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Abstract.

In this note we interpret a recent result of Gaberdiel et al [7] in
terms of derived equivalences of K3 surfaces. We prove that there is
a natural bijection between subgroups of the Conway group Co0 with
invariant lattice of rank at least four and groups of symplectic derived
equivalences of Db(X) of projective K3 surfaces fixing a stability con-
dition.

As an application we prove that every such subgroup G ⊂ Co0
satisfying an additional condition can be realized as a group of sym-
plectic automorphisms of an irreducible symplectic variety deformation
equivalent to Hilbn(X) of some K3 surface.

In his celebrated paper [17] Mukai established a bijection between
finite groups of symplectic automorphisms of K3 surfaces G ⊂ Auts(X)
and finite subgroups G ⊂ M23 of the Mathieu group M23 with at least
five orbits. An alternative approach relying on Niemeier lattices was
given by Kondō in [15].

More recently, physicists observed that groups of supersymmetry
preserving automorphisms of non-linear σ-models on K3 surfaces are
linked to subgroups of the larger Mathieu group M24 and the even larger
Conway group Co1, both sporadic finite simple groups. The lattice the-
ory used in [7], ultimately going back to Kondō, can be reinterpreted
in purely mathematical terms to prove the following result about de-
rived autoequivalences of K3 surfaces which should be seen as a derived
version of Mukai’s classical result.
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Theorem 0.1. For a group G the following conditions are equiva-
lent:
i) G is isomorphic to a subgroup of the group Auts(D

b(X), σ) of some
complex projective K3 surface X endowed with a stability condition σ ∈
Stabo(X).
ii) G is isomorphic to a subgroup of the Conway group Co0 with invariant
lattice of rank at least four.

Here, Db(X) = Db(Coh(X)) is the bounded derived category of
coherent sheaves on X and

Stabo(X) ⊂ Stab(X)

is Bridgeland’s distinguished connected component of the space of sta-
bility conditions on Db(X), see [3]. By Aut(Db(X)) we denote the group
of isomorphism classes of C-linear exact autoequivalences of the trian-
gulated category Db(X) and by Auts(D

b(X)) ⊂ Aut(Db(X)) the finite
index subgroup of symplectic autoequivalences (see below for details of
these definitions). Finally, we write Aut(Db(X), σ) ⊂ Aut(Db(X)) for
the subgroup of autoequivalences Φ with Φ∗σ = σ and let

Auts(D
b(X), σ) := Aut(Db(X), σ) ∩Auts(D

b(X)).

To explain the condition in ii), recall that the Conway group Co0 is
by definition the orthogonal group of the Leech lattice N , i.e.

Co0 := O(N).

So, for a subgroup G ⊂ Co0 we can consider the invariant lattice NG

and ii) means rkNG ≥ 4. Note that whenever NG is non-trivial, then G
does not contain −id and can therefore be realized as a subgroup of the
Conway group Co1 := Co0/{±id}. We think of the condition rkNG ≥ 4
as G acting with at least four orbits, analogously to Mukai’s condition
on subgroups G ⊂ M23 acting with at least five orbits on {1, . . . , 24}.

Note that a finite group G ⊂ Aut(X) always leaves invariant one
ample class α ∈ H1,1(X,Z) and, therefore, can be lifted to a subgroup
of Aut(Db(X), σα), where σα is the canonical stability condition with
stability function Z = 〈exp(iα), 〉 constructed in [3, Sec. 6&7]. Also,
as we shall see, the group Aut(Db(X), σ) is automatically finite for any
σ ∈ Stabo(X), so that all groups in i) (and of course also in ii)) are
finite. Thus, Theorem 0.1 can indeed be seen as a true generalization of
Mukai’s result on finite groups of symplectic automorphisms [17].

Furthermore, Theorem 0.1 can be used to prove that most of the
above groups can be realized as symplectic automorphisms on higher
dimensional analogues of K3 surfaces.
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Theorem 0.2. Assume G ⊂ Co0 is a subgroup with invariant lattice
of rank at least four satisfying condition (∗) (see Section 4). Then there
exists a projective irreducible symplectic variety Y deformation equiva-
lent to the Hilbert scheme Hilbn(X) of subschemes of length n on a K3
surface X such that G is isomorphic to a subgroup of Auts(Y ).

A more complete result concerning groups of symplectic automor-
phisms of deformations of Hilbn(X) has recently been announced by
Giovanni Mongardi, see Remark 4.1.

Outline. Following [1], a mathematician should think of a non-linear
σ-model on a K3 surface as a pair of orthogonal positive planes

P1 ⊥ P2 ⊂ Λ⊗ R

without any integral (−2)-classes in (P1⊕P2)
⊥. Here, Λ := E8(−1)⊕2⊕

U⊕4 is the unique even, unimodular lattice of signature (4, 20). In fact,

Λ is isomorphic to the Mukai lattice H̃(X,Z) (which is nothing but
H∗(X,Z) with the sign reversed in the pairing of H0 and H4) of any K3
surface X.

Geometrically this comes about as follows. To any K3 surface X
with a Kähler class α ∈ H1,1(X,R) one can naturally associate two
positive planes

PX := (H2,0 ⊕H0,2)(X) ∩H2(X,R) and Pα := R · α⊕ R · (1− (α)2/2)

in H̃(X,R). A (−2)-class δ ∈ H̃(X,Z) is orthogonal to PX if and only if

δ is algebraic, i.e. δ ∈ H̃1,1(X,Z) = H0(X,Z)⊕H1,1(X,Z)⊕H4(X,Z).
If δ ∈ H1,1(X,Z), then (α.δ) �= 0 and, therefore, δ �∈ P⊥

α . In fact it
can be shown that for α ∈ H1,1(X,Z) ⊗ R, e.g. α an ample class, with
(α)2 > 2 none of the algebraic (−2)-classes is orthogonal to Pα.

Note that the positive four space P1 ⊕ P2 associated with a pair of
orthogonal positive planes P1, P2 ⊂ H∗(M,R) can always be written as
exp(B) · (PX ⊕ Pα) for some K3 surface structure X on the underlying
differentiable manifold M endowed with a class α ∈ H1,1(X,R) with
(α)2 > 0 and a class B ∈ H2(X,R). Here, exp(B) = 1 + B + (B)2/2 ∈
H∗(X,R) acts by multiplication. See [12, Prop. 3.6].

The main result in [7] describes all finite subgroups G ⊂ O(Λ) acting
trivially on P1 ⊕ P2 for some non-linear σ-model P1 ⊥ P2 as above. So
the main task of this note is to pass from this lattice theoretic condition
on finite groups of isometries to one that can be phrased in terms of
derived categories Db(X) of complex projective K3 surfaces. In fact [7]
also contains a more precise description of the occurring groups which
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of course includes all groups of Mukai’s list (as any finite group of au-
tomorphisms preserves one ample class). But it also contains groups of
the form (Z/3Z)⊕4.A6, which in particular is not contained in M24 as
its order does not divide |M24|.

In Section 1 we establish a bijection between groups of autoequiv-
alences fixing a stability condition σ ∈ Stabo(X) and groups of Hodge

isometries of H̃(X,Z) acting trivially on the positive four space that
comes with σ. In Section 2 we give a brief sketch of the proof of [7]. The
final Section 3 contains the proof of Theorem 0.1.

Acknowledgements. I wish to thank the organizers of the conference
‘Development of Moduli Theory’ in Kyoto in June 2013 and in particular
Shigeyuki Kondō for organizing the memorable event on the occasion of
the 60th birthday of Shigeru Mukai whose influence on the theory of K3
surfaces in general and on the topics related to this article can hardly
be overestimated.

I am grateful to Roberto Volpato and Tom Bridgeland for insightful
comments on preliminary versions of this paper, to Giovanni Mongardi
for the question prompting Theorem 0.2 and to the referee for pertinent
questions.

§1. Lifting Hodge isometries

We shall link Hodge isometries of the Mukai lattice H̃(X,Z) of a
complex projective K3 surface X fixing an additional positive plane in

H̃1,1(X,Z)⊗R to autoequivalences of Db(X) fixing a stability condition.

1.1.

Let Λ be the lattice E8(−1)⊕2 ⊕ U⊕4 (or any lattice of signature
(4, n)) and consider a K3 Hodge structure on Λ, i.e. a Hodge structure
of weight two given by an orthogonal decomposition

Λ⊗ C = Λ2,0 ⊕ Λ1,1 ⊕ Λ0,2

such that Λ2,0 is isotropic and (Λ2,0 ⊕ Λ0,2) ∩ (Λ ⊗ R) ⊂ Λ ⊗ R is a
positive plane.

A Hodge isometry ϕ : Λ
∼ ��Λ is an orthogonal transformation ϕ ∈

O(Λ) such that its C-linear extension satisfies ϕ(Λ2,0) = Λ2,0. We say
that ϕ is symplectic if ϕ|Λ2,0 = id and positive if there exists a positive
plane P ⊂ Λ1,1 ∩ (Λ ⊗ R) with ϕ|P = id. If P is given and ϕ|P = id,
then ϕ is called P -positive.
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1.2.

Let now H̃(X,Z) be the Mukai lattice of a complex K3 surface

X with its natural Hodge structure given by H̃2,0(X) = H2,0(X) and

H̃1,1(X) = (H0 ⊕ H1,1 ⊕ H4)(X). The group of all Hodge isometries
resp. of all symplectic Hodge isometries shall be denoted

Aut(H̃(X,Z)) resp. Auts(H̃(X,Z)).

For a positive plane P ⊂ H̃1,1(X,R) we write

Aut(H̃(X,Z), P ) ⊂ Aut(H̃(X,Z))

for the subgroup of all P -positive Hodge isometries and Auts(H̃(X,Z),P )

for its intersection with Auts(H̃(X,Z)). If P = PZ is a positive plane

spanned by Re(Z) and Im(Z) of some Z ∈ H̃1,1(X,Z)⊗ C, then let

Aut(H̃(X,Z), Z) := Aut(H̃(X,Z), PZ) ⊂ Aut(H̃(X,Z)).

Example 1.1. Any Kähler class α ∈ H1,1(X) gives rise to a posi-

tive plane Pα ⊂ H̃1,1(X,R) spanned by α ∈ H1,1(X) and 1 − (α)2/2 ∈
(H0 ⊕H4)(X,R). We write

Aut(H̃(X,Z), α) := Aut(H̃(X,Z), Pα).

If Z = exp(iα) = 1+ iα− (α)2/2, then Pα = PZ and Aut(H̃(X,Z), α) =

Aut(H̃(X,Z), Z). The setting can be generalized to the positive plane

generated by real and imaginary part of exp(B + iα) ∈ H̃1,1(X), where
α ∈ H1,1(X,R) with (α)2 > 0 and B ∈ H1,1(X,R).

Let X be a complex K3 surface and f : X
∼ ��X an automorphism.

If f acts as id onH2,0(X), then f∗ : H̃(X,Z)
∼ �� H̃(X,Z) is a symplectic

Hodge isometry, i.e. f∗ ∈ Auts(H̃(X,Z)). If f∗α = α for a Kähler class
α or, more generally, for some α ∈ H1,1(X,R) with (α)2 > 0, then f∗ is

Pα-positive, i.e. f
∗ ∈ Aut(H̃(X,Z), α).

If an automorphism f : X
∼ ��X is of finite order, then f∗ is always

positive. Indeed, take any Kähler class α ∈ H1,1(X,R) and consider
α̃ :=

∑
i f

i∗α. Then α̃ is a Kähler class that satisfies f∗(α̃) = α̃ and
hence f∗ = id on Pα̃. So any symplectic automorphism of finite order

f : X
∼ ��X of a K3 surface X gives rise to a positive symplectic Hodge

isometry of H̃(X,Z).



392 D. Huybrechts

Remark 1.2. i) As a sort of converse of the above, one observes

that Auts(H̃(X,Z), P ) = Auts(H̃(X,Z)) ∩ Aut(H̃(X,Z), P ) is a finite
group: Indeed, it is a discrete subgroup of the compact group

O(((H2,0 ⊕H0,2)(X,R)⊕ P )⊥)  O(20,R).

In particular, any Hodge isometry which is symplectic and positive is
automatic of finite order. In this sense, Mukai’s classification of finite
groups of symplectic automorphisms of K3 surfaces is part of the broader
classification of all groups of symplectic P -positive Hodge isometries of

H̃(X,Z) for some K3 surface X endowed with a positive plane P ⊂
H̃1,1(X,R).

ii) In fact, if X is projective, then already Aut(H̃(X,Z), P )
is finite. Indeed, in this case the transcendental lattice T (X) is
non-degenerate and irreducible and hence Aut(T (X)) is a discrete
subgroup of a compact group and hence finite. But the kernel

of Aut(H̃(X,Z), P ) ��Aut(T (X)) is contained in the finite group

Auts(H̃(X,Z), P ). The finiteness of Aut(H̃(X,Z), P ) is the analogue

of the finiteness of the group of all automorphisms f : X
∼ ��X fixing

an ample line bundle L or a Kähler class α.

1.3.

Let from now on the complex K3 surface X also be projective. We
denote its bounded derived category of coherent sheaves by Db(X) :=
Db(Coh(X)). Furthermore, let Aut(Db(X)) be the group of isomor-

phism classes of exact C-linear autoequivalences Φ : Db(X)
∼ ��Db(X).

To any Φ ∈ Aut(Db(X)) one associates the Hodge isometry ϕ := ΦH :

H̃(X,Z)
∼ �� H̃(X,Z) which defines a homomorphism

ρ : Aut(Db(X)) ��Aut(H̃(X,Z)).

This goes back to Mukai’s article [18], see [11, Ch. 10] for further details,
references, and notations. The image of ρ is the index two subgroup

Aut(H̃(X,Z))+ ⊂ Aut(H̃(X,Z))

of Hodge isometries preserving the (natural) orientation of positive

planes P ⊂ H̃1,1(X,R), see [9]. We say that Φ is symplectic if ϕ ∈
Auts(H̃(X,Z)) and we let

Auts(D
b(X)) ⊂ Aut(Db(X))

denote the subgroup of all symplectic autoequivalences.
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In the following we shall denote by Stab(X) the space of all stability
conditions σ = (P, Z) on Db(X) and by Stabo(X) ⊂ Stab(X) the distin-
guished connected component introduced and studied in [3]. Tacitly, all
stability conditions are required to be locally finite. For a brief survey
of the main features see also [8].

The group Aut(Db(X)) acts on Stab(X) and we let

Auto(Db(X)) ⊂ Aut(Db(X))

be the subgroup of all autoequivalences fixing Stabo(X). Note that it is

known that the restriction ρ : Auto(Db(X)) �� ��Aut(H̃(X,Z))+ is still
surjective. Indeed, in the original argument, due to Mukai and Orlov see
[11, Ch. 10.2], one only has to check that universal families of μ-stable
bundles preserve the distinguished component Stabo ⊂ Stab and for this
see e.g. [10, Prop. 5.2].

Conjecturally, Stabo(X) = Stab(X) or, at least, Auto(Db(X)) =
Aut(Db(X)). In fact, a proof of the conjecture for the case ρ(X) = 1
has recently been given by Bayer and Bridgeland [4]. In any case, as
shown in [3], the group Auto(Db(X))∩Ker(ρ) can be identified with the
group of deck transformations of the covering

π : Stabo(X) �� ��P+
0 (X), σ = (P, Z) � ��Z.

Here,

P+
0 (X) = P+(X) \

⋃
δ∈ΔX

δ⊥ ⊂ H̃1,1(X,Z)⊗ C

with P+(X) the connected component containing 1 + iα− (α)2/2 with

α ample of the open set P(X) of all Z ∈ H̃1,1(X,Z) ⊗ C with real and
imaginary part spanning a positive plane

PZ := R · Re(Z)⊕ R · Im(Z) ⊂ H̃1,1(X,R).

By ΔX ⊂H̃1,1(X,Z) we denote the set of all (−2)-classes δ ∈ H̃1,1(X,Z).

Here and in the sequel, the stability function Z : H̃1,1(X,Z) ��C is,

via Poincaré duality, identified with an element Z ∈ H̃1,1(X,Z)⊗ C.

Definition 1.3. An exact C-linear autoequivalence Φ : Db(X)
∼ ��

Db(X) is positive if there exists a stability condition σ = (P, Z) ∈
Stabo(X) with Φ∗σ = σ (and then Φ is called σ-positive). The group of
all σ-positive autoequivalences is denoted Aut(Db(X), σ).

Note that in particular Aut(Db(X), σ) ⊂ Auto(Db(X)).
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1.4.

The next proposition is a derived version of the Global Torelli the-
orem for automorphisms of polarized K3 surfaces (X,L) which can be
stated as

Aut(X,L)
∼ ��Aut(H2(X,Z), �)

for Aut(X,L) the group of automorphisms f : X
∼ ��X with f∗L  L

and Aut(H2(X,Z), �) the group of Hodge isometries of H2(X,Z) fixing
the ample class � := c1(L).

Proposition 1.4. For σ = (P, Z) ∈ Stabo(X), the homomorphism
ρ induces isomorphisms

Aut(Db(X), σ)
∼ ��Aut(H̃(X,Z), Z)

and
Auts(D

b(X), σ)
∼ ��Auts(H̃(X,Z), Z).

Proof. Clearly, for Φ ∈ Aut(Db(X), σ) the induced Hodge isometry

ϕ := ρ(Φ) satisfies ϕ(Z) = Z and hence ϕ ∈ Aut(H̃(X,Z), Z).
To prove injectivity, let Φ ∈ Aut(Db(X), σ) with ϕ = id. Then by

[3], Φ acts as a deck transformation of the covering map π : Stabo(X) �� ��

P+
0 (X). But a deck transformation that fixes a point σ ∈ Stabo(X) has

to be the identity. Hence, Φ  id.

For the surjectivity, let ϕ ∈ Aut(H̃(X,Z), Z). As Aut(H̃(X,Z), Z)⊂
Aut(H̃(X,Z))+, there exists an autoequivalence Φ0 ∈ Auto(Db(X))
with ρ(Φ0) = ϕ. Now σ, σ0 := Φ∗

0σ ∈ Stabo(X) both map to Z = π(σ) =
π(σ0) ∈ P+

0 (X) and, therefore, differ by a unique Ψ ∈ Auto(Db(X))
with ρ(Ψ) = id. But then Φ := Φ0 ◦ Ψ ∈ Auto(Db(X)) satisfies
ρ(Φ) = ρ(Φ0) = ϕ and Φ∗σ = σ, i.e. Φ ∈ Aut(Db(X), σ).

The second isomorphism follows from the first. �
By Remark 1.2 the proposition immediately yields the following.

(Note that whenever Db(X) is used the surface X is assumed to be
projective.)

Corollary 1.5. The groups Aut(Db(X), σ) and Auts(D
b(X), σ) are

finite. �
Remark 1.6. As was explained to me by Tom Bridgeland, the

finiteness of the stabilizer Aut(Db(X), σ) of a stability condition σ is
a general phenomenon. Roughly, for any triangulated category D the
quotient Aut(D, σ)/Aut(D,Stabo(D)) is finite. Here, Aut(D,Stabo(D))
is the subgroup of autoequivalences acting trivially on the connected
component Stabo(D) containing the stability condition σ.
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As another consequence we find

Corollary 1.7. Let σ = (P, Z) ∈ Stabo(X). Then for a group G
the following conditions are equivalent:
i) G is isomorphic to a subgroup of Aut(Db(X), σ) resp. Auts(D

b(X), σ).

ii) G is isomorphic to a subgroup of Aut(H̃(X,Z), Z) resp. Auts(H̃(X,
Z), Z). �

Remark 1.8. i) The arguments show more generally that for any
subgroup G ⊂ Auto(Db(X)) of positive autoequivalences the restric-

tion ρ : G ��Aut(H̃(X,Z)) is injective. Indeed, H := Ker(ρ : G ��

Aut(H̃(X,Z))) acts trivially on H̃(X,Z) and, therefore, consists of deck
transformations of π : Stabo(X) �� ��P+

0 (X). However, by assumption
on G, there exists for any Φ ∈ H ⊂ G a stability condition σ ∈ Stabo(X)
with Φ∗σ = σ. Therefore, Φ = id, since non-trivial deck transformations
act without fixed points.

ii) In a different direction, one can generalize to groups of auto-
equivalences that fix a simply connected open set of stability functions.

Assume G ⊂ Aut(H̃(X,Z))+ is a subgroup of autoequivalences such
that there exists a contractible open set U ⊂ P+

0 (X) with ϕ(U) = U
for all ϕ ∈ G. Then there exists a non-canonical group homomorphism
lifting the inclusion

G� �

����� � � � � � � �

Auto(Db(X)) �� �� Aut(H̃(X,Z))+.

Indeed, since U is simply connected, any connected component U ′ ⊂
π−1(U) ⊂ Stabo(X) of π−1(U) maps homeomorphically onto U . Pick
one U ′ ⊂ π−1(U) and argue as above: For any ϕ ∈ G, there exists
Φ0 ∈ Auto(Db(X)) with ρ(Φ0) = ϕ. Pick σ = (P, Z) ∈ U ′. Then
π(Φ∗

0σ) ∈ U and thus there exists a unique Ψ ∈ Auto(Db(X)) with
ρ(Ψ) = id and Ψ∗Φ∗

0σ ∈ U ′. The new Φ := Φ0 ◦Ψ ∈ Auto(Db(X)) sat-
isfies ρ(Φ) = ρ(Φ0) = ϕ and Φ∗(U ′) = (U ′). Moreover, Φ is unique with
these properties and we define the lift G ��Auto(Db(X)) by ϕ � ��Φ.
To see that this defines a group homomorphism consider ϕ1, ϕ2 ∈ G and
let ϕ3 := ϕ1 ◦ ϕ2. For the (unique) lifts Φi of ϕi with Φ∗

i (U
′) = U ′ the

composition Ψ := Φ−1
3 ◦ (Φ1 ◦ Φ2) satisfies ρ(Ψ) = id and Ψ∗(U ′) = U ′.

Hence, Ψ = id and, therefore, Φ3 = Φ1 ◦ Φ2.

Remark 1.9. In [12] the notion of generalized K3 structures on the
differentiable manifold M underlying a K3 surface was introduced as an
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orthogonal pair of generalized Calabi–Yau structures ϕ,ϕ′ ∈ A2∗
C
(M).

The period of a generalized K3 structure was defined as the pair of pos-

itive planes Pϕ, Pϕ′ ⊂ H̃(M,R) spanned by real and imaginary parts
of the cohomology classes [ϕ] resp. [ϕ′]. Isomorphisms between general-
ized K3 structures include Diff(M) and B-field twists exp(B) by closed
forms B ∈ A2(M) with integral cohomology class β := [B] ∈ H2(M,Z).
Note that Diff(M) surjects onto the index two subgroup O(H2(M,Z))+

and that O(H̃(M,Z)) is generated by O(H2(M,Z)), exp(β) with β ∈
H2(M,Z), and O((H0⊕H4)(M,Z)). (Only the latter has no interpreta-

tion on the level of forms.) In this sense Auts(H̃(X,Z), Z) may be seen
as the group of automorphisms of the generalized K3 structure given by
ϕ1 = ω, a holomorphic two-form on X, and ϕ2 = exp(B+iα) ∈ A2∗

C
(M)

representing Z. So Proposition 1.4 seems to suggests that automor-
phisms of (ϕ1, ϕ2) can be interpreted as automorphisms of a stability
condition σ on Db(X). It would be interesting to find a more direct
approach to this not relying on the period description of both sides.

§2. Groups of Hodge isometries as subgroups of Co1

For the convenience of the reader, we recall the lattice theoretic argu-
ments in [7] which relate groups of positive symplectic Hodge isometries
with subgroups of the Conway group Co1. Section 2.2 is later used in
Section 3 to prove that groups of symplectic σ-positive autoequivalences
can be realized as subgroups of Co1, whereas the converse is based on
Section 2.3.

2.1.

We go back to the abstract setting of Section 1.1 and let Λ =
E8(−1)⊕2 ⊕ U⊕4. We also fix a positive subspace of dimension four
Π ⊂ Λ⊗ R such that no (−2)-class δ ∈ Λ is contained in Π⊥.

Then consider the subgroup

Aut(Λ,Π) ⊂ O(Λ)

of all isometries ϕ : Λ
∼ ��Λ such that its R-linear extension satisfies

ϕ = id on Π. Thus, Aut(Λ,Π) ⊂ O(Π⊥) and since Π⊥ is negative
definite and hence O(Π⊥) compact, Aut(Λ,Π) is finite. For a subgroup
G ⊂ Aut(Λ,Π) we denote by

ΛG and ΛG := (ΛG)⊥

the invariant part resp. its orthogonal complement. The group G can
be chosen arbitrary and one can even take G = Aut(Λ,Π).
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Following the classical line of arguments, one first proves

Lemma 2.1. The lattice ΛG is negative definite of rank rkΛG ≤ 20
and does not contain any (−2)-classes. The induced action of G on
its discriminant AΛG = Λ∗

G/ΛG is trivial and the minimal number of
generators of AΛG is bounded by �(AΛG) ≤ 24− rkΛG.

Proof. As ΛG ⊂ Π⊥, the assumption on Π implies that the lattice
ΛG does not contain any (−2)-class. Moreover, since Π⊥ ⊂ Λ ⊗ R is a
negative definite subspace of dimension ≤ 20, also ΛG is negative definite
and of rank rkΛG ≤ 20. As Λ is unimodular and, as is easy to check,
also ΛG is non-degenerate, there exists an isomorphism AΛG  AΛG

which is compatible with the induced action of G. Since the action
on the latter is trivial, it is so on AΛG . The isomorphism also yields
�(AΛG) = �(AΛG) ≤ rkΛG = rkΛ − rkΛG. The arguments are quite
standard, for more details see [14] and references therein. �

The key idea in [15] is to embed ΛG (or rather ΛG ⊕ A1(−1)) into
some Niemeier lattice, i.e. into one of the 24 negative definite, even,
unimodular lattices of rank 24. In our situation, Kondō’s approach is
easy to adapt if the stronger inequality

(2.1) �(AΛG) < 24− rkΛG,

is assumed. Indeed, then by [19, Thm. 1.12.2] there exists a primitive
embedding

ΛG
� � ��Ni

into one of the Niemeier lattices Ni. Moreover, as G acts trivially on
AΛG , its action on ΛG can be extended to an action of G on Ni which
is trivial on Λ⊥

G ⊂ Ni, see [19, Thm. 1.6.1, Cor. 1.5.2]. In Kondō’s
approach ΛG ⊕ A1(−1) is embedded into a Niemeier lattice Ni. This
excludes Ni from being the Leech lattice N which does not contain any
(−2)-class. So, under the additional assumption (2.1), the group G can
be realized as a subgroup of O(Ni) of a certain Niemeier lattice different
from the Leech lattice. If Ni is the Niemeier lattice with root lattice
A1(−1)⊕24, this eventually leads to an embedding G � � ��M24. Recall
that in this case O(Ni)  M24 � (Z/2Z)⊕24. The (Z/2Z)⊕24 is avoided
by G, as ΛG does not contain any (−2)-classes. Indeed, if g(ei) = −ei
for some g ∈ G and a root ei, then ei would be orthogonal to ΛG and
hence contained in ΛG. However, if Ni is the Leech lattice N , then one
only gets an embedding into the much larger Conway group Co0

G � � ��O(N) =: Co0.
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Note that in both cases, the invariant lattice NG
i satisfies rkNG

i ≥ 4.
By a clever twist of the argument, the authors of [7] manage to prove

the existence of an embedding into the Leech lattice only assuming the
weak inequality in (2.1) which holds due to Lemma 2.1.

Proposition 2.2. (Gaberdiel, Hohenegger, Volpato) For a
group G the following conditions are equivalent:
i) G is isomorphic to a subgroup of Aut(Λ,Π) for some positive four
space Π ⊂ Λ⊗ R without (−2)-class contained in Π⊥.
ii) G is isomorphic to a subgroup of the Conway group Co0 with invariant
lattice of rank at least four.

For completeness sake, we sketch the argument. Section 2.2 shows
that i) implies ii) and Section 2.3 deals with the converse. We follow the
original [7] closely.

2.2.

We shall show that there exists a primitive embedding

ΛG
� � ��N

into the Leech lattice N inducing an inclusion

G � � ��Co0

with rkNG ≥ 4.
If �(AΛG) = 24− rkΛG, then an embedding into a Niemeier lattice

can be found if for odd prime p the p-Sylow group (AΛG)p of AΛG sat-
isfies the stronger inequality �((AΛG)p) < 24 − rkΛG and for p = 2 the
discriminant form (AΛG , q) splits off (AA1 , q), see [19, Thm 1.12.2]. Of
course, if ΛG splits off a summand A1(−1) both conditions are satisfied,
but in general it seems difficult to check.

Instead, in [7] Nikulin’s criterion is applied to Λ′
G := ΛG ⊕A1(−1).

This is of course inspired by Kondō’s original argument, but unfortu-
nately in the present situation one cannot hope for embeddings of Λ′

G

into a Niemeier lattice. Instead, one obtains primitive embeddings

ΛG
� � ��Λ′

G
� � �� Γ := E8(−1)⊕3 ⊕ U.

Note that Γ is the unique even unimodular lattice of signature (1, 25)
which is often denoted II1,25. As G acts trivially on AΛG , the action on
ΛG can be extended to Γ by id on Λ⊥

G ⊂ Γ. Note that then ΓG = Λ⊥
G

is a non-degenerate lattice of signature (1, 25 − rkΛG). In particular,
ΓG ⊗ R intersects the positive cone C ⊂ Γ⊗ R. More precisely, ΓG ⊗ R

intersects one of the chambers of C, defined as usual by means of the set



K3 surfaces and the Conway group 399

of all (−2)-classes ΔΓ ⊂ Γ. Indeed, otherwise there exists one (−2)-class
δ ∈ Γ with ΓG ⊂ δ⊥ which would yield the contradiction δ ∈ ΛG.

Next choose an isomorphism Γ  N ⊕ U , where N is the Leech
lattice, and consider a standard generator of U as an isotropic vector
w ∈ Γ (the Weyl vector). Then the (−2)-classes δ with (δ.w) = 1 are
called Leech roots. The Weyl group W ⊂ O(Γ) is in fact generated
by the reflections sδ associated with Leech roots (see [6, Ch. 27]) or,
equivalently, there exists one chamber C0 ⊂ C that is described by the
condition (δ.C0) > 0 for all Leech roots δ.

Thus, after applying elements of the Weyl group W to the embed-
ding ΛG

� � �� Γ if necessary, one can assume that the distinguished cham-
ber C0 is fixed by G. Then G is contained in the subgroup Co∞ ⊂ O(Γ)
of all isometries fixing C0. The group Co∞ is also known to fix the
isotropic vector w ∈ Γ (see [5]) and hence w ∈ ΓG. One obtains a
primitive embedding of ΛG

� � ��N as the composition

ΛG
� � ��w⊥ �� ��w⊥/Z · w  N.

Finally, by usingG ⊂ Co∞ ��Co0 = O(N) (or by applying Nikulin’s
general result once more) one extends the action of G from ΛG to N by
the identity on Λ⊥

G ⊂ N . Then Λ⊥
G ⊂ NG (in fact, equality holds) and,

by Lemma 2.1, we ensure rkNG ≥ 4:
So we proved that i) implies ii).

2.3.

For the converse of Proposition 2.2, let G ⊂ Co0 be a subgroup
with rkNG ≥ 4. One needs to show that then G ⊂ Aut(Λ,Π) for some
positive four space Π ⊂ Λ ⊗ R without (−2)-classes contained in Π⊥.
This is proved in [7] as follows:

Firstly, one shows the existence of a primitive embedding

(2.2) NG = (NG)⊥ � � ��Λ = E8(−1)⊕2 ⊕ U⊕4.

Such an embedding exists if there exists an orthogonal lattice, i.e.
an even lattice M with signature (4, 20 − rkNG) and discriminant
form (AM , qM )  (ANG ,−qNG), see [19, Prop. 1.5.1]. But [19, Thm.
1.12.4] implies the existence of a primitive embedding NG � � ��E8(−1)⊕
U⊕rkNG−4 and its orthogonal complement M has the required proper-
ties.

Secondly, as G acts trivially on ANG  ANG , its action on NG

can be extended by id to Λ. The orthogonal N⊥
G ⊂ Λ has signature

(4, 20− rkNG) and, therefore, N
⊥
G ⊗R contains a positive four space Π

on which G acts trivially
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Thirdly, NG as a sublattice of the Leech lattice N does not contain
any (−2)-classes and for generic choice of Π ⊂ N⊥

G ⊗R neither does Π⊥.

This concludes the proof of Proposition 2.2. �

§3. Proof of Theorem 0.1

Combining the previous two sections one can now complete the proof
of Theorem 0.1.

3.1.

The proof of one direction of Theorem 0.1 is easy. Indeed, if G ⊂
Auts(D

b(X), σ) for some σ ∈ Stabo(X), then G ⊂ Auts(H̃(X,Z), Z) by
Proposition 1.4. If we define ΠX,Z as the positive four space

ΠX,Z := PX ⊕ PZ = (H2,0 ⊕H0,2)(X,R)⊕ R · Re(Z)⊕ R · Im(Z)

and view it as a subspace of Λ⊗ R  H̃(X,R), then

G ⊂ Auts(H̃(X,Z), Z)  Aut(Λ,ΠX,Z).

Thus, the discussion in Section 2.2 and Proposition 2.2 apply and show
that there exists an injection G � � ��Co1 with invariant lattice of rank at
least four.

Remark 3.1. Whenever ΛG can be embedded into a Niemeier lat-
tice Ni that is not the Leech lattice, then one can argue as in [15] and
deduce the existence of an embedding G � � ��M24. But unfortunately,
the Leech lattice cannot be excluded and one really has to deal with
Co1. Concrete examples have been given in [7].

3.2.

For the proof of the converse, an additional problem has to be ad-
dressed that was not present in [7]: One needs to ensure that Π in
Section 2.3 can be chosen of the form ΠX,Z with X projective and
Z ∈ H1,1(X,Z)⊗ C.

To achieve this, fix an isomorphism Λ  Λ0 ⊕ U0, where we think
of Λ0 = E8(−1)⊕2 ⊕ U⊕3 as the K3 lattice H2(Y,Z) and of U0  U as
(H0 ⊕ H4)(Y,Z). For a subgroup G ⊂ Co0 with rkNG ≥ 4 choose a
primitive embedding NG

� � ��Λ as in (2.2).
Now, for an arbitrary positive definite primitive sublattice L ⊂

N⊥
G ⊂ Λ of rank four, the lattice L ∩ Λ0, which is the kernel of the

projection L ��U0, is of rank at least two. Hence, there exists a pos-
itive sublattice L1 ⊂ L ∩ Λ0 of rank two. We let P1 := L1 ⊗ R be the
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associated positive plane. Due to the surjectivity of the period map,
there exists a K3 surface X with a marking H2(X,Z)  Λ0 inducing
(H2,0 ⊕H0,2)(X,R)  P1. As the lattice L⊥

1 ∩ Λ0, which has signature
(1, 19), is contained in P⊥

1 ⊂ Λ0⊗R, there exists a class α ∈ H1,1(X,Z)
with (α)2 > 0 and, therefore, X is projective. (In other words, any K3
surface of maximal Picard number 20 is projective.)

It remains to find a second positive plane P2 ⊂ P⊥
1 ∩ (N⊥

G ⊗R) such
that (P1 ⊕ P2)

⊥ does not contain any (−2)-class. In fact, any such P2

contains elements with non-trivial H0 component and is, therefore, of
the form PZ for some Z = exp(B + iα) with B,α ∈ H1,1(X,Z) ⊗ R.
Thus, Π := P1 ⊕ P2 is of the form ΠX,Z as required.

In order to show the existence of P2, observe that if the intersection
of the usual period domain Q ⊂ P(L⊥

1 ⊗ C) with P((L⊥
1 ∩ N⊥

G ) ⊗ C) is
contained in the union of all hyperplanes δ⊥ orthogonal to some (−2)-
class δ ∈ L⊥

1 , then there exists in fact one δ ∈ L⊥
1 orthogonal to N⊥

G .
But this would imply that NG contains a (−2)-class which is absurd for
a sublattice of the Leech lattice.

This concludes the proof of Theorem 0.1. �
It might be worth pointing out, that the K3 surfaces constructed in

the proof above have all maximal Picard number ρ(X) = 20. However,
that any group that can be realized at all can also be realized on one of
this type, can also be proved directly.

§4. Symplectic automorphisms of deformations of Hilbert
schemes

Let G ⊂ Co0 = O(N) be a subgroup with rkNG ≥ 4 and choose as
before a primitive embedding

NG := (NG)⊥ � � ��Λ

into the extended K3 lattice

Λ := E8(−1)⊕2 ⊕ U⊕4.

We also fix a decomposition Λ = Λ0 ⊕ U0, into the K3 lattice Λ0 :=
E8(−1)⊕2 ⊕ U⊕3 and a copy U0 of U . By N⊥

G ⊂ Λ we denote the
orthogonal complement of NG in Λ. Then N⊥

G has rk(N⊥
G ) ≥ 4, more

precisely it is a lattice of signature (4,m), and the action of G on NG

can be extended by id on N⊥
G to an action of Λ.

In order that a given G can act on a deformation of Hilbn(X) it
needs to satisfy an additional condition:
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(∗) The lattice N⊥
G contains a primitive positive definite lattice L ⊂

N⊥
G with

�(L) < rk(L) = 3.

We can now state the theorem from the introduction in the following
precise form.

Theorem 0.2. If G ⊂ Co0 with rk(NG) ≥ 4 satisfies (∗), then there
exist an n > 0 and a projective irreducible symplectic variety Y deforma-
tion equivalent to Hilbn(X) of a K3 surface X such that G is isomorphic
to a subgroup of the group of symplectic automorphisms Auts(Y ) of Y .

Proof. Consider a primitive, positive definite lattice of rank three
L ⊂ N⊥

G . Choose bases of L and of its dual L∗ such that the natural
inclusion i : L � � ��L∗ is given by a diagonal matrix diag(a1, a2, a3) with
ai|ai+1. Then �(L) < 3 if and only of a1 = ±1. So, by assumption we
can assume that L ⊂ N⊥

G contains a vector 0 �= v ∈ L which is primitive
in the overlattice L ⊂ L∗.

Next, we shall apply [19, Thm. 1.14.4] twice to L1 := v⊥ ∩ L. The
first time, to ensure that there exists a primitive embedding L1

� � ��Λ0,
as �(L1) + 2 ≤ 4 ≤ rk(Λ0) − rk(L1) = 20, and a second time to con-
clude that the induced embedding L1

� � ��Λ0
� � ��Λ is unique up to O(Λ).

Hence, the given embedding L1 ⊂ L ⊂ N⊥
G ⊂ Λ can be modified by some

ϕ ∈ O(Λ) such that ϕ(L1) ⊂ Λ0. By modifying the original embedding
of NG by ϕ, we may therefore assume that in fact L1 ⊂ Λ0.

Due to the surjectivity of the period map, there exists a K3 surface
X and a marking H2(X,Z)  Λ0 such that (H2,0 ⊕H0,2)(X)  L1 ⊗C.
Note that X is automatically projective. We denote by P1 := L1⊗R the
real positive plane associated to L1. Now choose a generic real positive
plane in P2 ⊂ P⊥

1 ∩(N⊥
G ⊗R) with v ∈ P2 and such that (P1⊕P2)

⊥ does
not contain any (−2)-class. The latter is possible, because otherwise
there would be a (−2)-class δ with (δ.v′) = 0 for any class v′ ∈ N⊥

G ⊗R

in an open subset and, therefore, one in NG, which is absurd. Any such
P2 contains elements with non-trivial H0 component and is, therefore,
spanned by the real and the imaginary part of some Z = exp(B + iα)
with B,α ∈ H1,1(X,R).

As by construction there are no (−2)-classes in H̃1,1(X,Z) orthog-
onal to Z, there exists a stability condition of the form σ = (P, Z) ∈
Stabo(X). We may furthermore assume Z(v) ∈ H∪R<0. Via the mark-

ing G can be seen a subgroup of the group Auts(H̃(X,Z), Z) of sym-
plectic Hodge isometries fixing Z, for the period L1 and the stability
function Z are by construction both G-invariant.
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Due to Theorem 0.1, G can thus be realized as a subgroup of
Auts(D

b(X), σ).

Claim: The stability condition σ is v-generic.

Suppose E is semistable with v(E) = v and phase φ(E) ∈ (0, π] and
suppose there exists a semistable subobject F

� � ��E in the heart of the
stability condition with φ(F ) = φ(E). Decompose v(F ) as v(F ) = v1+v2
according to the finite index inclusion

L⊕ L⊥ ⊂ H̃(X,Z),

i.e. v1 ∈ L ⊗ Q and v2 ∈ L⊥ ⊗ Q. From v(F ) ∈ P⊥
1 and L⊥ ⊂ P⊥

1 ,
one concludes that v1 is contained in (L ⊗ Q) ∩ P2 which is spanned
by v. Hence, v1 = λ · v for some λ ∈ Q. Decomposing v2 further as
v2 = v′2 + v′′2 with v′2 ∈ P2 ∩ v⊥ and v′′2 ∈ (P1 ⊕P2)

⊥ allows one to write
Z(F ) = λ ·Z(v)+Z(v′2). Now, Z(F ) ∈ R>0 ·Z(v), as φ(F ) = φ(E), and
hence Z(v′2) ∈ R · Z(v). However, using the injectivity of Z : P2

� � ��C
one finds v′2 = 0 and, therefore, Z(F ) = λ · Z(v) with 0 < λ ≤ 1. On
the other hand, the projection of v(F ) under Λ  Λ∗ ��L∗ ⊂ L⊗Q is
v1 = λ·v. As by construction v is primitive in L∗, this implies λ = 1. But
then the semistable quotient E/F would have Mukai vector −v2 = −v′′2
which is annihilated by Z. This yields a contradiction unless v2 = 0, in
which case F = E.

Consider the moduli space Mσ(v) of σ-stable objects with Mukai
vector v and phase φ ∈ (0, π]. Then we know by [2] that Mσ(v) is a
smooth projective variety birational to a moduli space of stable sheaves
on X and therefore, due to [13], deformation equivalent to it and, even-
tually, also deformation equivalent to Hilbn(X).

Any Φ ∈ G ⊂ Auts(D
b(X), σ) fixes σ and v and, therefore, acts as

an automorphism

Φv : Mσ(v)
∼ ��Mσ(v).

This yields a homomorphism

G ��Aut(Mσ(v)),Φ
� ��Φv.

First one observes that all Φv are symplectic. For this it is enough
to check that Φv preserves the natural symplectic structure on Mσ(v).
This can in fact be verified in one point, say [E] ∈ Mσ(v). So one has to

argue that if Φ: Db(X)
∼ ��Db(X) acts as id on H2,0(X), then the iso-

morphism Ext1(E,E)  Ext1(Φ(E),Φ(E)) respects the natural pairing
given by Serre duality, which is obvious. Second, the map Φ � ��Φv is
injective, as it is compatible with the isomorphism v⊥  H2(Mσ(v),Z).
(For simplicity, we assume here that Mσ(v) is fine. Otherwise Mσ(v)
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has to be twisted and the action of G on the twisted cohomology and
hence on the moduli space itself is faithful.) �

Remark 4.1. In [16], based on Markman’s monodromy operators,
Mongardi also finds a sufficient condition for a group G ⊂ Co0 to act as a
group of symplectic automorphisms on a variety deformation equivalent
to a Hilbert scheme. Moreover, he shows that his condition is in fact
equivalent to (∗). The methods in [16] should be powerful enough to
eventually give a complete characterization of such groups, whereas it
seems unlikely that one can obtain a necessary condition by our methods.
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