E1) is connected. We set

Div(E1) ∩Div(E2) := {pn1 , pn2 , ..., pns}.
We note that pnj = Daj ∩ Dbj with {aj , bj} = {nj , ϕ(nj)}. We may

assume that Daj ⊂ E1 and Dbj ⊂ E2. Replacing Bi by Ai, we may as-
sume that Daj ⊂ Anj ∩Div(E1) and Dbj ⊂ Div(E2)∩Bnj for 1 ≤ j ≤ s.
Since Anj \ {pnj} is a connected component of D \ {pnj}, connectivity
of Div(E1) \ {pj} implies that Div(E1) ⊂ Anj . Since D is a tree con-
figuration, we also have Bnj ∩ Bnk = ∅ for j �= k. Hence we have a
decomposition of Div(E2) = D − Div(E1) into connected components
Bj : Div(E2) =

∑
j B

nj . By (6.1), we have

χ(E(−β))

(D,H ′)
(Bnj ,H ′) < χ(E|Bnj (−β)).

Then we have∑
j

χ(E|Bnj (−β)) >
∑
j

χ(E(−β))

(D,H ′)
(Bnj ,H ′) =

χ(E(−β))

(D,H ′)
(Div(E2),H

′).

Since ∪jB
nj is a disjoint union, we have a surjective homomorphism

E → ⊕jE|Bnj . Since E1 → E → ⊕jE|Bnj is a zero map, we have a
surjective morphism E2 → ⊕jE|Bnj . Since Div(E2) =

∑
j B

nj and E2

is pure, it is an isomorphism. Therefore

χ(E2(−β)) >
χ(E(−β))

(D,H ′)
(Div(E2),H

′),

which implies E is β-twisted stable.

Remark 6.11. By the proof of Lemma 6.5, we also have an exact
sequence

0 → ODi(−
∑
j

pnj ) → OD → ⊕jOBnj → 0.
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Hence
χ(E|Di

) = (D −Di, Di) + χ(E)−
∑
j

bnj .

Definition 6.12. For a sequence of smooth curves C1, C2, ..., Cs in
X and a sequence of integers d1, d2, ..., ds, Picd1,d2,...,ds(

∑s
j=1 Cj) de-

notes the moduli spaces of line bundles E on
∑s

j=1 Cj such that

χ(E|Ci
) = di + (1− g(Ci)).

By Lemma 6.5, we have a bijective correspondence

(χ(E|D0
), χ(E|D1

), ..., χ(E|Dm
)) ←→ (χ(E), b1, b2, ..., bm).

Hence Proposition 6.9 follows from the following claim.

Lemma 6.13. For E ∈ Mβ
D(v), we set

di := deg(E|Di
) = χ(E|Di

)− (1− g(Di)).

Then we have an isomorphism

Picd0,d1,...,di(
i∑

j=0

Dj) ∼= Picd0,d1,...,di−1(
i−1∑
j=0

Dj)× Picdi (Di).

In particular, Picd0,d1,...,dm(
∑m

j=0 Dj) ∼=
∏

j Pic
dj (Dj).

Proof. For E ∈ Picd0,d1,...,di(
∑i

j=0 Dj), we have

(E|∑j<i Dj
, E|Di

) ∈ Picd0,d1,...,di−1(

i−1∑
j=0

Dj)× Picdi (Di)

and E fits in an exact sequence

0 → E|Di
(−pi) → E → E|∑j<i Dj

→ 0.

Since Extk(E|∑j<i Dj
, E|Di

(−pi)) = 0 for k �= 1 and

Ext1(E|∑j<i Dj
, E|Di

(−pi)) ∼=H0(X, Ext1OX
(E|∑j<i Dj

, E|Di
(−pi)))

∼=H0(X,Cpi),

E is uniquely determined by (E|∑j<i Dj
, E|Di

(−pi)). Q.E.D.
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6.3. Proof of Proposition 6.1

Lemma 6.14. Let C be a smooth curve of (C2) > 0 in an abelian
surface Y . Then H1(C,Z) → H1(Y,Z) is surjective.

Proof. If it is not surjective, then f : Pic0(Y ) → Pic0(C) is not in-
jective. For the abelian surface f(Pic0(Y )), we set Y ′ :=Pic0(f(Pic0(Y ))).
Since C → Y factors through Alb(C), we have the following diagram

C −−−−→ Y ′∥∥∥ ⏐⏐#g

C −−−−→ Y

Let y be a point of ker g. Since T ∗
y (C) is algebraically equivalent to C,

we have (T ∗
y (C), C) = (C,C) > 0. Thus T ∗

y (C) ∩ C �= ∅. For a point
s ∈ T ∗

y (C) ∩ C, g(s) = g(s+ y) for the points s, s+ y ∈ C. Thus g|C is
not injective. Therefore H1(C,Z) → H1(Y,Z) is surjective. Q.E.D.

For the divisor D ∈ HilbηY in Lemma 6.3, we take E ∈ f−1(D). Let
d be a Cartier divisor of D such that d =

∑
i di, di =

∑
j nijpij , pij ∈

Di \ ∪k �=iDk and deg(di) =
∑

j nij = 0 for all i. For OD(d) ∈ Pic(D),

we have OD(d) = OD +
∑

i,j nijCpij in K(D). Hence

ΦE
Y→X(E(d)) = ΦE

Y→X(E) +
∑
i,j

nijEpij

in K(X). Then we have

a(ΦE
Y→X(E(d))) = a(ΦE

Y→X(E)) +
∑
i,j

nija(Epij ).

This morphism is the same as∏
i

Pic0(Di) ∼=
∏
i

Jac(Di)
μ→ Y

a→ X × X̂

sending OD(
∑

i,j nijpij) to the image of
∑

i,j nijpij ∈ Y by a.

Lemma 6.15. a : Y → X × X̂ sending y ∈ Y to a(Ey) ∈ X × X̂ is
injective.

Proof. We set u = (r, ξ, a). Replacing u by −u, we may assume
that r > 0. We set p = (r, ξ). Since v is primitive, (p, a) = 1. Since
ra = (ξ2)/2 ∈ p2Z, we may set r = p2t and ξ = pqH, where H is
primitive. Since q2(H2)/2 = ta and (q, pt) = 1, we can set a = q2s.
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Thus we get v = (p2t, pqH, q2s), where (pt, q) = 1, (p, q2s) = 1 and the
type of H is (1, ts). We take E ∈ Y . We have a morphism f : X → Y
by sending x ∈ X to T ∗

x (E). Then X/K(E) ∼= Y , where K(E) =

im(K(pqH)
p2t→ X). We note that g : X → Y → X × X̂ is the morphism

sending x to (q2sx, φpqH(x)). We shall prove that ker g = K(E).
We set K(pqH) = 1

pqV1/V1 ⊕ 1
pqtsV2/V2. Then

K(E) = p2tK(pqH) =
p2t

pq
V1/V1 ⊕ p2t

pqts
V2/V2 =

1

q
V1/V1 ⊕ 1

qs
V2/V2,

where we used (pt, q)V1 = V1 and (p, qt)V2 = V2. For (x1

pq ,
x2

pqts ) ∈
ker(q2s) ∩ K(pqH), we have ( q

2sx1

pq , q2sx2

pqts ) ∈ V1 ⊕ V2. Then we have

x1 ∈ pV1 and x2 ∈ ptV2. Hence

ker(q2s) ∩K(pqH) =
1

q
V1/V1 ⊕ 1

qs
V2/V2 = K(E).

Q.E.D.

By Proposition 6.9, Proposition 6.1 follows from the following claim.

Lemma 6.16. If D is a normal crossing divisor of smooth curves
Di, then kerμ is connected.

Proof. Since Di are smooth, it is sufficient to prove that

H1(
∏
i

Pic0(Di),Z) → H1(Y,Z)

is surjective. Since

H1(
∏
i

Pic0(Di),Z) ∼=
⊕
i

H1(Pic
0(Di),Z) ∼=

⊕
i

H1(Di,Z),

Lemma 6.14 implies the claim unless all Di are elliptic curves. If all Di

are elliptic curves, then (D0, D1) = 1 implies that the natural homomor-
phism D0 ×D1 → Y is an isomorphism. Hence

H1(D0,Z)⊕H1(D1,Z) → H1(Y,Z)

is an isomorphism. Therefore the claim holds. Q.E.D.
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