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Abstract.

We introduce a new big I-function for certain GIT quotients W//G
using the quasimap graph space from infinitesimally pointed P1 to the
stack quotient [W/G]. This big I-function is expressible by the small I-
function introduced in [6, 10]. The I-function conjecturally generates
the Lagrangian cone of Gromov-Witten theory for W//G defined by
Givental. We prove the conjecture when W//G has a torus action with
good properties.

§1. Introduction

Let X be a nonsingular quasi-projective variety with a torus T-
action such that the T-fixed locus XT is projective. We allow T to be
the trivial group. The T-equivariant rational Gromov-Witten theory for
X is encoded in the genus 0 prepotential F , i.e., the generating function
of gravitational Gromov-Witten invariants defined by the integration of
psi-classes and pullbacks of cohomology classes of target X against the
virtual fundamental classes of the moduli space of k pointed, genus 0,
numerical class β stable maps to X.

Givental shows that the graph of the formal 1-form dF is a Lagrangian
cone in a suitably defined infinite dimensional symplectic space and the
cone is generated by the J-function (see [16]). The big J-function for
X is a generating function of genus 0 GW-invariants with gravitational
insertions at one point, and any number of primary insertions. It is
a difficult problem to compute the J-function in general. In the case
when X has a GIT presentation X = W//G with W affine, there is a
replacement of the J-function. It is the so-called I-function, introduced
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in [6, 10] as a generalization of Givental’s small I-function for toric tar-
gets. While it is shown in [7] that I and J are related via generalized
Mirror Theorems, the big I-function is equally difficult to compute. The
purpose of this paper is to remedy this situation by introducing a new
version of I-functions (for the same kind of GIT targets). This new func-
tion, which we denote by I, can be computed explicitly in closed form
in many cases, and the J-function is obtained from it via the Birkhoff
factorization procedure, as given in [13].

The precise GIT set-up is as follows. Let W be an affine variety with
a linear right action of a reductive algebraic group G. For any rational
character θ of G, denote by W ss(θ) the semistable locus of W with
respect to θ. Assume that W ss(θ) is nonsingular, W has at worst l.c.i
singularities, and G acts on W ss(θ) freely (however, see [5] for allowing
finite non-trivial stabilizers).

Given such a triple (W,G, θ), there is a relative compactification
of the space of maps from P1 to W//G of given numerical class β (see
Definition 2.1 for the notion of numerical class), keeping the domain
curve P1 but allowing maps P1 → [W/G] to the stack quotient. The
“compactification” is called the quasimap graph space and defined to be

QG0,0,β(W//G) := {f ∈ Hom(P1, [W/G]) : f−1(W//G) �= ∅, βf = β}.
It is an algebraic space proper over the affine quotient W/affG (see [10]).
This graph space is equipped with a C∗-action induced from the C∗-
action on P1, as well as with a natural equivariant perfect obstruction
theory. There is a distinguished open and closed subspace Fβ of the
C∗-fixed locus of the graph space QG0,0,β(W//G). The small I-function
is defined by the localization residue at Fβ as follows:

Ism(q, z) :=
∑
β

qβ(ev•)∗(ResFβ
[QG0,0,β(W//G)]vir),

where ev• is the evaluation map from Fβ to W//G at the generic point of
P1 and z is the C∗-equivariant parameter. The sum is over all θ-effective
“curve classes” β ∈ Eff(W,G, θ), see Definition 2.8 for the notion of θ-
effective class.

There is another evaluation map êvβ from Fβ at 0 ∈ P1. The
codomain of êvβ is the stack quotient [W/G]. Therefore we have

[W/G] Fβ

êvβ�� ev• �� W//G .
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The big I-function in this paper is

I(t) =
∑
β

qβ(ev•)∗(exp(êv∗β(t)/z) ∩ ResFβ
[QG0,0,β(W//G)]vir),

for t ∈ H∗([W/G],Q).
We conjecture that I(t) is on the Lagrangian cone of Gromov-Witten

theory of W//G with Novikov variables from Eff(W,G, θ). We prove the
conjecture when there is an action by a torus T on W , commuting
with the G-action, and such that X = W//G has only isolated 0 and
1-dimensional T-orbits.

To prove the conjecture, we introduce the stable quasimaps with
ε := (1, ..., 1, ε, ..., ε)-weighted markings and the Jε-function whose spe-
cial case is the I-function. The proof is parallel to the proof of the
corresponding theorems in [7].

In the last section we explain how to obtain an explicit closed for-
mula for the big I(t) for toric varieties and for complete intersections in
them.
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§2. Weighted Stable Quasimaps

Throughout the paper the base field is C.

2.1. θ-stable quasimaps

Let χ(G) := Hom(G,C∗) be the group of characters of a reductive
algebraic group G. For θ ∈ χ(G) and a positive rational number ε, the
notion of ε-stable quasimaps to the GIT quotient W//θG = [W ss(θ)/G]
was introduced in [10] provided with the following assumption:

Condition �: The G-action on the semistable locus W ss(θ) with respect
to θ is free.

Note that condition � guarantees that the stable and semi-stable
loci in W for the linearization of the action given by θ coincide.
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It will be convenient to extend the notion of stability to a rational
character θ, while removing ε. This is based on the observation from [10,
Remark 7.1.4] that ε-stability with respect to the integral character θ is
equivalent to ε

m -stability with respect to mθ, for every positive integer
m, and is done as follows. Let

θ ∈ χ(G)Q := χ(G)⊗Z Q

be a rational character of G. Denote by Lθ the Q-line bundle on [W/G]
associated to the character θ, namely,

Lθ := (W × Cmθ)
⊗1/m,

for any positive integer m making mθ integral, where Cmθ stands for
the 1-dimensional G-representation space given by the character mθ.
Here and in the rest of the paper we identify as usual the G-equivariant
Picard group of W with the Picard group of the quotient stack [W/G].
The unstable closed subscheme Wun(θ) ⊂ W is defined as Wun(mθ),
and the semistable locus is the open subscheme W ss(θ) := W \Wun(θ).
The semistable locus is independent on the choice of m ∈ Z>0 with
mθ ∈ χ(G). We require that θ satisfies Condition � (this makes sense
by the above discussion), so that W//θG = [W ss(θ)/G].

Definition 2.1. Let C be a (possibly disconnected) reduced, projec-
tive, at worst nodal curve. The numerical class of a morphism f : C →
[W/G] is the homomorphism of abelian groups

βf ∈ Hom(Pic[W/G],Z)

given by
βf (L) = deg f∗(L)

for L ∈ Pic([W/G]).

Definition 2.2. Let (C,x) := (C, x1, ..., xk) be a genus g, k-pointed
prestable curve over the field C. (Recall this means that C is a reduced,
projective, connected, at worst nodal curve of arithmetic genus g, and xi

are distinct nonsingular closed points in C.) A morphism

f : C −→ [W/G]

is called a k-pointed prestable map of genus g to [W/G].

Definition 2.3. Let ((C,x), f) be a prestable map to [W/G].
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• The base locus of f with respect to θ is

f−1([Wun(θ)/G]) := [Wun(θ)/G]×[W/G] C

with the reduced scheme structure.
• ((C,x), f) is called a θ-quasimap to [W ss(θ)/G] if the base

locus with respect to θ is 0-dimensional.
• A θ-quasimap ((C,x), f) is called θ-prestable if the base locus

is away from all nodes of C.1

By [10, Lemma 3.2.1], a θ-quasimap satisfies

βf (Lθ) ≥ 0,

with equality if and only if βf = 0, if and only if f is a constant map to
the GIT quotient W//θG = [W ss(θ)/G].

Definition 2.4. Let ((C,x), f) be a θ-prestable quasimap to
[W ss(θ)/G]. The θ-length �θ(p) of f at a smooth closed point p of C is
defined as follows: Choose ε′ ∈ Q>0 such that θ′ = 1

ε′ θ ∈ χ(G) is an
integral character. Then

�θ(p) := ε′�θ′(p),

where �θ′(p) is the length defined in [10, Definition 7.1.1].

Remark 2.5. The following properties are immediate to check from
the above definition:

(1) �θ(p) is a well-defined rational number (i.e., it does not depend
on the choice of ε′ and θ′). If λ ∈ Q>0, then �λθ(p) = λ�θ(p).

(2) For every nonsingular point p ∈ C,

0 ≤ �θ(p) ≤ βf (Lθ)

and �θ(p) > 0 if and only if p is in the base locus of f .
(3) Suppose that W is a product W1×W2 of two affine varieties Wi

with component-wiseG := G1×G2-action such that Condition
� holds for each pair (Wi, θi). Here θi is the character of the

1The definition of prestability given here differs slightly from that in [10,
Definition 3.1.2], as we now allow base-points to occur at the markings of a
prestable quasimap. The stability condition (2) in Definition 2.6 below implies
that there are no base-points at markings for stable quasimaps. This choice of
definitions is more natural from the perspective of the weighted case introduced
in §2.2.
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reductive group Gi induced from the character θ of G, so that
θ = θ1 ⊕ θ2. For a prestable map

f = (f1, f2) : C → [W/G] = [W1/G1]×SpecC [W2/G2]

and a smooth point p ∈ C,

�θ(p) = �θ1(p) + �θ2(p).

This follows from the Künneth formula.

Definition 2.6. A θ-prestable quasimap ((C,x), f) is θ-stable if:

(1) ωC(
∑

xi)⊗ f∗Lθ is ample and
(2) for every smooth point p ∈ C,

�θ(p) +
∑
i

δxi,p ≤ 1

where δxi,p := 1 if xi = p; δxi,p := 0 if xi �= p.

Note that the stability condition (2) in Definition 2.6 requires that
�θ(xi) = 0 for each marking xi. By Remark 2.5(2), this says that the
base locus of a θ-stable quasimap is away from the markings of C.

Proposition 2.7. Let θ = ε′θ′ with ε′ ∈ Q>0 and θ′ integral. Then
(i) A prestable map ((C,x), f) to [W/G] is θ-stable if and only if it

is a ε′-stable quasimap to W//θ′G, as defined in [10, Definition 7.1.3].
(ii) A prestable map ((C,x), f) to [W/G] with βf (Lθ) ≤ 1 is θ-stable

if and only if it is a stable quasimap to W//θ′G, as defined in [10, Def-
inition 3.1.2] (or a (0+)-stable quasimap to W//θ′G, in the terminology
of [7, Remark 2.4.7(2)]).

(iii) Let θ0 be the minimal integral character in the half ray Q>0θ.
We write θ1 > θ2 if θ1 = λ1θ0 and θ2 = λ2θ0 with two positive rational
numbers λ1 > λ2.

If θ > θ0 and (g, k) �= (0, 0) (θ > 2θ0 when (g, k) = (0, 0)), a
prestable map ((C,x), f) to [W/G] is θ-stable if and only if it is a stable
map to the quasi-projective scheme W//θ′G.

Proof. Left to the reader, as all statements follow easily from the
definitions. Q.E.D.

Definition 2.8. An element β ∈ HomZ(Pic([W/G],Z) is called θ-
effective (or equivalently Lθ′-effective as in [10, Definition 3.2.2]) if it
can be realized as a finite sum of classes of θ-quasimaps.
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The subset Eff(W,G, θ) ⊂ HomZ(Pic([W/G],Z) of θ-effective classes
is a semigroup with no nontrivial invertible elements, i.e., β1 + β2 = 0
for βi ∈ Eff(W,G, θ) implies that β1 = β2 = 0 (see [10, Lemma 3.2.1]).

For a θ-effective class β, we denote by Qθ
g,k([W/G], β) the moduli

stack of genus g, k-pointed θ-stable quasimaps to [W/G] with numerical
class β. By Proposition 2.7(i),

(2.1.1) Qθ
g,k([W/G], β) = Qε′

g,k(W//θ′G, β),

where the right-hand side is the stack from [10, Theorem 7.1.6]. Hence
Qθ

g,k([W/G], β) is a DM-stack, proper over the affine quotient

W/affG := Spec(A(W )G),

where A(W ) denotes the affine coordinate ring of W . These moduli
stacks carry canonical perfect obstruction theories (see [10, §4.4-4.5]).

Definition 2.9. A prestable map ((C,x), f) to [W/G] which is λθ-
stable for every 0 < λ << 1 is called (0+) · θ-stable. This notion is
equivalent to the notion of stable quasimaps with respect to θ′ defined in
[10, Definition 3.1.2], where θ′ is any integral character in the half ray
Q>0θ. See also [7, Remark 2.4.7(2)], where the terminology (0+)-stable
quasimaps to W//θ′G was used for the same notion.

Therefore we define the corresponding moduli stacks by

(2.1.2) Q
(0+)·θ
g,k ([W/G], β) := Q0+

g,k(W//θ′G, β),

where for the right-hand side we used the notation from [7, Remark
2.4.7(2)]. They are also DM-stacks, proper over the affine quotient,
carrying canonical perfect obstruction theories.

We discuss next θ-stability for the quasimap graph spaces of [10,
§7.2] and [7, §2.6].

Let N ≥ 1 be an integer and consider the standard scaling action of
C∗ on CN . For n ∈ Z we have the character

nid : C∗ −→ C∗, t �→ tn.

There are identifications

Z
∼−→ χ(C∗) ∼−→ Pic([CN/C∗], n �→ nid �→ Lnid.

For each β ∈ Hom(Pic([W/G]),Z), define an abelian group homomor-
phism (β, 1) ∈ Hom(Pic([W/G]× [CN/C∗]),Z) by

(β, 1)(L� Lnid) = β(L) + n.
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Now we define the θ-stable quasimap graph space:

(2.1.3) QGθ
g,k,β([W/G]) := Qθ⊕3id

g,k ([W × C2/G× C∗], (β, 1)),

where θ ⊕ 3id is a rational character of G× C∗. As before, we see that

(2.1.4) QGθ
g,k,β([W/G]) = QGε′

g,k,β(W//θ′G),

where the right-hand side is the graph space of ε′-stable quasimaps to
the GIT quotient (in the notation from [7, §2.6]).

Finally, we have the graph spaces for the (0+) ·θ-stability condition:

(2.1.5) QG
(0+)·θ
g,k,β ([W/G]) := QG0+

g,k,β(W//θ′G).

Again, the graph spaces (2.1.3) and (2.1.5) are DM-stacks, proper over
the affine quotient, and carry canonical perfect obstruction theories.

2.2. Weighted stable quasimaps

In this section, we introduce the weighted pointed stable quasimaps.
The moduli spaces of weighted pointed stable maps to a (quasi)projective
target are constructed and studied in [1, 2, 17]. Recently, in [19], Janda
considered the moduli space of weighted pointed stable quotients and
its applications. Also recently, in [20], Jinzenji and Shimizu studied
a graph space-type quasimap compactification of the moduli space of
maps from P1 to Pn with some weighted markings and its applications
to generalized mirror maps.

Let
(θ, ε) := (θ, ε1, ..., εk) ∈ χ(G)Q × (Q>0)

k

such that θ satisfies Condition � and εi ≤ 1, i = 1, ..., k.

Definition 2.10. A pair ((C, x1, ..., xk), f) is called a (θ, ε)-stable
quasimap with weighted markings and numerical class β if:

(1) (ε-weighted prestable map to [W/G])
(a) C is a genus g, prestable curve over the field C.
(b) xi are smooth points on C (not necessarily pairwise dis-

tinct), with ∑
i

εiδxi,p ≤ 1

for every smooth point p of C.
(c) f is a morphism from C to [W/G].

(2) (θ-quasimap) f−1([Wun(θ)/G]) is 0-dimensional.
(3) (θ-prestability) f−1(W//θG) contains all nodes of C.
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(4) ((θ, ε)-stability)
(a) The Q-line bundle

ωC(
k∑

i=1

εixi)⊗ f∗Lθ

is ample.
(b) For every smooth point p ∈ C,

�θ(p) +
k∑

i=1

εiδxi,p ≤ 1.

(5) (numerical class β) βf = β.

By treating each marking xi as an effective divisor of C, there is a
natural correspondence{

(f : C → [W/G]), together with ordered smooth points
xi ∈ C, i = 1, ..., k : class β

}
↔

{
(f̃ := (f, π1, ..., πk) : C → [W/G]× [C/C∗]k) :

πi are id-prestable quasimaps to [C/C∗], class (β, 1, ..., 1)

}
.

Consider the rational character

θ := θ ⊕ ε1id⊕ · · · ⊕ εkid︸ ︷︷ ︸
k

∈ χ(G× (C∗)k)Q.

Then f̃∗(Lθ) = f∗(Lθ) ⊗ OC(
∑

εixi) and �θ(p) = �θ(p) +
∑

εiδxi,p.
Therefore, the (θ, ε)-stability of ((C, x1, ..., xk), f) from Definition 2.10

translates via the above correspondence into θ-stability of f̃ , and so the
moduli stack of (θ, ε)-stable quasimaps of type (g, β) is identified with

Qθ
g,0([W/G]× [C/C∗]k), (β, 1, ..., 1)).

By (2.1.1), it is a DM stack, proper overW/affG, with a canonical perfect
obstruction theory. Note that

2g − 2 +

k∑
i=1

εi + β(Lθ) > 0

is a necessary condition for the moduli stack to be non-empty.
In the rest of the paper we will be interested in a particular case.

Namely, replace k by m + k and then let εi = 1 for all i ≤ m and
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εm+j = ε, with ε a fixed rational number in (0, 1] for j = 1, ..., k. We
denote the ordered markings by x1, ..., xm, y1, ..., yk. Hence, if

((C,x := (x1, ..., xm),y := (y1, ..., yk)), f)

is (θ, ε)-stable, then (C,x) is a m-pointed prestable curve and xi are
not base points of f . In addition, while the points yj are allowed to
coincide, no point yj may coincide with any of the xi’s. In this case, we
also simply say that it is (θ, ε)-stable. Denote by

Qθ,ε
g,m|k([W/G], β)

the moduli space of (θ, ε)-stable maps to [W/G] of type (g,m|k, β).
If ((C,x,y), f) is (λθ0, ε)-stable for every sufficiently small rational

number 0 < λ << 1 (respectively, every sufficiently large rational num-
ber λ, every 0 < ε << 1, ...), then we say that it is ((0+) · θ0, ε)-stable
(respectively, (∞ · θ0, ε)-stable, (θ, 0+)-stable, ...). Thus, from now on
we consider the following extended cases

(θ, ε) ∈ (χ(G)Q ∪ {(0+) · θ0,∞ · θ0})× (((0, 1] ∩Q) ∪ {0+})).
We treat 0+ as an infinitesimally small positive rational number.

Remark 2.11. When [W/G] = [Cn+1/C∗] with W//G = Pn, it is

worth to note that the genus 1 moduli space Qid,0+
1,0|k ([C

n+1/C∗], β) is a

smooth DM-stack over C since the obstruction vanishes (see [22]).

2.3. Evaluation maps

There are evaluation maps at yj , j = 1, ..., k,

êvj : Q
θ,ε
g,m|k([W/G], β) → [W/G]

as well as the usual evaluation maps evi at xi, i = 1, ...,m,

Qθ,ε
g,m|k([W/G], β)

proper
����

���
���

���

evi �� W//θG

proper

��
W/affG

compatible with canonical maps to W/affG. The evaluation maps evi,
i ∈ [m] := {1, ...,m} are proper, so the push-forward of homology or

Chow classes on Qθ,ε
g,m|k([W/G], β) is well-defined.
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§3. The big J-functions

3.1. The Novikov ring

Let an algebraic torus T act on W , commuting with the G-action.
Recall we allow the case when T is the trivial group. Denote

H∗
T(Spec(C),Q) = Q[λ1, ..., λr]

the T-equivariant cohomology of a point Spec(C), where r is the rank
of T. Define the Novikov ring

Λ := {
∑

β∈Eff(W,G,θ)

aβq
β : aβ ∈ Q},

the q-adic completion of the semigroup ring Q[Eff(W,G, θ)], and set

ΛT := Λ⊗Q Q[λ1, ..., λr],

ΛT,loc := ΛT ⊗Q(λ1, ..., λr).

3.2. Weighted graph spaces

As in (2.1.3), we define the (θ, ε)-stable quasimap graph space as
follows:

QGθ,ε
g,m|k,β([W/G]) := Qθ⊕3id,ε

g,m|k ([W × C2/G× C∗], (β, 1)).

A C-point of the graph space is described by data

((C,x,y), (f, ϕ) : C −→ [W/G]× [C2/C∗]).

Since �3id(p) equals either 0 or 3 for every smooth point p ∈ C, stability
implies that ϕ is a regular map to P1 = C2//idC

∗, of class 1. Hence the
domain curve C has a distinguished irreducible component C0 canoni-
cally isomorphic to P1 via ϕ. The “standard” C∗-action,

t · [ξ0, ξ1] = [tξ0, ξ1], for t ∈ C∗, [ξ0, ξ1] ∈ P1,

induces a C∗-action on the graph space. With this convention, the
C∗-equivariant first Chern class of the tangent line T0P

1 at 0 ∈ P1

is cC
∗

1 (T0P
1) = z, where z denotes the equivariant parameter, i.e.,

H∗
C∗(Spec(C)) = Q[z].
There are T× C∗-equivariant evaluation morphisms

ˆ̃evj : QGθ,ε
g,m|k,β([W/G]) → [W/G]× P1, j = 1, . . . , k,

ẽvi : QGθ,ε
g,m|k,β([W/G]) → W//θG× P1, i = 1, . . . ,m,
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and

êvj := pr1 ◦ ˆ̃evj : QGθ,ε
g,m|k,β([W/G]) → [W/G], j = 1, . . . , k,

evi := pr1 ◦ ẽvi : QGθ,ε
g,m|k,β([W/G]) → W//θG, i = 1, . . . ,m,

where pr1 is the projection to the first factor.
Since to give a morphism f : C → [W/G] amounts to giving a

principal G-bundle P on C and a section u of P×GW , there is a natural
morphism C → EG×G W and hence a pull-back homomorphism

f∗ : H∗
G(W ) → H∗(C).

Now apply this to the universal curve over the moduli space, with its
universal morphism to [W/G]. The evaluation maps are the composi-
tions of the universal morphism with the sections of the universal curve
giving the markings and are T×C∗-equivariant. We obtain in this way
the pull-back homomorphism

êv∗j : H∗
G×T(W,Q)⊗Q Q[z] → H∗

T×C∗(QGθ,ε
g,m|k,β([W/G]),Q)

associated to the evaluation map êvj .
We identify as usual H∗

T([W/G],Q) := H∗
G×T(W,Q).

Now fix (θ, ε) (including the cases θ = (0+) · θ0 and ε = 0+) and

consider the graph spaces QGθ,ε
0,0|k,β([W/G]). The description of the

fixed loci for the C∗-action is parallel to the one given in [7, §4.1] for the
unweighted case. In particular, we have the part Fk,β of the C∗-fixed
locus for which the markings and the entire class β are over 0 ∈ P1. It
comes with a natural proper evaluation map ev• at the generic point of
P1:

ev• : Fk,β → W//G.

When kε+ β(Lθ) > 1, we have the identification

Fk,β
∼= Qθ,ε

0,1|k([W/G], β),

with ev• = ev1, the evaluation map at the weight 1 marking.
On the other hand, when kε+ β(Lθ) ≤ 1, then

Fk,β
∼= Fβ × 0k ⊂ Fβ × (P1)k,

with Fβ the C∗-fixed locus in QG
(0+)·θ
0,0,β ([W/G]) for which the class β is

concentrated over 0 ∈ P1. This Fβ parametrizes quasimaps of class β

f : P1 −→ [W/G]
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with a base-point of length β(Lθ) at 0 ∈ P1. The restriction of f to
P1 \{0} is a constant map to W//θG and this defines the evaluation map
ev•.

As in [6, 10, 7], we define the big J-function as the generating func-
tion for the push-forward via ev• of localization residue contributions of
Fk,β :

Definition 3.1. For t ∈ H∗
T([W/G],Q) ⊂ H∗

T([W/G],Q)⊗Q Q[z],
let

ResFk,β
(tk) := (ι∗β(

k∏
i=1

êv∗i (t))) ∩ ResFk,β
[QGθ,ε

0,0|k,β([W/G])]vir

:=
(ι∗β(

∏k
i=1 êv

∗
i (t))) ∩ [Fk,β ]

vir

eC∗(Nvir
Fk,β

)
,

where ιβ : Fβ ↪→ QGθ,ε
0,0|k,β([W/G]) is the inclusion, Nvir

Fk,β
is the virtual

normal bundle and eC
∗
denotes the equivariant Euler class.

The big J-function for the (θ, ε)-stability condition is

(3.2.1) Jθ,ε(q, t, z) :=
∑

β∈Eff(W,G,θ)

∑
k≥0

qβ

k!
(ev•)∗ResFk,β

(tk)

as a formal function in t.

Usually we will only be concerned with the restriction of t to a finite
dimensional subspace of H∗

T([W/G],Q) as follows. Let

κ : H∗
T([W/G],Q) → H∗

T(W//θG,Q)

denote the Kirwan map (surjective, by [21]) induced from the open im-
mersion W//θG = [W ss(θ)/G] ⊂ [W/G].

Fix a homogeneous basis {γi}i of H∗
T(W//G) and choose homoge-

neous lifts γ̃i ∈ H∗
T([W/G],Q) with κ(γ̃i) = γi. After restricting to

t :=
∑
i

tiγ̃i,

the big J-function (3.2.1) is a formal function in the finitely many vari-
ables {ti}.

We remark that êv∗i (t) is a class in H∗
T×C∗(QGθ,ε

0,0|k,β([W/G]),Q).

Since

QGθ,ε
0,0|k,β=0([W/G]) = W//θG× (P1)k ⊃ Fk,0 = W//θG× 0k,
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we conclude that

(3.2.2) Jθ,ε(t, z) = eκ(t)/z +O(q).

From now on, unless otherwise stated, assume that the T-fixed locus
(W/affG)T is proper over C (i.e., a finite set of points). This implies
that the T-fixed loci in W//θG, as well as the T-fixed loci in all moduli
stacks of (θ, ε)-stable quasimaps are also proper.

3.3. E-Twisting

Let E be a finite dimensional T × G-representation space. Then
twisting by the T-equivariant vector bundle

E := W ×G E

on [W/G] can be considered, via the replacements

[Qθ,ε
0,m|k([W/G], β)]vir �→ eT(π∗f∗E) ∩ [Qθ,ε

0,m|k([W/G], β)]vir,

[QGθ,ε
0,m|k,β([W/G])]vir �→ eT(π∗f∗E) ∩ [QGθ,ε

0,m|k,β([W/G])]vir

as in [7, §7.2.1], assuming that

(3.3.1) R1π∗f∗E = 0 for all β ∈ Eff(W,G, θ).

Here π is the projection from the universal curve C, f : C −→ [W/G] is
the universal map to the quotient stack, and eT is the equivariant Euler
class. Note that if P denotes the universal principal G-bundle on C,
then f∗E = P ×G E.

Now we can define J̃θ,ε,E exactly parallel to [7, §7.2.1]:

J̃θ,ε,E(q, t, z) =

(
�+

κ(t)

z

)
eT(E|W//G) +

∑
(k,β) 	=(0,0),(1,0)

qβ

k!
×

× (ev•)∗

(
ι∗β(

k∏
i=1

êv∗i (t)) ∩ ResFk,β
(eT(π∗f∗E) ∩ [QGθ,ε

0,0|k,β([W/G])]vir)

)
.

3.4. Results

Conjecture 3.2. The function J̃θ,ε,E is on the Lagrangian cone en-
coding the genus 0, T-equivariant, E|W//G-twisted Gromov-Witten the-
ory of W//θG with the Novikov ring ΛT (see [13, 16] for the definition
of the Lagrangian cone).

Theorem 3.3. If the T-action on W//θG has only isolated fixed
points and only isolated 1-dimensional orbits, Conjecture 3.2 holds true.
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§4. Proof of Theorem 3.3

To keep the presentation simple, we drop the E-twisting. However,
an identical proof works in the twisted case as well.

Let {γi := κ(γ̃i)} be a basis of

H∗
T,loc(W//θG) := H∗

T(W//θG,Q)⊗Q[λ1,...,λr] Q(λ1, ..., λr)

and {γi} be the dual basis with respect to the T-equivariant Poincaré
pairing 〈 , 〉 of W//θG.

4.1. The S-operator

For σi ∈ H∗
T,loc(W//θG) and δj ∈ H∗

T([W/G],Q), denote

〈σ1ψ
a1
1 , ..., σmψam

m ; δ1, ..., δk〉θ,εg,m|k,β

:=

∫
[Qθ,ε

g,m|k(W//G,β)]vir

∏
i

ev∗i (σi)ψ
ai

i

∏
j

êv∗j (δj),

where ψi is the psi-class associated to the ith-marking of weight 1. In the
case W/affG is not a single point, so that W//G is only quasi-projective,
the integral is understood as usual via the virtual localization formula.

Define for a formal t =
∑

tiγ̃i in H∗
T([W/G],Q)

〈〈σ1ψ
a1
1 , ..., σmψam

m 〉〉θ,εg,m,β :=
∑
k≥0

1

k!
〈σ1ψ

a1
1 , ..., σmψam

m ; t, ..., t〉θ,εg,m|k,β ,

〈〈σ1ψ
a1
1 , ..., σmψam

m 〉〉θ,εg,m :=
∑
β

qβ〈〈σ1ψ
a1
1 , ..., σmψam

m 〉〉θ,εg,m,β.

Remark 4.1. Let T be the trivial group. Then without the assump-
tion that W/affG is a point, we may regard the above invariants as taking
values in Borel-Moore homology HBM

∗ (W/affG,Λnov) using the canonical

proper morphism Qθ,ε
g,m|k(W//G, β) → W/affG.

We define next the S-operator: for γ ∈ H∗
T,loc(W//θG,Λ),

(4.1.1) S
θ,ε
t (z)(γ) :=

∑
i

γi〈〈 γi

z − ψ
, γ〉〉θ,ε0,2 = γ +O(1/z).

Let M0,2|ε·k be the Hassett moduli space of (1, 1, ε, ..., ε)-weighted
stable pointed curves. By [17] there is a natural birational contraction

M0,2+k → M0,2|ε·k.
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From this and the identification

Qθ,ε
0,2|k(W//G, 0) = M0,2|ε·k ×W//G

of the moduli spaces with class β = 0, one obtains that the S-operator
has the asymptotic expansion in q

(4.1.2) S
θ,ε
t (z)(γ) = eκ(t)/zγ +O(q).

Let p0 and p∞ be C∗-equivariant cohomology classes of P1 defined
by their restriction at the fixed points:

p0|0 = z, p0|∞ = 0, p∞|0 = 0, p∞|∞ = −z.

Consider the graph space double bracket

〈〈σ1 ⊗ p0, σ2 ⊗ p∞〉〉QGθ,ε

0,2 :=∑
k,β

qβ

k!

∫
[QGθ,ε

0,2|k,β([W/G])]vir
ẽv∗1(σ1 ⊗ p0)ẽv

∗
2(σ2 ⊗ p∞)

k∏
j=1

êv∗j (t) =

〈σ1, σ2〉+O(q).

Virtual C∗-localization gives the factorization

〈〈σ1 ⊗ p0, σ2 ⊗ p∞〉〉QGθ,ε

0,2 =
∑
i

〈〈σ1,
γi

z − ψ
〉〉θ,ε0,2〈〈

γi
−z − ψ

, σ2〉〉θ,ε0,2

= 〈σ1, σ2〉+O(1/z).

On the other hand, 〈〈σ1 ⊗ p0, σ2 ⊗ p∞〉〉QGθ,ε

0,2 is well-defined without any

localization with respect to z. Hence we conclude the following (for
details, see the proof of Proposition 5.3.1 of [7]).

Proposition 4.2. The operator (Sθ,ε)�t(−z) defined by

(Sθ,ε)�t(−z)(γ) =
∑
i

γi〈〈γi, γ

−z − ψ
〉〉θ,ε0,2

is the inverse of Sθ,ε
t (z), i.e.,

(Sθ,ε)�t(−z) ◦ Sθ,εt (z) = Id.
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4.2. The P -series

For t =
∑

i tiγ̃i, let

P θ,ε(t, z) :=
∑
i

γi〈〈γi ⊗ p∞〉〉QGθ,ε

0,1

= (Sθ,ε)�t(−z)(Jθ,ε(t, z)).(4.2.1)

The latter equality follows from the C∗-localization factorization. From
this and Proposition 4.2 we obtain the following analog of the Birkhoff
factorization Theorem 5.4.1 of [7].

Proposition 4.3.

Jθ,ε(t, z) = S
θ,ε
t (z)(P θ,ε(t, z)).

Note that Proposition 4.3 together with (3.2.2) and (4.1.2) implies
that

P θ,ε(t, z) = �+O(q).

4.3. Polynomiality

For μ ∈ (W//G)T, let

δμ := (ιμ)∗[μ] ∈ H∗
T(W//G,Q)

where ιμ is the T-equivariant closed immersion {μ} ↪→ W//G. Let

Sθ,εμ (q, t, z) := 〈Sθ,εt (z)(γ), δμ〉,
for

γ =
∑
β

qβγβ , γβ ∈ H∗
T,loc(W//G)[z].

Lemma 4.4. For each fixed point μ ∈ (W//G)T, the product series

Sθ,εμ (q, t, z)Sθ,εμ (qe−zyLθ , t,−z)

has no pole at z = 0. Here y is a formal variable and (qe−zyLθ)β :=
qβe−zyβ(Lθ).

Proof. The proof is identical to the proof of Lemma 7.6.1 of [7].
Q.E.D.
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4.4. Comparison of S-operators

It is obvious from definitions that the stability condition (∞ · θ0, 1)
gives the usual moduli spaces of stable maps to W//G (or to W//G×P1

for the graph spaces), hence the resulting theory is the Gromov-Witten
theory of W//G. We will simply write (∞, 1) for this stability condition.
This is justified, since the theory is independent on the choice of θ0, as
long as we stay in the same GIT chamber for the action of G on W .

Conjecture 4.5. Let (θ, ε) be arbitrary, including all asymptotic
cases. Then

(1)

S
θ,ε
t (�) = S

(∞,1)
τ(t) (�)

with

τ(t) := κ(t) +
∑
β 	=0

qβ
∑
i

γi〈〈γi,�〉〉θ,ε0,2,β .

(2) For t :=
∑

i tiγ̃i, there are unique

P (∞,1),θ,ε(t, z) = �+O(q) ∈ H∗
T,loc(W//G)[z][[q, tj ]],

τ (∞,1),θ,ε(t) = κ(t) +O(q) ∈ H∗
T,loc(W//G)[[q, tj ]]

such that
(4.4.1)

S
θ,ε
t (z)(P θ,ε(t, z)) = S

(∞,1)

τ(∞,1),θ,ε(t)
(z)(P (∞,1),θ,ε(τ (∞,1),θ,ε(t), z)).

Just as in [7, Lemma 6.4.1], one can recursively construct uniquely
determined series P (∞,1),θ,ε(t, z) and τ (∞,1),θ,ε(t) with the required q-
asymptotics, and which satisfy equation (4.4.1) modulo 1/z2. The con-
tent of part (2) of Conjecture 4.5 is that equality modulo 1/z2 suffices
to force the equality to all orders in 1/z. Note that when combined with
Proposition 4.3, part (2) implies Conjecture 3.2.

Theorem 4.6. Suppose that the induced T-action on W//G has
only isolated T-fixed points. Then Conjecture 4.5 (1) holds true.

Further, if in addition W//G has only isolated 1-dimensional T-
orbits, then Conjecture 4.5 (2) holds true.

Proof. The proof of the first statement is identical with the proof of
Theorem 7.3.1 of [7], while the proof of the second statement is identical
with the proof of Theorem 7.3.4 of [7]. Q.E.D.

Now the proof of Theorem 3.3 follows from Proposition 4.3 and
Theorem 4.6.
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4.5. Non-equivariant limit

If W//G is projective then one can work with the non-localized equi-
variant cohomology ring H∗

T(W//G,Q), the Poincaré pairing with values

in Q[λ1, . . . , λr], and the Novikov ring ΛT. The objects Jθ,ε, Sθ,εt , P θ,ε,
τ(t), P (∞,1),θ,ε, and τ (∞,1),θ,ε reduce to their non-equivariant counter-
parts upon setting λ1 = · · · = λr = 0.

§5. Explicit Formula for the fully asymptotic stability condi-
tion

5.1. I-function

Other than the Gromov-Witten chamber (θ, ε) = (∞, 1), the most
interesting case from a computational viewpoint is the opposite asymp-
totic case (θ, ε) = (0+, 0+) (again, the theory is independent on the
choice of character in a given GIT chamber, so we drop θ0 from the
notation). The main reason is that QG0+,0+

0,0|k,β([W/G]) is isomorphic to

QG0+,0+
0,0,β ([W/G])× (P1)k.

The space QG0+,0+
0,0,β ([W/G]) coincides with Qmap0,0(W//θG, β;P1) de-

fined in [10, §7.2] and was denoted by QG0,0,β(W//θG) in [7, §2.6]. Fur-
ther, as we already noted earlier

Fk,β = Fβ × 0k,

where Fβ = F0,β is the distinguished C∗-fixed locus in QG0+,0+
0,0,β ([W/G]).

Denote

(5.1.1) I = IW//θG(q, t, z) := J0+,0+(q, t, z).

In this paper we will call IW//θG(q, t, z) the big I-function of W//θG. This
differs from the terminology in [10, 7]. The specialization

Ism(q, z) := I(q, 0, z) =
∑
β

qβIβ(z)

is called the small I-function of W//θG (this terminology does agree with
the one in [7, 8]). We have

(5.1.2) Iβ(z) = (ev•)∗ResFβ
[QG0,0,β(W//θG)]vir.

As is well-known, these push-forwards of residues can often be explicitly
calculated in closed form. For example, the case of toric varieties goes
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back to Givental, [15], see also [6, §7.2] for an exposition. Type A flag
varieties, which are examples with non-abelian G, are treated in [3, 4].
For more on the non-abelian case, see the forthcoming note [9].

The goal of this section is to find explicit formulas for the big I-
functions for some (W,G, θ). To emphasize the role of class β, we write

êvβ = êvj : Fβ → [W/G].

Note that these evaluation maps do not depend on the choice of j since
all marked points are concentrated on 0 ∈ P1. It follows that

I(q, t, z) =
∑
β

qβ(ev•)∗(exp(êv∗β(t)/z) ∩ ResFβ
[QG0,0,β(W//θG)]vir).

Suppose that for some γi,β(z) ∈ H∗(W//θG)⊗Q[z],

(ev•)∗γi,β(z) = (êv∗β(γ̃i)).

Then by the projection formula, the big I-function becomes

(5.1.3)
∑
β

e
∑

i tiγi,β(z)/zqβIβ(z) for t =
∑

tiγ̃i.

Whenever the small I-function is known, to obtain an explicit for-
mula for I it remains to find explicitly such classes γi,β(z).

Remark 5.1. By Theorem 3.3, the big I-function (5.1.3) is on the
Lagrangian cone of the Gromov-Witten theory of W//θG whenever the T
action has isolated fixed points and isolated 1-dimensional orbits. This
statement is presumably related to Woodward’s result in [23, Theorem
1.6].

5.2. Description of ev

Let A(W ) be the affine coordinate ring of W and let ζ0, ζ1 be the
homogeneous coordinates of P1 defining 0 ∈ P1 by the equation ζ0 = 0.

For a sufficiently large and divisible integer m, the character mθ
defines a morphism

ι : [W/G] → [CN+1/C∗]A(W )G := [Spec(A(W )G)× CN+1/C∗]

whose restriction W//G → PN
A(W )G is an embedding (see [7, §3.1]). Let

d := β(Lmθ). Recall that

QG0,0,d(C
N+1//idC

∗) = P(Symd((C2)∨)⊗ CN+1)),
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and that its C∗-fixed distinguished part Fd is P((C · ζd0 )⊗ CN+1) = PN

(see [14]).
Consider now the following natural diagram

Fβ

ι

��

ev•

����
���

���
���

��

P1 × Fβ ev
��

ι

��

π

��������������
[W/G]

ι

��

PN
A(W )G

ev•

����
���

���
���

P1 × PN
A(W )G ev

��

π
������������

[CN+1/C∗]A(W )G

where

• the vertical morphisms are induced from ι (abusing notation,
we denote all of them also by ι);

• ev, ev are the universal evaluation maps;
• ev•, ev• are evaluation maps at the generic point of P1;
• π, π are projections.

All side square faces are commutative but the upper and the lower tri-
angle faces need not be commutative.

Let w0, ..., wN be the homogeneous coordinates of PN . On the stack
quotient [CN+1/C∗]A(W )G we have the invertible sheafO[CN+1/C∗]A(W )G

(1)

attached to the character id. Let Cnz denote the C
∗-representation space

given by the character nz = nid.
The map ev is defined by the line bundle OP1(d) � OPN

A(W )G
(1) to-

gether with sections ζd0 � wi, i = 0, ..., N . Therefore as C∗-equivariant
coherent sheaves

ev∗(O[CN+1/C∗]A(W )G
(1)) = OP1(d)�OPN

A(W )G
(1)

= OP1(d)� ev∗•OPN
A(W )G

(1),(5.2.1)

where OP1(d)|0 = Cdz and ev∗•OPN
A(W )G

(1) has the trivial C∗-equivariant
structure.

Lemma 5.2. The following equality holds in PicC∗(Fβ)Q:

êv∗β(Lθ) = ev∗•(Lθ)� Cβ(Lθ)z,
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where the C∗-action on ev∗•(Lθ) is trivial.

Proof. We take ι∗ on (5.2.1) and use ι∗OPN
A(W )G

(1) = L⊗m
θ to con-

clude the proof. Q.E.D.

Remark 5.3. Let θ′ be another character in the same GIT chamber
as θ. Since the moduli spaces of weighted stable quasimaps for the
((0+) · θ, 0+) and ((0+) · θ′, 0+) stability conditions also coincide, we
conclude that Lemma 5.2 also applies to Lθ′ . If the GIT chamber has
dimension equal to the rank of the group of rational characters χ(G)⊗Q,
then it contains a basis of χ(G)⊗Q and therefore Lemma 5.2 holds for
any character of G up to torsion.

5.3. Examples

If W is a vector space and G ∼= (C∗)s is a torus, so that W//θG is a
nonsingular toric variety, then H∗([W/G]) is a polynomial algebra over
Q, with generators c1(Lηi) corresponding to a Q-basis {η1, . . . , ηs} of
χ(G) ⊗ Q. By Remark 5.3, for any polynomial p(c1(Lη1), . . . , c1(Lηs))
we have

êv∗βp(c1(Lη1), . . . , c1(Lηs))

= ev∗•p(c1(Lη1) + β(Lη1)z, . . . , c1(Lηs) + β(Lηs)z).

In particular, the classes γi,β(z), and therefore the big I-functions, are
explicitly known for toric varieties. By considering twisted theories, the
same is true for complete intersections in toric varieties as well. We
exemplify with the case of projective spaces.

Let H denote the hyperplane class of Pn = Cn+1//C∗. In this case,
applying Lemma 5.2 to (5.1.3) and using the formula for its small I-
function from [14], we obtain

ICn+1//C∗(q, t, z) =
∞∑
d=0

qd
exp(

∑n
i=0 ti(H + dz)i/z)∏d

k=1(H + kz)n+1
.

By the non-equivariant specialization of Theorem 3.3, ICn+1//C∗(q, t, z)
is on the Lagrangian cone of the Gromov-Witten theory of Pn.

More generally, let E = C with weight a positive integer l be the
twisting factor, so that E|Pn = OPn(l). With this setting,

IECn+1//C∗(t) =
∞∑
d=0

qd
exp(

∑n
i=0 ti(H + dz)i/z)∏d

k=1(H + kz)n+1

ld∏
k=0

(lH + kz).(5.3.1)
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By Theorem 3.3, the Gromov-Witten E-twisted J-function of Pn is re-
lated with IE

Cn+1//C∗ via a Birkhoff factorization (see [13] for the Birkhoff

factorization procedure). Recall that the E-twisted J-function is essen-
tially the usual J-function of a hypersurface of degree l in Pn.

Note that RHS of (5.3.1) can be expressed as(
exp(

n∑
i=0

ti
z
(zq

∂

∂q
+H)i)

)
IECn+1//C∗(q, 0, z).

This latter expression is already considered as a special case by Iritani
in [18, Example 4.14] for a reconstruction of quantum D-modules.

Remark 5.4. Recent work by Coates, Corti, Iritani, and Tseng in [11,
12] introduces the so-called S-extended I-function of a toric DM stack
X = [(CN )ss(θ)/(C∗)r] and proves that it lies on the Lagrangian cone
of the Gromov-Witten theory of X . In examples, see [12], by choosing
the extending set S carefully, one can extract sufficient information from
the S-extended I-function to recover the big J-function of X .

From the perspective of our paper (generalized to orbifold GIT tar-
gets in [5]), the S-extension amounts to changing the GIT presentation
of the toric target X as [(CN+|S|)ss(θ′)/(C∗)r+|S|], and the S-extended
I-function of [11, 12] coincides with the big I-function of ours (corre-
sponding to the new GIT presentation) restricted to t =

∑
tiγ̃i with

γi ∈ H≤2(X ). The additional parameters of the S-extended I-function
of [11] are identified with the additional “ghost” Novikov variables (see
[8, §5.9.2]) of the quasimap theory for the new GIT presentation.

Put it differently, the S-extended I-function of [11] is exactly Given-
tal’s small I-function for the quasimap theory of (CN+|S|, (C∗)r+|S|, θ′),
as defined e.g., in equation (7.3.2) of [10] for the manifold case.
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