Compactification by GIT-stability of the moduli space of abelian varieties

Iku Nakamura

Abstract

. The moduli space \mathcal{M}_{g} of nonsingular projective curves of genus g is compactified into the moduli $\overline{\mathcal{M}}_{g}$ of Deligne-Mumford stable curves of genus g. We compactify in a similar way the moduli space of abelian varieties by adding some mildly degenerating limits of abelian varieties.

A typical case is the moduli space of Hesse cubics. Any Hesse cubic is GIT-stable in the sense that its SL(3)-orbit is closed in the semistable locus, and conversely any GIT-stable planar cubic is one of Hesse cubics. Similarly in arbitrary dimension, the moduli space of abelian varieties is compactified by adding only GIT-stable limits of abelian varieties (§ 14).

Our moduli space is a projective "fine" moduli space of possibly degenerate abelian schemes with non-classical non-commutative level structure over $\mathbf{Z}\left[\zeta_{N}, 1 / N\right]$ for some $N \geq 3$. The objects at the boundary are singular schemes, called PSQASes, projectively stable quasi-abelian schemes.

Contents

1. Introduction 208
2. Hesse cubics 211
3. Non-commutative level structure 215
4. PSQAS and TSQAS 221
5. PSQASes in low dimension 224
6. PSQASes in the general case 231
7. The G-action and the G-linearization 241

Received December 3, 2013.
Revised March 28, 2014.
2000 Mathematics Subject Classification. 14J10, 14K10, 14K25.
Key words and phrases. Moduli, Compactification, Abelian variety, Heisenberg group, Irreducible representation, Level structure, Theta function, Stability.

Research was supported by the Grant-in-aid (No. 23224001 (S)) for Scientific Research, JSPS.
8. The moduli schemes $A_{g, K}$ and $S Q_{g, K}$ 246
9. Moduli for PSQASes 252
10. The functor of TSQASes 259
11. The moduli spaces $A_{g, K}^{\text {toric }}$ and $S Q_{g, K}^{\text {toric }}$ 263
12. Moduli for TSQASes 271
13. Morphisms to Alexeev's complete moduli spaces 277
14. Related topics 281

§1. Introduction

The moduli of stable curves, the so-called Deligne-Mumford compactification, compactifies the moduli of nonsingular curves :
the moduli of smooth curves
$=$ the set of all isomorphism classes of smooth curves
\subset the set of all isomorphism classes of stable curves
$=$ the Deligne-Mumford compactification $\overline{\mathcal{M}}_{g}$
The moduli of stable curves is known to be a projective scheme, while the moduli of nonsingular curves is a Zariski open subset of it.

Our problem is to do the same for moduli of smooth abelian varieties. We find certain natural limits of smooth abelian varieties similar to stable curves to compactify the moduli. In other words, we will construct a new compactification $S Q_{g, K}$, the moduli of some possibly degenerate abelian varieties with some extra structure, which contains the moduli of smooth abelian varieties with similar extra structure as a Zariski open subset. This will complete the following diagram :
the moduli of smooth AVs (= abelian varieties)
$=\{$ smooth polarized AVs + extra structure $\} /$ isom.
\subset \{smooth polarized AVs or
singular polarized degenerate AVs + extra structure $\}$ / isom.
$=$ the new compactification $S Q_{g, K}$
The compactification problem of the moduli space of abelian varieties has been studied by many people :

- Satake compactification, Igusa monoidal transform of it
- Mumford toroidal compactification ([4, (1975)])
- Faltings-Chai arithmetic compactification (arithmetic version of Mumford compactification) [7, (1990)]

These are the compactifications which had been known before 1995 when the author restarted the research of compactifications. These are compactifications as spaces, not as the moduli of compact objects. In this article, we are going to construct a natural compactification, in fact, projective, as the "fine/coarse" moduli space of compact geometric objects, where

- the moduli space contains the moduli space of abelian varieties as a dense Zariski open subset,
- it is compact, which amounts to collecting enough limits,
- it is separated, which amounts to choosing the minimum possible among the above.
The following are the works closely related to the subject; first of all, the works of Mumford [20], [21] and [23] during 1966-1972, though they do not focus on compactifications directly. After 1975 there appeared Nakamura [27] and Namikawa [35], closely related to this article.

After 1999 there appeared several works on the subject: [2], [30], [1], [37] and [32]. By modifying [27], Nakamura [30] and [32] study two kinds of compactifications of the moduli space of abelian varieties (with no zero section specified and with no semi-abelian scheme action assumed). Meanwhile, Alexeev [1] and Olsson [37] study the complete moduli spaces of certain schemes with semi-abelian scheme action.

Now we shall explain how we choose our compactification $S Q_{g, K}$, which will explain why the title of this article refers to GIT-stability.

Let H be a finite Abelian group, and $V:=V_{H}$ the unique irreducible representation of the Heisenberg group \mathcal{G}_{H} of weight one. Let $\mathbf{P}(V)$ be the projective space of V, and $X:=\operatorname{Hilb}_{\mathbf{P}(V)}^{\chi}$ the Hilbert scheme parameterizing closed subschemes of $\mathbf{P}(V)$ with Hilbert polynomials $\chi(n)=n^{g}|H|$. According to GIT, our problem of compactifying the moduli space is, very roughly speaking, reduced to studying the quotient $X_{s s} / / \mathrm{SL}(V)$ where $X_{s s}$ denotes the semistable locus of X with respect to $\mathrm{SL}(V)$. GIT tells us, set-theoretically,

$$
\begin{equation*}
X_{s s} / / \mathrm{SL}(V)=\text { the set of all closed orbits in } X_{s s} \tag{1}
\end{equation*}
$$

See Section 14. This scenario has to be modified a little. In an appropriately modified scenario, the LHS of (1) is the moduli space $S Q_{g, K}$, the compactification in the title of this article, while the RHS of (1) is just the set of isomorphism classes of our degenerate abelian schemes PSQASes $\left(Q_{0}, \mathcal{L}_{0}\right)$ with \mathcal{G}_{H}-action. See Section 4, Theorem 9.8 and Theorem 14.1.3. It should be mentioned that $S Q_{g, K}$ is the fine moduli scheme for families of PSQASes over reduced base schemes, hence $S Q_{g, K}$ itself is also reduced.

This note is based on our lectures with the same title delivered at Kyoto university during June 11-13, 2013. It overlaps the report [31] on the same topic in many respects, though the note includes also the recent progress of the topic. In this note, we give simple proofs for the major results of [30] and [32], assuming known rather general results. We also tried to include (elementary or less elementary) proofs of the well-known related facts whose proofs are hard to find in the literature. As a whole we tried to make our presentation more accessible than [30], keeping the atmosphere of the lecture as much as possible.

In what follows throughout this article, we always consider a finite abelian group $H=\bigoplus_{i=1}^{g}\left(\mathbf{Z} / e_{i} \mathbf{Z}\right)$, where $e_{i} \mid e_{i+1}$, and we write $N=$ $|H|=\prod_{i=1}^{g} e_{i}$ and $K=K_{H}=H \oplus H^{\vee}\left(H^{\vee}\right.$: the dual of $\left.H\right)$. We call such H simply a finite Abelian group. We also call K a finite symplectic Abelian group. We also let $\mathcal{O}=\mathcal{O}_{N}=\mathbf{Z}\left[1 / N, \zeta_{N}\right]$ where ζ_{N} is a primitive N-th root of unity.

The article is organized as follows.
Section 2 reviews the classical moduli theories of Hesse cubics with Neolithic level-3 structure or with classical level-3 structure.

Section 3 gives a new interpretation of the moduli theories in Section 2 in a non-commutative way, and then explains a new moduli theory of Hesse cubics with level- $G(3)$ structure, where $G(3)$ is a noncommutative group, the Heisenberg group. This is the model theory for all the rest. The major purpose of this article is to explain its higher dimensional analogue. See Subsec. 3.1.

In Section 4 we introduce two kinds $\left(P_{0}, \mathcal{L}_{0}\right)$ and $\left(Q_{0}, \mathcal{L}_{0}\right)$ of nice degenerate abelian schemes in arbitrary dimension to compactify the moduli space of abelian varieties. Theorem 4.6 gives an intrinsic description of those degenerate schemes $\left(P_{0}, \mathcal{L}_{0}\right)$ and $\left(Q_{0}, \mathcal{L}_{0}\right)$, where P_{0} is always reduced, while Q_{0} can be nonreduced.

A more direct definition of those degenerate schemes will be given in Sections 5 and 6. Especially we give a complete proof of the part $Q_{\eta} \simeq P_{\eta} \simeq G_{\eta}$ of Theorem 4.6. We will give two-dimensional and threedimensional examples of PSQASes. We will also explain how a naive classical level- n structure results in a nonseparated moduli.

Section 7 reviews a rather general theory about G-action and G linearization. We give various definitions and constructions and show their equivalence or compatibility.

In Section 8, we give a definition of level- \mathcal{G}_{H} structure and define a quasi-projective (resp. projective) scheme $A_{g, K}$ (resp. $S Q_{g, K}$) when $e_{1} \geq 3$. We show that any geometric point of $A_{g, K}$ (resp. $S Q_{g, K}$) is a nonsingular level- \mathcal{G}_{H} PSQAS (resp. a level- \mathcal{G}_{H} PSQAS) and vice versa.

In Section 9 we formulate the moduli functor of smooth (resp. flat) PSQASes over \mathcal{O}_{N}-schemes (resp. reduced \mathcal{O}_{N}-schemes). We will prove the representability of these functors by $A_{g, K}$ (resp. $S Q_{g, K}$) in the respective category.

In Sections 11 and 12 we see that there exists the coarse moduli algebraic space $S Q_{g, K}^{\text {toric }}$ of level- \mathcal{G}_{H} TSQASes. This has been proved in [32] when $e_{1} \geq 3$. We generalize it here to the case $e_{1} \leq 2$. There is a bijective morphism from $S Q_{g, K}^{\text {toric }}$ onto $S Q_{g, K}$ if $e_{1} \geq 3$. In Sections 11 and 12 many of the definitions, constructions and proofs are given in parallel to Sections 8 and 9 , which we often omitted to avoid overlapping.

In Section 13 we briefly report our recent results without proofs. We define a morphism sqap from $S Q_{g, K}^{\text {toric }} \times U$ to Alexeev's complete moduli $\overline{A P}_{g, d}$ for a nonempty Zariski open subset U of $\mathbf{P}^{N-1}=\mathbf{P}\left(V_{H}\right)$. We see that sqap restricted to $S Q_{g, K}^{\text {toric }} \times\{u\}$ for any $u \in U$ is injective: in fact, it is almost a closed immersion. We also see that $S Q_{g, 1}^{\text {toric }}$ is isomorphic to the main (reduced) component $\overline{A P}_{g, 1}^{\text {main }}$ of $\overline{A P}_{g, 1}$, the closure in $\overline{A P}_{g, 1}$ of the moduli of abelian torsors. We emphasize that it is nontrivial to define a well-defined morphism sqap because singular TSQASes have a lot of continuous automorphisms.

In Section 14 we explain the set of all closed orbits and GIT stability of PSQASes. We also mention a few related topics.

We tried to give complete proofs to Sections 7-9 and to Theorem 12.1 (especially for the case $e_{1} \leq 2$) in Section 12, relying in part on [30] and [32]. In the other sections we only survey mainly [30], [32] and [33].

Acknowledgements. We are very grateful to Professors V. Alexeev, J.-B. Bost, A. Fujiki, K. Hulek, L. Illusie, M. Ishida, A. King, J. McKay, Y. Mieda, Y. Odaka, T. Shioda, and L. Weng for their interest and advice on our works. Inspired by their advice, we have changed some of the presentations and especially the formulation of the functors $\mathcal{A}_{g, K}$ and $\mathcal{S} \mathcal{Q}_{g, K}$, though we are not sure that it is the final form. We also thank K. Sugawara for constant collaboration and support.

§2. Hesse cubics

Here we will start with a simple example.

2.1. Hesse cubics

Let k be any ring which contains $1 / 3$ and ζ_{3}, the primitive cube root of unity. A Hesse cubic curve is a curve in \mathbf{P}_{k}^{2} defined by

$$
\begin{equation*}
C(\mu): x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0 \tag{2}
\end{equation*}
$$

for some $\mu \in k$, or $\mu=\infty$ (in which case we understand that $C(\infty)$ is the curve defined by $x_{0} x_{1} x_{2}=0$). We see
(i) $C(\mu)$ is nonsingular elliptic for $\mu \neq \infty, 1, \zeta_{3}, \zeta_{3}^{2}$,
(ii) $C(\mu)$ is a 3 -gon for $\mu=\infty, 1, \zeta_{3}, \zeta_{3}^{2}$,
(iii) any $C(\mu)$ contains K, which is independent of μ,

$$
K=\left\{\left[0,1,-\zeta_{3}^{k}\right],\left[-\zeta_{3}^{k}, 0,1\right],\left[1,-\zeta_{3}^{k}, 0\right] ; k=0,1,2\right\}
$$

(iv) K is identified with the group of 3-division points by choosing $[0,1,-1]$ as the zero, so $K \simeq(\mathbf{Z} / 3 \mathbf{Z})^{2}$ as groups,
(v) if $k=\mathbf{C}$, any Hesse cubic is the image of a complex torus $E(\omega):=\mathbf{C} / \mathbf{Z}+\mathbf{Z} \omega$ by (slightly modified) theta functions ϑ_{k} of level 3 (see Subsec. 2.2), and then K is the image of the 3 -division points $\left\langle\frac{1}{3}, \frac{\omega}{3}\right\rangle$ of $E(\omega)$.

2.2. Theta functions

We will explain Subsec. 2.1 (v) in more detail. First let us recall standard (resp. modified) theta functions of level 3 on $E(\omega)$:

$$
\begin{aligned}
& \theta_{k}(\omega, z)=\sum_{m \in \mathbf{Z}} q^{(3 m+k)^{2}} w^{3 m+k}, \quad \text { resp. } \\
& \vartheta_{k}(\omega, z)=\theta_{k}\left(\omega, z+\frac{1-\omega}{2}\right)
\end{aligned}
$$

where $q=e^{2 \pi i \omega / 6}, w=e^{2 \pi i z}$. They satisfy the transformation relation :

$$
\begin{aligned}
& \theta_{k}\left(\omega, z+\frac{a+b \omega}{3}\right)=\zeta_{3}^{a k}\left(q^{b} w\right)^{-b} \theta_{k+b}(\omega, z) \\
& \vartheta_{k}\left(\omega, z+\frac{a+b \omega}{3}\right)=\zeta_{3}^{a k}\left(q^{b-3}(-w)\right)^{-b} \vartheta_{k+b}(\omega, z)
\end{aligned}
$$

We define a mapping $\vartheta: E(\omega) \rightarrow \mathbf{P}^{2}$ by

$$
\vartheta(\omega, z):=\left[\vartheta_{0}, \vartheta_{1}, \vartheta_{2}\right] .
$$

Let us check the second half of Subsec. 2.1 (v). For it, we rewrite

$$
\begin{aligned}
& \vartheta_{0}(\omega, z)=\sum_{m \in \mathbf{Z}} q^{9 m^{2}-9 m}(-w)^{3 m} \\
& \vartheta_{1}(\omega, z)=\sum_{m \in \mathbf{Z}} q^{9 m^{2}-3 m-2}(-w)^{3 m+1} \\
& \vartheta_{2}(\omega, z)=\sum_{m \in \mathbf{Z}} q^{9 m^{2}+3 m-2}(-w)^{3 m+2}
\end{aligned}
$$

Then we check $\vartheta\left(\omega, \frac{\ell}{3}\right)=\left[0,1,-\zeta_{3}^{\ell}\right]$ and $\vartheta\left(\omega, \frac{\omega}{3}\right)=[1,-1,0]$. First we prove $\vartheta_{0}\left(\omega, \frac{\ell}{3}\right)=0$. In fact, we see

$$
\begin{aligned}
\vartheta_{0}\left(\omega, \frac{\ell}{3}\right) & =\sum_{m \in \mathbf{Z}} q^{9 m^{2}-9 m}(-1)^{3 m} \\
& =\sum_{m \in \mathbf{Z}} q^{9(-m+1)^{2}-9(-m+1)}(-1)^{3(-m+1)} \\
& =\sum_{m \in \mathbf{Z}} q^{9 m^{2}-9 m}(-1)^{-3 m+3}=-\vartheta_{0}\left(\omega, \frac{\ell}{3}\right)
\end{aligned}
$$

whence $\vartheta_{0}\left(\omega, \frac{\ell}{3}\right)=0$. Moreover

$$
\begin{aligned}
\vartheta_{1}\left(\omega, \frac{\ell}{3}\right) & =\zeta_{3}^{\ell} \sum_{m \in \mathbf{Z}} q^{9 m^{2}-3 m-2}(-1)^{3 m+1} \\
\vartheta_{2}\left(\omega, \frac{\ell}{3}\right) & =\zeta_{3}^{2 \ell} \sum_{m \in \mathbf{Z}} q^{9 m^{2}+3 m-2}(-1)^{3 m} \\
& =\zeta_{3}^{2 \ell} \sum_{m \in \mathbf{Z}} q^{9 m^{2}-3 m-2}(-1)^{3 m}=-\zeta_{3}^{\ell} \vartheta_{1}\left(\omega, \frac{\ell}{3}\right) .
\end{aligned}
$$

$\vartheta\left(\omega, \frac{\omega}{3}\right)=[1,-1,0]$ is proved similarly.

2.3. The moduli space of Hesse cubics - the Stone-age (Neolithic) level structure

With the same notation as in Subsec. 2.1, consider the moduli space $S Q_{1,3}^{\mathrm{NL}}$ of the pairs $(C(\mu), K)$ over any ring $k \ni 1 / 3$ and ζ_{3}.

Definition 2.3.1. Any pair $(C(\mu), K)$ is called a Hesse cubic with Neolithic level-3 structure. Let $(C(\mu), K)$ and $\left(C\left(\mu^{\prime}\right), K\right)$ be two pairs of Hesse cubics with Neolithic level-3 structure. We define $(C(\mu), K) \simeq$ $\left(C\left(\mu^{\prime}\right), K\right)$ to be isomorphic if there exists an isomorphism $f: C(\mu) \rightarrow$ $C\left(\mu^{\prime}\right)$ with $f_{\mid K}=\mathrm{id}_{K}$.

Claim 2.3.2. Let $S Q_{1,3}^{\mathrm{NL}}$ be the set of isomorphism classes of $(C(\mu), K)$, and $A_{1,3}^{\mathrm{NL}}$ the subset of $S Q_{1,3}^{\mathrm{NL}}$ consisting of smooth $C(\mu)$. Then
(i) if $(C(\mu), K) \simeq\left(C\left(\mu^{\prime}\right), K\right)$, then $\mu=\mu^{\prime}$,
(ii) $S Q_{1,3}^{\mathrm{NL}}$ has a natural scheme structure:

$$
S Q_{1,3}^{\mathrm{NL}} \simeq \mathbf{P}_{k}^{1}=\text { Proj } k\left[\mu_{0}, \mu_{1}\right],
$$

(iii) this compactifies the moduli $A_{1,3}^{\mathrm{NL}}$ of smooth Hesse cubics:

$$
A_{1,3}^{\mathrm{NL}} \simeq \operatorname{Spec} k\left[\mu, \frac{1}{\mu^{3}-1}\right], \quad \mu=\mu_{1} / \mu_{0}
$$

where $A_{1,3}^{\mathrm{NL}}(k)=\{C(\mu) ;$ smooth, $\mu \in k\}$ if k is a closed field,
(iv) the universal Hesse cubic over $S Q_{1,3}^{\mathrm{NL}}$ is given by

$$
\begin{equation*}
\mu_{0}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)-3 \mu_{1} x_{0} x_{1} x_{2}=0 \tag{3}
\end{equation*}
$$

Proof of (i). We prove (i). Suppose we are given an isomorphism

$$
f:(C(\mu), K) \simeq\left(C\left(\mu^{\prime}\right), K\right)
$$

Since any 3 points x, y and $z \in K$ with $x+y+z=0$ are on a line $\ell_{x, y, z}$ of \mathbf{P}^{2}, we have $\ell_{x, y, z} \cap C(\mu)=\{x, y, z\}$ and $f^{*} \ell_{x, y, z}=\ell_{x, y, z}$ as divisors of $C(\mu)$. Hence f is given by a 3×3 matrix A.

We shall prove that A is a scalar and $f=\mathrm{id}$. In fact, any line $\ell_{x, y}$ connecting two points $x, y \in K$ is fixed by f. Since the line $x_{0}=0$ connects $[0,1,-1]$ and $\left[0,1,-\zeta_{3}\right]$, it is fixed by f. Similarly the lines $x_{1}=0$ and $x_{2}=0$ are fixed by f, whence $f^{*}\left(x_{i}\right)=a_{i} x_{i}(i=0,1,2)$ for some $a_{i} \neq 0$. Thus A is diagonal. Since $[0,1,-1]$ and $[-1,0,1]$ are fixed, we have $a_{0}=a_{1}=a_{2}$, hence A is scalar and $f=\mathrm{id}, \mu=\mu^{\prime}$.

We do not give proofs of (ii)-(iv) here because there are complicated arguments to prove rigorously.
Q.E.D.

2.4. The moduli space of smooth cubics - classical level structure

Consider the (fine) moduli space of smooth cubics over an algebraically closed field $k \ni 1 / 3$.

Definition 2.4.1. Let $K=(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2}$, e_{i} a standard basis of K. Let $e_{K}: K \times K \rightarrow \mu_{3}$ be a standard symplectic form of K : in other words, e_{K} is (multiplicatively) alternating and bilinear such that

$$
e_{K}\left(e_{1}, e_{2}\right)=e_{K}\left(e_{2}, e_{1}\right)^{-1}=\zeta_{3}, e_{K}\left(e_{i}, e_{i}\right)=1
$$

Let C be a smooth cubic with zero $O, C[3]=\operatorname{ker}\left(3 \mathrm{id}_{C}\right)$ the group of 3 -division points and e_{C} the Weil pairing of C (see [43, pp. 95-102]), that is,

$$
e_{C}: C[3] \times C[3] \rightarrow \mu_{3} \quad \text { alternating nondegenerate bilinear, }
$$

(see 3.3 (v)). By [20, pp. 294-295], there exists a symplectic (group) isomorphism

$$
\iota:\left(C[3], e_{C}\right) \rightarrow\left(K, e_{K}\right)
$$

In what follows, we identify $C(\mu)[3]$ with K by

$$
\begin{equation*}
O=[0,1,-1], e_{1}=\left[0,1,-\zeta_{3}\right], e_{2}=[1,-1,0] . \tag{4}
\end{equation*}
$$

Definition 2.4.2. The triple $(C, C[3], \iota)$ is called a (planar) cubic with classical level-3 structure. We define $(C, C[3], \iota) \simeq\left(C^{\prime}, C^{\prime}[3], \iota^{\prime}\right)$ to be isomorphic iff there exists an isomorphism $f: C \rightarrow C^{\prime}$ such that $f_{\mid C[3]}: C[3] \rightarrow C^{\prime}[3]$ is a symplectic (group) isomorphism subject to $\iota^{\prime} \cdot f=\iota$.

Claim 2.4.3. Let $A_{1,3}^{\mathrm{CL}}$ be the set of isomorphism classes of (C, C[3], ८). Then
(i) any $(C, C[3], \iota)$ is isomorphic to $(C(\mu), C(\mu)[3], \iota)$ for a unique μ,
(ii) $\quad\left(C(\mu), K, \mathrm{id}_{K}\right) \in A_{1,3}^{\mathrm{CL}}$ via (4), and

$$
\begin{aligned}
A_{1,3}^{\mathrm{CL}} & =\left\{\left(C(\mu), K, \mathrm{id}_{K}\right) ; \text { a smooth Hesse cubic }\right\} \\
& \simeq \operatorname{Spec} k\left[\mu, \frac{1}{\mu^{3}-1}\right]
\end{aligned}
$$

(iii) we define $S Q_{1,3}^{\mathrm{CL}}$ to be the union of $A_{1,3}^{\mathrm{CL}}$ and 3-gons in Subsec. 2.1 (ii) :
$S Q_{1,3}^{\mathrm{CL}}:=\{(C, C[3], \iota) ; C$ smooth elliptic or a 3-gon $\} /$ isom.
$=\left\{\left(C(\mu), K, \mathrm{id}_{K}\right) ;\right.$ a Hesse cubic $\}$
$\simeq \operatorname{Proj} k\left[\mu_{0}, \mu_{1}\right]$,
(v) $A_{1,3}^{\mathrm{CL}} \simeq A_{1,3}^{\mathrm{NL}}$ and $S Q_{1,3}^{\mathrm{CL}} \simeq S Q_{1,3}^{\mathrm{NL}}$ over k.

Proof of (i). We prove the uniqueness of μ. Suppose that

$$
f:\left(C(\mu), K, \operatorname{id}_{K}\right) \rightarrow\left(C\left(\mu^{\prime}\right), K, \operatorname{id}_{K}\right)
$$

is an isomorphism. Then $f \in \mathrm{GL}(3)$. Since $\operatorname{id}_{K} \cdot f_{\mid K}=\operatorname{id}_{K}$ by $\iota^{\prime} \cdot f=\iota$, we have $f_{\mid K}=\operatorname{id}_{K}$. Hence $f=\mathrm{id} \in \operatorname{PGL}(3), \mu=\mu^{\prime}$ by Subsec. 2.3 (iv). See also Lemma 3.12 and Lemma 8.2.8.
Q.E.D.

§3. Non-commutative level structure

3.1. For constructing a separated moduli

If we keep naively using the same definition of level structures as in Subsec. 2.4 in higher dimension, then the complete moduli will be roughly the moduli of the triples $\left(Z, \operatorname{ker}(\lambda(L)), \iota_{Z}\right)$ similar to $(C, C[3], \iota)$

$$
\iota_{Z}: \operatorname{ker}(\lambda(L)) \simeq K \text { for some } K
$$

However then we will have nonseparated moduli spaces in general. The details will be explained in Subsec. 6.8.

To construct a separated moduli, we need to find outside C an alternative for $C[3]$ embedded in C. The group $C[3]$, hence $x \in K=$ $(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2}$ acts on C by translation $T_{x}: C \rightarrow C$. Though the action of K on C cannot be lifted to L as an action of the group K, the action of any individual element x of K can be lifted to a line bundle automorphism τ_{x} of L. In general τ_{x} and $\tau_{y}(x, y \in K)$ do not commute so $T_{x} \mapsto \tau_{x}$ fails to be a group homomorphism. However it turns out that the non-commutative group generated by all individual liftings τ_{x} plays the role of an alternative for $C[3]$ embedded in C. This leads us to the notion of a level-G(3) structure, say, a non-commutative level structure, where $G(3)$ is the Heisenberg group associated to K.

Remark 3.1.1. Since any elliptic curve with level- $G(3)$ structure has a section over $\mathbf{Z}\left[\zeta_{3}, 1 / 3\right]$ by [34], the level- $G(3)$ structure is a ϑ structure of [21, II, p.78] and vice versa. A level \mathcal{G}_{H} (or $G_{H^{-}}$)structure is not always a ϑ-structure by [34] when $H=\mathbf{Z} / n \mathbf{Z}$ for n even in Definition 3.5.

Definition 3.2. Let k be an algebraically closed field $k \ni 1 / 3$. Then
(i) let C be any smooth cubic with zero O, and $L:=O_{C}(1)$ the hyperplane bundle. Let $\lambda(L): C \rightarrow C^{\vee}:=\operatorname{Pic}^{0}(C) \simeq C$ be the map $x \rightarrow T_{x}^{*} L \otimes L^{-1}$, called the polarization morphism, where we see $\lambda(L)=3 \mathrm{id}_{C}$,
(ii) let $K:=C[3]=\operatorname{ker} \lambda(L) \simeq(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2}$, and $e_{K}: K \times K \rightarrow \mu_{3}$ the Weil pairing of C. If $C=C(\mu)$ and $O=[0,1,-1] \in C(\mu)$. Then $K=\operatorname{ker}(\lambda(L))$ is the same as in Subsec. 2.1 (iii).

3.3. Non-commutative interpretation of Hesse cubics

First we shall re-interpret the group $C[3]$ of 3-division points of Hesse cubics in the non-commutative way as follows.

Any translation T_{x} by $x \in K$ is lifted to $\gamma_{x} \in \mathrm{GL}(V)$, so that

$$
e_{K}(x, y)=\left[\gamma_{x}, \gamma_{y}\right] \in \mu_{3}
$$

where $V=H^{0}\left(C, O_{C}(1)\right)=H^{0}\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)$. To be more precise,
(i) we define σ and τ by $\sigma\left(x_{k}\right)=\zeta_{3}^{k} x_{k}, \tau\left(x_{k}\right)=x_{k+1}(k=0,1,2)$, where their matrix forms are given by

$$
\sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta_{3} & 0 \\
0 & 0 & \zeta_{3}^{2}
\end{array}\right), \quad \tau=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

(ii) σ is induced from the translation by $1 / 3$ because $x_{k}=\theta_{k}$ by Subsec. 2.1 (v) and

$$
\theta_{k}(z+1 / 3)=\zeta_{3}^{k} \theta_{k}(z)
$$

(iii) τ is induced from the translation by $\omega / 3$ because

$$
\left[\theta_{0}, \theta_{1}, \theta_{2}\right](z+\omega / 3)=\left[\theta_{1}, \theta_{2}, \theta_{0}\right](z)
$$

(iv) $[\sigma, \tau]=\zeta_{3}$, that is, σ and τ do not commute,

$$
\sigma \tau=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\zeta_{3} & 0 & 0 \\
0 & \zeta_{3}^{2} & 0
\end{array}\right), \quad \tau \sigma=\left(\begin{array}{ccc}
0 & 0 & \zeta_{3}^{2} \\
1 & 0 & 0 \\
0 & \zeta_{3} & 0
\end{array}\right)
$$

Lemma 3.4. Let $G(3):=\langle\sigma, \tau\rangle$ be the group generated by σ and τ. Then it is a finite group of order 27. Let $V=H^{0}\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)=$ $\left\{x_{0}, x_{1}, x_{2}\right\}$. Then V is an irreducible $G(3)$-module of weight one, where "weight one" means that $a \in \mu_{3}$ (center) acts by $a \mathrm{id}_{V}$.

Proof. The first assertion is clear. See [20, Proposition 3, p. 309] or [32, Lemma 4.4] for the second assertion.

The action of $G(3)$ on $H^{0}(C, L)$ is a special case of more general Schrödinger representations defined below.

Definition 3.5. We define $G(K)=G_{H}$ (resp. $\mathcal{G}(K)=\mathcal{G}_{H}$) to be the Heisenberg group (finite resp. infinite) and U_{H} the Schrödinger representation of G_{H} as follows:

$$
\begin{aligned}
& H=H(e):=\bigoplus_{i=1}^{g}\left(\mathbf{Z} / e_{i} \mathbf{Z}\right), e_{i}\left|e_{i+1}, N=|H|=\prod_{i=1}^{g} e_{i},\right. \\
& K=H \oplus H^{\vee}, e_{\min }(K)=e_{\min }(H):=e_{1}, \\
& G_{H}=\left\{(a, z, \alpha) ; a \in \mu_{N}, z \in H, \alpha \in H^{\vee}\right\}, \\
& \mathcal{G}_{H}=\left\{(a, z, \alpha) ; a \in \mathbf{G}_{m}, z \in H, \alpha \in H^{\vee}\right\}, \\
& (a, z, \alpha) \cdot(b, w, \beta)=(a b \beta(z), z+w, \alpha+\beta), \\
& V:=V_{H}=\mathcal{O}_{N}\left[H^{\vee}\right]=\bigoplus_{\mu \in H^{\vee}} \mathcal{O}_{N} v(\mu), \\
& U_{H}(a, z, \alpha) v(\gamma)=a \gamma(z) v(\alpha+\gamma) .
\end{aligned}
$$

Here $\mathcal{O}=\mathcal{O}_{N}=\mathbf{Z}\left[\zeta_{N}, 1 / N\right]$, and $v(\mu)\left(\mu \in H^{\vee}\right)$ is a free \mathcal{O}_{N}-basis of V_{H}. The group homomorphism U_{H}, from G_{H} or \mathcal{G}_{H} to $\operatorname{End}(V)$, is
called Schrödinger representation. We note

$$
\begin{aligned}
& 1 \rightarrow \mu_{N} \rightarrow G_{H} \rightarrow K \rightarrow 0 \quad \text { (exact) } \\
& 1 \rightarrow \mathbf{G}_{m} \rightarrow \mathcal{G}_{H} \rightarrow K \rightarrow 0 \quad \text { (exact). }
\end{aligned}
$$

Example 3.6. For Hesse cubics, $\mathcal{O}:=\mathbf{Z}\left[\zeta_{3}, 1 / 3\right], H=H^{\vee}=\mathbf{Z} / 3 \mathbf{Z}$, we identify $G(3)$ with G_{H}; to be precise, $G(3)=U_{H}\left(G_{H}\right)$ and

$$
\begin{gathered}
\sigma=U_{H}(1,1,0), \quad \tau=U_{H}(1,0,1), \quad N=3 . \\
V_{H}=\mathcal{O}\left[H^{\vee}\right]=\bigoplus_{k=0}^{2} \mathcal{O} \cdot v(k) .
\end{gathered}
$$

Let $\mathbf{P}^{2}=\mathbf{P}\left(V_{H}\right)$. Then V_{H} is identified with $H^{0}\left(C, O_{C}(1)\right)=$ $H^{0}\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)$ by the map $v(k) \mapsto x_{k}$ in Lemma 3.4.

Lemma 3.7. V_{H} is an irreducible $\mathcal{G}_{H}-\mathcal{O}_{N}$-module (an irreducible $G_{H}-\mathcal{O}_{N}$-module) of weight one, unique up to equivalence. Any $\mathcal{G}_{H}-\mathcal{O}_{N}{ }^{-}$ module W (resp. any $G_{H}-\mathcal{O}_{N}$-module) of finite rank is a direct sum of V_{H} if W is of weight one: that is, any element a in the center \mathbf{G}_{m} (resp. μ_{N}) acts on W by scalar multiplication $a \mathrm{id}_{W}$.

Proof. See Lemma 11.1.2 and [32, Lemma 4.4].
Q.E.D.

Lemma 3.8. (Schur's lemma) Let R be a commutative algebra with $1 / N$ and ζ_{N}. Let V_{1} and V_{2} be R-free G_{H}-modules of finite rank of weight one. If V_{1} and V_{2} are irreducible G_{H}-modules, and if $f: V_{1} \rightarrow V_{2}$ and $g: V_{1} \rightarrow V_{2}$ are \mathcal{G}_{H}-isomorphisms, then there exists a unit $c \in R^{\times}$such that $f=c g$.

Proof. See [32, Lemma 4.5].
Q.E.D.

3.9. New formulation of the moduli problem

Let k be any ring such that $k \ni \zeta_{3}, 1 / 3$ and $K=(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2}$. Let C be any smooth cubic, $L=O_{C}(1)$ the line bundle viewed as a scheme over C. By [20, p. 295] (see also [30, Lemma 7.6]) the pair (C, L) of schemes has a $G(3)$-action lifting the translation action by $C[3]$

$$
\tau: G(3) \times(C, L) \rightarrow(C, L)
$$

Using this $G(3)$-action, we define new level-3 structure. In a word,

- classical level-3 structure $=$ to fix the 3 -division points K
- new level-3 structure $=$ to fix the matrix form of the action of $G(3)$ on $V \simeq H^{0}(C, L)$.

Definition 3.10. We define (C, ψ, τ) to be a (planar) cubic with level-G(3) structure (or a level-G(3) cubic) if
(i) (C, L) is a planar cubic with $L=O_{C}(1)$,
(ii) τ is a $G(3)$-action of weight one on the pair (C, L) : that is, $\tau(a)$ acts by $\left(\mathrm{id}_{C}, a \mathrm{id}_{L}\right)$ for $a \in \mu_{3}$, the center of $G(3)$,
(iii) $\quad \psi: C \rightarrow \mathbf{P}\left(V_{H}\right)$ is the inclusion, and

$$
(\psi, \Psi):(C, L) \rightarrow\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)
$$

is a $G(3)$-equivariant morphism by τ where \mathbf{H} is the hyperplane bundle of $\mathbf{P}\left(V_{H}\right)$ and $\Psi: L=\psi^{*} \mathbf{H} \rightarrow \mathbf{H}$ the natural bundle morphism. That is,

$$
\begin{equation*}
(\psi, \Psi) \circ \tau(g)=S(g) \circ(\psi, \Psi) \text { for any } g \in G(3) \tag{5}
\end{equation*}
$$

with the notation in Subsec. 7.2.
In what follows, we denote (ψ, Ψ) simply by ψ if no confusion is possible because Ψ is uniquely determined by ψ. We denote (5) by

$$
\begin{equation*}
\psi \tau(g)=S(g) \psi, \text { or } \psi \tau=S \psi . \tag{6}
\end{equation*}
$$

Definition 3.11. Two cubics (C, ψ, τ) and $\left(C^{\prime}, \psi^{\prime}, \tau^{\prime}\right)$ with level$G(3)$ structure are defined to be isomorphic iff there exists an isomorphism

$$
(f, F):(C, L) \rightarrow\left(C^{\prime}, L^{\prime}\right)
$$

such that
(i) $\quad \psi^{\prime} \cdot(f, F)=\psi$,
(ii) (f, F) is a $G(3)$-isomorphism, that is, $(f, F) \tau(g)=\tau^{\prime}(g)(f, F)$ for any $g \in G(3)$.

Lemma 3.12. Any Hesse cubic $\left(C(\mu), i, U_{H}\right)$ with i the inclusion of C into $\mathbf{P}\left(V_{H}\right)$ is a level-G(3) cubic. Moreover any level-G(3) cubic (C, ψ, τ) is isomorphic to a unique Hesse cubic $\left(C(\mu), i, U_{H}\right)$.

Proof. Let \mathbf{P}^{2} be $\mathbf{P}\left(V_{H}\right)$ and \mathbf{H} the hyperplane bundle of \mathbf{P}^{2}. U_{H} induces an action on $H^{0}\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)=V_{H}$ by Claim 7.1.5, which we denote by $H^{0}\left(U_{H}, O_{\mathbf{P}^{2}}(1)\right)$. This is the same as the action U_{H} on V_{H} in Definition 3.5. In fact, by Subsec. 7.2 and Remark 7.3, U_{H} induces an action of $G(3)$ on the pair $\left(\mathbf{P}^{2}, \mathbf{H}\right)$, which also induces an action of $G(3)$ on $H^{0}\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)=V_{H}$. This is the same as U_{H} as is shown in Remark 7.3.

Let $O_{C(\mu)}(1)=O_{\mathbf{P}^{2}}(1) \otimes O_{C(\mu)}$ and $\mathbf{H}_{C(\mu)}=\mathbf{H} \times_{\mathbf{P}^{2}} C(\mu)$. Since $C(\mu)$ is $G(3)$-stable, $G(3)$ acts on the pair $\left(C(\mu), \mathbf{H}_{C(\mu)}\right)$ by Claim 7.4.1.

Denoting the action of $G(3)$ on $\mathbf{H}_{C(\mu)}$ by the same letter U_{H}, we see that $\left(C(\mu), i, U_{H}\right)$ is a level- $G(3)$ structure.

Hence $H^{0}\left(C(\mu), O_{C(\mu)}(1)\right)$ admits a $G(3)$-action, which we denote by $H^{0}\left(U_{H}, O_{C(\mu)}(1)\right)$. Since $H^{0}\left(C(\mu), O_{C(\mu)}(1)\right)=H^{0}\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)=V_{H}$ by restriction, we can identify $H^{0}\left(U_{H}, O_{C(\mu)}(1)\right)$ with $H^{0}\left(U_{H}, O_{\mathbf{P}^{2}}(1)\right)$ on V_{H} in a canonical manner. Thus we have a canonical identification

$$
H^{0}\left(U_{H}, O_{C(\mu)}(1)\right)=H^{0}\left(U_{H}, O_{\mathbf{P}^{2}}(1)\right)=U_{H}
$$

By Lemma 8.2.8, any (C, ψ, τ) is isomorphic to some Hesse cubic $\left(C(\mu), i, U_{H}\right)$. Here we prove the uniqueness of it only. This is a new proof of Claim 2.4.3 (ii). Suppose $\left(C(\mu), i, U_{H}\right) \simeq\left(C\left(\mu^{\prime}\right), i, U_{H}\right)$. Let $h: C(\mu) \rightarrow C\left(\mu^{\prime}\right)$ be a $G(3)$-isomorphism. Since h is linear (as is shown easily), h induces an automorphism of $\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)$ (also denoted h) so that we have a commutative diagram

$$
\begin{array}{cc}
H^{0}\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)=V_{H} \xrightarrow{H^{0}\left(h^{*}\right)} & H^{0}\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(1)\right)=V_{H} \\
\downarrow \| & \downarrow \| \\
H^{0}\left(C\left(\mu^{\prime}\right), O_{C\left(\mu^{\prime}\right)}(1)\right) \xrightarrow{H^{0}\left(h^{*}\right)} & H^{0}\left(C(\mu), O_{C(\mu)}(1)\right), \\
\downarrow^{H^{0}\left(U_{H}(g), O_{C\left(\mu^{\prime}\right)}(1)\right)} & \downarrow H^{0}\left(U_{H}(g), O_{C(\mu)}(1)\right) \\
H^{0}\left(C\left(\mu^{\prime}\right), O_{C\left(\mu^{\prime}\right)}(1)\right) \xrightarrow{H^{0}\left(h^{*}\right)} & H^{0}\left(C(\mu), O_{C(\mu)}(1)\right),
\end{array}
$$

whence

$$
H^{0}\left(U_{H}(g), O_{C(\mu)}(1)\right) H^{0}\left(h^{*}\right)=H^{0}\left(h^{*}\right) H^{0}\left(U_{H}(g), O_{C\left(\mu^{\prime}\right)}(1)\right)
$$

for any $g \in G(3)$. By canonically identifying $H^{0}\left(U_{H}, O_{C(\mu)}(1)\right)$ with U_{H} on V_{H}, we have

$$
U_{H}(g) H^{0}\left(h^{*}\right)=H^{0}\left(h^{*}\right) U_{H}(g) \in \operatorname{End}\left(V_{H}\right)
$$

for any $g \in G(3)$, where we also regard $H^{0}\left(h^{*}\right) \in \operatorname{End}\left(V_{H}\right)$. Since U_{H} is irreducible, $H^{0}\left(h^{*}\right)$ is a scalar by Schur's lemma. Hence $H^{0}\left(h^{*}\right)=$ $\operatorname{id}_{V_{H}} \in \operatorname{PGL}\left(V_{H}\right), h=\operatorname{id}_{\mathbf{P}\left(V_{H}\right)}, C(\mu)=C\left(\mu^{\prime}\right), \mu=\mu^{\prime}$.
Q.E.D.

Remark 3.13. In the proof of Lemma 3.12, we canonically identified all the vector spaces involved to simplify the argument. This argument will be made much clearer by using $\rho(\phi, \tau)$ in Definitions 8.2.2 and 8.2.6. See Lemma 8.2.8.

Proposition 3.14. Over $\mathbf{Z}\left[\zeta_{3}, 1 / 3\right]$,

$$
\begin{aligned}
S Q_{1,3} & :=\{(C, \psi, \tau) ; \text { a level- } G(3) \text { cubic }\} / \text { isom. } \\
& =\left\{\left(C(\mu), i, U_{H}\right)\right\} / \text { isom. }=\left\{\mu \in \mathbf{P}^{1}\right\}
\end{aligned}
$$

Proof. Clear from Lemma 3.12 and Lemma 8.2.8. Q.E.D.
It is this level-G(3) structure that we can generalize into higher dimension so that we may obtain a separated moduli.

Remark 3.15. Suppose k is algebraically closed with $1 / 3$. Let $K=(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2}$. Let C be any cubic, and $C[3]=\operatorname{ker}\left(3 \mathrm{id}_{C}\right)$ by choosing the zero $O \in C(k)$. Any level- $G(3)$ structure (C, ϕ, τ) gives rise to a classical level-3 structure ($C, C[3], \iota$) as follows. First we note

$$
C[3]=G(3) \cdot O .
$$

Let $\pi: G(3) \rightarrow K=G(3) /[G(3), G(3)]$ be the natural homomorphism. We define $\iota: K \rightarrow C$ by

$$
\iota(g \cdot O):=\pi(g)
$$

Then $(C, C[3], \iota)$ is a classical level-3 structure. In fact, since $e_{K}(x, y)=$ $\left[\gamma_{x}, \gamma_{y}\right]$ for a lifting γ_{x} of x, we have $e_{K}(1 / 3, \omega / 3)=[\sigma, \tau]=\zeta_{3}$. Hence π defines a symplectic isomorphism $\iota: C[3] \rightarrow K$. Thus we see

$$
S Q_{1,3}(k)=S Q_{1,3}^{\mathrm{CL}}(k)
$$

By $[34] S Q_{1,3} \simeq S Q_{1,3}^{\mathrm{CL}}$ over $\mathbf{Z}\left[1 / 3, \zeta_{3}\right]$. See [34] for the detail.

§4. PSQAS and TSQAS

4.1. Goal

Our goal of constructing a compactification of the moduli space of abelian varieties is achieved by
(i) finding limit objects (two kinds of nice degenerate abelian schemes called PSQAS and TSQAS) (Theorems 4.5 and 4.6),
(ii) constructing the moduli $S Q_{g, K}$ as a projective scheme (Section 8),
(iii) proving that any point of $S Q_{g, K}$ is the isomorphism class of a nice degenerate abelian scheme (PSQAS) $\left(Q_{0}, \phi_{0}, \tau_{0}\right)$ with level- \mathcal{G}_{H} structure (Section 8, Theorems 8.5 and 9.8).
We recall a basic lemma from [25].

Lemma 4.2. Let k be an algebraically closed field with $k \ni 1 / N$ and H a finite Abelian group with $|H|=N$. Let (A, L) be an abelian variety over k with L an ample line bundle, $\lambda(L): A \rightarrow A^{\vee}$ the polarization morphism (sending $x \mapsto T_{x}^{*} L \otimes L^{-1}$) and $\mathcal{G}(A, L)$ the group of bundle automorphisms g of L over A inducing translations of A.

Suppose $\operatorname{ker}(\lambda(L)) \simeq K:=H \oplus H^{\vee}$. Then $\mathcal{G}(A, L) \simeq L_{\operatorname{ker}(\lambda(L))}^{\times} \simeq$ \mathcal{G}_{H}, and any $g \in \mathcal{G}(A, L)$ induces a translation of A by some element of $\operatorname{ker}(\lambda(L))$ where L^{\times}is the complement of the zero section in the line bundle L, and $L_{\operatorname{ker}(\lambda(L))}^{\times}$is the pullback (restriction) of it to $\operatorname{ker}(\lambda(L))$.

Proof. See [20, pp. 294-295] and [25, pp. 115-117, pp.204-211]. Q.E.D.

4.3. Limit objects

We wish to consider limits of abelian varieties.
Let R be a complete discrete valuation ring (CDVR), and $k(\eta)$ the fraction field of R and $k(0):=R / I$ the residue field. Suppose we are given an abelian scheme $\left(G_{\eta}, \mathcal{L}_{\eta}\right)$ over $k(\eta)$ and the polarization morphism

$$
\lambda\left(\mathcal{L}_{\eta}\right): G_{\eta} \rightarrow G_{\eta}^{t}:=\operatorname{Pic}^{0}\left(G_{\eta}\right)
$$

Let

$$
K_{\eta}=\operatorname{ker}\left(\lambda\left(\mathcal{L}_{\eta}\right)\right), \quad \mathcal{G}\left(K_{\eta}\right):=\mathcal{G}\left(G_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(\mathcal{L}_{\eta}^{\times}\right)_{\mid K_{\eta}},
$$

where $\mathcal{G}\left(G_{\eta}, \mathcal{L}_{\eta}\right)$ is by definition the group of bundle automorphisms of \mathcal{L}_{η} over G_{η} which induce translations of G_{η}. See Lemma 4.2.

For simplicity, in what follows, we assume

$$
\begin{equation*}
\text { the field } k(0) \text { contains } 1 /\left|K_{\eta}\right| \tag{7}
\end{equation*}
$$

We apply Lemma 4.2 to $\left(G_{\eta}, \mathcal{L}_{\eta}\right)$.
Lemma 4.4. Assume (7). Then by some base change of R if necessary, there exists a finite symplectic Abelian group K such that the diagram is commutative with exact rows:

Theorem 4.5. (Stable reduction theorem) ([2]) For an abelian scheme $\left(G_{\eta}, \mathcal{L}_{\eta}\right)$ and a polarization morphism $\lambda\left(\mathcal{L}_{\eta}\right): G_{\eta} \rightarrow G_{\eta}^{t}$ over $k(\eta)$, there exist a flat projective scheme $\left(P, \mathcal{L}_{P}\right)(T S Q A S)$ over R, by a finite base change if necessary, such that
(1) $\left(P_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(G_{\eta}, \mathcal{L}_{\eta}\right)$,
(2) $\left(P, \mathcal{L}_{P}\right)$ is normal with \mathcal{L}_{P} ample, in fact, P is explicitly given,
(3) $\quad P_{0}$ is reduced and Gorenstein with trivial dualizing sheaf.

The following is a refined version of the above.
Theorem 4.6. (Refined stable reduction theorem) ([30, p. 703], [32, p. 98]) For an abelian scheme $\left(G_{\eta}, \mathcal{L}_{\eta}\right)$ and a polarization morphism $\lambda\left(\mathcal{L}_{\eta}\right): G_{\eta} \rightarrow G_{\eta}^{t}$ over $k(\eta)$ such that $K_{\eta} \simeq K$, there exist flat projective schemes $\left(Q, \mathcal{L}_{Q}\right)(P S Q A S)$ and $\left(P, \mathcal{L}_{P}\right)(T S Q A S)$ over R, by a finite base change if necessary, such that
(1) $\left(Q_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(P_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(G_{\eta}, \mathcal{L}_{\eta}\right)$,
(2) $\left(P, \mathcal{L}_{P}\right)$ is the normalization of $\left(Q, \mathcal{L}_{Q}\right)$,
(3) P_{0} is reduced and Gorenstein with trivial dualizing sheaf,
(4) if $e_{\min }(K) \geq 3$, then \mathcal{L}_{Q} is very ample,
(5) $\left(Q, \mathcal{L}_{Q}\right)$ is an étale quotient of some $\operatorname{PSQAS}\left(Q^{*}, \mathcal{L}_{Q^{*}}\right)$ with $e_{\min }\left(\operatorname{ker} \lambda\left(\mathcal{L}_{Q^{*}}\right)\right) \geq 3$, hence with $\mathcal{L}_{Q^{*}}$ very ample,
(6) $\mathcal{G}(K)$ acts on $\left(Q, \mathcal{L}_{Q}\right)$ and $\left(P, \mathcal{L}_{P}\right)$ extending the action of $\mathcal{G}\left(K_{\eta}\right)$ on $\left(G_{\eta}, \mathcal{L}_{\eta}\right)$.
See Definition 3.5 for $e_{\text {min }}$. Theorem 4.6 (1) is proved in Subsec. 6.4. We call $\left(Q_{0}, \mathcal{L}_{0}\right)$ and $\left(P_{0}, \mathcal{L}_{0}\right)$ as follows:

- $\left(Q_{0}, \mathcal{L}_{0}\right)$: PSQAS - a projectively stable quasi-abelian scheme, which can be nonreduced,
- $\left(P_{0}, \mathcal{L}_{0}\right)$: TSQAS - a torically stable quasi-abelian scheme $(=$ variety), which is always reduced.
Remark 4.7. Theorem 4.6 (2) is rather misleading. In the proof of it, we never define P to be the normalization of Q. We only construct P with P_{0} reduced and $P_{\eta} \simeq G_{\eta}$. The normality of P is a consequence of the reducedness of P_{0} by the following well-known Claim.

Claim 4.7.1. Let R be a complete discrete valuation ring, $S:=$ Spec R, and η the generic point of S. Assume that $\pi: Z \rightarrow S$ is flat with Z_{0} reduced and Z_{η} nonsingular. Then Z is normal.

Proof. See [32, Lemma 10.3].
Q.E.D.

Remark 4.8. In dimension one, any PSQAS is a TSQAS and vice versa, which is either a smooth elliptic or an N -gon (of rational curves). Once the moduli of PSQASes (resp. TSQASes) is constructed, Theorem 4.9 will prove that the moduli is separated, and then Theorem 4.6 will prove that the moduli is proper.

Theorem 4.9. (Uniqueness [30],[32]) In Theorem 4.6, (Q, \mathcal{L}) resp. (P, \mathcal{L}) is uniquely determined by $\left(G_{\eta}, \mathcal{L}_{\eta}\right)$ if $e_{\min }(K) \geq 3$ (resp. in any case).

See [30, Theorem 10.4] and [32, Theorem 10.4; Claim 2, p. 124] for the detail when $e_{\min }(H) \geq 3$. See Subsec 11.10 for $e_{\min }(H) \leq 2$.

§5. PSQASes in low dimension

The purpose of this section is to show motivating examples in dimension one and two.

5.1. Hesse cubics and theta functions

Let R be a complete discrete valuation ring (CDVR), I the maximal ideal of R and q a generator (uniformizer) of I, so $I=q R$. For instance, if $R=\mathbf{Z}_{3}$, then we can choose $q=3$, and if $R=k[[t]], k$ a field, then $q=t$. Let θ_{k} be the same as in Subsec. 2.1 (iv)

$$
\theta_{k}(\omega, z)=\sum_{m \in \mathbf{Z}} q^{(3 m+k)^{2}} w^{3 m+k}
$$

Then the power series θ_{k} converge I-adically.
Now we calculate the limit of $\left[\theta_{0}, \theta_{1}, \theta_{2}\right]$ as q tends to 0 .
First we shall show a computation, which once puzzled us so much.

$$
\begin{aligned}
\theta_{0}(q, w) & =\sum_{m \in \mathbf{Z}} q^{9 m^{2}} w^{3 m} \\
& =1+q^{9} w^{3}+q^{9} w^{-3}+q^{36} w^{6}+\cdots \\
\theta_{1}(q, w) & =\sum_{m \in \mathbf{Z}} q^{(3 m+1)^{2}} w^{3 m+1} \\
& =q w+q^{4} w^{-2}+q^{16} w^{4}+\cdots \\
\theta_{2}(q, w) & =\sum_{m \in \mathbf{Z}} q^{(3 m+2)^{2}} w^{3 m+2} \\
& =q w^{-1}+q^{4} w^{2}+q^{16} w^{-4}+q^{25} w^{5}+\cdots .
\end{aligned}
$$

Hence in \mathbf{P}^{2}

$$
\left.\lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right](q, w)\right]=[1,0,0]
$$

The elliptic curves converge to one point? This looks strange. The reason why we got the above is that we treated w as a constant. There is Néron model behind this strange phenomenon. We cannot explain it in detail here. Instead we show how to modify the above computation.

Let $w=q^{-1} u$ for $u \in R \backslash I$ and $\bar{u}=u \bmod I$. Then we have

$$
\begin{aligned}
\theta_{0}\left(q, q^{-1} u\right) & =\sum_{m \in \mathbf{Z}} q^{9 m^{2}-3 m} u^{3 m} \\
& =1+q^{6} u^{3}+q^{12} u^{-3}+q^{30} u^{6}+\cdots \\
\theta_{1}\left(q, q^{-1} u\right) & =\sum_{m \in \mathbf{Z}} q^{(3 m+1)^{2}-3 m-1} u^{3 m+1} \\
& =u+q^{6} u^{-2}+q^{12} u^{4}+\cdots \\
\theta_{2}\left(q, q^{-1} u\right) & =\sum_{m \in \mathbf{Z}} q^{(3 m+2)^{2}-3 m-2} u^{3 m+2} \\
& =q^{2} u^{2}+q^{2} u^{-1}+q^{20} u^{5}+q^{20} u^{-4}+\cdots .
\end{aligned}
$$

Hence in \mathbf{P}^{2}

$$
\lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(q, q^{-1} u\right)=[1, \bar{u}, 0]
$$

Similarly

$$
\begin{aligned}
& \theta_{0}\left(q, q^{-2} u\right)=1+q^{3} u^{3}+q^{15} u^{-3}+q^{24} u^{6}+\cdots, \\
& \theta_{1}\left(q, q^{-2} u\right)=q^{-1} u+q^{12} u^{-2}+q^{8} u^{4}+\cdots \\
& \theta_{2}\left(q, q^{-2} u\right)=u^{2}+q^{3} u^{-1}+q^{15} u^{5}+q^{24} u^{-4}+\cdots, \\
& \lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(q, q^{-2} u\right)=\lim _{q \rightarrow 0}\left[1, q^{-1} u, u^{2}\right]=[0,1,0] \quad \text { in } \mathbf{P}^{2} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \theta_{0}\left(q, q^{-3} u\right)=1+u^{3}+q^{18} u^{-3}+q^{18} u^{6}+\cdots, \\
& \theta_{1}\left(q, q^{-3} u\right)=q^{-2} u+q^{10} u^{-2}+q^{4} u^{4}+\cdots, \\
& \theta_{2}\left(q, q^{-3} u\right)=q^{-2} u^{2}+q^{4} u^{-1}+q^{10} u^{5}+q^{28} u^{-4}+\cdots, \\
& \lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(q, q^{-3} u\right)=\lim _{q \rightarrow 0}\left[1, q^{-2} u, u^{2}\right]=[0,1, \bar{u}] \quad \text { in } \mathbf{P}^{2} .
\end{aligned}
$$

Let $w=q^{-2 \lambda} u$ (a section over a finite extension of $k(\eta)$ for $\lambda \in \mathbf{Q}$) and $u \in R \backslash I$.
(8) $\lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(q, q^{-2 \lambda} u\right)= \begin{cases}{[1,0,0]} & (\text { if }-1 / 2<\lambda<1 / 2), \\ {[1, \bar{u}, 0]} & \text { (if } \lambda=1 / 2), \\ {[0,1,0]} & \text { (if } 1 / 2<\lambda<3 / 2), \\ {[0,1, \bar{u}]} & \text { (if } \lambda=3 / 2), \\ {[0,0,1]} & \text { (if } 3 / 2<\lambda<5 / 2) . \\ {[\bar{u}, 0,1]} & \text { (if } \lambda=5 / 2),\end{cases}$

When λ ranges in \mathbf{R}, the same calculation shows that the same limits repeat $\bmod Y=3 \mathbf{Z}$ because

$$
\lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(q, q^{6 n-a} u\right)=\lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(q, q^{-a} u\right)
$$

Thus we see that $\lim _{\tau \rightarrow \infty} C(\mu(\tau))$ is the 3 -gon $x_{0} x_{1} x_{2}=0$.
Definition 5.2. For $\lambda \in X \otimes_{\mathbf{z}} \mathbf{R}$ fixed, let

$$
F_{\lambda}:=a^{2}-2 \lambda a \quad(a \in X=\mathbf{Z})
$$

We define a Delaunay cell

$$
D(\lambda):=\begin{aligned}
& \text { the convex closure of all } a \in X \\
& \text { that attain the minimum of } F_{\lambda}
\end{aligned}
$$

By computations we see

$$
\begin{aligned}
D\left(j+\frac{1}{2}\right) & =[j, j+1]:=\{x \in \mathbf{R} ; j \leq x \leq j+1\}, \\
D(\lambda) & =\{j\} \quad\left(\text { if } j-\frac{1}{2}<\lambda<j+\frac{1}{2}\right), \\
{\left[\bar{\theta}_{k}\right]_{k=0,1,2}: } & \left.=\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-2 \lambda} u\right)\right)\right]_{k=0,1,2} \\
\bar{\theta}_{k} & = \begin{cases}\bar{u}^{j} & (\text { if } j \in D(\lambda) \cap(k+3 \mathbf{Z})) \\
0 & (\text { if } D(\lambda) \cap(k+3 \mathbf{Z})=\emptyset) .\end{cases}
\end{aligned}
$$

For instance $D\left(\frac{1}{2}\right) \cap(0+3 \mathbf{Z})=\{0\}, D\left(\frac{1}{2}\right) \cap(1+3 \mathbf{Z})=\{1\}$ and

$$
\left.\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-1} u\right)\right)\right]=\left[\bar{\theta}_{0}, \bar{\theta}_{1}, \bar{\theta}_{2}\right]=\left[\bar{u}^{0}, \bar{u}, 0\right]=[1, \bar{u}, 0] .
$$

Similarly for any $\lambda=j+(1 / 2)$, we have an algebraic torus as a limit

$$
\left\{\left[\bar{u}^{j}, \bar{u}^{j+1}\right] \in \mathbf{P}^{1} ; \bar{u} \in \mathbf{G}_{m}\right\} \simeq \mathbf{G}_{m}\left(=\mathbf{C}^{*}\right)
$$

Fig. 1. Delaunay decomposition

Let $\lambda \in X \otimes \mathbf{R}$, and $\sigma=D(\lambda)$ be a Delaunay cell, and $O(\sigma)$ the stratum of $C(\infty)$ consisting of limits of $\left(q, q^{-2 \lambda} u\right)$. If σ is one-dimensional, then $O(\sigma)=\mathbf{C}^{*}$, while $O(\sigma)$ is one point if σ is zero-dimensional. Thus we see that $C(\mu(\infty))$ is a disjoint union of $O(\sigma), \sigma$ being Delaunay cells $\bmod Y$, in other words, it is stratified in terms of the Delaunay decomposition $\bmod Y$.

Let $\sigma_{j}=[j, j+1]$ and $\tau_{j}=\{j\}$. Then the Delaunay decomposition (resp. the stratification of $C(\infty))$ is given in Fig. 1 (resp. Fig. 2).

Fig. 2. A 3-gon

5.3. The complex case

To apply the computation in the last section to the moduli problem, we need to know the scheme-theoretic limit of the image of $E(\omega)$.

Now let us write

$$
\theta_{k}(q, w)=\sum_{m \in \mathbf{Z}} q^{(3 m+k)^{2}} w^{3 m+k}=\sum_{m \in \mathbf{Z}} a(3 m+k) w^{3 m+k}
$$

where $a(x)=q^{x^{2}}$ for $x \in X:=\mathbf{Z}$. Let $Y=3 \mathbf{Z}$. Then θ_{k} is Y-invariant:

$$
\theta_{k}=\sum_{y \in Y} a(y+k) w^{y+k}
$$

Since the curve $E(\tau)$ is embedded into $\mathbf{P}_{\mathbf{C}}^{2}$ by θ_{k}, we see

$$
\begin{align*}
E(\omega) & =\operatorname{Proj} \mathbf{C}\left[x_{k}, k=0,1,2\right] /\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu(\omega) x_{0} x_{1} x_{2}\right) \\
& \simeq \operatorname{Proj} \mathbf{C}\left[\theta_{k} \vartheta, k=0,1,2\right] \tag{9}\\
& =\operatorname{Proj}\left(\mathbf{C}\left[\left[a(x) w^{x} \vartheta, x \in X\right]\right]\right)^{Y-\mathrm{inv}}
\end{align*}
$$

where ϑ is a transcendental element of degree one, $\operatorname{deg}\left(x_{k}\right)=1$, and $\operatorname{deg}\left(\theta_{k}\right)=0$ and $\operatorname{deg}\left(a(x) w^{x}\right)=0$. Recall that if $U=\operatorname{Spec} A$ is affine, G a finite group acting on U, then

$$
U / G=\operatorname{Spec} A^{G-\mathrm{inv}}
$$

So we wish to regard $E(\omega)$ as

$$
E(\omega)=\left(\operatorname{Proj}\left(\mathbf{C}\left[\left[a(x) w^{x} \vartheta, x \in X\right]\right]\right)\right) / Y
$$

Is this really true? Over $\mathbf{C}, a(x) \in \mathbf{C}^{\times}$, and

$$
\mathbf{G}_{m}=\operatorname{Proj} \mathbf{C}\left[a(x) w^{x} \vartheta, x \in X\right],
$$

In fact, the rhs is covered with infinitely many affine U_{k}

$$
U_{k}=\operatorname{Spec} \mathbf{C}\left[a(x) w^{x} \vartheta / a(k) w^{k} \vartheta ; x \in X\right]=\operatorname{Spec} \mathbf{C}\left[w, w^{-1}\right]=\mathbf{G}_{m}
$$

which is independent of k. Hence over \mathbf{C}

$$
\begin{align*}
E(\omega) & \simeq \mathbf{G}_{m} / w \mapsto q^{6} w \\
& \simeq \mathbf{G}_{m} /\left\{w \mapsto q^{2 y} w ; y \in 3 \mathbf{Z}\right\} \tag{10}\\
& \simeq\left(\operatorname{Proj} \mathbf{C}\left[a(x) w^{x} \vartheta, x \in X\right]\right) / Y .
\end{align*}
$$

Thus we see by combining (9) and (10)

$$
\begin{align*}
E(\omega) & \simeq \operatorname{Proj}\left(\mathbf{C}\left[\left[a(x) w^{x} \vartheta, x \in X\right]\right]\right)^{Y-\mathrm{inv}} \\
& \simeq\left(\operatorname{Proj} \mathbf{C}\left[a(x) w^{x} \vartheta, x \in X\right]\right) / Y \tag{11}
\end{align*}
$$

though we should make the convergence of infinite sum precise. In fact, this is easily justified when R is a CDVR.

5.4. The scheme-theoretic limit

We define the subring \widetilde{R} of $k(\eta)\left[w, w^{-1}\right][\vartheta]$ by

$$
\widetilde{R}=R\left[a(x) w^{x} \vartheta ; x \in X\right]
$$

where $a(x)=q^{x^{2}}$ for $x \in X, X=\mathbf{Z}$, and ϑ is an indeterminate of degree one, where q is the uniformizer of R. We define the action of Y on \widetilde{R} by the ring homomorphism

$$
\begin{equation*}
S_{y}^{*}\left(a(x) w^{x} \vartheta\right)=a(x+y) w^{x+y} \vartheta \tag{12}
\end{equation*}
$$

where $Y=3 \mathbf{Z} \subset X$. Then what does Z look like?

$$
Z=\operatorname{Proj} R\left[a(x) w^{x} \vartheta, x \in X\right] / Y
$$

Let \mathcal{X} and U_{n} be

$$
\begin{aligned}
\mathcal{X} & =\operatorname{Proj} R\left[a(x) w^{x} \vartheta, x \in X\right], \\
U_{n} & =\operatorname{Spec} R\left[a(x) w^{x} / a(n) w^{n}, x \in X\right] \\
& =\operatorname{Spec} R\left[(a(n+1) / a(n)) w,(a(n-1) / a(n)) w^{-1}\right] \\
& =\operatorname{Spec} R\left[q^{2 n+1} w, q^{-2 n+1} w^{-1}\right] \\
& \simeq \operatorname{Spec} R\left[x_{n}, y_{n}\right] /\left(x_{n} y_{n}-q^{2}\right),
\end{aligned}
$$

where U_{n} and U_{n+1} are glued together by

$$
x_{n+1}=x_{n}^{2} y_{n}, y_{n+1}=x_{n}^{-1}, x_{n}=q^{2 n+1} w, y_{n}=q^{-2 n+1} w^{-1}
$$

Fig. 3. An infinite chain

Let $\mathcal{X}_{0}:=\mathcal{X} \otimes_{R}(R / q R)$ and $V_{n}=\mathcal{X}_{0} \cap U_{n}$. Then \mathcal{X}_{0} is an infinite chain of \mathbf{P}^{1}, as in Fig. 3 .

The action of the sublattice $Y=3 \mathbf{Z}$ on \mathcal{X}_{0} is transfer by 3 components. In fact, S_{-3} sends

$$
\begin{gathered}
V_{n} \stackrel{S_{-3}}{\rightarrow} V_{n+3} \stackrel{S_{-3}}{\longrightarrow} V_{n+6} \rightarrow \cdots, \\
\left(x_{n}, y_{n}\right) \stackrel{S_{-3}}{\mapsto}\left(x_{n+3}, y_{n+3}\right)=\left(x_{n}, y_{n}\right)
\end{gathered}
$$

so that we have a cycle of 3 rational curves as the quotient \mathcal{X}_{0} / Y. Thus we have the same consequence as in Subsec. 5.1 by using theta functions.

5.5. The partially degenerate case in dimension two

We wish to describe any PSQAS in the partially degenerate case in dimension two. For simplicity, we shall give it directly by using theta functions. See Subsec. 6.7 for the totally degenerate case.

Case 5.5.1. First we consider the complex case. Let

$$
\delta=\operatorname{diag}(\ell, m):=\left(\begin{array}{cc}
\ell & 0 \\
0 & m
\end{array}\right), \quad \tau=\left(\begin{array}{cc}
\tau_{11} & \tau_{12} \\
\tau_{12} & \tau_{22}
\end{array}\right), \quad \tau_{12}=\tau_{21}
$$

Let Λ be the lattice spanned by column vectors of I_{2} and $\tau \delta$, and G_{η} the abelian variety \mathbf{C}^{2} / Λ. We consider the degeneration of G_{η} as
$q:=e^{\pi i \tau_{22}}$ tends to 0 . Assume ℓ and $m \geq 3$. Following [42, Chap. VII, pp. 77-79] we define for $k=\left(k_{1}, k_{2}\right)\left(0 \leq k_{1} \leq \ell-1,0 \leq k_{2} \leq m-1\right)$,

$$
\begin{aligned}
\theta_{k} & =\sum_{n \in \mathbf{Z}^{2}} e^{\pi i^{t}(\delta n+k) \tau(\delta n+k)+2 \pi i^{t}(\delta n+k) z} \\
& =\sum_{n_{2} \in \mathbf{Z}} q^{\left(m n_{2}+k_{2}\right)^{2}} w^{m n_{2}+k_{2}} \vartheta_{k_{1}}\left(z_{1}+\left(m n_{2}+k_{2}\right) \tau_{12}\right),
\end{aligned}
$$

where $T=\tau \delta, W=\delta T$ with the notation of [42], $q=e^{\pi i \tau_{22}}$ and $\vartheta_{k_{1}}$ is a theta function of level ℓ of one variable. Hence

$$
\begin{equation*}
\theta_{k}=\sum_{n_{2} \in \mathbf{Z}} T_{\left(m n_{2}+k_{2}\right) \tau_{12}}^{*}\left(\vartheta_{k_{1}}\right) q^{\left(m n_{2}+k_{2}\right)^{2}} w^{m n_{2}+k_{2}} \tag{13}
\end{equation*}
$$

where (13) is a general form of algebraic theta functions in [30, Theorem 4.10 (3)].

Case 5.5.2. Now we consider the general case. In any algebraic case, we can start with the last form (13) of theta functions by [30, Theorem 4.10], where q is a uniformizing parameter of a CDVR R. In this case, $X=\mathbf{Z}, Y=m \mathbf{Z}$ and the Delaunay decomposition associated with this degeneration of abelian surfaces is the union of the unit intervals $[j, j+1](j \in \mathbf{Z})$ modulo Y.

Let $H=(\mathbf{Z} / \ell \mathbf{Z}) \oplus(X / Y) \simeq(\mathbf{Z} / \ell \mathbf{Z}) \oplus(\mathbf{Z} / m \mathbf{Z})$. By the theta functions θ_{k} we have a closed immersion of an abelian variety G_{η} to $\mathbf{P}\left(V_{H}\right)$. We compute the limit of the image of G_{η} as q tends to 0 .

By the assumption $\ell \geq 3, \vartheta_{k_{1}}\left(0 \leq k_{1} \leq \ell-1\right)$ embeds an elliptic curve into the projective space $\mathbf{P}^{\ell-1}$.

Let $w=q^{-2 a-1} v(a \in \mathbf{Z}), v \in R \backslash I$ and $I=q R$. Let $\bar{v}=v \bmod I$. Then we have

$$
\begin{aligned}
\theta_{k_{1}, a}\left(q, u, q^{-2 a-1} v\right) & =q^{-a^{2}-a} T_{a \tau_{12}}^{*} \vartheta_{k_{1}}+\cdots, \\
\theta_{k_{1}, a+1}\left(q, u, q^{-2 a-1} v\right) & =q^{-a^{2}-a} T_{(a+1) \tau_{12}}^{*} \vartheta_{k_{1}}+\cdots, \\
\theta_{k_{1}, k_{2}}\left(q, u, q^{-2 a-1} v\right) & \equiv 0 \bmod q^{-a^{2}-a+1}, \quad\left(k_{2} \neq a, a+1\right),
\end{aligned}
$$

whence

$$
\begin{aligned}
\lim _{q \rightarrow 0}\left[\theta_{k_{1}, k_{2}}\left(q, u, q^{-2 a-1} v\right)\right]_{\left(k_{1}, k_{2}\right) \in H} & =\left[\theta_{k_{1}, a} u^{a}, \theta_{k_{1}, a+1} u^{a+1}\right]_{k_{1}} \\
& =[\underbrace{T_{a \tau_{12}}^{*} \vartheta_{k_{1}}}_{k_{2}=a}, \underbrace{\left(T_{(a+1) \tau_{12}}^{*} \vartheta_{k_{1}}\right) v}_{k_{2}=a+1}]]_{k_{1}}
\end{aligned}
$$

with zero terms ignored. In particular, for $w=q^{-1} v$, we have

$$
\begin{equation*}
\lim _{q \rightarrow 0}\left[\theta_{k_{1}, k_{2}}\left(q, u, q^{-1} v\right)\right]_{\left(k_{1}, k_{2}\right) \in H}=\left[\theta_{k_{1}, 0}, \theta_{k_{1}, 1}\right]=[\underbrace{\vartheta_{k_{1}}}_{k_{2}=0}, \underbrace{\left(T_{\tau_{12}}^{*} \vartheta_{k_{1}}\right) v}_{k_{2}=1}] . \tag{14}
\end{equation*}
$$

For $a=m$, we have

$$
\begin{equation*}
\lim _{q \rightarrow 0}\left[\theta_{k_{1}, k_{2}}\left(q, u, q^{-2 m-1} v\right)\right]_{\left(k_{1}, k_{2}\right) \in H}=[\underbrace{T_{m \tau_{12}}^{*} \vartheta_{k_{1}}}_{k_{2}=0}, \underbrace{\left(T_{(m+1) \tau_{12}}^{*} \vartheta_{k_{1}}\right) v}_{k_{2}=1}] \tag{15}
\end{equation*}
$$

Thus the limit of the abelian surface $\left(G_{\eta}, \mathcal{L}_{\eta}\right)$ as $q \rightarrow 0$ is the union of m copies of one and the same \mathbf{P}^{1}-bundle over an elliptic curve. By (14), any of the \mathbf{P}^{1}-bundle is the same compactification of the same $\mathbf{G}_{m^{-}}$ bundle whose extension class is given by τ_{12} through the isomorphism

$$
\operatorname{Ext}\left(E, \mathbf{G}_{m}\right) \simeq E^{\vee} \simeq E \ni \tau_{12}
$$

By (14) and (15), the zero section of the first \mathbf{P}^{1}-bundle is identified with the ∞-section of the m-th \mathbf{P}^{1}-bundle by shifting by τ_{12}.

§6. PSQASes in the general case

6.1. The degeneration data of Faltings-Chai

Now we consider the general case. Let R be a complete discrete valuation ring (CDVR), $k(\eta)$ the fraction field of R, I the maximal ideal of R, q a generator (uniformizer) of I and $S=\operatorname{Spec} R$. Then we can construct similar degenerations of abelian varieties if we are given a lattice X, a sublattice Y of X of finite index and

$$
a(x) \in k(\eta)^{\times}, \quad(x \in X)
$$

such that the following conditions are satisfied
(i) $a(0)=1$,
(ii) $b(x, y):=a(x+y) a(x)^{-1} a(y)^{-1}$ is a symmetric bilinear form on $X \times X$,
(iii) $B(x, y):=\operatorname{val}_{q} b(x, y)$ is positive definite,
(iv)* B is even and $\operatorname{val}_{q} a(x)=B(x, x) / 2$.

We assume here a stronger condition (iv)* for simplicity.
These data do exist for any abelian scheme G_{η} if G_{0} is a split torus. This is proved by Faltings-Chai [7].

Suppose that we are given an abelian scheme $\left(G_{\eta}, \mathcal{L}_{\eta}\right)$ and a polarization morphism

$$
\begin{equation*}
\lambda\left(\mathcal{L}_{\eta}\right): G_{\eta} \rightarrow G_{\eta}^{t}:=\operatorname{Pic}^{0}\left(G_{\eta}\right) \tag{16}
\end{equation*}
$$

Then there exists the connected Néron model of G_{η} (resp. G_{η}^{t}), which we denote by G (resp. G^{t}). Then by finite base change if necessary we may assume G is semi-abelian, that is, an extension of an abelian scheme by an algebraic torus.

For simplicity, we assume

$$
\begin{equation*}
G_{0} \text { are } G_{0}^{t} \text { are split tori over } k(0):=R / q R . \tag{17}
\end{equation*}
$$

Let

$$
\begin{equation*}
X=\operatorname{Hom}_{\text {gp.sch. }}\left(G_{0}, \mathbf{G}_{m}\right), \quad Y=\operatorname{Hom}_{\text {gp.sch. }}\left(G_{0}^{t}, \mathbf{G}_{m}\right) \tag{18}
\end{equation*}
$$

Then both X and Y are lattices of rank g, and Y is a sublattice of X of finite index because $G_{0} \rightarrow G_{0}^{t}$ is surjective. This case is called a totally degenerate case, that is, the case when $\operatorname{rank}_{\mathbf{Z}} X=\operatorname{dim} G_{\eta}$, which is what we mainly discuss here.

If G_{0} is neither a torus nor an abelian variety, then the case is called a partially degenerate case. Also in the partially degenerate case we have degeneration data similar to the above $a(x)$ and $b(x, y)$, though a bit more complicated. This enables us to similarly construct a degenerating family of abelian varieties.

In what follows we consider the case where G_{0} is a (split) torus $\mathbf{G}_{m, k(0)}^{g}$ over $k(0)$.

Lemma 6.1.1. Let R be a $C D V R, G$ a flat S-group scheme, and G_{0} the closed fiber of G. Suppose that G_{0} is a (split) torus $\mathbf{G}_{m, k(0)}^{g}$ over $k(0)$ for some g. Then the formal completion $G_{\text {for }}$ of G along G_{0} is isomorphic to a formal R-torus:

$$
\begin{equation*}
G_{\mathrm{for}} \simeq \mathbf{G}_{m, R, \text { for }}^{g}=\operatorname{Spf} R\left[\left[w^{x} ; x \in X\right]\right]^{\text {I-adic }} \tag{19}
\end{equation*}
$$

where X is a lattice of rank g.
Proof. Let $k=k(0)$. Let n be any nonnegative integer, $R_{n}=$ $R / I^{n+1}, S_{n}=\operatorname{Spec} R_{n}$ and $G_{n}:=G \times_{S} S_{n}$. By the assumption, $G_{0}=$ $\mathbf{G}_{m, k}^{g}$ for some g. Let $H:=\mathbf{G}_{m, R, \text { for }}^{g}$ (the formal torus over R) and $H_{n}=H \times{ }_{S} S_{n}$. Hence $G_{0}=H_{0}=\mathbf{G}_{m, k}^{g}$. Let $f_{0}: H_{0} \rightarrow G_{0}$ be the identity $\operatorname{id}_{\mathbf{G}_{m, k}^{g}}$ of $\mathbf{G}_{m, k}^{g}$. Since $H_{0}=\mathbf{G}_{m, R_{0}}^{g}$ is affine, the cohomology group $H^{2}\left(H_{0}, f_{0}^{*} \mathcal{L i e}\left(G_{0} / k\right)\right)$ vanishes, where $\mathcal{L i e}\left(G_{0} / k\right)$ is the tangent sheaf of G_{0}, hence isomorphic to $O_{G_{0}}^{g}$, hence $\left.f_{0}^{*} \mathcal{L} i e\left(G_{0} / k\right)\right) \simeq O_{H_{0}}^{g}$. By applying [6, I, Exposé III, Corollaire 2.8, p. 118] to H_{1}, G_{1} and f_{0}, we see that f_{0} can be uniquely lifted to an S_{1} (homo)morphism $f_{1}: H_{1} \rightarrow G_{1}$ as S_{1}-group schemes. This lifting f_{1} is an isomorphism because f_{0} is an isomorphism. Similarly any isomorphism $f_{n}: H_{n} \rightarrow G_{n}$ as S_{n}-group
schemes can be lifted again by [6, I, Exposé III, Corollaire 2.8, p. 118] to an S_{n+1}-isomorphism $f_{n+1}: H_{n+1} \rightarrow G_{n+1}$ as S_{n+1}-group schemes because H_{n} is affine, and the cohomology group $H^{2}\left(H_{n}, f_{n}^{*} \mathcal{L} i e\left(G_{n} / k\right)\right)$ vanishes by the same argument as the $n=0$ case. Hence $H_{\text {for }} \simeq G_{\text {for }}$ as S-group schemes.

Lemma 6.1.2. We have
(1) any line bundle on $\mathbf{G}_{m, R, \text { for }}^{g}$ is trivial.
(2) any global section $\theta \in \Gamma\left(G, \mathcal{L}^{n}\right)$ is a formal power series of w^{x}, and we can write θ as

$$
\begin{equation*}
\theta=\sum_{x \in X} \sigma_{x}(\theta) w^{x} \tag{20}
\end{equation*}
$$

for some $\sigma_{x}(\theta) \in R$.
Proof. Let $R_{n}=R / I^{n+1}, A_{n}:=R_{n}\left[w_{i}^{ \pm 1} ; i=1, \cdots, g\right]$ and

$$
G_{n}:=\mathbf{G}_{m}^{g} \otimes R_{n}=\operatorname{Spec} A_{n}
$$

To prove the first assertion, it suffices to prove
(i) any line bundle L_{0} on G_{0} is trivial,
(ii) if a line bundle L on G_{n} is trivial on G_{n-1}, it is trivial on G_{n}.

Any line bundle L_{0} on G_{0} is linearly equivalent to $D-D^{\prime}$ for some effective divisors D and D^{\prime} on G_{0}. For proving (i) it suffices to prove that the line bundle $L^{\prime}=[D]$ associated to any irreducible divisor D on G_{0} is trivial. Since G_{0} is affine, D is defined by a prime ideal \mathfrak{p} of A_{0} of height one. Since A_{0} is a UFD, \mathfrak{p} is generated by a single generator [19, Theorem 47, p. 141], hence it defines a trivial line bundle globally on G_{0}. This proves (i).

Next we prove (ii). Since G_{n} is an R_{n}-scheme, we can find an affine covering $U_{j}=\operatorname{Spec} B_{j}$ of G_{n} for some R_{n}-algebras B_{j}, and one cocycle $f_{j k} \in \Gamma\left(O_{U_{j k}}\right)^{\times}$(the units of $\Gamma\left(O_{U_{j k}}\right)$) associated to the line bundle L on G_{n} such that

$$
\begin{equation*}
f_{i j} f_{j k}=f_{i k} \tag{21}
\end{equation*}
$$

By the assumption that L is trivial on G_{n-1} there exist $g_{j} \in B_{j}^{\times}$such that $f_{i j}=g_{i}^{-1} g_{j} \bmod I^{n}$. Let $g_{i j}=g_{i} g_{j}^{-1} f_{i j}$. Then $g_{i j}$ is the one cocycle defining L on G_{n} such that $g_{i j}=1+a_{i j} q^{n}$ for some $a_{i j} \in B_{i j}$. By (21), we have $g_{i j} g_{j k}=g_{i k}$, hence

$$
a_{i j}+a_{j k}=a_{i k} \quad \text { in } B_{i j k} \otimes R / I
$$

where $B_{i j k}=\Gamma\left(O_{U_{i} \cap U_{j} \cap U_{k}}\right)$. Since $H^{1}\left(O_{G_{0}}\right)=0$, we have $b_{j} \in B_{i} \otimes R_{0}$ such that $a_{i j}=-b_{i}+b_{j}$. Hence

$$
g_{i j}=\left(1+b_{i} q^{n}\right)^{-1}\left(1+b_{j} q^{n}\right)
$$

which defines the trivial line bundle on G_{n}. This proves (ii). Hence this completes the proof of the first assertion of Lemma 6.1.2. The second assertion of Lemma 6.1.2 follows easily from it. Q.E.D.

Theorem 6.1.3. If G is totally degenerate, then by a suitable finite base change, there exist data $\{a(x) ; x \in X\}$ satisfying (i)-(iv)*. In terms of these data, we have using the expression (20)
(v) for any $n \geq 1, \Gamma\left(G_{\eta}, \mathcal{L}_{\eta}^{n}\right)$ is the $k(\eta)$ vector space of θ such that

$$
\sigma_{x+y}(\theta)=a(y)^{n} b(y, x) \sigma_{x}(\theta)
$$

and $\sigma_{x}(\theta) \in k(\eta)$ for any $x \in X, y \in Y$.
The condition (v) enables us to prove the part (1) of Theorem 4.6.

6.2. Construction

So we may assume we are given the data $a(x)$ as above. Then we define $\mathcal{X}, U_{n}(n \in X)$, by

$$
\begin{aligned}
\mathcal{X} & =\operatorname{Proj} \widetilde{R}, \quad \widetilde{R}:=R\left[a(x) w^{x} \vartheta ; x \in X\right], \\
U_{n} & =\operatorname{Spec} R\left[a(x) w^{x} / a(n) w^{n} ; x \in X\right] \\
& =\operatorname{Spec} R\left[(a(x) / a(n)) w^{x-n}\right],
\end{aligned}
$$

where \widetilde{R} is a subring of $k(\eta)\left[w^{x} ; x \in X\right][\vartheta]$ as in Subsec. 5.4, and \mathcal{X} is a scheme locally of finite type, covered with open affine schemes U_{n} $(n \in X)$. Let $\mathcal{X}_{\text {for }}$ be the formal completion of \mathcal{X} along the special fiber.

We define $\mathcal{L}_{\mathcal{X}}$ to be the line bundle of \mathcal{X} given by the homogeneous ideal of \widetilde{R} generated by the degree one generator ϑ. We identify $X \times_{\mathbf{Z}}$ $\mathbf{G}_{m, R}\left(\simeq \mathbf{G}_{m, R}^{g}\right)$ with $\operatorname{Hom}_{\mathbf{Z}}\left(X, \mathbf{G}_{m, R}\right)$. Then we have the actions S_{z} and T_{β} on \mathcal{X} as follows:

$$
\begin{aligned}
S_{z}^{*}\left(a(x) w^{x} \vartheta\right) & =a(x+z) w^{x+z} \vartheta, \\
T_{\beta}^{*}\left(a(x) w^{x} \vartheta\right) & =\beta(x) a(x) w^{x} \vartheta, \text { hence } \\
T_{\beta}^{*} S_{z}^{*}\left(a(x) w^{x} \vartheta\right) & =\beta(x+z) a(x+z) w^{x+z} \vartheta, \\
S_{z}^{*} T_{\beta}^{*}\left(a(x) w^{x} \vartheta\right) & =\beta(x) a(x+z) w^{x+z} \vartheta,
\end{aligned}
$$

where $z \in X$ and $\beta \in \operatorname{Hom}\left(X, \mathbf{G}_{m, R}\right)\left(\simeq \mathbf{G}_{m, R}^{g}\right)$. It follows that on $\mathcal{L}_{\mathcal{X}}$

$$
\begin{equation*}
S_{z} T_{\beta}=\beta(z) T_{\beta} S_{z}, \quad \text { or } \quad\left[S_{z}, T_{\beta}\right]=\beta(z) \operatorname{id}_{\mathcal{L}_{\mathcal{X}}} \tag{22}
\end{equation*}
$$

$$
\begin{aligned}
\text { Let } Q_{\text {for }}:= & \mathcal{X}_{\text {for }} / Y:=\mathcal{X}_{\text {for }} /\left\{S_{y} ; y \in Y\right\}: \\
& \mathcal{X}_{\text {for }} / Y=\left(\operatorname{Proj} R\left[a(x) w^{x} \vartheta, x \in X\right]\right)_{\text {for }} / Y .
\end{aligned}
$$

Then $\mathcal{L}_{\mathcal{X}}$ descends to the formal quotient $Q_{\text {for }}$ as an ample sheaf. Hence by Grothendieck's algebraization theorem [10, III, 11, 5.4.5] there exists a scheme (Q, \mathcal{L}) such that the formal completion of $(Q, \mathcal{L})_{\text {for }}$ is isomorphic to $\left(Q_{\text {for }}, \mathcal{L}_{\text {for }}\right)$. This is $\left(Q, \mathcal{L}_{Q}\right)$ in Theorem 4.6.

Remark 6.2.1. For any connected R-scheme T, and for any T valued points $x \in X(T)=X$ and $\beta \in \operatorname{Hom}\left(X, \mathbf{G}_{m, R}\right)(T)$, we have $\beta(x) \in \mathbf{G}_{m, R}(T)=\Gamma\left(O_{T}\right)^{\times}$. Any $\beta \in \operatorname{Hom}\left(X, \mathbf{G}_{m, R}\right)$ acts on \mathcal{X} by T_{β}. It follows that the R-split torus $\operatorname{Hom}\left(X, \mathbf{G}_{m, R}\right)$ acts on \mathcal{X} by T_{β}.

Definition 6.2.2. Let $H=X / Y, H^{\vee}:=\operatorname{Hom}\left(H, \mathbf{G}_{m}\right)$. We define $\mathcal{G}(Q, \mathcal{L})=\mathcal{G}(P, \mathcal{L})$ to be the group generated by S_{z} and $T_{\beta}(z \in H=$ $\left.X / Y, \beta \in H^{\vee}\right)$. Since H^{\vee} is a subgroup of $\operatorname{Hom}\left(X, \mathbf{G}_{m}\right)$, we infer from (22) that

$$
\begin{equation*}
S_{z} T_{\beta}=\beta(z) T_{\beta} S_{z} \tag{23}
\end{equation*}
$$

This is isomorphic to \mathcal{G}_{H} in Definition 3.5 by mapping S_{z} (resp. T_{β}) to $(1, z, 0)$ (resp. $(1,0, \beta)$).

In what follows, we wish to prove Theorem 4.6 (1)

$$
\begin{equation*}
\left(P_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(Q_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(G_{\eta}, \mathcal{L}_{\eta}\right) \tag{24}
\end{equation*}
$$

For doing so, we essentially need only the following.
Lemma 6.3. With the notation in Subsec. 4.3 and Theorem 4.6, suppose $\left(K_{\eta}, e_{\text {Weil }}\right) \simeq\left(K, e_{K}\right)$ as symplectic groups. Let $Z=P$ or Q. Then there exists n_{0} such that for any $n \geq n_{0}$ we have
(1) $H^{q}\left(Z_{0}, \mathcal{L}_{0}^{n}\right)=H^{q}\left(Z, \mathcal{L}^{n}\right)=0$ for $q \geq 1$,
(2) $\Gamma\left(Z_{0}, \mathcal{L}_{0}^{n}\right)=\Gamma\left(Z, \mathcal{L}^{n}\right) \otimes k(0)$ is a $k(0)$-vector space rank $n^{g} \sqrt{|K|}$,
(3) $\Gamma\left(P_{\eta}, \mathcal{L}_{\eta}^{n}\right)=\Gamma\left(P, \mathcal{L}^{n}\right) \otimes k(\eta)$,
(4) $\Gamma(P, \mathcal{L})=\Gamma(Q, \mathcal{L})$, which is a free R-module of rank $\sqrt{|K|}$,
(5) if $e_{\min }(K) \geq 3$, then $\Gamma(Q, \mathcal{L})$ is very ample on Q.

Proof. This is a corollary to Serre's vanishing theorem except (4). See [30, Lemma 5.12] for (4). See [30, Lemma 6.3] for (5). Q.E.D.

6.4. Proof of $\left(P_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(Q_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(G_{\eta}, \mathcal{L}_{\eta}\right)$

By [30, Remark 3.10, p. 673] (see also [30, Remark 4.11, p. 679]), $\Gamma\left(P_{\eta}, \mathcal{L}_{\eta}^{n}\right)$ is a $k(\eta)$-submodule of $\Gamma\left(G_{\text {for }}, \mathcal{L}_{\text {for }}^{n}\right) \otimes k(\eta)$ given by

$$
\left\{\theta=\sum_{x \in X} c(x) w^{x} ; \begin{array}{l}
c(x+n y)=b(y, x) a(y)^{n} c(x) \\
c(x) \in k(\eta), \text { any } x \in X, y \in Y
\end{array}\right\}
$$

where the I-adic convergence of θ is automatic by the condition

$$
c(x+n y)=b(y, x) a(y)^{n} c(x)
$$

This is the same as $\Gamma\left(G_{\eta}, \mathcal{L}_{\eta}^{n}\right)$ by Theorem 6.1.3. A $k(\eta)$-basis of $\Gamma\left(G_{\eta}, \mathcal{L}_{\eta}^{n}\right)$ is given for instance as $\theta_{\bar{x}}^{[n]}(x \in X / n Y)$

$$
\theta_{\bar{x}}^{[n]}:=\sum_{y \in Y} b(y, x) a(y)^{n} a(x) w^{x+n y}=\sum_{y \in Y} a(y)^{n-1} a(x+y) w^{x+n y} .
$$

We choose $n \geq 4$ large enough so that \mathcal{L}_{η}^{n} is very ample. Then the abelian variety G_{η} embedded by the linear system $\Gamma\left(G_{\eta}, \mathcal{L}_{\eta}^{n}\right)$ is given as the intersection of certain quadrics of $\theta_{\bar{x}}^{[n]}$ by [22, Theorem 10, p.80] (see also [40, Theorem 2.1, p. 717]). The coefficients of the defining equations are given by the Fourier coefficients of $\theta_{\bar{x}}^{[n]}$. This proves

$$
\left(Q_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(P_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(G_{\eta}, \mathcal{L}_{\eta}\right)
$$

where $\left(Q_{\eta}, \mathcal{L}_{\eta}\right) \simeq\left(P_{\eta}, \mathcal{L}_{\eta}\right)$ is clear.

6.5. The Delaunay decompositions

Let X be a lattice of rank g and B a positive symmetric integral bilinear form on X associated with the degeneration data for $(\mathcal{Z}, \mathcal{L})$.

Definition 6.5.1. For a fixed $\lambda \in X \otimes_{\mathbf{z}} \mathbf{R}$ fixed, we define a Delaunay cell σ to be the convex closure of all the integral vectors (which we call Delaunay vectors) attaining the minimum of the function

$$
B(x, x)-2 B(\lambda, x) \quad(x \in X)
$$

When λ ranges in $X \otimes_{\mathbf{z}} \mathbf{R}$, we will have various Delaunay cells. Together, they constitute a locally finite polyhedral decomposition of $X \otimes_{\mathbf{z}} \mathbf{R}$, invariant under the translation by X. We call this the Delaunay decomposition of $X \otimes_{\mathbf{Z}} \mathbf{R}$, which we denote by Del_{B}.

There are two types of Delaunay decomposition of $\mathbf{Z}^{2} \otimes \mathbf{R}=\mathbf{R}^{2}$ inequivalent under the action of $\operatorname{SL}(2, \mathbf{Z})$. See Figure 4.

The Delaunay decomposition describes a PSQAS as follows.
Theorem 6.6. Let $(Z, L):=\left(Q_{0}, \mathcal{L}_{0}\right)$ be a totally degenerate PSQAS, X the integral lattice, Y the sublattice of X of finite index and B the positive integral bilinear form on X all of which were defined in Subsec. 6.1. Let σ, τ be Delaunay cells in Del_{B}. Then
(1) for each σ there exists a subscheme $O(\sigma)$ of Z_{red}, which is a torus of dimension $\operatorname{dim} \sigma$ invariant under the action of the torus G_{0},
(2) $\sigma \subset \tau$ iff $O(\sigma) \subset \overline{O(\tau)}$, where $\overline{O(\tau)}$ is the closure of $O(\tau)$ in
(3) $\frac{Z,}{O(\tau)}$ is the disjoint union of $O(\sigma)$ for all $\sigma \subset \tau$,
(4) $Z_{\mathrm{red}}=\bigcup_{\sigma \in \operatorname{Del}_{B} \bmod Y} O(\sigma)$,
(5) the local scheme structure of Z is completely described by B,
(6) L is ample, and it is very ample if $e_{\min }(X / Y) \geq 3$.

Fig. 4. Delaunay decompositions

We have similar descriptions of the partially degenerate PSQASes and of TSQASes $\left(P_{0}, \mathcal{L}_{0}\right)$ (see [2, p. 410] and [30, p. 678]).

6.7. The totally degenerate case in dimension two

We note that we learned more or less the same computation as this subsection in a letter of K. Ueno to Namikwa in 1972. We shall explain here what Figure 4 means geometrically.

We follow the construction in Subsec. 6.2. Let R be a CDVR with uniformizer $q, k(0)=R / q R$ and $X=\mathbf{Z} f_{1} \oplus \mathbf{Z} f_{2}$ a lattice of rank two. Let ℓ and m be any positive integers, and set $Y=\mathbf{Z} \ell f_{1} \oplus \mathbf{Z} m f_{2}$.

Case 6.7.1. Let $B(x)=x_{1}^{2}+x_{2}^{2}$,

$$
a(x)=q^{x_{1}^{2}+x_{2}^{2}} a^{2 x_{1} x_{2}}, b(x, y)=q^{2 x_{1} y_{1}+2 x_{2} y_{2}} a^{2 x_{1} y_{2}+2 y_{1} x_{2}}
$$

where $a \in R^{\times}, x=x_{1} f_{1}+x_{2} f_{2}, y=y_{1} f_{1}+y_{2} f_{2}$. Then we define

$$
\begin{aligned}
\mathcal{X} & =\operatorname{Proj} R\left[a(x) w^{x} \vartheta, x \in X\right], \\
U_{n} & =\operatorname{Spec} R\left[a(x) w^{x} / a(n) w^{n}, x \in X\right] \quad(n \in X) \\
& =\operatorname{Spec} R\left[(a(x) / a(n)) w^{x-n}\right], \\
\mathcal{X}_{\text {for }} / Y & =\left(\operatorname{Proj} R\left[a(x) w^{x} \vartheta, x \in X\right]\right)_{\text {for }} / Y .
\end{aligned}
$$

Let $Q_{\text {for }}^{\prime}:=\mathcal{X}_{\text {for }} / Y$. Let $n=0$ for simplicity. Then we have

$$
\begin{aligned}
U_{0} & =\operatorname{Spec} R\left[a\left(f_{1}\right) w_{1}, a\left(f_{2}\right) w_{2}, a\left(-f_{1}\right) w_{1}^{-1}, a\left(-f_{2}\right) w_{2}^{-1}\right], \\
\left(U_{0}\right)_{0} & =\operatorname{Spec} R\left[q w_{1}, q w_{2}, q w_{1}^{-1}, q w_{2}^{-1}\right] \otimes k(0) \\
& \simeq \operatorname{Spec} k(0)\left[u_{1}, u_{2}, v_{1}, v_{2}\right] /\left(u_{1} v_{1}, u_{2} v_{2}\right),
\end{aligned}
$$

where $\left(U_{0}\right)_{0}=U_{0} \otimes k(0)$. Hence $U_{n} \simeq U_{0}$ and

$$
\left(U_{n}\right)_{0}:=\operatorname{Spec} k(0)\left[u_{1}^{(n)}, u_{2}^{(n)}, v_{1}^{(n)}, v_{2}^{(n)}\right] /\left(u_{1}^{(n)} v_{1}^{(n)}, u_{2}^{(n)} v_{2}^{(n)}\right)
$$

where $n=n_{1} f_{1}+n_{2} f_{2}$, and

$$
\begin{gathered}
u_{1}^{(n)}=q^{2 n_{1}+1} w_{1}, u_{2}^{(n)}=q^{\left(2 n_{2}+1\right)} w_{2}, \\
v_{1}^{(n)}=q^{\left(-2 n_{1}+1\right)} w_{1}^{-1}, v_{2}^{(n)}=q^{\left(-2 n_{2}+1\right)} w_{2}^{-1} .
\end{gathered}
$$

These charts will be patched together to yield $\left(Q_{\text {for }}^{\prime}\right)_{0}$.
This PSQAS $\left(Q_{\text {for }}^{\prime}\right)_{0}$ is a union of ℓm copies of $\mathbf{P}^{1} \times \mathbf{P}^{1}$, whose configuration is just the same as the Delaunay decomposition on the left hand side in Fig. 4. The first horizontal chain of ℓ rational curves is identified with the m-th horizontal chain of ℓ rational curves by shifting by multiplication by $a^{2 m}$ on each rational curve, while the first vertical chain of m rational curves is identified with the ℓ-th vertical chain of m rational curves by shifting by multiplication by $a^{2 \ell}$ on each rational curve because

$$
\begin{aligned}
S_{m f_{2}}^{*}\left(w_{1}\right) & =b\left(f_{1}, m f_{2}\right) w_{1}=a^{2 m} w_{1} \\
S_{\ell f_{1}}^{*}\left(w_{2}\right) & =b\left(\ell f_{1}, f_{2}\right) w_{2}=a^{2 \ell} w_{2}
\end{aligned}
$$

The PSQAS $\left(Q_{\text {for }}^{\prime}\right)_{0}$ is a level- \mathcal{G}_{H} PSQAS. where $H=(\mathbf{Z} / \ell \mathbf{Z}) \oplus$ $(\mathbf{Z} / m \mathbf{Z}) \simeq\left(\mathbf{Z} / e_{1} \mathbf{Z}\right) \oplus\left(\mathbf{Z} / e_{2} \mathbf{Z}\right)$, with $e_{1}=\operatorname{GCD}(\ell, m)$ and $e_{2}=\ell m / e_{1}$.

Case 6.7.2. Let $B(x)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}$,

$$
a(x)=q^{x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}}, b(x, y)=q^{2 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+2 x_{2} y_{2}}
$$

where $x=x_{1} f_{1}+x_{2} e_{2}, y=y_{1} f_{1}+y_{2} e_{2}$. Then we define

$$
\begin{aligned}
\mathcal{X} & =\operatorname{Proj} R\left[a(x) w^{x} \vartheta, x \in X\right], \\
U_{n} & =\operatorname{Spec} R\left[a(x) w^{x} / a(n) w^{n}, x \in X\right] \quad(n \in X) \\
& =\operatorname{Spec} R\left[(a(x) / a(n)) w^{x-n}\right], \\
\mathcal{X}_{\text {for }} / Y & =\left(\operatorname{Proj} R\left[a(x) w^{x} \vartheta, x \in X\right]\right)_{\text {for }} / Y .
\end{aligned}
$$

Let $Q_{\text {for }}^{\prime \prime}:=\mathcal{X}_{\text {for }} / Y$. Let $n=0$ for simplicity. Then we have

$$
\begin{aligned}
U_{0} & =\operatorname{Spec} R\left[q w_{1}, q w_{1} w_{2}, q w_{2}, q w_{1}^{-1}, q w_{1}^{-1} w_{2}^{-1}, q w_{2}^{-1}\right] \\
& \simeq \operatorname{Spec} k(0)\left[u_{i} ; 0 \leq i \leq 5\right] /\left(u_{i-1} u_{i+1}-q u_{i}, u_{i} u_{i+3}-q^{2}\right) \\
\left(U_{0}\right)_{0} & \simeq \operatorname{Spec} k(0)\left[u_{i} ; 0 \leq i \leq 5\right] /\left(u_{i} u_{j} ;|i-j(\bmod 6)| \geq 2\right),
\end{aligned}
$$

where $\left(U_{0}\right)_{0}=U_{0} \otimes k(0)$.
We have a PSQAS $\left(Q_{\text {for }}^{\prime \prime}\right)_{0}$. This PSQAS $\left(Q_{\text {for }}^{\prime \prime}\right)_{0}$ is a union of ℓm copies of \mathbf{P}^{2}, whose configuration is just the same as the Delaunay decomposition on the right hand side in Fig. 4. The first horizontal chain of ℓ rational curves is identified with the m-th horizontal chain of ℓ rational curves without shifting on each rational curve, while the first vertical chain of m rational curves is identified with the ℓ-th vertical chain of m rational curves without shifting on each rational curve. The PSQAS $\left(Q_{\text {for }}^{\prime \prime}\right)_{0}$ is a level- \mathcal{G}_{H} PSQAS for $H=(\mathbf{Z} / \ell \mathbf{Z}) \oplus(\mathbf{Z} / m \mathbf{Z})$.

Remark 6.7.3. Gunji [12] studied the defining equations of the universal abelian surface with level three structure. His universal abelian surface is the same as our universal PSQAS over the moduli space $S Q_{2, K}$ when $K=H \oplus H^{\vee}, H=(\mathbf{Z} / 3 \mathbf{Z})^{\oplus 2}$ and the base field is \mathbf{C}. He proved that the level three universal abelian surface is the intersection of 9 quadrics and 4 cubics of $\mathbf{P}^{8} \times{ }_{\mathcal{O}_{3}} S Q_{2, K} \times{ }_{\mathcal{O}_{3}} \mathbf{C}$ [12, Theorem 8.3]. In his article Gunji determines the fibers only partially [12, pp. 95-96].

By our study [30, Theorem 11.4] (Theorem 8.5), any fiber of the universal PSQAS over $S Q_{2, K}$ is a smooth abelian surface, or a cycle of 3 rational elliptic surfaces in Subsec. 5.5, with $\ell=m=3$, or else one of the singular surfaces in Cases 6.7 .1 or 6.7 .2 with $\ell=m=3$.

Remark 6.7.4. Here we explain only a little about the local structure of $S Q_{g, K}$ for $g=2$. It turns out that the local structure of $S Q_{g, K}$ is the same as that of a toroidal compactification, the second Voronoi compactification.

Let X be a lattice of rank two, $B(x)$ the bilinear form on X given in Case 6.7.2

$$
B(x)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2} .
$$

The Voronoi cone V_{B} with center B is defined to be

$$
\begin{aligned}
V_{B} & :=\left\{\beta \text { : positive definite bilinear form on } X \text { with } \operatorname{Del}_{\beta}=\operatorname{Del}_{B}\right\} \\
& =\left\{\beta(x):=\left(\beta_{12}+\beta_{13}\right) x_{1}^{2}-2 \beta_{12} x_{1} x_{2}+\left(\beta_{12}+\beta_{23}\right) x_{2}^{2} ; \beta_{i j}>0\right\} .
\end{aligned}
$$

We define a chart T and a semi-universal covering \mathcal{X} over T to be

$$
\begin{gathered}
T:=T\left(V_{B}\right):=\operatorname{Spf} W(k)\left[\left[q_{i j} ; i<j\right]\right], \\
\mathcal{X}=\operatorname{Proj} W(k)\left[\left[q_{i j} ; i<j\right]\right]\left[a(x) w^{x} \vartheta ; x \in X\right]
\end{gathered}
$$

where $W(k)$ is the Witt ring of $k, q_{i j}=q^{\beta_{i j}}(1 \leq i<j \leq 3)$ and

$$
a(x):=q^{\beta(x)}:=\left(q_{13}^{x_{1}^{2}}\right)\left(q_{23}^{x_{2}^{2}}\right)\left(q_{12}^{x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}}\right)
$$

Let $\mathcal{L}_{\mathcal{X}}$ be the invertible sheaf $O_{\mathcal{X}}(1)$ on \mathcal{X}. We define the action of the lattice X on \mathcal{X} by

$$
S_{z}^{*}\left(a(x) w^{x} \vartheta\right)=a(x+z) w^{x+z} \vartheta
$$

Let $\left(\mathcal{X}_{\text {for }}, \mathcal{L}_{\text {for }}\right)$ be the formal completion of $\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}\right)$ along the closed subscheme \mathcal{X}_{0} of \mathcal{X} given by $q_{i j}=0$. Let Y be a sublattice of X of finite index. We take the formal quotient of $\mathcal{X}_{\text {for }}$ by Y

$$
\left(Q_{\text {for }}, \mathcal{L}_{\text {for }}\right):=\left(\mathcal{X}_{\text {for }}, \mathcal{L}_{\text {for }}\right) / Y,
$$

where $Q_{\text {for }} \otimes k(0) \simeq Q_{0}^{\prime \prime}$ if Y is the same as in Case 6.7.2. Moreover ($Q_{\text {for }}, \mathcal{L}_{\text {for }}$) is a semi-universal PSQAS over T. In other words, the deformation functor of $\left(Q_{\text {for }}, \mathcal{L}_{\text {for }}\right) \otimes k(0)$ is pro-represented by $W(k)\left[\left[q_{i j} ; i<\right.\right.$ $j]$]. Compare [27] and Subsec 9.3.

Let $\tau=\left(\tau_{i j}\right)$ be a 2×2 complex symmetric matrix with positive imaginary part, and set

$$
q_{12}=e^{-2 \pi i \tau_{12}}, q_{13}=e^{2 \pi i\left(\tau_{11}+\tau_{12}\right)}, q_{23}=e^{2 \pi i\left(\tau_{12}+\tau_{22}\right)}
$$

These are regular parameters of $S Q_{2, K}$ at $\left(Q_{\text {for }}, \mathcal{L}_{\text {for }}\right)$ for any K with $e_{\min }(K) \geq 3$. This is also an infinitesimally local chart of the Mumford toroidal compactification, which is in this case the so-called Voronoi compactification, or to be a little more precise, the Mumford toroidal compactification associated to the second Voronoi decomposition and some arithmetic subgroup of $\operatorname{Sp}(4, \mathbf{Z})$. See [36].

6.8. Nonseparatedness of a naive moduli

We shall explain here how a naive generalization of classical level- n structure results in a nonseparated compactification of the moduli of abelian varieties. See [27].

In three dimensional case, let X be a lattice of rank 3 . We choose

$$
B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

The level-1 PSQASes $\left(P_{0}, \mathcal{L}_{0}\right)$ associated to B are parameterized by 3 nontrivial parameters [27, p. 197].

Let $\operatorname{Del}_{B} / X$ be the quotient of the Delaunay decomposition Del_{B} by the translation action of X. Then $\operatorname{Del}_{B} / X$ consists of three threedimensional cells (two tetrahedra and an octahedron), eight two-dimensional cells and six one-dimensional cells and a 0 -dimensional cell [27, pp. 195-196]. Each level-1 PSQAS $\left(P_{0}, \mathcal{L}_{0}\right)$ has three irreducible components, two (say, T_{1}, T_{2}) of which are \mathbf{P}^{3} (modulo X action) and the third (say, O) of which is a rational variety distinct from \mathbf{P}^{3}. Each of the three irreducible components is a compactification of \mathbf{G}_{m}^{3}.

It follows that there are two different types (modulo $\operatorname{Aut}\left(P_{0}\right)$) of embedding of \mathbf{G}_{m}^{3} into $\left(P_{0}, \mathcal{L}_{0}\right)$, that is, $\mathbf{G}_{m}^{3} \subset T_{k}$ and $\mathbf{G}_{m}^{3} \subset O$. Therefore there is a pair of R-PSQASes $\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ and $\left(P^{\prime \prime}, \mathcal{L}^{\prime \prime}\right)$ such that

$$
\left(P_{\eta}^{\prime}, \mathcal{L}_{\eta}^{\prime}\right) \simeq\left(P_{\eta}^{\prime \prime}, \mathcal{L}_{\eta}^{\prime \prime}\right),\left(\mathbf{G}_{m}^{3} \subset P_{0}^{\prime}\right) \not 千\left(\mathbf{G}_{m}^{3} \subset P_{0}^{\prime \prime}\right) .
$$

This also implies that there are two inequivalent classes of classical level- n structures on the étale $(\mathbf{Z} / n \mathbf{Z})^{3}$-covering $\left(P_{0}^{\prime}, \mathcal{L}_{0}^{\prime}\right)$ of $\left(P_{0}, \mathcal{L}_{0}\right)$ as the limits of the same (isomorphic) generic fiber. This shows that a naive generalization of classical level- n structure will lead us to a nonseparated moduli.

§7. The G-action and the G-linearization

Let G be a group (scheme). The purpose of this section is to prove compatibility of various definitions about G-linearization.

7.1. The G-linearization

Definition 7.1.1. A G-linearization on (Z, L) is by definition the data $\left\{\left(T_{g}, \phi_{g}\right) ; g \in G\right\}$ satisfying the conditions
(i) T_{g} is an automorphism of Z, such that $T_{g h}=T_{g} T_{h}, T_{1}=\mathrm{id}_{Z}$,
(ii) $\phi_{g}: \mathcal{L} \rightarrow T_{g}^{*}(\mathcal{L})$ is a bundle isomorphism with $\phi_{1}=\mathrm{id}_{L}$,
(iii) $\quad \phi_{g h}=\left(T_{h}^{*} \phi_{g}\right) \phi_{h}$ for any $g, h \in G((T)$.

We say that (Z, L) is G-linearized if the above conditions are true.
Remark 7.1.2. If L and L^{\prime} are G-linearized, then $L \otimes L^{\prime}$ is also G-linearized.

Definition 7.1.3. If (Z, L) is G-linearized, then we define a G action τ on the pair (Z, L). Via the isomorphism $L \xrightarrow{\phi_{h}} T_{h}^{*}(L)$, for $x \in Z, \zeta \in L_{x}$, we define

$$
\begin{equation*}
\tau(h)(z, \zeta):=\left(T_{h}(z), \phi_{h}(z) \zeta\right) \tag{25}
\end{equation*}
$$

Claim 7.1.4. τ is an action of G on (Z, L).
Proof. Via the isomorphisms

$$
L \xrightarrow{\phi_{h}} T_{h}^{*}(L) \xrightarrow{T_{h}^{*} \phi_{g}} T_{h}^{*}\left(T_{g}^{*}(L)\right)=T_{g h}^{*}(L),
$$

we see

$$
\begin{aligned}
\tau(g)(\tau(h)(z, \zeta)) & =\tau(g) \cdot\left(T_{h}(z), \phi_{h}(z) \zeta\right) \\
& =\left(T_{g}\left(T_{h}(z)\right), \phi_{g}\left(T_{h}(z)\right) \phi_{h}(z) \zeta\right) \\
& =\left(T_{g h}(z),\left(T_{h}^{*} \phi_{g} \cdot \phi_{h}\right)(z) \zeta\right) \\
& =\left(T_{g h}(z), \phi_{g h}(z) \cdot \zeta\right)=\tau(g h)(z, \zeta) .
\end{aligned}
$$

Hence τ is an action of G.
Q.E.D.

Finally we note that if we are given an action τ of G on the pair (Z, L) of a scheme Z and a line bundle L on Z, then we have a G linearization of L. In fact, τ is an action of G iff $T_{g h}=T_{g} T_{h}$ and $\phi_{g h}=T_{h}^{*} \phi_{g} \cdot \phi_{h}$.

Claim 7.1.5. ([20, p. 295]) Associated to a given G-action τ on (Z, L), we define a map $\rho_{\tau, L}(g)$ of $H^{0}(Z, L)$ to be
(26) $\rho_{\tau, L}(g)(\theta):=T_{g^{-1}}^{*}\left(\phi_{g}(\theta)\right)$ for any $g \in G$ and any $\theta \in H^{0}(Z, L)$.

Then $\rho_{\tau, L}$ is a homomorphism.
Proof. We see

$$
\begin{aligned}
\rho_{\tau, L}(g h)(\theta) & =T_{h^{-1} g^{-1}}^{*}\left(\phi_{g h} \theta\right)=T_{g^{-1}}^{*}\left\{T_{h^{-1}}^{*}\left(T_{h}^{*} \phi_{g} \cdot \phi_{h} \theta\right)\right\} \\
& =T_{g^{-1}}^{*}\left\{T_{h^{-1}}^{*}\left(T_{h}^{*} \phi_{g}\right) \cdot\left(T_{h^{-1}}^{*} \phi_{h} \theta\right)\right\} \\
& =T_{g^{-1}}^{*}\left\{\phi_{g} \cdot\left(T_{h^{-1}}^{*} \phi_{h} \theta\right)\right\}=\rho_{\tau, L}(g) \rho_{\tau, L}(h)(\theta) .
\end{aligned}
$$

Q.E.D.

7.2. The G-linearization of $O_{\mathbf{P}(V)}(1)$

Let R be any ring. Suppose we are given an action of a group G on an R-free module V of finite rank, in other words, a homomorphism $\rho: G \rightarrow \operatorname{End}(V)$. Let $V^{\vee}:=\operatorname{Hom}(V, R)$ be the dual of $V, \mathbf{P}(V)$ the projective space with $V=H^{0}\left(\mathbf{P}(V), O_{\mathbf{P}(V)}(1)\right), \mathbf{H}=O_{\mathbf{P}(V)}(1)$ the hyperplane bundle of $\mathbf{P}(V)$. Then V^{\vee} admits a natural affine R-scheme structure \mathbf{V}^{\vee} defined by

$$
\mathbf{V}^{\vee}=\operatorname{Spec} \operatorname{Sym} V:=\operatorname{Spec} \bigoplus_{n=0}^{\infty} S^{n} V .
$$

The action ρ of G on V induces an action of G on $S^{n} V$, hence on Sym V, hence on \mathbf{V}^{\vee}, hence on the pair $\left(\mathbf{P}(V), \mathbf{V}^{\vee}-\{0\}\right)$ of schemes. We note that $\mathbf{V}^{\vee}-\{0\}$ is a \mathbf{G}_{m}-bundle over $\mathbf{P}(V)$ associated with the dual of the hyperplane bundle \mathbf{H} of $\mathbf{P}(V)$. Hence the action ρ of G on V induces the action on the pair $(\mathbf{P}(V), \mathbf{H})$ of schemes.

Let S be any R-scheme and $P \in \mathbf{P}(V)(S)$ any S-valued point. By choosing affine coverings $U_{i}:=$ Spec A_{i} of S if necessary, P is a collection of $P_{i} \in \mathbf{P}(V)\left(U_{i}\right)$ of (the equivalence class of) the points given by

$$
\gamma_{P_{i}} \in \operatorname{Hom}\left(V, A_{i}\right)
$$

such that the ideal of A_{i} generated by $\gamma_{P}(V)$ is A_{i}, where $\gamma_{P_{i}} \sim \gamma_{Q_{i}}$ iff $\gamma_{Q_{i}}=c \gamma_{P_{i}}$ for some $c \in A_{i}^{\times}$. Hence there are $c_{i j} \in A_{i j}^{\times}:=\Gamma\left(O_{U_{i} \cap U_{j}}\right)^{\times}$ such that $\gamma_{P_{i}}=c_{i j} \gamma_{P_{j}}$. In what follows, we suppose $S=U_{i}$ for simplicity and we identify P with γ_{P}.

We define an action of G on $\left(\mathbf{P}(V), \mathbf{V}^{\vee} \backslash\{0\}\right)$ by

$$
\begin{equation*}
S^{\vee}(g)\left(\left[\gamma_{P}\right], \gamma_{P}\right):=\left(\left[\gamma_{P} \circ \rho\left(g^{-1}\right)\right], \gamma_{P} \circ \rho\left(g^{-1}\right)\right) \tag{27}
\end{equation*}
$$

Then we see,

$$
\begin{aligned}
S^{\vee}(g h)\left(\gamma_{P}\right) & =\gamma_{P} \circ \rho\left((g h)^{-1}\right)=\gamma_{P} \circ \rho\left(h^{-1}\right) \rho\left(g^{-1}\right) \\
& =S^{\vee}(h)\left(\gamma_{P}\right) \rho\left(g^{-1}\right)=S^{\vee}(g) S^{\vee}(h)\left(\gamma_{P}\right) .
\end{aligned}
$$

Thus we have an action of G on the pair $\left(\mathbf{P}(V), \mathbf{V}^{\vee} \backslash\{0\}\right)$ by \mathbf{G}_{m}-bundle automorphisms.

Definition 7.2.1. The action $S^{\vee}(g)$ of $g \in G$ on $\left(\mathbf{P}(V), \mathbf{V}^{\vee} \backslash\{0\}\right)$ induces an action on $(\mathbf{P}(V), \mathbf{H})$, which we denote by $S(g)$.

Remark 7.3. Let R be any ring, V an R-free module of finite rank, and $\rho: G \rightarrow \operatorname{End}(V)$ an action of G on V. Let $V^{\vee}:=\operatorname{Hom}(V, R)$ and $\langle\rangle:, V^{\vee} \times V \rightarrow R$ the dual pairing. Using this pairing we have a dual action ${ }^{t} \rho$ of G on V^{\vee} such that

$$
\left\langle{ }^{t} \rho(g) \gamma, F\right\rangle:=\langle\gamma, \rho(g) F\rangle,
$$

where $\gamma \in V^{\vee}$, and $F \in V$. Then ${ }^{t} \rho(g h)={ }^{t} \rho(h)^{t} \rho(g)$. Thus this is made into a left action of G on $\mathbf{P}(V)$ by taking $T_{g}(\gamma):={ }^{t} \rho\left(g^{-1}\right)(\gamma)$. This T_{g} is the same as $S^{\vee}(g)$ in Subsec. 7.2 because

$$
\begin{aligned}
T_{g}(\gamma)(F) & =\left\langle{ }^{t} \rho\left(g^{-1}\right)(\gamma), F\right\rangle=\left\langle\gamma, \rho(g)^{-1} F\right\rangle \\
& =\gamma\left(\rho\left(g^{-1}\right) F\right)=S^{\vee}(g)(\gamma)(F) .
\end{aligned}
$$

Since we have the action T_{g} on $\mathbf{P}(V)$, Claim 7.1.5 defines a homomorphism $\rho_{T, \mathbf{H}}$ (well known as the contragredient representation of T_{g}). Then we have

$$
\begin{aligned}
\left(\rho_{T, \mathbf{H}}(g) F\right)(\gamma): & =F\left(T_{g^{-1}} \gamma\right)=F\left({ }^{t} \rho(g) \gamma\right) \\
& =\left\langle{ }^{t} \rho(g) \gamma, F\right\rangle=\langle\gamma, \rho(g) F\rangle=(\rho(g) F)(\gamma)
\end{aligned}
$$

where $x \in V^{\vee} \backslash\{0\}, F \in V$. Hence $\rho_{T, \mathbf{H}}=\rho$.
This justifies our notation $\left(C, i, U_{H}\right)$ (resp. $\left(Z, i, U_{H}\right)$) in Lemma 3.12 (resp. in Theorem 8.5) where we indicate the action on (C, L) or (Z, L) induced from U_{H} simply by U_{H}.

7.4. G-invariant closed subschemes

Let R be any ring, V an R-free module of finite rank, and G any subgroup of PGL (V). If Z be a G-invariant closed subscheme of $\mathbf{P}(V)$ with $L=O_{Z}(1)$, then the G-action of $(\mathbf{P}(V), \mathbf{H})$ keeps (Z, L) stable, hence we have an action of G on the pair (Z, L). This gives rise to a G-linearization of (Z, L).

Conversely
Claim 7.4.1. Let (Z, L) be an R-scheme with L a G-linearized line bundle on Z, and V a G-submodule of $H^{0}(Z, L)$. Suppose that V is R free of finite rank and very ample. Then the natural morphism (ψ, Ψ) : $(Z, L) \rightarrow(\mathbf{P}(V), \mathbf{H})$ is a G-equivariant closed immersion.

This is a corollary to the following
Claim 7.4.2. Let (Z, L) be an R-scheme with L a G-linearized line bundle on Z, and V a G-submodule of $H^{0}(Z, L)$. Suppose that V is R-free of finite rank and base point free. Then
(1) there is a G-action S on $(\mathbf{P}(V), \mathbf{H})$ in Subsec. 7.2,
(2) the natural morphism $(\psi, \Psi):(Z, L) \rightarrow(\mathbf{P}(V), \mathbf{H})$ is G equivariant.

Proof. By Claim 7.1.5, $H^{0}(X, L)$ is a G-module. By the assumption V is a G-submodule of $H^{0}(X, L)$. Then by Subsec. 7.2 we have a G-action S on $(\mathbf{P}(V), \mathbf{H})$. With the notation in Subsec. 7.2, we define the map ψ by $\gamma_{\psi(z)}(\theta)=\theta(z)$ for $\theta \in V=H^{0}(Z, L)$. This defines a natural map $(\psi, \Psi):(Z, L) \rightarrow(\mathbf{P}(V), \mathbf{H})$ because $L=\psi^{*} \mathbf{H}$. We prove that with respect to the G-actions τ on (Z, L) and S on $(\mathbf{P}(V), \mathbf{H}),(\psi, \Psi)$ is G-equivariant. Let $(z, \zeta) \in(Z, L)$ and $P=\psi(z)$. Then we have

$$
\begin{equation*}
\tau(g)(z, \zeta)=\left(T_{g}(z), \phi_{g}(z) \zeta\right),(\psi, \Psi)(z, \zeta)=(\psi(z), \zeta) \tag{28}
\end{equation*}
$$

Since $\left(T_{g}^{*} \phi_{g^{-1}}\right) \phi_{g}=\phi_{1}=\operatorname{id}_{L}$ by Definition 7.1.1 (iii), we see

$$
\begin{aligned}
\gamma_{\psi(z)} \circ \rho_{L}\left(g^{-1}\right)(\theta) & =\gamma_{\psi(z)}\left(T_{g}^{*}\left(\phi_{g^{-1}} \theta\right)\right) \\
& =\left(T_{g}^{*} \phi_{g^{-1}}(z) T_{g}^{*}(\theta)(z)=\phi_{g}^{-1}(z) T_{g}^{*}(\theta)(z)\right. \\
& =\phi_{g}(z)^{-1} \theta\left(T_{g} z\right)=\phi_{g}(z)^{-1} \gamma_{\psi\left(T_{g} z\right)}(\theta),
\end{aligned}
$$

whence $\left[\gamma_{\psi(z)} \circ \rho_{L}\left(g^{-1}\right)\right]=\left[\gamma_{\psi\left(T_{g} z\right)}\right]=\psi\left(T_{g} z\right)$. By (27), regarding ζ^{-1} as the (rational) fiber coordinate of L^{\vee}, we have

$$
\begin{aligned}
S^{\vee}(g)(\psi, \Psi)\left(z, \zeta^{-1}\right) & =\left(\left[\gamma_{\psi(z)} \circ \rho_{L}\left(g^{-1}\right)\right], \gamma_{\psi(z)} \circ \rho_{L}\left(g^{-1}\right) \zeta^{-1}\right) \\
& =\left(\left[\gamma_{\psi\left(T_{g} z\right)}\right], \gamma_{\psi\left(T_{g} z\right)} \phi_{g}(z)^{-1} \zeta^{-1}\right),
\end{aligned}
$$

whence the fiber coordinate ζ^{-1} is transformed into $\phi_{g}(z)^{-1} \zeta^{-1}$ because $\psi(z)\left(\right.$ resp. $\left.\psi\left(T_{g} z\right)\right)$ is a generator of the fiber of \mathbf{H}. Hence $S^{\vee}(g)$ induces the transformation $\zeta \mapsto \phi_{g}(z) \zeta$ on L. Thus with the notation of (28)

$$
\begin{aligned}
S(g)(\psi, \Psi)(z, \zeta) & =\left(\left[\gamma_{\psi(z)} \circ \rho_{L}\left(g^{-1}\right)\right], \phi_{g}(z) \zeta\right)=\left(\psi\left(T_{g}(z)\right), \phi_{g}(z) \zeta\right) \\
& =(\psi, \Psi)\left(T_{g}(z), \phi_{g}(z) \zeta\right)=(\psi, \Psi) \tau(g)(z, \zeta)
\end{aligned}
$$

This proves that (ψ, Ψ) is G-equivariant.
Q.E.D.

7.5. The G-linearization in down-to-earth terms

We quote this part from [32, p.94]. The following enables us to understand G_{H}-linearization in down-to-earth terms.

Claim 7.5.1. Let $T=\operatorname{Spec} R$, and G a finite group. Let Z be a positive-dimensional R-flat projective scheme. L an ample G-linearized line bundle on Z. Then for any point $z \in Z$, there exists a G-invariant open affine R-subscheme U of Z such that $z \in U$ and L is trivial on U.

Proof. See [32, Lemma 4.9].
Q.E.D.

Let $T=\operatorname{Spec} R$ be any affine scheme, and G a finite group. Let Z be a positive-dimensional T-flat projective scheme. Let $m: G \times{ }_{R} G \rightarrow G$ be the multiplication of G, and $\sigma: G \times_{R} Z \rightarrow Z$ an action of G on Z. Let L be an ample G-linearized line bundle on Z. The action σ satisfies the condition:

$$
\begin{equation*}
\sigma\left(m \times \operatorname{id}_{Z}\right)=\sigma\left(\operatorname{id}_{G} \times \sigma\right) \tag{29}
\end{equation*}
$$

Now we shall give a concrete description of the G-linearization of (Z, L) by using a nice open affine covering of Z. By Claim 7.5.1, we can choose an affine open covering $U_{j}:=\operatorname{Spec}\left(R_{j}\right)(j \in J)$ of Z such that each U_{j} is G-invariant and the restriction of L is trivial on each U_{j}.

The induced bundles $\sigma^{*} L$, (resp. $\left.\left(\operatorname{id}_{G} \times \sigma\right)^{*} \sigma^{*}(L),\left(m \times \mathrm{id}_{Z}\right)^{*} \sigma^{*}(L)\right)$ are all trivial on $G \times{ }_{R} U_{j}$ (resp. $G \times_{R} G \times_{R} U_{j}$ or $\left.G \times_{R} G \times U_{j}\right)$ with the same fiber-coordinate as $L_{U_{j}}$. Let ζ_{j} be a fiber-coordinate of $L_{U_{j}}$.

Now we assume that G is a constant finite group (scheme over T). Since G is affine, let $A_{G}:=\Gamma\left(G, O_{G}\right)$ be the Hopf algebra of G. See [44]. Then the isomorphism $\Psi: p_{2}^{*} L \rightarrow \sigma^{*}(L)$ over U_{j} is multiplication by a unit $\psi_{j}(g, x) \in\left(A_{G} \otimes_{R} R_{j}\right)^{\times}$at $(g, x) \in G \times_{R} U_{j}$. Let $A_{j k}(x)$ be the one-cocycle defining L. Then $\sigma^{*}(L)$ is defined by the one-cocycle $\sigma^{*} A_{j k}(x)$. Hence $\Psi: p_{2}^{*} L \rightarrow \sigma^{*}(L)$ over U_{j} and U_{k} are related by

$$
\psi_{j}(g, x)=\frac{A_{j k}(g x)}{A_{j k}(x)} \psi_{k}(g, x)
$$

This is the condition (ii) of Definition 7.1.1. The condition (iii) of Definition 7.1.1 is expressed as

$$
\psi_{j}(g h, x)=\psi_{j}(g, h x) \psi_{j}(h, x) .
$$

§8. The moduli schemes $A_{g, K}$ and $S Q_{g, K}$

Let $H=\bigoplus_{i=1}^{g}\left(\mathbf{Z} / e_{i} \mathbf{Z}\right)$ be a finite Abelian group with $e_{i} \mid e_{i+1}$, $e_{\min }(H):=e_{1}, K=H \oplus H^{\vee}, N=|H|=\prod_{i=1}^{g} e_{i}$ and $\mathcal{O}_{N}=\mathbf{Z}\left[\zeta_{N}, 1 / N\right]$. The purpose of this section is to construct two schemes, projective (resp. quasi-projective) $S Q_{g, K}$ (resp. $A_{g, K}$). We will see later that $A_{g, K}$ is the fine moduli scheme of abelian varieties, which is a Zariski open subset of the projective scheme $S Q_{g, K}$. As a (geometric) point set, $S Q_{g, K}$ is the set of all GIT-stable degenerate abelian schemes (Theorem 14.1.3).

Theorem 8.1. Let $V_{H}:=\bigoplus_{\mu \in H^{\vee}} \mathcal{O}_{N} v(\mu)$. Let (Z, L) be a PSQAS over $k(0)$, (Q, \mathcal{L}) a $P S Q A S$ over a $C D V R \quad R$ with $\operatorname{ker} \lambda(\mathcal{L}) \simeq K$ such that $(Z, L) \simeq(Q, \mathcal{L}) \otimes k(0)$ and the generic fiber $\left(Q_{\eta}, \mathcal{L}_{\eta}\right)$ is an abelian variety. Let $\mathcal{V}_{0}:=\Gamma(Q, \mathcal{L}) \otimes k(0)$. Then
(1) $\operatorname{dim}_{k(0)} \mathcal{V}_{0}=|H|$, and $\mathcal{V}_{0} \simeq V_{H} \otimes k(0)$ as \mathcal{G}_{H}-modules,
(2) \mathcal{V}_{0} is uniquely determined by (Z, L), and independent of the choice of (Q, \mathcal{L}),
(3) if $e_{\min }(H) \geq 3$, then both $\Gamma(Q, \mathcal{L})$ and \mathcal{V}_{0} are very ample,
(4) if $e_{\min }(H) \geq 3$, then (Z, L) is embedded \mathcal{G}_{H}-equivariantly into $\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)$ by the linear subspace \mathcal{V}_{0} via the isomorphism $\mathcal{V}_{0} \simeq$ $V_{H} \otimes k(0)$ as \mathcal{G}_{H}-modules.

Proof. By Theorem 4.6, there exists a CDVR R and a projective flat morphism $\pi:(Q, \mathcal{L}) \rightarrow$ Spec R (resp. $\pi:(P, \mathcal{L}) \rightarrow$ Spec $R)$ such that $\left(Q_{0}, \mathcal{L}_{0}\right) \simeq(Q, \mathcal{L}) \otimes k(0)$, and P is the normalization of Q with P_{0}
reduced. Then by [30, Theorems 3.9 and 4.10], for instance, here in the totally degenerate case, we have

$$
\begin{aligned}
\Gamma\left(P_{0}, \mathcal{L}_{0}\right) & =\left\{\sum_{\bar{x} \in X / Y} c(\bar{x}) \sum_{y \in Y} a(x+y) w^{x+y} \otimes k(0) ; c(\bar{x}) \in k(0)\right\}, \\
\Gamma(P, \mathcal{L}) & =\left\{\sum_{\bar{x} \in X / Y} c(\bar{x}) \sum_{y \in Y} a(x+y) w^{x+y} ; c(\bar{x}) \in R\right\}
\end{aligned}
$$

where \bar{x} is the class of $x \bmod Y$. Hence $\Gamma(Q, \mathcal{L})=\Gamma(P, \mathcal{L})$ because $\Gamma(Q, \mathcal{L})$ is an R-submodule of $\Gamma(P, \mathcal{L})$, and any of the generators of $\Gamma(P, \mathcal{L})$ belongs to $\Gamma(Q, \mathcal{L})$ by the construction in Subsec. 6.2. Hence

$$
\mathcal{V}_{0}:=\Gamma(Q, \mathcal{L}) \otimes k(0)=\Gamma(P, \mathcal{L}) \otimes k(0)=\Gamma\left(P_{0}, \mathcal{L}_{0}\right)
$$

By [32, Corollary 3.9] $\left(P_{0}, \mathcal{L}_{0}\right)$ is uniquely determined by $\left(Q_{0}, \mathcal{L}_{0}\right)$, whence \mathcal{V}_{0} is independent of the choice of (Q, \mathcal{L}). This proves (2).

This \mathcal{V}_{0} is very ample and of rank $|H|$ by Lemma $6.3(5)$ if $e_{\min }(H) \geq$ 3. Hence so is $\Gamma(Q, \mathcal{L})$. Since (Z, L), hence $\left(Q_{0}, \mathcal{L}_{0}\right)$, hence $\left(P_{0}, \mathcal{L}_{0}\right)$ admit a \mathcal{G}_{H}-action, $\mathcal{V}_{0}=\Gamma\left(P_{0}, \mathcal{L}_{0}\right)$ is a \mathcal{G}_{H}-module. Hence by Claim 7.4.1, (Z, L) is embedded \mathcal{G}_{H}-equivariantly into $\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)$.
Q.E.D.

Definition 8.1.1. Let $(Z, L)=\left(Q_{0}, \mathcal{L}_{0}\right)$ be a $k(0)$-PSQAS. We call \mathcal{V}_{0} a characteristic subspace of $\Gamma(Z, L)$, and denote \mathcal{V}_{0} by $V(Z, L)$. This \mathcal{V}_{0} is uniquely determined by (Z, L) because $\mathcal{V}_{0}=\Gamma\left(P_{0}, \mathcal{L}_{0}\right)$ and $\left(P_{0}, \mathcal{L}_{0}\right)$ is uniquely determined by $(Z, L)=\left(Q_{0}, \mathcal{L}_{0}\right)$.

Remark 8.1.2. In connection with the GIT-stability of (Z, L), it is more important to know whether $V(Z, L)$ is very ample than to know whether L (that is, $\Gamma(Z, L)$) is very ample. See [30, Theorem 11.6] and Theorem 14.1.3. However [30, p. 697] conjectures $V(Z, L)=\Gamma(Z, L)$.

Definition 8.1.3. Let k be an algebraically closed field with $k \ni$ $1 / N$ and H a finite Abelian group with $|H|=N$. Let (A, L) be an abelian variety over k. Then we define $\mathcal{G}(A, L)$ to be the bundle automorphism group which induces translations of A by $\operatorname{ker}(\lambda(L))$. If $\operatorname{ker}(\lambda(L)) \simeq K:=H \oplus H^{\vee}$, then $\mathcal{G}(A, L) \simeq \mathcal{G}_{H}$ by Lemma 4.2.

Let $K(A, L):=\operatorname{ker}(\lambda(L))=\mathcal{G}(A, L) / \mathbf{G}_{m}$.
Remark 8.1.4. Let k be an algebraically closed field with $k \ni 1 / N$ and (Z, L) any PSQAS over k. Hence there exists a PSQAS (Q, \mathcal{L}) over a CDVR R such that $(Z, L) \simeq\left(Q_{0}, \mathcal{L}_{0}\right)$ and the generic fiber $\left(Q_{\eta}, \mathcal{L}_{\eta}\right)$ is an abelian variety with $\left.\operatorname{ker} \lambda\left(\mathcal{L}_{\eta}\right)\right) \simeq K=H \oplus H^{\vee}$. Then the natural \mathcal{G}_{H}-action $\left(=\mathcal{G}\left(Q_{\eta}, \mathcal{L}_{\eta}\right)\right)$ on $\left(Q_{\eta}, \mathcal{L}_{\eta}\right)$ extends to that on (Q, \mathcal{L}), whose
restriction to $\left(Q_{0}, \mathcal{L}_{0}\right)$ is the \mathcal{G}_{H}-action on (Z, L). We denote by $\mathcal{G}(Z, L)$ the \mathcal{G}_{H}-action on (Z, L). This is determined by (Z, L) uniquely up to an automorphism of \mathcal{G}_{H}. Let $K(Z, L):=\mathcal{G}(Z, L) / \mathbf{G}_{m}$.

Definition 8.1.5. Let (Z, L) be a PSQAS over k. We call the action $\tau: \mathcal{G}_{H} \times(Z, L) \rightarrow(Z, L)$ of \mathcal{G}_{H} a characteristic \mathcal{G}_{H}-action, or simply characteristic, if τ induces the natural isomorphism in Remark 8.1.4

$$
\mathcal{G}_{H} \xlongequal{\rightrightarrows} \mathcal{G}(Z, L) \subset \operatorname{Aut}(L / Z),
$$

where $\operatorname{Aut}(L / Z)$ is the bundle automorphism group of L over Z.
Remark 8.1.6. Let C be a planar cubic defined by

$$
x_{0}^{3}+\zeta_{3} x_{1}^{3}+\zeta_{3}^{2} x_{2}^{3}=0
$$

This cubic C is $\mathcal{G}(3)$-invariant, hence σ and τ in Subsec. 3.3 act on C. However τ is not a translation of C. See [30, p. 712]. Therefore $\mathcal{G}(3)$ on C is not a characteristic $\mathcal{G}(3)$-action of C.

8.2. The level- \mathcal{G}_{H} structure

Definition 8.2.1. Let k be an algebraically closed field with $k \ni$ $1 / N$. A 6 -tuple $\left(Z, L, V(Z, L), \phi, \mathcal{G}_{H}, \tau\right)$ or the triple (Z, ϕ, τ) over k is a PSQAS with level- \mathcal{G}_{H} structure or a level- \mathcal{G}_{H} PSQAS if
(i) (Z, L) is a PSQAS $\left(Q_{0}, \mathcal{L}_{0}\right)$ over k with L very ample,
(ii) $\tau: \mathcal{G}_{H} \times(Z, L) \rightarrow(Z, L)$ is a characteristic \mathcal{G}_{H}-action,
(iii) $\phi: Z \rightarrow \mathbf{P}\left(V_{H}\right)$ is a \mathcal{G}_{H}-equivariant closed immersion (with respect to $\tau)$ such that $V(Z, L)=\phi^{*}\left(V_{H} \otimes k\right) \subset \Gamma(Z, L)$.
Definition 8.2.2. For a level- $\mathcal{G}_{H} \operatorname{PSQAS}(Z, \phi, \tau)$ over k, let

$$
\begin{equation*}
\rho(\phi, \tau)(g)(v):=\left(\phi^{*}\right)^{-1} \rho_{\tau, L}(g) \phi^{*}(v) \tag{30}
\end{equation*}
$$

for $v \in V_{H}$.
Remark 8.2.3. By Claim 7.4.2, the following condition (iv) is automatically satisfied by (Z, L) in Definition 8.2.1 :
(iv) $(\phi, \Phi):(Z, L) \rightarrow\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)$ is a \mathcal{G}_{H}-equivariant morphism (with respect to τ) where \mathbf{H} is the hyperplane bundle of $\mathbf{P}\left(V_{H}\right)$ and $\Phi: L=\phi^{*} \mathbf{H} \rightarrow \mathbf{H}$ the natural bundle morphism. That is,

$$
\begin{equation*}
(\phi, \Phi) \circ \tau(g)=S(\rho(\phi, \tau) g) \circ(\phi, \Phi) \text { for any } g \in \mathcal{G}_{H} \tag{31}
\end{equation*}
$$

with the notation of Definition 7.2.1.
We added (iv) here for notational convenience. We denote (iii) and (iv) together by $\phi \tau=S \phi$ or $\phi \tau(g)=S(g) \phi$ for any $g \in \mathcal{G}_{H}$.

Definition 8.2.4. Two PSQASes (Z, ϕ, τ) and ($Z^{\prime}, \phi^{\prime}, \tau^{\prime}$) with level- \mathcal{G}_{H} structure are defined to be isomorphic iff there exists a $\mathcal{G}_{H^{-}}$ isomorphism $f:(Z, L) \rightarrow\left(Z^{\prime}, L^{\prime}\right)$ such that $\phi^{\prime} f=\phi$.

Remark 8.2.5. In Definition 8.2.4 (i), $V(Z, L)=f^{*} V\left(Z^{\prime}, L^{\prime}\right)$. Hence $f^{*} L^{\prime}=L$ so that there always exists a \mathcal{G}_{H}-isomorphism of bundles $(f, F(f)):(Z, L) \rightarrow\left(Z^{\prime}, L^{\prime}\right)$, that is,

$$
(f, F(f)) \tau(g)=\tau^{\prime}(g)(f, F(f)) \quad \text { for any } g \in \mathcal{G}_{H}
$$

The line bundle L is a scheme over Z. The \mathcal{G}_{H}-isomorphism $F(f)$: $L \rightarrow L^{\prime}$ is a $\mathcal{G}_{H^{-}}$-isomorphism as a (line) bundle, which induces a $\mathcal{G}_{H^{-}}$ isomorphism $f: Z \rightarrow Z^{\prime}$. In what follows, we say this simply that $(f, F(f))$ or $f:(Z, L) \rightarrow\left(Z^{\prime}, L^{\prime}\right)$ is a \mathcal{G}_{H}-isomorphism of bundles.

Definition 8.2.6. (Z, ϕ, τ) is defined to be a rigid level- \mathcal{G}_{H} PSQAS, or a PSQAS with rigid level- \mathcal{G}_{H} structure if
(i) (Z, ϕ, τ) is a level- \mathcal{G}_{H} PSQAS,
(ii) $\rho(\phi, \tau)=U_{H}$: the Schrödinger representation of \mathcal{G}_{H}.

Remark 8.2.7. A rigid object in Definition 8.2 .6 is a natural generalization of a Hesse cubic. Lemma 8.2 .8 shows that any PSQAS (Z, ϕ, τ) can be moved into a rigid one inside the same projective space.

Lemma 8.2.8. Assume $e_{\min }(K) \geq 3$. Then for a level- $\mathcal{G}_{H} P S Q A S$ (Z, ϕ, τ) over k,
(1) there exists a unique rigid level- $\mathcal{G}_{H} \operatorname{PSQAS}(Z, \psi, \tau)$ isomorphic to (Z, ϕ, τ),
(2) there exists a unique U_{H}-invariant subscheme (W, L) of $\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)$ such that $\left(W, i, U_{H}\right) \simeq(Z, \psi, \tau)$.
Proof. By Claim 7.1.5, we have

$$
\rho(\phi, \tau)(g h)=\rho(\phi, \tau)(g) \rho(\phi, \tau)(h)
$$

Hence V_{H} is an irreducible \mathcal{G}_{H}-module of weight one through $\rho(\phi, \tau)$. By Schur's lemma, there exists $A \in \mathrm{GL}\left(V_{H} \otimes k\right)$ such that

$$
U_{H}=A^{-1} \rho(\phi, \tau) A=\left(\phi^{*} A\right)^{-1} \rho_{\tau, L}(g)(\theta)\left(\phi^{*} A\right)
$$

Hence it suffices to choose a closed immersion ψ by $\psi^{*}=\phi^{*} A$. Then

$$
\begin{equation*}
U_{H}=\rho(\psi, \tau) \text { and }(Z, \phi, \tau) \simeq(Z, \psi, \tau) \tag{32}
\end{equation*}
$$

The uniqueness of ψ follows from Schur's lemma (Lemma 3.8). In fact, suppose $U_{H}=\rho(\psi, \tau)=\rho(\phi, \tau)$. Let $\gamma:=\left(\phi^{*}\right)^{-1}\left(\psi^{*}\right)$. Then

$$
U_{H}=\rho(\phi, \tau)=\gamma \rho(\psi, \tau) \gamma^{-1}=\gamma U_{H} \gamma^{-1}
$$

whence by Schur's lemma, γ is a nonzero scalar. Hence $\psi=\phi$.
Finally we prove the second assertion. An example of $\left(W, i, U_{H}\right)$ is given by $\left(\psi(Z), i, U_{H}\right)$ by the first assertion. If we have another $U_{H^{-}}$ invariant PSQAS $\left(W^{\prime}, j, U_{H}\right)$ such that $\left(W, i, U_{H}\right) \simeq\left(W^{\prime}, j, U_{H}\right)$, there is an isomorphism

$$
f:\left(W, i, U_{H}\right) \rightarrow\left(W^{\prime}, j, U_{H}\right)
$$

Hence $i=j f$. By the proof of the first assertion, f^{*} is a nonzero scalar, hence $j=i$. Hence the closed subscheme W is unique. Q.E.D.

Lemma 8.2.9. Let k be an algebraically closed field with $k \ni 1 / N$. If $e_{\min }(H) \geq 3$, then any level- $\mathcal{G}_{H} \operatorname{PSQAS}(Z, \phi, \tau)$ has trivial automorphism group.

Proof. Let f be any isomorphism $f:(Z, \phi, \tau) \rightarrow(Z, \phi, \tau)$. Hence $f \tau(g)=\tau(g) f$ for any $g \in \mathcal{G}_{H}$. Hence we have

$$
f^{*} \rho_{\tau, L}(g)=\rho_{\tau, L}(g) f^{*} \quad \text { on } V(Z, L) \text { for any } g \in \mathcal{G}_{H} .
$$

Since $\rho_{\tau, L}$ is an irreducible representation of \mathcal{G}_{H} on $V(Z, L)$, by Schur's lemma (Lemma 3.8), f^{*} is a scalar. Since $e_{\min }(H) \geq 3$, we have ϕ^{-1} : $\phi(Z) \xlongequal{\cong} Z$ is an isomorphism by Theorem 8.1 (5). Since f^{*} on $V(Z, L)$ is a nonzero scalar, $\left(\phi^{*}\right)^{-1} \circ f^{*} \circ\left(\phi^{*}\right)$ is a scalar isomorphism of $V_{H} \otimes k$, hence $\phi \circ f \circ \phi^{-1}$ is the identity of $\mathbf{P}\left(V_{H}\right)$, hence it is the identity of $\phi(Z)$. Hence f is the identity of Z.
Q.E.D.

Lemma 8.3. Let k be an algebraically closed field, let H be a finite Abelian group, H^{\vee} the Cartier dual of $H, K=H \oplus H^{\vee}$ the symplectic Abelian group and $N=|H|$. If $k \ni 1 / N$, then there exists a polarized abelian variety (A, L) over k such that the Heisenberg group $\mathcal{G}(A, L)$ of (A, L) is isomorphic to $\mathcal{G}_{H} \otimes k$.

Proof. See [32, Lemma 4.2].

8.4. The Hilbert scheme Hilb ${ }^{\chi(n)}$

Let H, V_{H} and \mathcal{G}_{H} be the same as in Subsec. 3.5. Let Hilb ${ }^{\chi(n)}$ be the Hilbert scheme parameterizing all the closed subscheme (Z, L) of $\mathbf{P}\left(V_{H}\right)$ with $\chi\left(Z, L^{n}\right)=n^{g}|H|=: \chi(n)$. Since V_{H} is a \mathcal{G}_{H}-module via U_{H}, \mathcal{G}_{H} acts on $\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)$, hence on $\operatorname{Hilb}^{\chi(n)}$. Let

$$
\left(\operatorname{Hilb}^{\chi(n)}\right)^{\mathcal{G}_{H-\mathrm{inv}}}
$$

be the fixed point set of \mathcal{G}_{H} (the scheme-theoretic fixed points). This is a closed \mathcal{O}_{N}-subscheme of $\operatorname{Hilb}^{\chi(n)}$. Let $\left(Z_{\text {univ }}, L_{\text {univ }}\right)$ be the pull back
to $\left(\operatorname{Hilb}^{\chi(n)}\right)^{\mathcal{G}_{H-}-\mathrm{inv}}$ of the universal subscheme of $\mathbf{P}\left(V_{H}\right)$ over $\operatorname{Hilb}^{\chi(n)}$. Then there is an open \mathcal{O}_{N}-subscheme U_{3} of $\left(\operatorname{Hilb}^{\chi(n)}\right)^{\mathcal{G}_{H} \text {-inv }}$ such that any geometric fiber of ($Z_{\text {univ }}, L_{\text {univ }}$) is an abelian variety (with zero unspecified). It is clear that \mathcal{G}_{H} keeps U_{3} stable. See [30, Subsec. 11.1].

Let $\operatorname{Aut}_{U_{3}}\left(Z_{\text {univ }}\right)$ be the relative automorphism group scheme of $\left(Z_{\text {univ }}\right)_{U_{3}}$ (see [30, Subsec. 11.1]). We define a subset U_{4} of U_{3} to be

$$
U_{4}=\left\{s \in U_{3} ; \begin{array}{l}
\text { the action of } \mathcal{G}_{H} \text { on }\left(Z_{\text {univ }, s}, L_{\text {univ }, s}\right) \text { is } \\
\text { a translation of the abelian variety } Z_{\text {univ }, s}
\end{array}\right\} .
$$

Since the subgroup of $\mathrm{Aut}_{U_{3}}\left(Z_{\text {univ }}\right)$ consisting of fiberwise translations is an (open and) closed subgroup Z-scheme of $\operatorname{Aut}_{U_{3}}\left(Z_{\text {univ }}\right), U_{4}$ is a closed \mathcal{O}_{N}-subscheme of U_{3}, which is not empty by Lemma 8.3.

We denote U_{4} by $A_{g, K}$ and we define $S Q_{g, K}$ to be the closure of $A_{g, K}$ (the minimal closed \mathcal{O}_{N}-subscheme containing $A_{g, K}$)

$$
\begin{equation*}
S Q_{g, K}:=\overline{A_{g, K}} \subset\left(\operatorname{Hilb}^{\chi(n)}\right)^{G(K)-\mathrm{inv}} . \tag{33}
\end{equation*}
$$

Theorem 8.5. Let $H=\bigoplus_{i=1}^{g}\left(\mathbf{Z} / e_{i} \mathbf{Z}\right)$ with $e_{i} \mid e_{i+1}$ for any i and $N=\prod_{i=1}^{g} e_{i}$. If $e_{\min }(H):=e_{1} \geq 3$, then for any algebraically closed field k with $k \ni 1 / N$, we have

$$
S Q_{g, K}(k)=\left\{\left(Q_{0}, i, U_{H}\right) ; \begin{array}{l}
Q_{0}: \text { a level- } \mathcal{G}_{H} P S Q A S \\
i: Q_{0} \subset \mathbf{P}\left(V_{H}\right) \text { the inclusion }
\end{array}\right\}
$$

Proof. Let x_{0} be any k-point of $S Q_{g, K}$. Then for a suitable CDVR R, there exists a morphism $j:$ Spec $R \rightarrow S Q_{g, K}$ such that
(i) $j(0)=x_{0} \in S Q_{g, K}$, and
(ii) $j(\operatorname{Spec} k(\eta)) \subset A_{g, K} \subset \operatorname{Hilb}^{\chi(n)}$.

In other words, there exists a projective R-flat subscheme (Z, \mathcal{L}) of $\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)_{R}$ such that
(i*) $x_{0}=\left(Z_{0}, \mathcal{L}_{0}\right):=(Z, \mathcal{L}) \otimes k(0) \in S Q_{g, K}$,
(ii*) $\left(Z_{\eta}, \mathcal{L}_{\eta}\right)$ is an U_{H}-invariant abelian variety (to more precise, invariant under the action of $U_{H} \mathcal{G}_{H}$ on $\left.\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)\right)$ such that $\operatorname{ker} \lambda\left(\mathcal{L}_{\eta}\right) \simeq K:=H \oplus H^{\vee}$ and the actions of \mathcal{G}_{H} on Z_{η} are translations of Z_{η}.
where η is the generic point of S and $k(\eta)$ is the fraction field of R.
In this case, (Z, \mathcal{L}) is the pull back of $\left(Z_{\text {univ }}, L_{\text {univ }}\right)$ by j. Conversely, $j:$ Spec $R \rightarrow S Q_{g, K}$ is induced from the subscheme (Z, \mathcal{L}) of $\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)_{R}$ by the universality of $\left(Z_{\text {univ }}, L_{\text {univ }}\right)$.

Let $i:(Z, \mathcal{L}) \rightarrow\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)_{R}$ be the natural inclusion, and $\mathcal{V}_{Z}:=$ $i^{*} \Gamma\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)=i^{*} V_{H} \otimes R$. Clearly \mathcal{V}_{Z} is very ample on Z. Since $j($ Spec $k(\eta)) \subset A_{g, K}$, the \mathcal{G}_{H}-action on (Z, \mathcal{L}) induces a rigid level- \mathcal{G}_{H}
structure on $\left(Z_{\eta}, \mathcal{L}_{\eta}\right)$. That is, $\left(Z, \mathcal{V}_{Z}, \mathcal{L}, i, U_{H}\right) \otimes_{R} k(\eta)$ is a rigid level\mathcal{G}_{H} PSQAS over $k(\eta)$. In other words, $Z_{\eta}=i\left(Z_{\eta}\right)$ is also a U_{H}-invariant subscheme of $\mathbf{P}\left(V_{H}\right)$.

Meanwhile, by Theorem 4.6, by a finite base change if necessary, there exists a rigid level- \mathcal{G}_{H} PSQAS $\left(Q, \mathcal{L}_{Q}, \phi, \tau\right)$ over R such that

$$
\left(Q_{\eta}, \mathcal{L}_{Q, \eta}, \phi_{\eta}, \tau_{\eta}\right) \simeq\left(Z_{\eta}, \mathcal{L}_{\eta}, i_{\eta}, U_{H}\right)
$$

By definition, $\rho(\phi, \tau)=U_{H}$. Hence $\phi(Q)$ is a U_{H}-invariant subscheme of $\mathbf{P}\left(V_{H}\right)_{R}$. Since $Z_{\eta}=i\left(Z_{\eta}\right)$ is also a U_{H}-invariant subscheme of $\mathbf{P}\left(V_{H}\right)_{k(\eta)}$, by Lemma 8.2.8 (2) (over $k(\eta)$)

$$
Z_{\eta}=i\left(Z_{\eta}\right)=\phi\left(Q_{\eta}\right)
$$

Hence their closures in $\mathbf{P}\left(V_{H}\right)_{R}$ are the same. It follows $Z=\phi(Q)$, hence $\left(Z_{0}, \mathcal{L}_{0}\right)=\left(\phi\left(Q_{0}\right), \mathcal{L}_{0}\right)$ as a subscheme of $\mathbf{P}\left(V_{H}\right)$. Since $\Gamma(Q, \mathcal{L})=$ $\phi^{*} \Gamma\left(\mathbf{P}\left(V_{H}\right)_{R}, \mathbf{H}_{R}\right)$ is very ample by Lemma 6.3 if $e_{\min }(H) \geq 3$, we have $Z_{0}=\phi\left(Q_{0}\right) \simeq Q_{0}$. It follows that

$$
x_{0}=\left(Z_{0}, \mathcal{L}_{0}, i_{0}, U_{H}\right) \simeq\left(Q_{0}, \mathcal{L}_{0}, \phi_{0}, \tau_{0}\right)
$$

which is a rigid level- \mathcal{G}_{H} PSQAS.
Q.E.D.

Corollary 8.6. Let $|H|=N$. Under the same assumption as in Theorem 8.5, for any algebraically closed field k with $k \ni 1 / N$, we have

$$
A_{g, K}(k)=\left\{\left(Q_{0}, i, U_{H}\right) ; \begin{array}{l}
Q_{0}: \text { a level- } \mathcal{G}_{H} \text { abelian variety } \\
i: Q_{0} \subset \mathbf{P}\left(V_{H}\right) \text { the inclusion }
\end{array}\right\} .
$$

§9. Moduli for PSQASes

Let $\mathcal{O}=\mathcal{O}_{N}$. In this section we prove
(i) $A_{g, K}$ is the fine moduli scheme for the functor of T-smooth PSQASes over \mathcal{O}-schemes.
(ii) $S Q_{g, K}$ is the fine moduli scheme for the functor of T-flat PSQASes over reduced \mathcal{O}-schemes.

9.1. $\quad T$-smooth PSQASes

Let T be any \mathcal{O}-scheme. In this subsection we define level- $\mathcal{G}_{H} T$ smooth PSQASes. Since any smooth PSQAS over a field is an abelian variety, any level- $\mathcal{G}_{H} T$-smooth PSQAS is a T-smooth scheme, any of whose geometric fiber is an abelian variety. It may have no global (zero) section over T.

Definition 9.1.1. A 6-tuple $(Q, \mathcal{L}, \mathcal{V}, \phi, \mathcal{G}, \tau)$ (or a triple (Q, ϕ, τ) for brevity) is called a T-smooth projectively stable quasi-abelian scheme (abbr. a T-smooth $P S Q A S$) of relative dimension g with level- \mathcal{G}_{H} structure if the conditions (i)-(vi) are true:
(i) $\quad Q$ is a projective T-scheme with the projection $\pi: Q \rightarrow T$ surjective smooth,
(ii) \mathcal{L} is a relatively very ample line bundle of Q,
(iii) \mathcal{G} is a T-flat group scheme, $\tau: \mathcal{G} \times(Q, \mathcal{L}) \rightarrow(Q, \mathcal{L})$ is an action of \mathcal{G} as bundle automorphisms over Q,
(iv) $\quad \phi: Q \rightarrow \mathbf{P}\left(V_{H}\right)_{T}$ is a \mathcal{G}-equivariant closed T-immersion of Q,
(v) there exists $M \in \operatorname{Pic}(T)$ with trivial \mathcal{G}-action such that $\mathcal{L} \simeq$ $\phi^{*} \mathbf{H} \otimes \pi^{*} M$ as \mathcal{G}-modules, and $\mathcal{V}=V_{H} \otimes_{\mathcal{O}} M$ is a locally free \mathcal{G}-invariant O_{T}-submodule ${ }^{1}$ of $\pi_{*} \mathcal{L}$ of rank $|H|$ via the natural homomorphism, (see Remark 9.1.3)
(vi) for any geometric point t of T, the fiber at $t\left(Q_{t}, \mathcal{L}_{t}, \mathcal{V}_{t}, \phi_{t}, \mathcal{G}_{t}, \tau_{t}\right)$ is a level- \mathcal{G}_{H} smooth PSQAS of dimension g over $k(t)$.
We call (ϕ, τ) a level- \mathcal{G}_{H} structure on Q if no confusion is possible. We also call (Q, ϕ, τ) a level- $\mathcal{G}_{H} T$-smooth PSQAS.

Remark 9.1.2. Let Q be a T-smooth TSQAS. Then $\operatorname{Aut}_{S}^{0}(Q)$ is an abelian scheme over S with zero section id_{Q}, hence any T-smooth TSQAS Q is an $\operatorname{Aut}_{S}^{0}(Q)$-torsor. See Theorem 13.6.5 and [33].

Remark 9.1.3. As in Definition 8.2 .1 and Remark 8.2.3, ϕ in (iv) is a \mathcal{G}-morphism with respect to τ in the sense that

$$
\phi \tau(g)=S(\rho(\phi, \tau)(g)) \phi
$$

under the notation $S(\rho(\phi, \tau)(g))$ in Subsec. 7.2.
The natural homomorphism $\iota: \mathcal{V}=V_{H} \otimes_{\mathcal{O}} M \rightarrow \pi_{*}(\mathcal{L})$ is given as follows. Let $\pi_{\mathbf{P}}: \mathbf{P}\left(V_{H}\right)_{T} \rightarrow T$ be the natural projection. By the relation $\pi_{\mathbf{P}} \phi=\pi$ and the projection formula, we see

$$
\pi_{*}(\mathcal{L})=\pi_{*}\left(\phi^{*}\left(\mathbf{H} \otimes \pi_{\mathbf{P}}^{*} M\right)\right)=\pi_{*}\left(\phi^{*}(\mathbf{H}) \otimes \pi^{*} M\right)=\left(\pi_{\mathbf{P}}\right)_{*} \phi_{*} \phi^{*} \mathbf{H} \otimes M
$$

while $V_{H} \otimes M=\left(\pi_{\mathbf{P}}\right)_{*}(\mathbf{H}) \otimes M$. Hence ι is induced from the natural homomorphism $\mathbf{H} \rightarrow \phi_{*} \phi^{*} \mathbf{H}$. In what follows we omit ι.

Definition 9.1.4. Let (Q, ϕ, τ) be a level- $\mathcal{G}_{H} T$-smooth PSQAS. Then (ϕ, τ) is called a rigid level- \mathcal{G}_{H} structure if $\rho(\phi, \tau)=U_{H}$, where $\rho(\phi, \tau)$ is defined by

$$
\begin{equation*}
\rho(\phi, \tau)(g)(v):=\left(\phi^{*}\right)^{-1} \rho_{\tau, L}(g) \phi^{*}(v) \tag{34}
\end{equation*}
$$

[^0]for $v \in \mathcal{V}=\phi^{*} V_{H} \otimes_{\mathcal{O}} M$.
Definition 9.1.5. Let $\sigma_{i}:=\left(Q_{i}, \mathcal{V}_{i}, \mathcal{L}_{i}, \phi_{i}, \mathcal{G}_{i}, \tau_{i}\right)$ be a level- $\mathcal{G}_{H} T$ smooth PSQAS and $\pi_{i}: Q_{i} \rightarrow T$ the projection. Then $f: \sigma_{1} \rightarrow \sigma_{2}$ is called a morphism of level- $\mathcal{G}_{H} T$-smooth PSQASes if there exists $M \in$ $\operatorname{Pic}(T)$, a T-morphism $f: Q_{1} \rightarrow Q_{2}$ and a group scheme T-morphism $h: \mathcal{G}_{1} \rightarrow \mathcal{G}_{2}$ such that
(i) $\phi_{1}=\phi_{2} \circ f$,
(ii) the following diagram is commutative:

The morphism $f: \sigma_{1} \rightarrow \sigma_{2}$ is an isomorphism if and only if $f:$ $Q_{1} \rightarrow Q_{2}$ is an isomorphism as schemes.

Remark 9.1.6. From Definition 9.1.5, we infer that there exists some $M \in \operatorname{Pic}(T)$ such that
(i) $\quad \mathcal{L}_{1} \simeq f^{*}\left(\mathcal{L}_{2}\right) \otimes \pi_{1}^{*}(M)$ and $\mathcal{V}_{1}=\mathcal{V}_{2} \otimes M$,
(ii) $\quad(f, F(f)):\left(Q_{1}, \mathcal{L}_{1}\right) \rightarrow\left(Q_{2}, \mathcal{L}_{2} \otimes \pi_{2}^{*}(M)\right)$ is a \mathcal{G}_{1}-morphism of bundles: that is,

$$
(f, F(f)) \circ \tau_{1}(g)=\tau_{2}(g) \circ(f, F(f)), \quad g \in \mathcal{G}_{1}
$$

(iii) $\quad \rho\left(\phi_{1}, \tau_{1}\right)=\rho\left(\phi_{2}, \tau_{2}\right)$. See [32, Lemma 5.5].

In particular, for any $M \in \operatorname{Pic}(T)$ with trivial \mathcal{G}-action,

$$
(Q, \mathcal{V}, \mathcal{L}, \phi, \mathcal{G}, \tau) \simeq\left(Q, \mathcal{V} \otimes M, \mathcal{L} \otimes \pi^{*} M, \phi, \mathcal{G}, \tau\right)
$$

Remark 9.1.7. Since any $a \in Q(T)$ (a global section of Q) acts on Q by translation, we have

$$
(Q, \mathcal{V}, \mathcal{L}, \phi, \mathcal{G}, \tau) \simeq\left(Q, T_{a}^{*} \mathcal{V}, T_{a}^{*} \mathcal{L}, T_{a}^{*} \phi, \mathcal{G}, T_{a}^{*} \tau\right)
$$

where $T_{a}^{*} \tau=\left\{T_{a}^{*} \phi_{g}\right\}$ for $\tau=\left\{\phi_{g}\right\}$ as \mathcal{G}_{H}-linearization.
Lemma 9.1.8. Assume $e_{\min }(H) \geq 3$. For a level- $\mathcal{G}_{H} T$-smooth (resp. T-flat) PSQAS (Z, ϕ, τ), there exists a unique rigid level-G $\mathcal{G}_{H} T$ smooth (resp. T-flat) PSQAS (Z, ψ, τ) isomorphic to (Z, ϕ, τ).

Proof. One can prove this in parallel to Lemma 8.2.8.
By Definition 9.1.1, we have a 6 -tuple $(Z, L, \mathcal{V}, \phi, \mathcal{G}, \tau)$. Let $\mathcal{V}=$ $V_{H} \otimes M$ for some $M \in \operatorname{Pic}(T)$. We choose an affine covering U_{i} of T
such that $M \otimes O_{U_{i}}$ is trivial. Let $Z_{i}:=Z_{T} \times U_{i}$. Then $\phi_{i}:=\phi_{\mid Z_{i}}$: $\left(Z_{i}, L_{Z_{i}}\right) \rightarrow \mathbf{P}\left(V_{H}\right)$ is a closed $\mathcal{G}_{U_{i}}$-immersion and $\rho_{\rho_{i}, \tau}$ is equivalent to U_{H}. Hence there exists $A_{i} \in \operatorname{GL}\left(V_{H} \otimes O_{U_{i}}\right)$ such that $U_{H}=A_{i}^{-1} \rho_{\rho_{i}, \tau} A_{i}$ by Lemma 3.7. We define a closed $\mathcal{G}_{U_{i}}$-immersion

$$
\psi_{i}:\left(Z_{i}, L_{Z_{i}}\right) \rightarrow\left(\mathbf{P}\left(V_{H}\right)_{U_{i}}, \mathbf{H}_{U_{i}}\right)
$$

by $\psi_{i}^{*}=\phi_{i}^{*} A_{i}$. Hence we have $\rho\left(\psi_{i}, \tau\right)=U_{H}$. Over $U_{i} \cap U_{j}$ we have two $\mathcal{G}_{U_{i} \cap U_{j}}$-isomorphisms

$$
\psi_{k}^{*}: V_{H} \otimes O_{U_{i} \cap U_{j}} \simeq \mathcal{V} \otimes O_{U_{i} \cap U_{j}}, \quad(k=i, j)
$$

By Lemma 3.8, there exists a unit $f_{i j} \in O_{U_{i} \cap U_{j}}^{\times}$such that $\psi_{i}^{*}=f_{i j} \psi_{j}^{*}$. Hence $\psi_{i}=\psi_{j}$ over $U_{i} \cap U_{j}$ as a morphism to $\mathbf{P}\left(V_{H}\right)_{U_{i} \cap U_{j}}$. Thus we have a T-smooth (resp. T-flat) PSQAS (Z, ψ, τ) such that $\rho(\psi, \tau)=U_{H}$.

The same argument proves the Lemma for a T-flat PSQAS, though T-flat PSQASes are defined later in Subsec. 9.7. This completes the proof.
Q.E.D.

Definition 9.1.9. We define a contravariant functor $\mathcal{A}_{g, K}$ from the category of \mathcal{O}-schemes to the category of sets by

$$
\begin{aligned}
\mathcal{A}_{g, K}(T)= & \text { the set of all level- } \mathcal{G}_{H} T \text {-smooth PSQASes }(Q, \phi, \tau) \\
& \text { of relative dimension } g \text { modulo } T \text {-isomorphism } \\
= & \text { the set of all rigid level- } \mathcal{G}_{H} T \text {-smooth PSQASes } \\
& \text { of relative dimension } g \text { modulo } T \text {-isomorphism }
\end{aligned}
$$

by Lemma 9.1.8.

9.2. Pro-representability

Let k be an algebraically closed field, and $W=W(k)$ the Witt ring of k. Let $\mathcal{C}=\mathcal{C}_{W}$ be the category of local Artinian W-algebra with an isomorphism $k=R / m_{R}$ making the following diagram commutative:

Let $\hat{\mathcal{C}}_{W}$ be the category of all complete local noetherian W-algebras R such that $R / m_{R}^{n} \in \mathcal{C}_{W}$ for every n. The morphisms in $\hat{\mathcal{C}}_{W}$ are local W-algebra homomorphisms. A functor $F: \mathcal{C}_{W} \rightarrow$ (Sets) is called prorepresentable if there exists an $A \in \hat{\mathcal{C}}_{W}$ such that

$$
F(R)=\operatorname{Hom}_{W \text {-hom. }}(A, R) .
$$

9.3. Deformation theory of abelian schemes

We briefly review [38]. Let k be an algebraically closed field. Let $\mathcal{C}=\mathcal{C}_{W}$. We caution that $R \in \mathcal{C}$ is not always a k-algebra.

Let A be an abelian variety over k, L_{0} an ample line bundle on A, and $\lambda\left(L_{0}\right): A \rightarrow A^{\vee}:=\operatorname{Pic}_{A}^{0}$ the polarization morphism.

By Grothendieck and Mumford [38, Theorems 2.3.3, 2.4.1] the quasipolarized moduli functor P of $\left(A, \lambda\left(L_{0}\right)\right)$ is formally smooth if $\lambda\left(L_{0}\right)$: $A \rightarrow A^{\vee}$ is separable. We will explain this.

The deformation functor $M:=M(A)$ of A is defined over \mathcal{C} by

$$
M(R)=\left\{\left(X, \phi_{0}\right) ; \begin{array}{l}
X \text { is a proper } R \text {-scheme } \\
\phi_{0}: X \otimes_{R} k \simeq A
\end{array}\right\} / R \text {-isom. }
$$

By Grothendieck [38, Theorem 2.2.1], M is pro-represented by

$$
W(k)\left[\left[t_{i, j} ; 1 \leq i, j \leq g\right]\right]
$$

where $W(k)$ is the Witt ring of k.
The quasi-polarized moduli functor $P:=P\left(A, \lambda_{0}\right)$ of $\left(A, \lambda\left(L_{0}\right)\right)$ over \mathcal{C} is defined as follows [38, pp. 240-242] :
$P(R)=\left\{\left(X, \lambda, \phi_{0}\right) ; \begin{array}{l}(X, \lambda) \text { is an abelian } R \text {-scheme } \\ \lambda: X \rightarrow X^{\vee} \text { is a homomorphism } \\ \text { such that } \lambda=\lambda(\mathcal{L}) \text { for some } \mathcal{L} \in \operatorname{Pic}(X) \\ \phi_{0}:(X, \lambda) \otimes_{R} k \simeq\left(A, \lambda_{0}\right)\end{array}\right\} / R$-isom.
where $\lambda_{0}:=\lambda\left(L_{0}\right)$ and $X^{\vee}:=\operatorname{Pic}_{X / R}^{0}$.
Thus any $\left(Y, \lambda, \phi_{0}\right) \in P(R)$ always has a line bundle L such that $\lambda=\lambda(L)$. This fact is used in Subsec. 9.4.

By [38, Theorem 2.3.3], $P\left(A, \lambda_{0}\right)$ is a pro-representable subfunctor of $M(A)$, that is, the functor $P\left(A, \lambda_{0}\right)$ is pro-represented by

$$
\mathcal{O}_{W}:=W(k)\left[\left[t_{i, j} ; 1 \leq i, j \leq g\right]\right] / \mathfrak{a}
$$

for some ideal \mathfrak{a} where \mathfrak{a} is generated by $\frac{1}{2} g(g-1)$ elements.

9.4. Deformations in the separably polarized case

We call $\lambda\left(L_{0}\right)$ (or L_{0}) a separable polarization if $\lambda\left(L_{0}\right): A \rightarrow A^{\vee}$ is a separable morphism. For instance, $\lambda\left(L_{0}\right)$ is separable if $k \ni 1 / N$ where $N=\sqrt{\left|\operatorname{ker} \lambda\left(L_{0}\right)\right|}$.

Suppose that the polarization λ_{0} is separable. The ideal \mathfrak{a} is generated by $t_{i j}-t_{j i}$ for any pair $i \neq j[38$, Remark, p. 246]:

$$
\mathfrak{a}=\left(t_{i j}-t_{j i} ; 1 \leq i<j \leq g\right)
$$

Hence $P\left(A, \lambda_{0}\right)$ is formally smooth of dimension $\frac{1}{2} g(g+1)$ over $W(k)$. In this case $\left(A, \lambda_{0}\right)$ can be lifted as a formal abelian scheme $\left(\mathcal{X}_{\text {for }}, \lambda\left(\mathcal{L}_{\text {for }}\right)\right)$ over \mathcal{O}_{W}, that is, there exists a system $\left(X_{n}, \lambda_{n}\right)$ of polarized abelian schemes over $\mathcal{O}_{W, n}:=\mathcal{O}_{W} / \mathfrak{m}^{n+1}$ such that

$$
\left(X_{n+1}, \lambda_{n+1}\right) \otimes \mathcal{O}_{n} \simeq\left(X_{n}, \lambda_{n}\right)
$$

where \mathfrak{m} is the maximal ideal of \mathcal{O}_{W}. Then by [10, III, 11, 5.4.5], the formal scheme \mathcal{X} is algebraizable, that is, there exists a polarized abelian scheme (X, \mathcal{L}) over $\operatorname{Spec} \mathcal{O}_{W}$ such that

$$
(X, \lambda(\mathcal{L})) \otimes \mathcal{O}_{W, n} \simeq\left(X_{n}, \lambda_{n}\right)
$$

Let $K_{\mathrm{su}}=\operatorname{ker}(\lambda(\mathcal{L})), \mathcal{G}_{\mathrm{su}}:=\mathcal{G}(X, \mathcal{L}):=\mathcal{L}_{K_{\mathrm{su}}}^{\times}$and $\mathcal{V}_{\mathrm{su}}:=\Gamma(X, \mathcal{L})$. By [25, pp. 115-117, pp.204-211], \mathcal{L} is $\mathcal{G}_{\text {su }}$-linearizable. In other words, $\mathcal{G}_{\text {su }}$ acts on (X, \mathcal{L}) by bundle automorphisms. Let $\tau_{\text {su }}$ be the action of $\mathcal{G}_{\text {su }}$ on (X, \mathcal{L}). Then $\mathcal{V}_{\text {su }}$ is an \mathcal{O}_{W}-free $\mathcal{G}_{\text {su }}$-module of rank N via $\rho_{\tau_{\mathrm{su}}, \mathcal{L}}$.

By the assumption $k \ni 1 / N, \lambda(\mathcal{L}): X \rightarrow X^{\vee}$ is separable, and K_{su} is a constant finite symplectic Abelian group of order N^{2} isomorphic to $H \oplus H^{\vee}$ because $K_{\mathrm{su}} \otimes_{\mathcal{O}_{W}} k$ is so.

If $e_{\min }\left(K_{\mathrm{su}}\right) \geq 3$, then \mathcal{L} is very ample because $\mathcal{L}_{0}=L_{0}$ is very ample by Theorem 8.1 (Lefschetz's theorem in this case). Let ϕ_{su} : $X \rightarrow \mathbf{P}\left(\mathcal{V}_{\mathrm{su}}\right) \simeq \mathbf{P}\left(V_{H}\right)_{\mathcal{O}_{W}}$ be the embedding of X into $\mathbf{P}\left(\mathcal{V}_{\mathrm{su}}\right)$ such that $\rho\left(\phi_{\mathrm{su}}, \tau_{\mathrm{su}}\right)=U_{H}$. Thus we have a level- $\mathcal{G}_{H} \mathcal{O}_{W}$-smooth PSQAS

$$
\left(X, \mathcal{L}, \mathcal{V}_{\mathrm{su}}, \phi_{\mathrm{su}}, \mathcal{G}_{\mathrm{su}}, \tau_{\mathrm{su}}\right)
$$

Theorem 9.5. Let $K=H \oplus H^{\vee}$ and $N:=|H|$. If $e_{\min }(H) \geq 3$, then the functor $\mathcal{A}_{g, K}$ of level- \mathcal{G}_{H} smooth PSQASes over \mathcal{O}-schemes is represented by the quasi-projective \mathcal{O}-formally smooth scheme $A_{g, K}$.

Proof. By Lemma 9.1.8, for a T-smooth PSQAS (Q, ϕ, τ) there exists a unique rigid level- $\mathcal{G}_{H} T$-smooth $\operatorname{PSQAS}(Q, \psi, \tau)$ such that (Q, ψ, τ) is T-isomorphic to (Q, ϕ, τ). Since \mathcal{L} is very ample by the assumption $e_{\min }(H) \geq 3,(Q, \psi, \tau)$ is embedded \mathcal{G}-equivariantly into $\left(\mathbf{P}\left(V_{H}\right), \mathbf{H}\right)$, whose image is contained in $A_{g, K}$, because $\rho(\psi, \tau)=U_{H}$. This implies that there exists a unique morphism $f: T \rightarrow A_{g, K}$ such that (Q, ψ, τ) is the pull back by f of the universal subscheme

$$
\left(Z_{g, K} \times_{H_{g, K}} A_{g, K}, i, U_{H}\right)
$$

It follows that $\mathcal{A}_{g, K}$ is represented by the quasi-projective $\mathbf{Z}\left[\zeta_{N}, 1 / N\right]$ scheme $A_{g, K}$.

It remains to prove $A_{g, K}$ is formally smooth over $\mathbf{Z}\left[\zeta_{N}, 1 / N\right]$. Let k be any algebraically closed field with $k \ni 1 / N$, and we choose any level- \mathcal{G}_{H} abelian variety over k

$$
\sigma:=\left(A, L_{0}, \Gamma\left(A, L_{0}\right), \phi_{0}, \mathcal{G}\left(A, L_{0}\right), \tau_{0}\right) \in \mathcal{A}_{g, K}(k)
$$

By Subsec. 9.4, the quasi-polarized moduli functor $P\left(A, \lambda\left(L_{0}\right)\right)$ is formally smooth because $\lambda\left(L_{0}\right): A \rightarrow A^{\vee}$ is separable by $k \ni 1 / N$.

We define a functor F over \mathcal{C} by

$$
F(R)=\left\{\xi:=(Z, L, \mathcal{V}, \phi, \mathcal{G}, \tau) \in \mathcal{A}_{g, K}(R) ; \xi \otimes_{R} k \simeq \sigma\right\}
$$

where we do not fix the isomorphism $\xi \otimes_{R} k \simeq \sigma$ in contrast with $P\left(A, \lambda\left(L_{0}\right)\right)$. Subsec. 9.4 shows that the map $h: P\left(A, \lambda\left(L_{0}\right)\right) \rightarrow F$ sending $(Z, L)=(X, \mathcal{L}) \times{ }_{\mathcal{O}_{W}} R$ to

$$
\left(X, \mathcal{L}, \mathcal{V}_{\mathrm{su}}, \phi_{\mathrm{su}}, \mathcal{G}_{\mathrm{su}}, \tau_{\mathrm{su}}\right) \times_{\mathcal{O}_{W}} R
$$

is surjective because $\mathcal{V}_{\mathrm{su}}, \phi_{\mathrm{su}}, \mathcal{G}_{\mathrm{su}}$ and τ_{su} are uniquely determined, . It follows from Lemma 8.2.9 that h is injective. Hence $F=P\left(A, \lambda\left(L_{0}\right)\right)$. Hence $A_{g, K}$ is formally smooth at σ.
Q.E.D.

Corollary 9.6. $S Q_{g, K}$ is reduced.
Proof. Since $A_{g, K}$ is \mathcal{O}-formally smooth, it is reduced. Since $S Q_{g, K}$ is the intersection of all closed \mathcal{O}-subschemes containing $A_{g, K}$, it is the intersection of all closed reduced \mathcal{O}-subschemes containing $A_{g, K}$ because $A_{g, K}$ is reduced. Hence $S Q_{g, K}$ is reduced.
Q.E.D.

9.7. T-flat PSQASes

Definition 9.7.1. Let T be any reduced \mathcal{O}-scheme. A 5 -tuple $(Q, \mathcal{L}, \mathcal{V}, \phi, \mathcal{G}, \tau)$ (or a triple (Q, ϕ, τ) for brevity) is called a projectively stable quasi-abelian T-flat scheme (or just a T-flat PSQAS) of relative dimension g with level- \mathcal{G}_{H} structure if the conditions (ii)-(v) in Definition 9.1.1 and (i^{*}), (vi^{*}) are true:
(i*) $\quad Q$ is a projective T-scheme with the projection $\pi: Q \rightarrow T$ surjective flat,
(vi*) for any geometric point t of T, the fiber at $t\left(Q_{t}, \mathcal{L}_{t}, \phi_{t}, \tau_{t}\right)$ is a PSQAS of dimension g over $k(t)$ with level- \mathcal{G}_{H} structure.
We also call (Q, ϕ, τ) a level- $\mathcal{G}_{H} T$-PSQAS.
Definition 9.7.2. Let (Q, ϕ, τ) be a level- $\mathcal{G}_{H} T$-flat PSQAS. Then (ϕ, τ) is called a rigid level- \mathcal{G}_{H} structure if $\rho(\phi, \tau)=U_{H}$.

Definition 9.7.3. Let $\left(Q_{i}, \mathcal{V}_{i}, \mathcal{L}_{i}, \phi_{i}, \mathcal{G}_{i}, \tau_{i}\right)$ be level- $\mathcal{G}_{H} T$-PSQASes and $\pi_{i}: Q_{i} \rightarrow T$ a flat morphism (structure morphism) with T reduced. Then $f: Q_{1} \rightarrow Q_{2}$ is called a morphism of level- \mathcal{G}_{H} T-PSQASes if the conditions in Definition 9.1.5 are true.

Definition 9.7.4. The category $S c h_{\text {red }}$ of reduced schemes is a subcategory of the category $S c h$ of schemes with

$$
\begin{aligned}
\operatorname{Obj}\left(S c h_{\mathrm{red}}\right) & =\text { reduced schemes } \\
\operatorname{Mor}\left(S c h_{\mathrm{red}}\right) & =\text { morphisms in the category of schemes. }
\end{aligned}
$$

Definition 9.7.5. We define a contravariant functor $\mathcal{S Q}_{g, K}$ from the category $S c h_{\text {red }}$ of reduced \mathcal{O}-schemes to the category of sets by

$$
\begin{aligned}
\mathcal{S} \mathcal{Q}_{g, K}(T)= & \text { the set of all level- } \mathcal{G}_{H} T \text {-flat PSQASes }(Q, \phi, \tau) \\
& \text { of relative dimension } g \text { modulo } T \text {-isomorphism } \\
= & \text { the set of all rigid level- } \mathcal{G}_{H} T \text {-flat PSQASes } \\
& \text { of relative dimension } g \text { modulo } T \text {-isomorphism }
\end{aligned}
$$

by Lemma 9.1.8.
Theorem 9.8. Suppose $e_{\min }(K) \geq 3$. Let $N:=\sqrt{|K|}$. The functor $\mathcal{S Q}_{g, K}$ of level- $G(K)$ PSQASes (Q, ϕ, τ) over reduced schemes is represented by the projective reduced \mathcal{O}_{N}-scheme $S Q_{g, K}$.

Proof. This is proved in parallel to Theorem 9.5. Properness of $S Q_{g, K}$ follows from Theorem 4.6. See [30, Theorem 10.4] for a more precise statement. Since $S Q_{g, K}$ is a proper subscheme of the projective scheme $\operatorname{Hilb}^{\chi(n)}$ in Subsec. 8.4, it is projective.
Q.E.D.

§10. The functor of TSQASes

10.1. TSQASes over k

We introduced two kinds of nice classes of degenerate abelian schemes, PSQASes and TSQASes in Theorem 4.6.

It is TSQASes that we discuss in this section. They are nonsingular abelian varieties, or reduced even if singular, and therefore easier to handle than PSQASes. However the very-ampleness criterion (Theorem 4.6 (4)) fails for (P, \mathcal{L}_{P}), and because of this defect, we cannot expect the existence of the fine moduli scheme for TSQASes.

Let H be any finite Abelian group, $N=|H|, k$ an algebraically closed field with $k \ni 1 / N, K=H \oplus H^{\vee}$ and $\mathcal{O}=\mathcal{O}_{N}$.

Remark 10.1.1. Let (Z, L) be any TSQAS over k. Hence there exist an Abelian group H and a flat family (P, \mathcal{L}) over a CDVR R with $k=R / m$ given in Theorem 4.6 such that $(Z, L) \simeq\left(P_{0}, \mathcal{L}_{0}\right), P_{0}$ is reduced, and the generic fiber $\left(P_{\eta}, \mathcal{L}_{\eta}\right)$ is an abelian variety with $\left.\operatorname{ker} \lambda\left(\mathcal{L}_{\eta}\right)\right) \simeq K_{H}=H \oplus H^{\vee}$. Hence we have an action of \mathcal{G}_{H} on (Z, L). See Remark 8.1.4. We denote by $\mathcal{G}(Z, L)$ the \mathcal{G}_{H}-action on (Z, L). This is determined by (Z, L) uniquely up to an automorphism of \mathcal{G}_{H}. In the totally degenerate case, the action of $\mathcal{G}(Z, L)$ is explicitly written as S_{x} and $T_{a}\left(x \in X / Y, a \in X \times_{\mathbf{Z}} \mathbf{G}_{m}\right)$. See Definition 6.2.2.

Definition 10.1.2. Let (Z, L) be a TSQAS over k. We call $\tau: \mathcal{G}_{H} \times$ $(Z, L) \rightarrow(Z, L)$ a characteristic \mathcal{G}_{H}-action, or simply characteristic, if this action of \mathcal{G}_{H} induces the natural isomorphism in Remark 10.1.1

$$
\mathcal{G}_{H} \cong \mathcal{G}(Z, L) \subset \operatorname{Aut}(L / Z)
$$

Definition 10.1.3. Let (Z, L) be a TSQAS over k. We define $\left(Z, L, \phi^{*}, \mathcal{G}_{H}, \tau\right)$ (denoted often $\left(Z, \phi^{*}, \tau\right)$ or $\left.\left(Z, L, \phi^{*}, \tau\right)\right)$ to be a level\mathcal{G}_{H} TSQAS if if the conditions (i)-(iii) are true:
(i) (Z, L) is a PSQAS $\left(P_{0}, \mathcal{L}_{0}\right)$ over k with L ample,
(ii) $\tau: \mathcal{G}_{H} \times(Z, L) \rightarrow(Z, L)$ is a characteristic \mathcal{G}_{H}-action,
(iii) $\phi^{*}: V_{H} \otimes k \rightarrow H^{0}(Z, L)$ is a \mathcal{G}_{H}-isomorphism.

Definition 10.1.4. We define level- $\mathcal{G}_{H} k$-TSQASes $\left(Z_{1}, L_{1}, \phi_{1}^{*}, \tau_{1}\right)$ and $\left(Z_{2}, L_{2}, \phi_{2}^{*}, \tau_{2}\right)$ to be isomorphic if there exists a \mathcal{G}_{H}-isomorphism $f:\left(Z_{1}, L_{1}\right) \rightarrow\left(Z_{2}, L_{2}\right)$ such that $f^{*} \phi_{1}^{*}=c \phi_{2}^{*}$ for some nonzero $c \in k$.

10.2. T-smooth TSQASes

Let T be any \mathcal{O}-scheme. In this subsection we define level- $\mathcal{G}_{H} T$ smooth TSQASes. The level- $\mathcal{G}_{H} T$-smooth TSQASes are essentially the same as level- $\mathcal{G}_{H} T$-smooth PSQASes in Subsec. 9.1. The only difference from Subsec. 9.1 is that we define them without any restriction on $e_{\min }(H)$. Since any smooth TSQAS over a field is an abelian variety, any level- $\mathcal{G}_{H} T$-smooth TSQAS is a level- \mathcal{G}_{H} abelian scheme over T possibly with no zero section over T.

Definition 10.2.1. A 5-tuple $\left(P, \mathcal{L}, \phi^{*}, \mathcal{G}, \tau\right)$ (or a triple $\left(P, \phi^{*}, \tau\right)$ for brevity) is called a T-smooth PSQAS of relative dimension g with level $-\mathcal{G}_{H}$ structure if the conditions (i)-(v) are true:
(i) $\quad P$ is a projective T-scheme with the projection $\pi: P \rightarrow T$ surjective smooth,
(ii) \mathcal{L} is a relatively ample line bundle of P,
(iii) \mathcal{G} is a T-flat group scheme, $\tau: \mathcal{G} \times(P, \mathcal{L}) \rightarrow(P, \mathcal{L})$ is an action of \mathcal{G} on (P, \mathcal{L}) as bundle automorphism,
(iv) there exists a \mathcal{G}-isomorphism $\phi^{*}: V_{H} \otimes_{\mathcal{O}} M \xlongequal{\cong} \pi_{*} \mathcal{L}$ for some $M \in \operatorname{Pic}(T)$ with trivial \mathcal{G}-action,
(v) for any geometric point t of T, the fiber at $t\left(P_{t}, \mathcal{L}_{t}, \phi_{t}^{*}, \mathcal{G}_{t}, \tau_{t}\right)$ is a level- \mathcal{G}_{H} smooth $T S Q A S$ of dimension g over $k(t)$.
We call $\left(\phi^{*}, \tau\right)$ a level $-\mathcal{G}_{H}$ structure on P if no confusion is possible. We also call $\left(P, \phi^{*}, \tau\right)$ a level- $\mathcal{G}_{H} T$-smooth TSQAS.

Definition 10.2.2. Let $\left(P, \phi^{*}, \tau\right)$ be a level- $\mathcal{G}_{H} T$-smooth TSQAS. Then $\left(\phi^{*}, \tau\right)$ is called a rigid level- \mathcal{G}_{H} structure if $\rho\left(\phi^{*}, \tau\right)=U_{H}$, where $\rho\left(\phi^{*}, \tau\right)$ is defined by

$$
\begin{equation*}
\rho\left(\phi^{*}, \tau\right)(g)(\theta):=\left(\phi^{*}\right)^{-1} \rho_{\tau, L}(g)(\theta) \phi^{*} \tag{35}
\end{equation*}
$$

for $\theta \in \mathcal{V}:=\phi^{*} V_{H} \otimes_{\mathcal{O}} M$. If ϕ^{*} defines a morphism $\phi: Z \rightarrow \mathbf{P}\left(V_{H}\right)_{T}$, then $\rho\left(\phi^{*}, \tau\right)=\rho(\phi, \tau)$ with the notation in Definition 9.1.4.

Definition 10.2.3. Let $\left(P_{k}, \mathcal{L}_{k}, \phi_{k}^{*}, \mathcal{G}_{k}, \tau_{k}\right)$ be a level- $\mathcal{G}_{H} T$-smooth TSQAS and $\pi_{k}: P_{k} \rightarrow T$ the projection (structure morphism). Then $f: P_{1} \rightarrow P_{2}$ is called a morphism of level-G \mathcal{G}_{H} T-smooth TSQASes if there exists $M \in \operatorname{Pic}(T)$, a T-morphism $f: P_{1} \rightarrow P_{2}$ and a group scheme T-morphism $h: \mathcal{G}_{1} \rightarrow \mathcal{G}_{2}$ such that
$\left(\mathrm{i}^{* *}\right) \quad f^{*} \phi_{2}^{*}=c \phi_{1}^{*}$ for some unit $c \in H^{0}\left(O_{T}\right)^{\times}$,
(ii**) the following diagram is commutative:

The same is true as in Remark 9.1.6 by replacing $\rho\left(\phi_{k}, \tau_{k}\right)$ by $\rho\left(\phi_{k}^{*}, \tau_{k}\right)$.
Lemma 10.2.4. For a level- $\mathcal{G}_{H} T$-smooth (resp. T-flat) TSQAS $\left(Z, \phi^{*}, \tau\right)$, there exists a unique rigid level-G्G$H T$-smooth (resp. T-flat) TSQAS $\left(Z, \psi^{*}, \tau\right)$ such that
(1) $\left(Z, \psi^{*}, \tau\right)$ is isomorphic to $\left(Z, \phi^{*}, \tau\right)$,
(2) ψ^{*} is the \mathcal{G}_{H}-isomorphism with $\rho\left(\psi^{*}, \tau\right)=U_{H}$, unique up to nonzero constant multiple.

Proof. One can prove this in parallel to Lemma 8.2.8. Q.E.D.
Definition 10.2.5. We define a contravariant functor $\mathcal{A}_{g, K}$ (the functor of level- \mathcal{G}_{H} smooth TSQASes) from the category of \mathcal{O}-schemes
to the category of sets by

$$
\begin{aligned}
\mathcal{A}_{g, K}^{\text {toric }}(T)= & \text { the set of all level- } \mathcal{G}_{H} T \text {-smooth TSQASes }\left(Q, \phi^{*}, \tau\right) \\
& \text { of relative dimension } g \text { modulo } T \text {-isomorphism } \\
= & \text { the set of all rigid level- } \mathcal{G}_{H} T \text {-smooth TSQASes } \\
& \text { of relative dimension } g \text { modulo } T \text {-isomorphism }
\end{aligned}
$$

by Lemma 10.2.4.

10.3. T-flat TSQASes

Definition 10.3.1. Let T be any reduced \mathcal{O}-scheme. A 5 -tuple $\left(P, \mathcal{L}, \phi^{*}, \mathcal{G}, \tau\right)$ (or a triple $\left(P, \phi^{*}, \tau\right)$ for brevity) is called $a T$-flat TSQAS of relative dimension g with level- \mathcal{G}_{H} structure if the conditions (ii)-(iv) in Definition 10.2.1 and (i^{*}), $\left(\mathrm{v}^{*}\right)$ are true:
(i*) $\quad P$ is a T-scheme with the projection $\pi: P \rightarrow T$ surjective flat,
$\left(\mathrm{v}^{*}\right)$ for any geometric point t of T, the fiber at $t\left(P_{t}, \mathcal{L}_{t}, \phi_{t}^{*}, \tau_{t}\right)$ is a TSQAS of dimension g over $k(t)$ with level- \mathcal{G}_{H} structure.
We also call $\left(P, \phi^{*}, \tau\right)$ a level- $\mathcal{G}_{H} T$-TSQAS.
Definition 10.3.2. Let $\left(P, \phi^{*}, \tau\right)$ be a level- $\mathcal{G}_{H} T$-flat TSQAS. Then $\left(\phi^{*}, \tau\right)$ is called a rigid level- \mathcal{G}_{H} structure if $\rho\left(\phi^{*}, \tau\right)=U_{H}$.

Definition 10.3.3. Let $\left(P_{i}, \mathcal{L}_{i}, \phi_{i}^{*}, \mathcal{G}_{i}, \tau_{i}\right)$ be level- $\mathcal{G}_{H} T$-TSQASes and $\pi_{i}: P_{i} \rightarrow T$ a flat morphism (structure morphism) with T reduced. Then $f: P_{1} \rightarrow P_{2}$ is called an isomorphism of level- $\mathcal{G}_{H} T$-TSQASes if the conditions in Definition 10.2.3 are true.

Definition 10.3.4. The category Space $_{\text {red }}$ of reduced algebraic spaces is a subcategory of the category Space of algebraic spaces with
$\operatorname{Obj}\left(\right.$ Space $\left._{\text {red }}\right)=$ reduced algebraic spaces,
$\operatorname{Mor}\left(\right.$ Space $\left._{\text {red }}\right)=$ morphisms in the category of algebraic spaces.
Definition 10.3.5. We define a contravariant functor $\mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }}$ from the category Space $_{\text {red }}$ of reduced algebraic \mathcal{O}-spaces to the category of sets by

$$
\begin{aligned}
\mathcal{S Q}_{g, K}^{\text {toric }}(T)= & \text { the set of all level- } \mathcal{G}_{H} T \text {-flat TSQASes }\left(P, \phi^{*}, \tau\right) \\
& \text { of relative dimension } g \text { modulo } T \text {-isomorphism } \\
= & \text { the set of all rigid level- } \mathcal{G}_{H} T \text {-flat TSQASes } \\
& \text { of relative dimension } g \text { modulo } T \text {-isomorphism }
\end{aligned}
$$

by Lemma 10.2.4.

§11. The moduli spaces $A_{g, K}^{\text {toric }}$ and $S Q_{g, K}^{\text {toric }}$

Let H be a finite Abelian group, $K=K_{H}:=H \oplus H^{\vee}$ and $N=|H|$, and let $\mathcal{O}=\mathcal{O}_{N}$. In this section we recall from $[32, \S 9]$ how to construct the algebraic space $S Q_{g, K}^{\text {toric }}$ parameterizing level- \mathcal{G}_{H} TSQASes.

The construction in Subsec. 11.2-11.6 is carried out without any change regardless of the value of $e_{\min }(H)$. We do not assume $e_{\min }(H) \geq$ 3 unless otherwise mentioned.

We summarize this section in Summary 11.11 at the end.

11.1. Preliminaries

Let k be any algebraically closed field with $k \ni 1 / N$. In this subsection we list some basic properties of a level- \mathcal{G}_{H} TSQAS $\left(P_{0}, \mathcal{L}_{0}\right)$ over k that we use in what follows.

Lemma 11.1.1. Let k be any algebraically closed field with $k \ni$ $1 / N$. Let $\left(P_{0}, \mathcal{L}_{0}, \phi_{0}^{*}, \mathcal{G}\left(P_{0}, \mathcal{L}_{0}\right), \tau_{0}\right)$ be a level- \mathcal{G}_{H} TSQAS over k, and therefore a closed fiber of the TSQAS (P, \mathcal{L}) over a CDVR R with the generic fiber P_{η} an abelian variety. Then
(1) P_{0} is nonsingular if and only if it is an abelian variety,
(2) P_{0} is reduced,
(3) \mathcal{L}_{0} is ample, and $n \mathcal{L}_{0}$ is very ample for $n \geq 2 g+1$,
(4) $H^{q}\left(P_{0}, n \mathcal{L}_{0}\right)=0$ for any $q>0, n>0$,
(5) $\chi\left(P_{0}, n \mathcal{L}_{0}\right)=n^{g}|H|$ for any $n>0$,
(6) the action $\mathcal{G}\left(P_{0}, \mathcal{L}_{0}\right)$ of \mathcal{G}_{H} on $\left(P_{0}, \mathcal{L}_{0}\right)$ is characteristic, that is, it is induced from $\mathcal{G}\left(P_{\eta}, \mathcal{L}_{\eta}\right)$, where any of the latter induces a translation of an abelian variety P_{η}.
Proof. (1) follows from Theorem 4.6. For (2)-(5), see [2] or [32, Theorem 2.11, p. 79]. (6) is proved (and defined) in a manner similar to Remark 8.1.4 and Definition 10.1.2.
Q.E.D.

Lemma 11.1.2. Let n be any positive integer, and $d=N n+1$. We define $U_{d, H}$ on the \mathcal{O}-module V_{H} in Definition 3.5 by

$$
\begin{equation*}
U_{d, H}(a, z, \alpha) v(\beta)=a^{d} \beta(z)^{d} v(\alpha+\beta) \tag{36}
\end{equation*}
$$

We denote V_{H} by $V_{d, H}$ if \mathcal{G}_{H} acts on V_{H} via $U_{d, H}$. Then
(1) $V_{d, H}$ is an irreducible \mathcal{G}_{H}-module of weight d,
(2) let W be any \mathcal{O}-free \mathcal{G}_{H}-module of finite rank. If \mathcal{G}_{H} acts on W with weight d: that is, the center \mathbf{G}_{m} of \mathcal{G}_{H} acts on W by $a^{d} \mathrm{id}_{W}$, then W is equivalent to $W_{0} \otimes_{\mathcal{O}} V_{d, H}$ as \mathcal{G}_{H}-module, where W_{0} is an \mathcal{O}-module with trivial \mathcal{G}_{H}-action.

Proof. We denote the action of $g \in \mathcal{G}_{H}$ on W by $U(g)$, and we write $U(g)=U(a, z, \alpha)$ for $g=(a, z, \alpha) \in \mathcal{G}_{H}$. Let $W(\chi)=\{w \in W ; U(h) w=$ $\chi(h) w$ for any $h \in H\}$. By [32, p. 89], we have

$$
\begin{equation*}
W=\bigoplus_{\chi \in H^{\vee}} W(\chi), \quad W(\chi)=U(1,0, \chi) W(0) . \tag{37}
\end{equation*}
$$

Therefore $W(0) \neq 0$ if $W \neq 0$.
For any $w \in W(0)$, we define $v(\chi, w)=U(1,0, \chi) w$ for $\chi \in H^{\vee}$. By imitating [32, p. 89], we infer

$$
\begin{aligned}
& U(1, z, 0) \cdot v(\chi, w)=U(\chi(z)(1,0, \chi)) w \\
& U(1,0, \alpha) \cdot v(\chi, w)^{d} v(\chi, w), \\
&=U(1,0, \chi+\alpha) \cdot w=v(\chi+\alpha, w),
\end{aligned}
$$

whence

$$
\begin{align*}
U(a, z, \alpha) \cdot v(\chi, w) & =U(a(1,0, \alpha)(1, z, 0)(1,0, \chi)) w \\
& =U(a \chi(z)(1,0, \chi+\alpha)(1, z, 0)) w \tag{38}\\
& =a^{d} \chi(z)^{d} v(\chi+\alpha, w) .
\end{align*}
$$

We define a homomorphism $F: W(0) \otimes V_{d, H} \rightarrow W$ by

$$
\begin{equation*}
F(w \otimes v(\chi))=v(\chi, w) \tag{39}
\end{equation*}
$$

where $w \in W(0)$ and $v(\chi) \in V_{d, H}$. Here $W(0)$ in the left hand side of (39) is regarded as a trivial \mathcal{G}_{H}-module, while $W(0)$ in the right hand side of (39) is an \mathcal{O}-submodule of W. Then by (36) and (38), F is a \mathcal{G}_{H}-homomorphism:

$$
F\left(w \otimes U_{d, H}(g)(v(\chi))\right)=U(g) v(\chi, w) .
$$

In view of (37), W is spanned by $v(\chi, w)$ for $w \in W(0)$ and $\chi \in H^{\vee}$. Hence F is surjective. By (37), W and $W(0) \otimes V_{d, H}$ are \mathcal{O}-modules of the same rank. Hence F is an isomorphism. Q.E.D.
11.2. $\operatorname{Hilb}^{P}(X / T)$

Let (X, L) be a polarized \mathcal{O}-scheme with L very ample and $P(n)$ an arbitrary polynomial. Let $\operatorname{Hilb}^{P}(X)$ be the Hilbert scheme parameterizing all closed subschemes Z of X with $\chi\left(Z, n L_{Z}\right)=P(n)$. As is well known $\operatorname{Hilb}^{P}(X)$ is a projective \mathcal{O}-scheme.

Let T be a projective scheme, (X, L) a flat projective T-scheme with L an ample line bundle of X, and $\pi: X \rightarrow T$ the projection. Then for an arbitrary polynomial $P(n)$, let $\operatorname{Hilb}^{P}(X / T)$ be the scheme parameterizing all closed subschemes Z of X with $\chi\left(Z, n L_{Z}\right)=P(n)$ such that Z is contained in fibers of π. Then $\operatorname{Hilb}^{P}(X / T)$ is a closed \mathcal{O}-subscheme of $\operatorname{Hilb}^{P}(X) \times{ }_{\mathcal{O}} T$. See [3, Chap. 9].

11.3. The scheme $H_{1} \times H_{2}$

Choose and fix a coprime pair of natural integers d_{1} and d_{2} such that $d_{1}>d_{2} \geq 2 g+1$ and $d_{\nu} \equiv 1 \bmod N$. This pair does exist because it is enough to choose prime numbers d_{1} and d_{2} large enough such that $d_{\nu} \equiv 1$ $\bmod N$ and $d_{1}>d_{2}$. We choose integers q_{ν} such that $q_{1} d_{1}+q_{2} d_{2}=1$.

We consider a \mathcal{G}_{H}-module

$$
W_{\nu}(K):=W_{\nu} \otimes V_{d_{\nu}, H} \simeq V_{d_{\nu}, H}^{\oplus N_{\nu}}
$$

where $N_{\nu}=d_{\nu}^{g}$ and W_{ν} is a free \mathcal{O}-module of rank N_{ν} with trivial $\mathcal{G}_{H^{-}}$ action. Let σ_{ν} be the natural action of \mathcal{G}_{H} on $W_{\nu}(K)$. In what follows we always consider σ_{ν}.

Let $H_{\nu}(\nu=1,2)$ be the Hilbert scheme parameterizing all closed polarized subschemes $\left(Z_{\nu}, L_{\nu}\right)$ of $\mathbf{P}\left(W_{\nu}(K)\right)$ such that
(a) Z_{ν} is \mathcal{G}_{H}-stable,
(b) $\chi\left(Z_{\nu}, n L_{\nu}\right)=n^{g} d_{\nu}^{g}|H|$, where $L_{\nu}=\mathbf{H}\left(W_{\nu}(K)\right) \otimes O_{Z_{\nu}}$ is the hyperplane bundle of Z_{ν}.
Since (a) and (b) are closed conditions, H_{ν} is a closed (hence projective) subscheme of $\operatorname{Hilb}^{\chi_{\nu}}\left(\mathbf{P}\left(W_{\nu}(K)\right)\right.$ where $\chi_{\nu}(n)=n^{g} d_{\nu}^{g}|H|$.

Let $\mathcal{O}=\mathcal{O}_{N}$. Let X_{ν} be the universal subscheme of $\mathbf{P}\left(W_{\nu}(K)\right)$ over H_{ν}. Let $X=X_{1} \times_{\mathcal{O}} X_{2}$ and $H_{3}=H_{1} \times_{\mathcal{O}} H_{2}$. Let $p_{\nu}: X_{1} \times_{\mathcal{O}} X_{2} \rightarrow X_{\nu}$ be the ν-th projection, $\pi: X \rightarrow H_{3}$ the natural projection. Hence X is a subscheme of $\mathbf{P}\left(W_{1}(K)\right) \times_{\mathcal{O}} \mathbf{P}\left(W_{2}(K)\right) \times_{\mathcal{O}} H_{3}$, flat over $H_{3}=H_{1} \times_{\mathcal{O}} H_{2}$.

We note that $\mathbf{H}\left(W_{\nu}(K)\right)$ has a \mathcal{G}_{H}-linearization $\left\{\psi_{g}^{(\nu)}\right\}$, which we fix once for all. Since \mathcal{G}_{H} transforms any closed \mathcal{G}_{H}-stable subscheme Z of $\mathbf{P}\left(W_{\nu}(K)\right)$ onto itself, it follows that \mathcal{G}_{H} acts on H_{ν} trivially. Hence, \mathcal{G}_{H} transforms any fiber X_{u} of $\pi: X \rightarrow H_{3}$ onto X_{u} itself.

11.4. The scheme U_{1}

The aim of this and the subsequent subsections is to construct a new compactification of the moduli space of abelian varieties as the quotient of a certain \mathcal{O}-subscheme of $\operatorname{Hilb}^{P}\left(X / H_{3}\right)$ by $\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)$.

Let B be the pullback to X of a very ample line bundle on H_{3}. Let $M_{\nu}=p_{\nu}^{*}\left(\mathbf{H}\left(W_{i}(K)\right)\right) \otimes O_{X}$ and

$$
\begin{equation*}
M=d_{2} M_{1}+d_{1} M_{2}+B \tag{40}
\end{equation*}
$$

Then M is a very ample line bundle on X. Since M_{ν} is \mathcal{G}_{H}-linearized and B is trivially \mathcal{G}_{H}-linearized, M is \mathcal{G}_{H}-linearized.

Let $P(n)=\left(2 n d_{1} d_{2}\right)^{g}|H|$. Let $\operatorname{Hilb}^{P}\left(X / H_{3}\right)$ be the Hilbert scheme parameterizing all closed subschemes Z of X contained in the fibers of $\pi: X \rightarrow H_{3}$ with $\chi\left(Z, n M_{Z}\right)=P(n)$, and Z^{P} be the universal
subscheme of X over it. We denote $\operatorname{Hilb}^{P}\left(X / H_{3}\right)$ by H^{P} for brevity. Now using the double polarization trick of Viehweg, we define U_{1} to be the subset of H^{P} consisting of all subschemes $\left(Z, M_{Z}\right)$ of (X, M) with the properties
(i) Z is \mathcal{G}_{H}-stable,
(ii) $d_{2} L_{1}=d_{1} L_{2}$, where $L_{i}=M_{i} \otimes O_{Z}$.

By Lemma 8.3, U_{1} is a nonempty closed \mathcal{O}-subscheme of H^{P}. See [32, Subsec. 9.3].

11.5. The scheme U_{2}

Let U_{2} be the open subscheme of U_{1} consisting of all subschemes (Z, M_{Z}) of ($\left.X, M\right)$ such that besides (i)-(ii) the following are satisfied:
(iii) $p_{\nu \mid Z}$ is an isomorphism $(\nu=1,2)$,
(iv) Z is reduced with $h^{0}\left(Z, O_{Z}\right)=1$,
(v) $d_{\nu} L$ is very ample on Z, where $L=\left(q_{1} M_{1}+q_{2} M_{2}\right) \otimes O_{Z}$,
(vi) $\chi(Z, n L)=n^{g}|H|$ for $n>0$,
(vii) $H^{q}(Z, n L)=0$ for $q>0$ and $n>0$,
(viii) $H^{0}\left(p_{\nu}^{*}\right): W_{\nu}(K) \otimes k(u) \rightarrow \Gamma\left(Z, d_{\nu} L\right)$ is surjective (hence an isomorphism by (vi) and (vii)) for $\nu=1,2$.
Let $\left(Z, M_{Z}\right) \in \operatorname{Hilb}^{P}$. By (ii) and (v), we have $L=q_{1} L_{1}+q_{2} L_{2}$ for $L_{i}=M_{i} \otimes O_{Z}$. Since $d_{1} q_{1}+d_{2} q_{2}=1$, we have $L_{\nu}=d_{\nu} L$ by (ii). (iii) is an open condition by [3, Chap. 9, Lemma 7.5]. It is clear that (iv)-(viii) are open conditions. It follows that U_{2} is a nonempty open \mathcal{O}-subscheme of U_{1}. See [32, Subsec. 9.5].
11.6. The schemes $U_{g, K}^{\dagger}$ and U_{3}

See [32, Subsec. 9.7]. First we note that if $(Z, L) \in U_{2}$, then $L=q_{1} L_{1}+q_{2} L_{2}$. On each L_{ν} we have a \mathcal{G}_{H}-action on (Z, L_{ν}) induced from the $\mathcal{G}_{H^{-}}$-action $\left(=\mathcal{G}_{H^{-}}\right.$-linearization) on Z^{P} induced from those $\mathcal{G}_{H^{-}}$ actions on $\mathbf{P}\left(W_{\nu}(K)\right)$. By Remark 7.1.2, we have a \mathcal{G}_{H}-linearization on (Z, L). In what follows, we mean this \mathcal{G}_{H}-action on Z or (Z, L) by the (characteristic) \mathcal{G}_{H}-action on (Z, L) when $(Z, L) \in U_{2}$.

The locus $U_{g, K}$ of abelian varieties (with the zero not necessarily chosen) is an open subscheme of U_{2}. In fact, $U_{g, K}$ is the largest open \mathcal{O}-subscheme among all the open \mathcal{O}-subschemes H^{\prime} of U_{2} such that
(α) the projection $\pi_{H^{\prime}}: Z^{P} \times_{H^{P}} H^{\prime} \rightarrow H^{\prime}$ is smooth over H^{\prime},
(β) at least one geometric fiber of $\pi_{H^{\prime}}$ is an abelian variety for each irreducible component of H^{\prime}.
In general, the subset $H^{\prime \prime}$ of U_{2} over which the projection $\pi_{H^{\prime \prime}}$: $Z^{P} \times_{H^{P}} H^{\prime \prime} \rightarrow H^{\prime \prime}$ is smooth is an open \mathcal{O}-subscheme of U_{2}. By [26,

Theorem 6.14], any geometric fiber of $\pi_{U_{g, K}}$ is a polarized abelian variety. See also [30, p. 705] and [32, p. 116].

Next we define $U_{g, K}^{\dagger}$ to be the subset of $U_{g, K}$ parameterizing all subschemes $(A, L) \in U_{g, K}$ such that
(ix) the K-action on A induced from the \mathcal{G}_{H}-action on (A, L) is effective and contained in $\operatorname{Aut}^{0}(A)$.
We see that $U_{g, K}^{\dagger}$ is a nonempty open \mathcal{O}-subscheme of $U_{g, K}$.
Finally we define U_{3} to be the closure of $U_{g, K}^{\dagger}$ in U_{2}. It is the smallest closed \mathcal{O}-subscheme of U_{2} containing $U_{g, K}^{\dagger}$.

We denote the pull back to $U_{g, K}^{\dagger}$ (resp. U_{3}) of the universal subscheme of X over $H^{P}=\operatorname{Hilb}^{P}\left(X / H_{3}\right)$ by

$$
\begin{equation*}
\left(A_{\text {univ }}, L_{\text {univ }}\right) \quad \text { resp. } \quad\left(Z_{\text {univ }}, L_{\text {univ }}\right) . \tag{41}
\end{equation*}
$$

Theorem 11.7. Let R be a $C D V R, S:=\operatorname{Spec} R$, and η the generic point of S. Let h be a morphism from S into U_{3}. Let (Z, \mathcal{L}) be the pullback by h of the universal subscheme ($Z_{\text {univ }}, L_{\text {univ }}$) (41) such that $\left(Z_{\eta}, \mathcal{L}_{\eta}\right)$ is a polarized abelian variety. Then after a finite base change if necessary, (Z, \mathcal{L}) is isomorphic to $\left(P, \mathcal{L}_{P}\right)$ in Theorem 4.6. In particular, $\left(Z_{0}, \mathcal{L}_{0}\right)$ is a TSQAS over $k(0)$.

Proof. The outline of the proof of Theorem is as follows. The generic fiber $\left(Z_{\eta}, \mathcal{L}_{\eta}\right)$ of (Z, \mathcal{L}) is an abelian variety. By Theorem 4.6 there exists an R^{*}-TSQAS $\left(P, \mathcal{L}_{P}\right)$ after a suitable base change Spec R^{*} of Spec R. So we have two flat families $(Z, \mathcal{L})_{R^{*}}$ and $\left(P, \mathcal{L}_{P}\right)$ over R^{*}, which we can now compare. For each of (Z, \mathcal{L}) and $\left(P, \mathcal{L}_{P}\right)$, we can find a natural level- \mathcal{G}_{H} structure extending a level- \mathcal{G}_{H} structure of $\left(Z_{\eta}, \mathcal{L}_{\eta}\right)\left(=\left(P_{\eta}, \mathcal{L}_{P, \eta}\right)\right)$. Then we can prove they are isomorphic. See $[32$, Theorem 10.4] for the details when $e_{\min }(H) \geq 3$. The case $e_{\text {min }}(H) \leq 2$ is proved by reducing to the case $e_{\min }(H) \geq 3$ by Claims in Subsec. 11.10. See Claim 11.10.3.
Q.E.D.

Theorem 11.8. Let $G=\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)$ and k an algebraically closed field with $k \ni 1 / N$. Then

$$
\begin{equation*}
U_{3}(k)=\left\{(Z, L) \in U_{2}(k) ; \text { a level- } \mathcal{G}_{H} \text { TSQaracteristic } \mathcal{G}_{H} \text { action }\right\} \tag{1}
\end{equation*}
$$

(2) let $(Z, L) \in U_{3}(k)$ and $\left(Z^{\prime}, L^{\prime}\right) \in U_{3}(k)$ where $L=M \otimes O_{Z}$ and $L^{\prime}=M \otimes O_{Z^{\prime}}$ with the notation of Subsec 11.4 Eq.(40). Then the following are equivalent:
(a) (Z, L) is \mathcal{G}_{H}-isomorphic to $\left(Z^{\prime}, L^{\prime}\right)$ with respect to their characteristic \mathcal{G}_{H}-action in the sense of Remark 8.2.5,
(b) (Z, L) and $\left(Z^{\prime}, L^{\prime}\right)$ have the same G-orbit.

Proof. (1) is a corollary of Theorem 11.7. By the first assertion, any $(Z, L) \in U_{3}(k)$ has a natural characteristic \mathcal{G}_{H}-action. Thus (2) makes sense. See [32, Lemma 11.1] for a proof of (2).
Q.E.D.

Theorem 11.9. Let $G=\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)$. Then
(1) $U_{g, K}^{\dagger}$ and U_{3} are G-invariant,
(2) the action of G on $U_{g, K}^{\dagger}$ is proper and free (resp. proper with finite stabilizer) if $e_{\min }(H) \geq 3$ (resp. if $e_{\min }(H) \leq 2$),
(3) the action of G on U_{3} is proper with finite stabilizer.
(4) the uniform geometric and uniform categorical quotient of U_{3} (resp. $U_{g, K}^{\dagger}$) by G exists as a separated algebraic \mathcal{O}-space, which we denote by $S Q_{g, K}^{* \text { toric }}$ (resp. $A_{g, K}^{\text {toric }}$).
See [32, Sec. 10-11] for Theorems 11.7-11.9 when $e_{\min }(H) \geq 3$.
11.10. The case $e_{\text {min }}(H) \leq 2$

Theorems 11.7-11.9 for $e_{\min }(H) \leq 2$ are proved in the same manner as in the case $e_{\min }(H) \geq 3$ by using the following Claims.

Claim 11.10.1. Let k be an algebraically closed field with $k \ni 1 / N$, $K=H \oplus H^{\vee}$ and $N=|H|$. Let (P, L) be a TSQAS over k with $L \mathcal{G}_{H^{-}}$ linearized and $\mathcal{G}(P, L) \simeq \mathcal{G}_{H}$, and n any positive integer (≥ 3) prime to both N and the characteristic of k. Then there exists a TSQAS $\left(P^{\dagger}, L^{\dagger}\right)$ over k with the pull back L^{\dagger} of $L \mathcal{G}_{H^{\dagger}}$-linearized which is an étale Galois covering of (P, L) with Galois group $H^{\dagger} / H \simeq(\mathbf{Z} / n \mathbf{Z})^{g}$, where H (resp. H^{\dagger}) is a maximal isotropic subgroup of $K:=K(P, L)=H \oplus H^{\vee}$ (resp. of $\left.K^{\dagger}:=K\left(P^{\dagger}, L^{\dagger}\right)=H^{\dagger} \oplus\left(H^{\dagger}\right)^{\vee}=K \oplus(\mathbf{Z} / n \mathbf{Z})^{2 g}\right)$.

Proof. We denote the given TSQAS (P, L) by $\left(P_{0}, \mathcal{L}_{0}\right)$. Let R be a CDVR, (P, \mathcal{L}) an R-flat family such that
(i) the generic fiber $\left(P_{\eta}, \mathcal{L}_{\eta}\right)$ is a level- \mathcal{G}_{H} abelian variety,
(ii) the closed fiber $\left(P_{0}, \mathcal{L}_{0}\right)$ of (P, \mathcal{L}) is the given TSQAS with torus part T_{0} and abelian part $\left(A_{0}, \mathcal{M}_{0}\right)$.
Since P_{0} is a $k(0)$-TSQAS with $T_{0}=\operatorname{Hom}\left(X, \mathbf{G}_{m}\right)$ for some lattice X of rank $g^{\prime \prime}$, there exists a sublattice Y of X such that $K\left(P_{0}, \mathcal{L}_{0}\right)=$ $K\left(A_{0}, \mathcal{M}_{0}\right) \oplus(X / Y) \oplus(X / Y)^{\vee}$. See [30, 5.14] and Definition 6.2.2. Therefore it is enough to construct an étale $H^{\dagger} / H \simeq(\mathbf{Z} / n \mathbf{Z})^{g}$-covering $\left(A_{0}^{\dagger}, M_{0}^{\dagger}\right)$ of $\left(A_{0}, M_{0}\right)$ as above.

Hence we may assume P_{0} is an abelian variety. In what follows we denote $\left(P_{0}, \mathcal{L}_{0}\right)$ by (A, L). Let $A[m]=\operatorname{ker}\left(m \operatorname{id}_{A}\right)$ for any positive integer m. By the assumption, $A\left[n^{2}\right] \simeq\left(\mathbf{Z} / n^{2} \mathbf{Z}\right)^{2 g}$ and $N^{2}=|K(A, L)|$.

Let L^{\prime} be the pull back of L by $n \mathrm{id}_{A}$. Then by [25, p. 56 , Corollary 3; p. 71 (iv)] there exists $M \in \operatorname{Pic}^{0}(A)$ such that $L^{\prime}=L^{n^{2}} \otimes M$. For a line bundle F on A, we denote by ϕ_{F} the homomorphism $A \rightarrow A^{\vee}$ defined by $x \mapsto T_{x}^{*} F \otimes F^{-1}$. Then by [25, p. 57, Corollary 4] $\phi_{L^{\prime}}=\phi_{L^{n^{2}}}=n^{2} \phi_{L}$. Since $T_{x}^{*} M=M$, we have

$$
K\left(A, L^{\prime}\right):=\operatorname{ker}\left(\phi_{L^{\prime}}\right)=\operatorname{ker} n^{2} \phi_{L}=K\left(A, L^{n^{2}}\right) \supset A\left[n^{2}\right]
$$

Since n is prime to N, we have $A\left[n^{2}\right] \cap K(A, L)=\{0\}$, hence

$$
K\left(A, L^{\prime}\right)=K\left(A, L^{n^{2}}\right)=K(A, L) \oplus A\left[n^{2}\right]
$$

For a maximal isotropic subgroup $G^{\dagger}\left(\simeq\left(\mathbf{Z} / n^{2} \mathbf{Z}\right)^{g}\right)$ of $A\left[n^{2}\right]$, we define $\Delta^{\dagger}:=\left(n \mathbf{Z} / n^{2} \mathbf{Z}\right)^{g}$. It is the unique subgroup of G^{\dagger} isomorphic to $(\mathbf{Z} / n \mathbf{Z})^{g}$. We set $A^{\dagger}:=A / \Delta^{\dagger}$, and $\pi: A \rightarrow A^{\dagger}$ the projection. Now we have a diagram with $\varpi \pi=n \mathrm{id}_{A}$:

$$
A \xrightarrow{\pi} A^{\dagger}=A / \Delta^{\dagger} \xrightarrow{\varpi} A / A[n] \simeq A
$$

As a subgroup of $K\left(A, L^{\prime}\right)$, we have

$$
\begin{gathered}
A\left[n^{2}\right]=\{0\} \oplus G^{\dagger} \oplus\left(G^{\dagger}\right)^{\vee} \\
A[n]=\{0\} \oplus \Delta^{\dagger} \oplus\left(G^{\dagger} / \Delta^{\dagger}\right)^{\vee}
\end{gathered}
$$

where in particular $A[n]$ is a totally isotropic subgroup of $A\left[n^{2}\right]$.
Let $L^{\dagger}:=\varpi^{*}(L)$. Then $L^{\prime}=\pi^{*}\left(L^{\dagger}\right)$. Let $\left(\Delta^{\dagger}\right)^{\perp}$ be the orthogonal complement of Δ^{\dagger} in $K\left(A, L^{\prime}\right)$. Then by [20, p. 291]

$$
K^{\dagger}:=K\left(A^{\dagger}, L^{\dagger}\right) \simeq\left(\Delta^{\dagger}\right)^{\perp} / \Delta^{\dagger}
$$

where we see $\left(\Delta^{\dagger}\right)^{\perp}=K(A, L) \oplus G^{\dagger} \oplus\left(G^{\dagger} / \Delta^{\dagger}\right)^{\vee}$, where $\left(G^{\dagger} / \Delta^{\dagger}\right)^{\vee} \simeq$ $\left(n \mathbf{Z} / n^{2} \mathbf{Z}\right)^{g}$. Let H be a maximal isotropic subgroup of $K(A, L)$. Let $H^{\dagger}:=H \oplus\{0\} \oplus\left(G^{\dagger} / \Delta^{\dagger}\right)^{\vee} \subset K^{\dagger}$. Then H^{\dagger} is a maximal isotropic subgroup of K^{\dagger} with $\left(H^{\dagger}\right)^{\vee}=H^{\vee} \oplus\left(G^{\dagger} / \Delta^{\dagger}\right) \oplus\{0\}$. It follows

$$
\begin{equation*}
K^{\dagger} \simeq K(A, L) \oplus\left(G^{\dagger} / \Delta^{\dagger}\right) \oplus\left(G^{\dagger} / \Delta^{\dagger}\right)^{\vee} \simeq H^{\dagger} \oplus\left(H^{\dagger}\right)^{\vee} \tag{42}
\end{equation*}
$$

Hence the covering $\varpi: A^{\dagger} \rightarrow A$ is étale with Galois group

$$
A[n] / \Delta^{\dagger} \simeq\left(G^{\dagger} / \Delta^{\dagger}\right)^{\vee} \simeq H^{\dagger} / H \simeq(\mathbf{Z} / n \mathbf{Z})^{g}
$$

and \mathcal{L}^{\dagger} is $\mathcal{G}_{H^{\dagger}}$-linearized by (42). This proves Claim 11.10.1. \quad Q.E.D.

Claim 11.10.2. (See also [32, Lemma 6.7]) Let R be a complete discrete valuation ring, $k(\eta)$ the fraction field of R and $S:=\operatorname{Spec} R$. Let $\left(Z_{i}, \phi_{i}^{*}, \tau_{i}\right)(i=1,2)$ be rigid- $\mathcal{G}_{H} S$-TSQASes whose generic fibers are abelian varieties. If $\left(Z_{i}, \phi_{i}^{*}, \tau_{i}\right)$ are $k(\eta)$-isomorphic, then they are S-isomorphic.

Claim 11.10.2 follows from the following Claim 11.10.3.
Claim 11.10.3. With the same notation as above, let (P, \mathcal{L}) be an S-TSQAS with generic fiber $\left(P_{\eta}, \mathcal{L}_{\eta}\right)$ an abelian variety. Then (P, \mathcal{L}) is the normalization of a modified Mumford family with generic fiber $\left(P_{\eta}, \mathcal{L}_{\eta}\right)$ by a finite base change if necessary.

Proof. Let n be a positive integer ≥ 3 prime to the characteristic of $k(0)$ and $|H|$. In view of Claim 11.10.1, by a finite base change S^{\dagger} of S and then by taking the pull back of (P, \mathcal{L}) to S^{\dagger}, we have an étale $H^{\dagger} / H \simeq(\mathbf{Z} / n \mathbf{Z})^{g}$-covering $\left(P_{0}^{\dagger}, \mathcal{L}_{0}^{\dagger}\right)$ of $\left(P_{0}, \mathcal{L}_{0}\right)$ such that $K\left(P_{0}^{\dagger}, \mathcal{L}_{0}^{\dagger}\right)=$ $H^{\dagger} \oplus\left(H^{\dagger}\right)^{\vee}$. From now, we denote S^{\dagger} by S, and $(P, \mathcal{L}) \times{ }_{S} S^{\dagger}$ by (P, \mathcal{L}).

Let $P_{\text {for }}$ be the formal completion of P along P_{0}. By [11, Corollaire 8.4], there is a category equivalence between étale coverings of P_{0} and étale coverings of $P_{\text {for }}$. Hence there exists a formal scheme $\left(P_{\text {for }}^{\dagger}, \mathcal{L}_{\text {for }}^{\dagger}\right)$ which is an étale $(\mathbf{Z} / n \mathbf{Z})^{g}$-covering of $\left(P_{\text {for }}, \mathcal{L}_{\text {for }}\right)$. Then there exists a projective S-scheme $\left(P^{\dagger}, \mathcal{L}^{\dagger}\right)$ algebraizing $\left(P_{\text {for }}^{\dagger}, \mathcal{L}_{\text {for }}^{\dagger}\right)$ which is an étale $(\mathbf{Z} / n \mathbf{Z})^{g}$-covering of (P, \mathcal{L}) with \mathcal{L}^{\dagger} the pull back of \mathcal{L}. It follows that the generic fiber $\left(P_{\eta}^{\dagger}, \mathcal{L}_{\eta}^{\dagger}\right)$ is a polarized abelian variety, and $\left(P_{0}^{\dagger}, \mathcal{L}_{0}^{\dagger}\right)$ is a reduced $k(0)$-TSQAS and P^{\dagger} is normal by Claim 4.7.1.

Since $n \geq 3$, by $[32,10.4]\left(P^{\dagger}, \mathcal{L}^{\dagger}\right)$ is the normalization of a modified Mumford family with generic fiber $\left(P_{\eta}^{\dagger}, \mathcal{L}_{\eta}^{\dagger}\right)$. By [11, Corollaire 8.4] (P, \mathcal{L}) is the quotient of $\left(P^{\dagger}, \mathcal{L}^{\dagger}\right)$ by $(\mathbf{Z} / n \mathbf{Z})^{g}$, because $\left(P_{0}, \mathcal{L}_{0}\right)$ is the quotient of $\left(P_{0}^{\dagger}, \mathcal{L}_{0}^{\dagger}\right)$ by $(\mathbf{Z} / n \mathbf{Z})^{g}$. Hence (P, \mathcal{L}) is the normalization of a modified Mumford family with generic fiber $\left(P_{\eta}, \mathcal{L}_{\eta}\right)$. This proves the Claim.
Q.E.D.

Summary 11.11. Let k be an algebraically closed field with $k \ni$ $1 / N$. Let $H^{P}:=\operatorname{Hilb}^{P}\left(X / H_{3}\right)$ be as in Subsec. 11.4. We define the schemes $U_{k}, U_{g, K}$ and $U_{g, K}^{\dagger}$ as follows:

$$
\begin{aligned}
U_{1} & =\left\{\left(Z, L_{1}, L_{2}\right) \in H^{P} ;(\mathrm{i}) \text {-(ii) are true }\right\} \\
U_{2} & =\left\{(Z, L) \in U_{1} ;(\text { iii })-(\text { viii }) \text { are true }\right\} \\
U_{g, K}(k) & =\left\{(Z, L) \in U_{2}(k) ;(Z, L) \text { is an abelian variety over } k\right\}, \\
U_{g, K}^{\dagger}(k) & =\left\{(Z, L) \in U_{g, K}(k) ;(\text { ix }) \text { is true }\right\}, \\
U_{3} & =\text { the closure of } U_{g, K}^{\dagger} \text { in } U_{2} .
\end{aligned}
$$

Then
(1) $\quad U_{1}$ is a closed \mathcal{O}-subscheme of H^{P}, while $U_{2}, U_{g, K}$ and $U_{g, K}^{\dagger}$ are nonempty \mathcal{O}-subschemes of U_{1} such that $U_{g, K}^{\dagger} \subset U_{g, K} \subset U_{2}$, and
$U_{g, K}^{\dagger}(k)=\left\{(A, L) \in U_{2}(k) ; \begin{array}{l}\text { an abelian variety over } k \text { with } \\ \text { characteristic } \mathcal{G}_{H} \text {-action }\end{array}\right\}$
$U_{3}(k)=\left\{(Z, L) \in U_{2}(k) ;{ }^{\text {a level- } \mathcal{G}_{H} \text { TSQAS over } k \text { with }}\right.$ chacteristic \mathcal{G}_{H} action,
(2) $\left(Z^{\prime}, L^{\prime}\right) \in U_{3}(k),(Z, L) \in U_{3}(k)$ are \mathcal{G}_{H}-isomorphic iff they are in the same G-orbit, where $G=\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)$,
(3) there exists a nice quotient $A_{g, K}^{\text {toric }}$ of $U_{g, K}^{\dagger}$ by G,
(4) there exists a nice quotient $S Q_{g, K}^{* \text { toric }}$ of U_{3} by G,
(5) let $S Q_{g, K}^{\text {toric }}:=\left(S Q_{g, K}^{* \text { toric }}\right)_{\text {red }}$.

See [32, Corollaries 10.5, 10.6] for $U_{3}(k)$.

§12. Moduli for TSQASes

Let $\mathcal{O}=\mathcal{O}_{N}$. In this section we prove
(i) $A_{g, K}^{\text {toric }}$ is the coarse moduli algebraic \mathcal{O}-space for the functor of level- \mathcal{G}_{H} smooth TSQASes over algebraic \mathcal{O}-spaces for any $e_{\text {min }}(K)$,
(ii) $A_{g, K}^{\text {toric }} \simeq A_{g, K}$ if $e_{\min }(K) \geq 3$, which is the fine moduli scheme.

We also see
(iii) $S Q_{g, K}^{\text {toric }}$ is the coarse moduli algebraic \mathcal{O}-space for the functor of level- \mathcal{G}_{H} flat TSQASes over reduced algebraic \mathcal{O}-spaces,
(iv) if $e_{\min }(K) \geq 3$, there exists a natural morphism sq : $S Q_{g, K}^{\text {toric }} \rightarrow$ $S Q_{g, K}$, which is surjective and bijective on $S Q_{g, K}^{\text {toric }}$, and the identity on $A_{g, K}$, hence $S Q_{g, K}^{\text {toric }}$ is a projective \mathcal{O}-scheme.
Theorem 12.1. Let $K=H \oplus H^{\vee}$ and $N:=|H|$.
(1) If $e_{\min }(H) \geq 3$, then $A_{g, K}^{\text {toric }} \simeq A_{g, K}$ and $\mathcal{A}_{g, K}^{\text {toric }}$ is represented by the quasi-projective formally smooth \mathcal{O}-scheme $A_{g, K}$,
(2) if $e_{\min }(H) \leq 2$, then $\mathcal{A}_{g, K}^{\text {toric }}$ has a normal coarse moduli algebraic \mathcal{O}-space $A_{g, K}^{\text {toric }}$.
Proof. We can prove this almost in parallel to Theorem 9.5.
Let $\mathcal{O}=\mathcal{O}_{N}$. Let d_{ν}, W_{ν} and $W_{\nu}(K)=W_{\nu} \otimes_{\mathcal{O}} V_{d_{\nu}, H}$ be the same as in Subsec. 11.3. Similarly let $\left(X_{\nu}, L_{\nu}\right), H_{\nu},(X, L)$ and $H_{3}=H_{1} \times_{\mathcal{O}} H_{2}$ be the same as in Subsections 11.4-11.5.

Step 1. Let T be any \mathcal{O}-scheme, and $\left(P, \mathcal{L}, \phi^{*}, \mathcal{G}, \tau\right)$ any level- \mathcal{G}_{H} T-smooth TSQAS with $\pi: P \rightarrow T$ the projection. Then we define a natural morphism $\bar{\eta}: T \rightarrow A_{g, K}^{\text {toric }}$ as follows.

The sheaf $\pi_{*}\left(d_{\nu} \mathcal{L}\right)$ is a vector bundle of rank $d_{\nu}^{g} N$ over T. Let U_{i} be an affine covering of T which trivializes both $\pi_{*}\left(d_{\nu} \mathcal{L}\right)$. Then

$$
\Gamma\left(U_{i}, \pi_{*}\left(d_{\nu} \mathcal{L}\right)\right)=\Gamma\left(P_{U_{i}}, d_{\nu} \mathcal{L}\right) \simeq\left(\mathcal{W}_{\nu}\right)_{U_{i}} \otimes_{\mathcal{O}} V_{d_{\nu}, H}
$$

for some locally O_{T}-free module \mathcal{W}_{ν} of rank d_{ν}^{g} with trivial \mathcal{G}-action.
Since $d_{\nu} \mathcal{L}_{t}$ is very ample, we can choose closed \mathcal{G}-immersions

$$
\left(\phi_{\nu}\right)_{U_{i}}: P_{U_{i}} \rightarrow \mathbf{P}\left(W_{\nu}(K)\right)_{U_{i}}
$$

by the linear system associated to $\pi_{*}\left(d_{\nu} \mathcal{L}\right)_{U_{i}}$ such that

$$
\begin{equation*}
\rho\left(\left(\phi_{\nu}\right)_{U_{i}}^{*}, \tau_{U_{i}}\right)=\mathrm{id}_{W_{\nu}} \otimes U_{d_{\nu}, H} \tag{43}
\end{equation*}
$$

We caution that $\left(\phi_{\nu}\right)_{U_{i}}$ is not unique, there is freedom of isomorphisms by $\operatorname{GL}\left(W_{\nu}, O_{U_{i}}\right)$.

By (43) the image of $\left(\phi_{\nu}\right)_{U_{i}}$ is \mathcal{G}-invariant, so the image of $\left(\phi_{\nu}\right)_{t}$ is \mathcal{G}_{H}-invariant for any $t \in T$, Since $\mathcal{L}=q_{1} d_{1} \mathcal{L}+q_{2} d_{2} \mathcal{L}, \mathcal{L}_{U_{i}}$ is $\mathcal{G}_{U_{i}}-$ linearized. Hence $\left(P_{U_{i}}, \mathcal{L}_{U_{i}}\right)$ has a $\mathcal{G}_{U_{i}}$-action, that is, fiberwise $\left(P_{t}, \mathcal{L}_{t}\right)$ has a \mathcal{G}_{H}-action. By the definition of level- \mathcal{G}_{H} TSQASes, this \mathcal{G}_{H}-action on $\left(P_{t}, \mathcal{L}_{t}\right)$ is characteristic. Hence the image of $\left(\phi_{\nu}\right)_{U_{i}}$ is contained in $U_{g, K}^{\dagger}$ by Theorem 11.8 or Summary 11.11. It follows that $\left(P_{U_{i}}, \mathcal{L}_{U_{i}}\right)$ is the pull back by a morphism $U_{i} \rightarrow U_{g, K}^{\dagger}$ of the universal subscheme $\left(X, H_{3}\right)$ in Subsec 11.3.

On $U_{i} \cap U_{j}, \Gamma\left(U_{i}, \pi_{*}\left(d_{\nu} \mathcal{L}\right)\right)$ and $\Gamma\left(U_{j}, \pi_{*}\left(d_{\nu} \mathcal{L}\right)\right)$ are identified by $\mathrm{GL}\left(W_{\nu} \otimes \Gamma\left(O_{U_{i} \cap U_{j}}\right)\right)$. Thus we have a morphism

$$
j: T \rightarrow U_{g, K}^{\dagger} / \operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)=A_{g, K}^{\text {toric }}
$$

where $G=\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)$. This induces a morphism of functors

$$
\begin{equation*}
f: \mathcal{A}_{g, K}^{\text {toric }} \rightarrow h_{W}, \quad W:=A_{g, K}^{\text {toric }} . \tag{44}
\end{equation*}
$$

The argument so far is true regardless of the value of $e_{\min }(H)$.
Step 2. Now we assume $e_{\text {min }}(H) \geq 3$.
Step 2-1. Any level- $\mathcal{G}_{H} T$-smooth TSQAS is a level- $\mathcal{G}_{H} T$-smooth PSQAS with $\mathcal{V}=\pi_{*}(\mathcal{L})$, and vice versa. Hence the functors are the same : $\mathcal{A}_{g, K}^{\text {toric }}=\mathcal{A}_{g, K}$.

Step 2-2. Now we assume $e_{\min }(H) \geq 3$. There is the universal subscheme over $U_{g, K}^{\dagger}$ (41)

$$
\left(A_{\text {univ }}, \mathcal{V}_{\text {univ }}, L_{\text {univ }}, \phi_{\text {univ }}, \mathcal{G}_{\text {univ }}, \tau_{\text {univ }}\right)
$$

where $\mathcal{G}_{\text {univ }}=\mathcal{G}_{H} \times U_{g, K}^{\dagger}, \tau_{\text {univ }}=U_{H}\left(\right.$ acting on $\left.\mathbf{P}\left(V_{H}\right)_{U_{g, K}^{\dagger}}\right), \mathcal{V}_{\text {univ }}=$ $V_{H} \otimes O_{U_{g, K}^{\dagger}}$ and we choose a closed immersion $\phi_{\text {univ }}: A_{\text {univ }} \rightarrow \mathbf{P}\left(V_{H}\right)_{U_{g, K}^{\dagger}}$, such that $\rho\left(\phi_{\text {univ }}, \tau_{\text {univ }}\right)=U_{H}$. This is a rigid level- $\mathcal{G}_{H} U_{g, K}^{\dagger}$-smooth PSQAS. Hence we have a morphism $\eta^{\dagger}: U_{g, K}^{\dagger} \rightarrow A_{g, K}$ because $A_{g, K}$ is the fine moduli scheme of $\mathcal{A}_{g, K}$ by Theorem 9.5. Since the morphism η^{\dagger} is $G=\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)$-invariant, we have a morphism

$$
\bar{\eta}: A_{g, K}^{\text {toric }} \rightarrow A_{g, K} .
$$

Step 2-3. Conversely since $A_{g, K}$ is the fine moduli scheme for $\mathcal{A}_{g, K}$, there exists the universal level- \mathcal{G}_{H} PSQAS

$$
\pi_{A}:\left(Z_{A}, \mathcal{V}_{A}, L_{A}, \phi_{A}, \mathcal{G}_{A}, \tau_{A}\right) \rightarrow A_{g, K}
$$

Then we apply Step 1 to the universal level- \mathcal{G}_{H} PSQAS over $A_{g, K}$. We have a morphism from $A_{g, K}$ to $A_{g, K}^{\text {toric }}$, which is evidently the inverse of $\bar{\eta}$. This proves that $\bar{\eta}$ is an isomorphism. This proves the first assertion of Theorem 12.1 by Theorem 9.5. See [32, Lemma 11.5].

Step 3. We consider next the case $e_{\min }(H) \leq 2$. By Step 1 (44), we have a morphism of functors $f: \mathcal{A}_{g, K}^{\text {toric }} \rightarrow h_{W}$ where $W:=A_{g, K}^{\text {toric }}$. To prove that $A_{g, K}^{\text {toric }}$ is a coarse moduli algebraic \mathcal{O}-space for $\mathcal{A}_{g, K}^{\text {toric }}$, it remains to prove
(a) $f(\operatorname{Spec} k): \mathcal{A}_{g, K}^{\text {toric }}(\operatorname{Spec} k) \rightarrow A_{g, K}^{\text {toric }}(\operatorname{Spec} k)$ is bijective for any algebraically closed field k over \mathcal{O},
(b) For any algebraic \mathcal{O}-space V, and any morphism $g: \mathcal{A}_{g, K}^{\text {toric }} \rightarrow$ h_{V}, there is a unique morphism $\chi: h_{W} \rightarrow h_{V}$ such that $g=$ $\chi \circ f$,
where $W=A_{g, K}^{\text {toric }}, h_{V}$ is the functor defined by $h_{V}(T)=\operatorname{Hom}(T, V)$.
The assertion (b) is proved similarly to Step 1 and Step 2-2.
The assertion (a) follows from Theorem 11.8. In fact, let

$$
\sigma_{j}:=\left(Z_{j}, L_{j}, \phi_{j}^{*}, \mathcal{G}_{H}, \tau_{j}\right)
$$

be a level \mathcal{G}_{H} smooth k-TSQAS. Since $A_{g, K}^{\text {toric }}$ is the orbit space of $U_{g, K}$ by $G:=\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right),\left(Z_{1}, L_{1}\right)$ and $\left(Z_{2}, L_{2}\right)$ determine the same point of $A_{g, K}^{\text {toric }}$ iff $\left(Z_{1}, L_{1}\right)$ and $\left(Z_{2}, L_{2}\right)$ have the same G-orbit. By Theorem 11.8, $\left(Z_{1}, L_{1}\right)$ and $\left(Z_{2}, L_{2}\right)$ have the same G-orbit iff $\left(Z_{1}, L_{1}\right)$
 action in the sense of Remark 8.2.5. Thus it suffices to prove that $\sigma_{1} \simeq \sigma_{2}$ iff $\left(Z_{1}, L_{1}\right)$ and $\left(Z_{2}, L_{2}\right)$ are \mathcal{G}_{H}-isomorphic.

If $\sigma_{1} \simeq \sigma_{2}$, then by definition $\left(Z_{1}, L_{1}\right) \simeq\left(Z_{2}, L_{2}\right)$.

Conversely assume $\left(Z_{1}, L_{1}\right) \simeq\left(Z_{2}, L_{2}\right) \mathcal{G}_{H}$-isomorphic with respect to their characteristic $\mathcal{G}_{H^{-}}$-action. Let $f:\left(Z_{1}, L_{1}\right) \rightarrow\left(Z_{2}, L_{2}\right)$ be the $\mathcal{G}_{H^{-}}$ isomorphism. Hence $\left(f^{*}\right)^{-1} \rho_{\tau_{1}, L_{1}}(g) f^{*}=\rho_{\tau_{2}, L_{2}}(g)$. Meanwhile we can choose a \mathcal{G}_{H}-isomorphism $\phi_{j}^{*}: V_{H} \otimes k \rightarrow \Gamma\left(Z_{j}, L_{j}\right)$ such that $\rho\left(\phi_{j}^{*}, \tau_{j}\right)=$ U_{H}. Let $h:=\left(\phi_{1}^{*}\right)^{-1} f^{*} \phi_{2}^{*}$. Then we see $U_{H} h=h U_{H}$. Since U_{H} is an irreducible representation of \mathcal{G}_{H}, h is a nonzero scalar. Hence $f^{*} \phi_{2}^{*}=c \phi_{1}^{*}$ for some unit c. It follows from Definition 10.2.3 that $\sigma_{1} \simeq \sigma_{2}$. This proves (a). Thus $A_{g, K}^{\text {toric }}$ is a coarse moduli algebraic \mathcal{O}-space for $\mathcal{A}_{g, K}^{\text {toric }}$.

Step 4. Finally we prove that $A_{g, K}^{\text {toric }}$ is reduced for $e_{\min }(H) \leq 2$. We use the same notation as in the proof of Theorem 9.5. Let k be any algebraically closed field with $k \ni 1 / N,\left(A, L_{0}\right)$ be an abelian variety over k with $L_{0} \mathcal{G}_{H}$-linearized, and τ_{0} be the \mathcal{G}_{H}-action associated to the \mathcal{G}_{H}-linearization of L_{0}. Let $\sigma_{0}:=\left(A, L_{0}, \phi_{0}^{*}, \mathcal{G}_{H}, \tau_{0}\right)$ be a rigid level- \mathcal{G}_{H} k-smooth TSQAS.

Let $\mathcal{C}=\mathcal{C}_{W}$ be the category of local Artinian W-algebra with $k=$ R / m_{R}. We define a subfunctor $F:=F_{\sigma_{0}}$ of $\mathcal{A}_{g, K}^{\text {toric }}$ by

$$
F(R)=\left\{\sigma:=\left(Z, L, \phi^{*},\left(\mathcal{G}_{H}\right)_{R}, \tau\right) \in \mathcal{A}_{g, K}^{\text {toric }}(R) ; \sigma \otimes k \simeq \sigma_{0}\right\}
$$

where $R \in \mathcal{C}$ and the isomorphism $\sigma \otimes k \simeq \sigma_{0}$ is not fixed in F.
Let $(X, \mathcal{L}), K_{\mathrm{su}}=\operatorname{ker}(\lambda(\mathcal{L})), \mathcal{G}_{\mathrm{su}}:=\mathcal{G}(X, \mathcal{L}):=\mathcal{L}_{K_{\mathrm{su}}}^{\times}, \mathcal{V}_{\mathrm{su}}:=$ $\Gamma(X, \mathcal{L})$ and the action $\tau_{\text {su }}$ of $\mathcal{G}_{\text {su }}$ on (X, \mathcal{L}) be the same as in Subsec 9.4. Since $\lambda(\mathcal{L}): X \rightarrow X^{\vee}$ is separable, $K_{\text {su }}$ is isomorphic to $\left(H \oplus H^{\vee}\right)_{\mathcal{O}_{W}}$, hence $\mathcal{G}_{\text {su }} \simeq\left(\mathcal{G}_{H}\right)_{\mathcal{O}_{W}}$. If $e_{\min }\left(K_{\text {su }}\right) \geq 3$, we choose the unique closed \mathcal{G}_{H}-immersion $\phi_{\text {su }}$ of X into $\mathbf{P}\left(\mathcal{V}_{\mathrm{su}}\right) \simeq \mathbf{P}\left(V_{H}\right)_{\mathcal{O}_{W}}$ such that $\rho\left(\phi_{\mathrm{su}}, \tau_{\mathrm{su}}\right)=U_{H}$. If $e_{\min }\left(K_{\mathrm{su}}\right) \leq 2$, then we choose the unique \mathcal{G}_{H}-isomorphism $\phi_{\mathrm{su}}^{*}:\left(V_{H}\right)_{\mathcal{O}_{W}} \rightarrow \Gamma(X, \mathcal{L})$ such that $\rho\left(\phi_{\mathrm{su}}^{*}, \tau_{\mathrm{su}}\right)=U_{H}$. In any case we have a level $-\mathcal{G}_{H}$ smooth TSQAS over \mathcal{O}_{W}

$$
\left(X, \mathcal{L}, \mathcal{V}_{\mathrm{su}}, \phi_{\mathrm{su}}^{*}, \mathcal{G}_{\mathrm{su}}, \tau_{\mathrm{su}}\right)
$$

Now we shall define a morphism of functors $h: P\left(A, \lambda\left(L_{0}\right)\right) \rightarrow F$ over $\mathcal{C}=\mathcal{C}_{W}$. Let $R \in \mathcal{C}$. By Subsec 9.4, for $(Z, \lambda(L)) \in P\left(A, \lambda\left(L_{0}\right)\right)(R)$, $R \in \mathcal{C}$, we have a unique morphism

$$
\rho \in \operatorname{Hom}\left(\operatorname{Spec} R, \operatorname{Spf} \mathcal{O}_{W}\right)=\operatorname{Hom}_{\hat{\mathcal{C}}}\left(\mathcal{O}_{W}, R\right)
$$

such that $(Z, \lambda(L))=\rho^{*}(X, \lambda(\mathcal{L}))$. Then we define

$$
h(Z, \lambda(L))=\rho^{*}\left(X, \mathcal{L}, \mathcal{V}_{\mathrm{su}}, \phi_{\mathrm{su}}^{*}, \mathcal{G}_{\mathrm{su}}, \tau_{\mathrm{su}}\right) \in F(R) .
$$

One can check that this is well-defined.

Subsec. 9.4 shows that $h(R): P\left(A, \lambda\left(L_{0}\right)\right)(R) \rightarrow F(R)$ is surjective for any $R \in \mathcal{C}$. In general, h is not injective. Let

$$
G_{0}:=\operatorname{Aut}\left(\sigma_{0}\right)=\left\{f \in \operatorname{Aut}(A) ; f(0)=0, f^{*} \sigma_{0} \simeq \sigma_{0}\right\}
$$

where 0 is the zero of A. Since $f^{*} L_{0} \simeq L_{0}$ for any $f \in G_{0}$, we have $f^{*}\left(3 L_{0}\right) \simeq 3 L_{0}$. Since $3 L_{0}$ is very ample, G_{0} is an algebraic k-group. G_{0} has trivial connected part because $f(0)=0$ for any $f \in G_{0}$. Hence G_{0} is a finite group scheme, acting nontrivially on $P\left(A, \lambda\left(L_{0}\right)\right)$. Then

$$
\begin{aligned}
F(R) & =P\left(A, \lambda\left(L_{0}\right)\right)(R) / G_{0} \\
& =\operatorname{Hom}\left(\mathcal{O}_{W} / \mathfrak{a}, R\right) / G_{0} \\
& =\operatorname{Hom}\left(\left(\mathcal{O}_{W} / \mathfrak{a}\right)^{G_{0}-\mathrm{inv}}, R\right)
\end{aligned}
$$

whence F is pro-represented by $\left(\mathcal{O}_{W} / \mathfrak{a}\right)^{G_{0}-\text { inv }}$, which is normal. This proves that the formal completion of any local ring of $A_{g, K}^{\text {toric }}$ is normal. Hence it satisifies $\left(\mathrm{R}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ by Serre's criterion. See Remark 12.1.1. This implies that any local ring of $A_{g, K}^{\text {toric }}$ satisfies $\left(\mathrm{R}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$. Hence $A_{g, K}^{\text {toric }}$ is normal.
Q.E.D.

Remark 12.1.1. Let A be a noetherian local ring. Then A is normal if and only if $\left(\mathrm{R}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ are true for A, where
(1) $\left(\mathrm{S}_{2}\right)$ is true if and only if $\operatorname{depth}\left(A_{p}\right) \geq \inf (2, \operatorname{ht}(p))$ for all $p \in \operatorname{Spec}(A)$,
(2) $\quad\left(\mathrm{R}_{1}\right)$ is true if and only if A is codimension one regular.

See [19, Theorem 39] and [10, $\mathrm{IV}_{2}, 5.8 .5$ and 5.8.6].
Theorem 12.2. ([32]) Let $N=|H|$ and $S Q_{g, K}^{\text {toric }}=\left(S Q_{g, K}^{* \text { toric }}\right)_{\text {red }}$. For any $K=H \oplus H^{\vee}$, the functor $\mathcal{S}_{g, K}^{\text {toric }}$ of level- $\mathcal{G}_{H} \operatorname{TSQASes}\left(P, \phi^{*}, \tau\right)$ over reduced algebraic \mathcal{O}-spaces is coarsely represented by a proper (hence separated) reduced algebraic \mathcal{O}-space $S Q_{g, K}^{\text {toric }}$.

Proof. We imitate the proof of Theorem 12.1. Let

$$
\left(P \xrightarrow{\pi} T, L, \phi^{*}, \mathcal{G}, \tau\right)
$$

be a level- $\mathcal{G}_{H} T$-flat TSQAS with T reduced. Then by Step 1 of Theorem 12.1, we have a morphism

$$
j: T \rightarrow U_{3} / G=S Q_{g, K}^{* \text { toric }}
$$

where $G=\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)$. Hence we have a morphism

$$
j_{\mathrm{red}}: T_{\mathrm{red}}=T \rightarrow\left(S Q_{g, K}^{* \text { toric }}\right)_{\text {red }}=: S Q_{g, K}^{\text {toric }} .
$$

This induces a morphism of functors

$$
\begin{equation*}
f: \mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }} \rightarrow h_{W}, \quad W=S Q_{g, K}^{\text {toric }} \tag{45}
\end{equation*}
$$

As in Theorem 12.1 Step 3, it remains to prove
(a) $f($ Spec $k): \mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }}($ Spec $k) \rightarrow S Q_{g, K}^{\text {toric }}(\operatorname{Spec} k)$ is bijective for any algebraically closed field k over \mathcal{O},
(b) For any algebraic \mathcal{O}-space V, and any morphism $g: \mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }} \rightarrow$ h_{V}, there is a unique morphism $\chi: h_{W} \rightarrow h_{V}$ such that $g=$ $\chi \circ f$,
where h_{V} is the functor defined by $h_{V}(T)=\operatorname{Hom}(T, V)$. For a reduced space $T, h_{V}(T)=h_{V_{\text {red }}}(T)$, that is, $h_{V}=h_{V_{\text {red }}}$ over Space $_{\text {red }}$. Hence we may assume V is reduced.

We shall prove (b). Let $g: \mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }} \rightarrow h_{V}$ be any morphism for a reduced algebraic \mathcal{O}-space V. The universal subscheme ($Z_{\text {univ }}, L_{\text {univ }}$) has a natural \mathcal{G}_{H}-action which is characteristic for any fiber ($Z_{\text {univ }, u}, L_{\text {univ }, u}$) $\left(u \in U_{3}\right)$. We choose $\phi_{\text {univ }}^{*}=\operatorname{id}_{V_{H} \otimes O_{U_{3}}}$. Thus we have a rigid level$\mathcal{G}_{H} U_{3}$-flat TSQAS $\left(Z_{\text {univ }}, L_{\text {univ }}, \phi_{\text {univ }}^{*}, \mathcal{G}_{H}, \tau_{\text {univ }}\right)$ over U_{3}. Hence by $g: \mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }} \rightarrow h_{V}$ we have a morphism $\widetilde{\chi}: U_{3} \rightarrow V$, which turns out to be G-invariant. Hence we have a morphism $\bar{\chi}: S Q_{g, K}^{* \text { toric }} \rightarrow V$, hence $\chi:=\bar{\chi}_{\mathrm{red}}: S Q_{g, K}^{\text {toric }} \rightarrow V_{\mathrm{red}}=V$. It is clear that $g=\chi \circ f$.

By the same argument as in the proof of Theorem 12.1 Step 3 (a), we see $\mathcal{S} \mathcal{Q}_{g, K}^{\text {toric }}(\operatorname{Spec} k)=S Q_{g, K}^{* \text { toric }}(k)=S Q_{g, K}^{\text {toric }}(k)$. This proves (a). This completes the proof.
Q.E.D.

Theorem 12.3. ([32]) Suppose $e_{\min }(K) \geq 3$. Then
(1) both $S Q_{g, K}$ and $S Q_{g, K}^{\text {toric }}$ are compactifications of $A_{g, K}$,
(2) there exists a bijective \mathcal{O}-morphism

$$
\mathrm{sq}: S Q_{g, K}^{\mathrm{toric}} \rightarrow S Q_{g, K}
$$

extending the identity of $A_{g, K}$,
(3) their normalizations are isomorphic :

$$
\left(S Q_{g, K}^{\text {toric }}\right)^{\text {norm }} \simeq\left(S Q_{g, K}\right)^{\text {norm }}
$$

Corollary 12.4. $S Q_{g, K}^{\text {toric }}$ is a projective scheme if $e_{\min }(K) \geq 3$.
Proof. Since $S Q_{g, K}^{\text {toric }}$ is finite over $S Q_{g, K}$ and $S Q_{g, K}$ is a scheme, $S Q_{g, K}^{\text {toric }}$ is a scheme by [18, Theorem 4.1, p. 169], hence it is a projective scheme because $S Q_{g, K}$ is projective by (33).
Q.E.D.

§13. Morphisms to Alexeev's complete moduli spaces

In this section
(i) we briefly review Alexeev [1],
(ii) then report that
(a) any T-flat TSQAS has a canonical semi-abelian action,
(b) $S Q_{g, 1}^{\text {toric }} \simeq \overline{A P}_{g, 1}^{\text {main }}$.

Definition 13.1. [1] Let k be an algebraically closed field. A g dimensional semiabelic k-pair of degree d is a quadruple $(G, P, \mathcal{L}, \Theta)$ such that
(i) $\quad P$ is a connected seminormal complete k-variety, and any irreducible component of P is g-dimensional,
(ii) G is a semi-abelian k-scheme acting on P,
(iii) there are only finitely many G-orbits,
(iv) the stabilizer subgroup of every point of P is connected, reduced and lies in the torus part of G,
(v) \mathcal{L} is an ample line bundle on P with $h^{0}(P, \mathcal{L})=d$,
(vi) Θ is an effective Cartier divisor of P with $\mathcal{L}=O_{P}(\Theta)$ which does not contain any G-orbits.
Recall that a variety Z is said to be seminormal if any bijective morphism $f: W \rightarrow Z$ with W reduced is an isomorphism.

Definition 13.2. Let T be a scheme. A g-dimensional semiabelic T-pair of degree d is a quadruple $(G, P \xrightarrow{\pi} T, \mathcal{L}, \Theta)$ such that
(i) G is a semi-abelian group T-scheme of relative dimension g,
(ii) $\quad P$ is a proper flat T-scheme, on which G acts,
(iii) $\quad \mathcal{L}$ is a π-ample line bundle on P with $\pi_{*}(\mathcal{L})$ locally free,
(iv) any geometric fiber $\left(G_{t}, P_{t}, \mathcal{L}_{t}, \Theta_{t}\right)(t \in T)$ is a stable semiabelic pair of degree d.

Definition 13.3. We define two functors: for any scheme T
$\overline{\mathcal{A P}}_{g, d}(T)=\{(G, P \xrightarrow{\pi} T, D)$; semi-abelic T-pair of degree $d\} / T$-isom., $\mathcal{A} \mathcal{P}_{g, d}(T)=\{(G, A \xrightarrow{\pi} T, D) ;$ semi-abelic T-pair of degree $d\} / T$-isom..

Theorem 13.4. (Alexeev $[1,5.10 .1]$)
(1) The component $\overline{\mathcal{A P}}_{g, d}$ of the moduli stack of semiabelic pairs containing the moduli stack $\mathcal{A P}_{g, d}$ of abelian pairs as well as pairs of the same numerical type is a proper Artin stack with finite stabilizer,
(2) It has a proper coarse moduli algebraic space $\overline{A P}_{g, d}$ over \mathbf{Z}.

13.5. The components of $\overline{A P}_{g, d}$

In order to compare $\overline{A P}_{g, d}$ with $S Q_{g, K}^{\text {toric }}$ we consider the pullback of $\overline{A P}_{g, d}$ to \mathcal{O}_{d}, which we denote $\overline{A P}_{g, d}$ by abuse of notation. Let $\overline{A P}_{g, d}^{\text {main }}$ be the closure of $A P_{g, d}$ in $\overline{A P}_{g, d} . \overline{A P}_{g, d}^{\text {main }} \neq \overline{A P}_{g, d}$ in general.

We define some algebraic subspaces of $\overline{A P}_{g, d}$ as follows:

$$
\begin{aligned}
A P_{g, d} & =\left\{(A, D) \in \overline{A P}_{g, d} ; A: \text { nonsingular }\right\} \\
A P_{g, K} & =\left\{(A, D) \in A P_{g, d} ; \operatorname{ker}(\lambda(D)) \simeq K\right\} \\
\overline{A P}_{g, K} & =\text { the closure of } A P_{g, K} \text { in } \overline{A P}_{g, d} \\
\overline{A P}_{g, d}^{\text {main }} & =\text { the closure of } A P_{g, d} \text { in } \overline{A P}_{g, d} .
\end{aligned}
$$

Then we see
(i) $A P_{g, d}$ is the union of $A P_{g, K}$ with $\sqrt{|K|}=d$,
(ii) $\overline{A P}_{g, d}^{\text {main }}$ is a proper separated algebraic subspace of $\overline{A P}_{g, d}$,
(iii) $\operatorname{dim} A P_{g, d}=\operatorname{dim} \overline{A P}_{g, K}=\operatorname{dim} \overline{A P}_{g, d}^{\text {main }}=g(g+1) / 2+d-1$.
13.6. The semi-abelian group action on a T-TSQAS

The purpose of this subsection to construct a semiabelian group action on any T-flat TSQAS. See [33].

Lemma 13.6.1. Let $\left(P_{0}, \mathcal{L}_{0}\right)$ be a totally degenerate TSQAS over k. Let X be a lattice of rank g associated to $P_{0}, \operatorname{Del}_{B}$ the Delaunay decomposition of $X_{\mathbf{R}}$ also associated to P_{0}, and $\operatorname{Del}_{B}^{(d)}$ the set of all ddimensional Delaunay cells in Del_{B}. Let $\tau \in \operatorname{Del}_{B}^{(g-1)}$ and $\sigma_{i} \in \operatorname{Del}_{B}^{(g)}$ $(i=1,2)$ be Delaunay cells such that $\tau=\sigma_{1} \cap \sigma_{2}$. Let $Z\left(\sigma_{i}\right)=\overline{O\left(\sigma_{i}\right)}$ be the irreducible component of P_{0} corresponding to σ_{i}. Then P_{0} is, along $O(\tau)$, isomorphic to the subscheme of $O(\tau) \times \mathbf{A}_{k}^{2}$ given by

$$
\operatorname{Spec} \Gamma\left(O_{O(\tau)}\right)\left[\zeta_{1}, \zeta_{2}\right] /\left(\zeta_{1} \zeta_{2}\right)
$$

where $\mathbf{A}_{k}^{2}=\operatorname{Spec} k\left[\zeta_{1}, \zeta_{2}\right]$: the two-dimensional affine space over k. Here $Z\left(\sigma_{i}\right)$ is given by $\zeta_{i}=0$, and P_{0} is, along $O(\tau)$, the union of $Z\left(\sigma_{1}\right)$ and $Z\left(\sigma_{2}\right)$, while $O(\tau)\left(\simeq \mathbf{G}_{m, k}^{g-1}\right)$ is given by $\zeta_{1}=\zeta_{2}=0$, which is a Cartier divisor of each $Z\left(\sigma_{i}\right)$.

Remark 13.6.2. Instead of proving Lemma 13.6.1 here, we revisit Case 6.7.1 to illustrate the situation. In this case, $P_{0}=Q_{0}$, and we recall the open affine subset $U_{0}(0)$ of P_{0} :

$$
\begin{aligned}
\left(U_{0}\right)_{0} & =\operatorname{Spec} R\left[q w_{1}, q w_{2}, q w_{1}^{-1}, q w_{2}^{-1}\right] \otimes k(0) \\
& \simeq \operatorname{Spec} k(0)\left[u_{1}, u_{2}, v_{1}, v_{2}\right] /\left(u_{1} v_{1}, u_{2} v_{2}\right)
\end{aligned}
$$

where $\left(U_{0}\right)_{0}=U_{0} \otimes k(0)$.
Let $\tau=[0,1] \times\{0\} \in \operatorname{Del}_{B}^{(1)}$. Then there are exactly two Delaunay cells $\sigma=\sigma_{i}(i=1,2)$ such that $\tau \subset \sigma$ and $\sigma \in \operatorname{Del}_{B}^{(2)}$, where

$$
\sigma_{1}=[0,1] \times[0,1], \quad \sigma_{2}=[0,1] \times[-1,0] .
$$

We see

$$
O(\tau) \simeq \operatorname{Spec} k(0)\left[u_{1}^{ \pm 1}, u_{2}, v_{1}, v_{2}\right] /\left(u_{2}, v_{1}, v_{2}\right) \simeq \operatorname{Spec} k(0)\left[u_{1}^{ \pm}\right]
$$

Let $\left(U_{0}\right)_{0}(\tau)$ be the subset of $\left(U_{0}\right)_{0}$ where u_{1} is invertible. Then we have

$$
\begin{aligned}
\left(U_{0}\right)_{0}(\tau) & =\operatorname{Spec} k(0)\left[u_{1}^{ \pm}, u_{2}, v_{2}\right] /\left(u_{2} v_{2}\right) \\
Z\left(\sigma_{1}\right) & =\operatorname{Spec} k(0)\left[u_{1}^{ \pm 1}, u_{2}, v_{2}\right] /\left(u_{2}\right) \\
Z\left(\sigma_{2}\right) & =\operatorname{Spec} k(0)\left[u_{1}^{ \pm 1}, u_{2}, v_{2}\right] /\left(v_{2}\right)
\end{aligned}
$$

This is what is meant by "along $O(\tau)$ " in Lemma 13.6.1.
Definition 13.6.3. Let P_{0} be a (not necessarily totally degenerate) $k(0)$-TSQAS of dimension g. Let Sing $\left(P_{0}\right)$ be the singular locus of P_{0}. Let $\Omega_{P_{0}}^{1}$ be the sheaf of germs of regular one-forms over P_{0}, and $\Theta_{P_{0}}:=\mathcal{H o m}{O_{P_{0}}}\left(\Omega_{P_{0}}^{1}, O_{P_{0}}\right)=\operatorname{Der}\left(O_{P_{0}}\right)$. Then we define $\widetilde{\Omega}_{P_{0}}$ to be the sheaf of germs of rational one-forms ϕ over P_{0} such that
(i) $\quad \phi$ is regular outside $\operatorname{Sing}\left(P_{0}\right)$, and it has \log poles at a generic point of every $(g-1)$-dimensional irreducible component of $\operatorname{Sing}\left(P_{0}\right)$ (we say ϕ has \log poles on P_{0}),
(ii) the sum of the residues of ϕ along every $(g-1)$-dimensional irreducible component of $\operatorname{Sing}\left(P_{0}\right)$ is equal to zero.
These conditions make sense in view of Lemma 13.6.1.
Lemma 13.6.4. Let P_{0} be a (not necessarily totally degenerate) $k(0)-T S Q A S$ of dimension g. We define $\Theta_{P_{0}}^{\dagger}$ and $\Omega_{P_{0}}^{\dagger}$ by.

$$
\Theta_{P_{0}}^{\dagger}:=\mathcal{H o m}_{O_{P_{0}}}\left(\widetilde{\Omega}_{P_{0}}, O_{P_{0}}\right), \quad \Omega_{P_{0}}^{\dagger}:=\mathcal{H o m}_{O_{P_{0}}}\left(\Theta_{P_{0}}^{\dagger}, O_{P_{0}}\right)
$$

Then we have $\Theta_{P_{0}}^{\dagger} \simeq O_{P_{0}}^{\oplus g}$, $\Omega_{P_{0}}^{\dagger} \simeq O_{P_{0}}^{\oplus g}$.
We note that by [39, p. 112], the tangent space of the automorphism group $\operatorname{Aut}\left(P_{0}\right)$ is given by $H^{0}\left(P_{0}, \Theta_{P_{0}}\right)$.

Theorem 13.6.5. Let T be a reduced scheme, $(P \xrightarrow{\pi} T, \mathcal{L})$ a T TSQAS. Let $\widetilde{\Omega}_{P / T}$ be the sheaf as in Definition 13.6.3, $\Theta_{P / T}^{\dagger}$ the $O_{P^{-}}$

be the maximal closed subgroup T-scheme of $\operatorname{Aut}_{T}(P)$ which keep $\Omega_{P / T}^{\dagger}$ stable, and $\mathrm{Aut}_{T}^{\dagger 0}(P)$ the fiberwise identity component of $\mathrm{Aut}_{T}^{\dagger}(P)$, that is, the minimal open subgroup T-scheme of $\operatorname{Aut}_{T}^{\dagger}(P)$. Then
(1) $\operatorname{Aut}_{T}^{\dagger}(P)$ is flat over T, and the fiber $\left(\operatorname{Aut}_{T}^{\dagger}(P)\right)_{t}$ has the tangent space $H^{0}\left(P_{t}, \Theta_{P_{t}}^{\dagger}\right)$ for any geometric point t of T,
(2) $\operatorname{Aut}_{T}^{\dagger 0}(P)$ is a semi-abelian group scheme over T, flat over T.

Theorem 13.7. ([33]) Let $N=\sqrt{|K|}$. We define a map sqap by

$$
S Q_{g, K}^{\text {toric }} \ni\left(P, \mathcal{L}, \phi^{*}, \tau\right) \times[v] \mapsto\left(\operatorname{Aut}^{\dagger 0}(P), P, \mathcal{L}, \operatorname{Div} \phi^{*}(v)\right) \in \overline{A P}_{g, K},
$$

where $v \in V_{H}, \operatorname{Div} \phi^{*}(v)$ is a Cartier divisor of P defined by $\phi^{*}(v)$. Then there exists a nonempty Zariski open subset U of $\mathbf{P}\left(V_{H}\right)$ such that
(1) sqap is a well-defined finite Galois morphism from $S Q_{g, K}^{\text {toric }} \times U$ but it is not surjective,
(2) for any $u \in U$,
(a) sqap : $S Q_{g, K}^{\text {toric }} \times\{u\} \rightarrow \overline{A P}_{g, K}$ is proper injective,
(b) sqap : $A_{g, K}^{\text {toric }} \times\{u\} \rightarrow A P_{g, K}$ is an injective immersion.

Details will appear in [33].
Corollary 13.8. $S Q_{g, 1}^{\text {toric }} \simeq \overline{A P}_{g, 1}^{\text {main }}$.
Remark 13.8.1. Assume Theorem 13.6.5. Then Corollary 13.8 is proved as follows. The scheme $U_{g, 1}^{\dagger}$ is reduced, as is shown in the same manner as in Theorem 12.1, hence the closure U_{3} of $U_{g, 1}^{\dagger}$ is also reduced. Over U_{3} we have a universal family

$$
\left(Z_{\text {univ }}, L_{\text {univ }}\right)_{U_{3}}:=\left(Z_{\text {univ }}, L_{\text {univ }}\right) \times_{H^{P}} U_{3} .
$$

Since U_{3} is reduced and any fiber of $\left(Z_{\text {univ }}, L_{\text {univ }}\right)_{U_{3}}$ is a TSQAS by Theorem 11.9, we can apply Theorem 13.6.5.

Since $A_{g, 1} \simeq A P_{g, 1}$ by $d=1$, it is reduced by Theorem 12.1. Hence the closure $\overline{A P}_{g, 1}^{\text {main }}$ of $A P_{g, 1}$ in $\overline{A P}_{g, 1}$ is reduced because it is the intersection of all closed algebraic subspaces of $\overline{A P}_{g, 1}$ containing $A P_{g, 1}=\left(A P_{g, 1}\right)_{\text {red }}$, hence it is the intersection of all closed reduced algebraic subspaces of $\overline{A P}_{g, 1}$ containing $\left(A P_{g, 1}\right)_{\text {red }}$.

It follows from Theorem 12.1 that we have a G-morphism from U_{3} to $\overline{A P}_{g, 1}^{\text {main }}$ where $G=\operatorname{PGL}\left(W_{1}\right) \times \operatorname{PGL}\left(W_{2}\right)$. By the universality of the categorical quotient, we have a morphism sqap : $S Q_{g, 1}^{\text {toric }} \rightarrow \overline{A P}_{g, 1}^{\text {main }}$, which is an isomorphism over $A_{g, 1}$. Since $S Q_{g, 1}^{\text {toric }}$ is proper, sqap is
surjective. The forgetful map

$$
\overline{A P}_{g, 1}^{\text {main }} \ni(G, P, \mathcal{L}, \Theta) \mapsto(P, \mathcal{L}) \in S Q_{g, 1}^{\text {toric }}
$$

is the left inverse of sqap. This proves $S Q_{g, 1}^{\text {toric }} \simeq \overline{A P}_{g, 1}^{\text {main }}$ because both $S Q_{g, 1}^{\text {toric }}$ and $\overline{A P}_{g, 1}^{\text {main }}$ are reduced.

§14. Related topics

14.1. Stability

Let us look at the following example. Let $X=\operatorname{Spec} \mathbf{C}[x, y]$ and $\mathbf{G}_{m}=\operatorname{Spec} \mathbf{C}\left[s, s^{-1}\right]$. Then \mathbf{G}_{m} acts on X by $(x, y) \mapsto\left(s x, s^{-1} y\right)$. Let $(a, b) \in X$ and let $O(a, b)$ be the \mathbf{G}_{m}-orbit of (a, b). The (categorical) quotient of X by \mathbf{G}_{m} is given by

$$
X / / \mathbf{G}_{m}=\operatorname{Spec} \mathbf{C}[t], \quad(t=x y)
$$

Any closed \mathbf{G}_{m}-orbit is either $O(a, 1)(a \neq 0)$ or $O(0,0)$. Hence by mapping $t=a$ (resp. $t=0$) to the orbit $O(a, 1)$ (resp. $O(0,0)$), the quotient $X / / \mathbf{G}_{m}$ is identified with the set of closed orbits. This is a very common phenomenon. The same is true in general.

Theorem 14.1.1. (Seshadri-Mumford) Let $X=\operatorname{Proj} B$ be a projective scheme over a closed field k, and G a reductive algebraic k-group acting linearly on B (hence on X). Then there exists an open subscheme $X_{\text {ss }}$ of X consisting of all semistable points in X, and a quotient Y of $X_{\text {ss }}$ by G, that is, $Y=\operatorname{Proj}(R)$, where R is the graded subring of B of all G-invariants. To be more precise, there exist a G-invariant morphism π from $X_{\text {ss }}$ onto Y such that
(1) For any k-scheme Z on which G acts, and for any G-equivariant morphism $\phi: Z \rightarrow X$ there exists a unique morphism $\bar{\phi}: Z \rightarrow$ Y such that $\bar{\phi}=\pi \phi$,
(2) For given points a and b of $X_{s s}$

$$
\pi(a)=\pi(b) \text { if and only if } \overline{O(a)} \cap \overline{O(b)} \neq \emptyset
$$

where the closure is taken in $X_{s s}$,
(3) $Y(k)$ is regarded as the set of G-orbits closed in $X_{\text {ss }}$.

See [26, p.38, p.40] and [41, p. 269].
A reductive group in Theorem 14.1.1 is by definition an algebraic group whose maximal solvable normal subgroup is an algebraic torus; for example $\mathrm{SL}(n)$ and \mathbf{G}_{m} are reductive.

The following is well known.

Theorem 14.1.2. ([9], [24]) For a connected curve C of genus greater than one with dualizing sheaf ω_{C}, the following are equivalent:
(1) C is a stable curve, (moduli-stable)
(2) the n-th Hilbert point of C embedded by $\left|\omega_{C}^{m}\right|(m \geq 10)$ is GITstable for n large,
(3) the Chow point of C embedded by $\left|\omega_{C}^{m}\right|(m \geq 10)$ is GIT-stable.

Proof. The proof goes as $(2) \Longrightarrow(1) \Longrightarrow(3) \Longrightarrow(2)$.
We explain only who proved these and where.
By [9, Chap. 2], let $\pi: Z_{U_{C}} \rightarrow U_{C}$ be the universal curve such that
(i) $X_{h}:=\pi^{-1}(h)\left(h \in U_{C}\right)$ is a connected curve of genus g and degree $d=n(2 g-2)$ embedded by the linear system $\omega_{X_{h}}^{n}$ into $\mathbf{P}^{N}(N=d-g)$,
(ii) the m_{0}-th Hilbert point $H_{m_{0}}\left(X_{h}\right)$ of X_{h} is $\mathrm{SL}(N+1)$-semistable, where m_{0} is a fixed positive integer large enough.

Then by [9, Theorem 1.0.1, p. 26], X_{h} is a semistable curve, that is, a reduced connected curve with nodal singularities only, any of whose nonsingular rational irreducible components meets the other irreducible components of X_{h} at two or more points. For any semistable curve X, ω_{X} is ample if and only if X is a stable curve. Hence (2) implies (1).

By [24, Theorem 5.1], if C is a stable curve, $\Phi_{n}(C)$, the image of C by the linear system ω_{C}^{n}, is Chow-stable. Thus (1) implies (3). (3) implies (2) by [8] and [26, Prop. 2.18, p. 65]. See [26, p. 215]. Q.E.D.

We have an analogous theorem for PSQASes.
Theorem 14.1.3. Let $K=H \oplus H^{\vee}, N=|H|, N=|H|$, and k an algebraically closed field with $k \ni 1 / N$.

Suppose $e_{\min }(H) \geq 3$, and (Z, L) is a closed subscheme of $\mathbf{P}(V)$. Suppose moreover that (Z, L) is smoothable into an abelian variety whose Heisenberg group is isomorphic to \mathcal{G}_{H}. Then the following are equivalent:
(1) (Z, L) is a level- \mathcal{G}_{H} PSQAS, (moduli-stable)
(2) any Hilbert point of (Z, L) of large degree is GIT-stable,
(3) (Z, L) is stable under (a conjugate of) \mathcal{G}_{H}.

See [30, Theorem 11.6] and [31, Theorems 10.3, 10.4].
Remark 14.1.4. In Table 1 we mean by GIT-stable that the cubic has a closed PGL(3)-orbit in the semistable locus. See [31] for details.

By Table 1, a planar cubic is GIT-stable if and only if it is either a smooth elliptic curve or a 3 -gon. This is a special case of Theorem 14.1.3.

Table 1. Stability of cubics

curves (sing.)	stability	stab. gr.
smooth elliptic	GIT-stable	finite
3 lines, no triple point	GIT-stable	2 dim
a line+a conic, not tangent	semistable, not GIT-stable	1 dim
irreducible, a node	semistable, not GIT-stable	$\mathbf{Z} / 2 \mathbf{Z}$
3 lines, a triple point	not semistable	1 dim
a line+a conic, tangent	not semistable	1 dim
irreducible, a cusp	not semistable	1 dim

14.2. Arithmetic moduli

Katz and Mazur [15] constructed an integral model $X(n)$ of the moduli scheme of elliptic curves with level n-structure. Level structure is generalized as A-generators of the group of n-division points for $A=$ $(\mathbf{Z} / n \mathbf{Z})^{\oplus 2}$. For any $n \geq 3, X(n)$ is a regular \mathbf{Z}-flat scheme such that $X(n) \otimes \mathbf{Z}\left[1 / n, \zeta_{n}\right] \simeq S Q_{1, A}$. If $n=3, X(3) \otimes \mathbf{F}_{3}$ is a union of four copies of \mathbf{P}^{1}, intersecting at the unique supersingular elliptic curve over \mathbf{F}_{9}.

This $X(n)$ is the model that we wish to generalize to the higher dimensional case, using our PSQASes or TSQASes. This will be discussed somewhere else.

14.3. The other compactifications

It is still unknown whether $A P_{g, 1}^{\text {main }}$ (or $S Q_{g, 1}^{\text {toric }}$) is normal or not. Therefore it is not yet known whether $A P_{g, 1}^{\text {main }}$ (or $S Q_{g, 1}^{\text {toric }}$) is the Voronoi compactification, one of the toroidal compactifications associated to the second Voronoi cone decomposition. There will exist a flat family of PSQASes or TSQASes over the Voronoi compactification. This will define, by the universality of the target, a morphism from the Voronoi compactification to $\overline{A P}_{g, 1}^{\text {main }}$ (or $S Q_{g, 1}^{\text {toric }}$) or $S Q_{g, K}^{\text {toric }}$ for some K once we check the family is algebraic. The author conjectures that $S Q_{g, K}^{\text {toric }}$ is normal, hence isomorphic to the Voronoi(-type) compactification.
Added in proof:
Definition 3.11 has to be replaced by the following
Definition 3.11. Two cubics (C, ψ, τ) and $\left(C^{\prime}, \psi^{\prime}, \tau^{\prime}\right)$ with level- $G(3)$ structure are defined to be isomorphic iff there exist isomorphisms

$$
\begin{gathered}
(f, F):(C, L) \rightarrow\left(C^{\prime}, L^{\prime}\right), \\
(h, H):(\mathbf{P}(V), \mathbf{H}) \rightarrow(\mathbf{P}(V), \mathbf{H})
\end{gathered}
$$

such that
(i) $\psi^{\prime} \cdot(f, F)=(h, H) \psi$,
(ii) (f, F) is a $G(3)$-isomorphism, that is, $(f, F) \tau(g)=\tau^{\prime}(g)(f, F)$ for any $g \in G(3)$.

References

[1] V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math., 155 (2002), 611-708.
[2] V. Alexeev and I. Nakamura, On Mumford's construction of degenerating abelian varieties, Tôhoku Math. J., 51 (1999), 399-420.
[3] E. Arbarello, M. Cornalba and P. A. Griffiths, Geometry of algebraic curves, vol. 2, Grundlehren der mathematischen Wissenshaften, 268, SpringerVerlag, 2011.
[4] A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth compactifications of locally symmetric varieties, Second edition, With the collaboration of Peter Scholze, Cambridge University Press, 2010.
[5] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES, 36 (1969), 75-110.
[6] M. Demazure et A. Grothendieck, Schémas en Groupes I (SGA 3), Lect. Notes Math., 151, Springer Verlag, 1970.
[7] G. Faltings and C.-L. Chai, Degenerations of abelian varieties, vol. 22, Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 3, SpringerVerlag, 1990.
[8] J. Fogarty, Truncated Hilbert functors, J. Reine und Angew. Math., 234 (1969), 65-88.
[9] D. Gieseker, Lectures on moduli of curves, Tata Institute of Fundamental Research, Bombay 1982.
[10] A. Grothendieck, Éléments de géométrie algébrique II,III,IV, Publ. Math. IHES 8 (1961), 11 (1961), 20 (1964), 24 (1965).
[11] A. Grothendieck, Revêtements Etales et Groupe Fondamentale (SGA 1), Lect. Notes Math., 224, Springer-Verlag, 1971.
[12] K. Gunji, Defining equations of the universal abelian surfaces with level three structure, Manuscripta Math., 119 (2006), 61-96.
[13] S. Grushevsky and K. Hulek, Geometry of theta divisors - a survey, to appear in: Proceedings of the conference in honor of Joe Harris, Clay Foundation and AMS.
[14] K. Hulek and G.K. Sankaran, The Geometry of Siegel modular varieties, Higher Dimensional Birational Geometry (Kyoto, 2000), Adv. Studies Pure Math., 35 (2002), pp. 89-156.
[15] N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Ann. Math. Studies, 108 (1985).
[16] S. Keel and S. Mori, Quotients by groupoids, Ann. Math., 145 (1997) 193213.
[17] G. Kempf, Instability in invariant theory, Ann. Math., 339 (1978) 299-316.
[18] D. Knutson, Algebraic spaces, Lect. Notes Math., 203, Springer, 1971.
[19] H. Matsumura, Commutative algebra, W. A. Benjamin Inc., 1970.
[20] D. Mumford, On the equations defining Abelian varieties I, Invent. Math., 1 (1966), 287-354.
[21] D. Mumford, On the equations defining Abelian varieties II, III, Invent. Math., 3 (1967), 75-135, 215-244.
[22] D. Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29-100.
[23] D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math., 24 (1972), 239-272.
[24] D. Mumford, Stability of projective varieties, L'Enseignement Mathematique, 23 (1977), 39-110.
[25] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research, Hindustan Book Agency, 2012.
[26] D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Springer-Verlag, 1994.
[27] I. Nakamura, On moduli of stable quasi abelian varieties, Nagoya Math. J., 58 (1975), 149-214.
[28] I. Nakamura, Relative compactification of the Néron model and its applications, Complex Analysis and Algebraic Geometry (W.L. Baily, Jr. and T. Shioda, eds.), Cambridge Univ. Press, 1977, pp. 207-225.
[29] I. Nakamura, Compactification of the moduli of abelian varieties over $\mathbf{Z}\left[\zeta_{N}, 1 / N\right]$, C. R. Acad. Sci. Paris, 327 (1998) 875-880.
[30] I. Nakamura, Stability of degenerate abelian varieties, Invent. Math., 136 (1999), 659-715.
[31] I. Nakamura, Planar cubic curves, from Hesse to Mumford, Sugaku Expositions, 17 (2004), 73-101.
[32] I. Nakamura, Another canonical compactification of the moduli space of abelian varieties, Algebraic and arithmetic structures of moduli spaces (Sapporo, 2007), Adv. Studies Pure Math., 58 (2010), 69-135. (arXivmath 0107158)
[33] I. Nakamura, The semi-abelian action on a degenerate abelian scheme, Preprint (2014).
[34] I. Nakamura and T. Terasoma, Moduli space of elliptic curves with Heisenberg level structure, Moduli of Abelian Varieties, Proceedings of Texel conference 1999, Progress in Math., 195, Birkhäuser (2001), 299-324.
[35] Y. Namikawa, A new compactification of the Siegel space and degenerations of abelian varieties, I, II, Math. Ann., 221 (1976), 97-141, 201-241.
[36] Y. Namikawa, Toroidal compactification of Siegel spaces, Lect. Notes Math., 812, Springer-Verlag, 1980.
[37] M. Olsson. Compactifying moduli spaces for abelian varieties, Lect. Notes Math., 1958, Springer-Verlag, 2008.
[38] F. Oort, Finite group schemes, local moduli for abelian varieties, and lifting problems, Algebraic geometry Oslo 1970, Proceedings of the 5th Nordic

Summer-School in Mathematics, Wolters-Noordhoff Publishing, 223-254, 1972; also in Compositio Math., 22, (1971), 265-296.
[39] D.S. Rim, Formal deformation theory, in Groupes de Monodromie en Géométrie Algébrique (SGA 7 I), Lect. Notes Math., 288, SpringerVerlag, 1972, exp. VI, 32-132.
[40] T. Sekiguchi, On the cubics defining abelian varieties, J. Math. Soc. Japan, 30, (1978), 703-721.
[41] C. S. Seshadri, Geometric reductivity over arbitrary base, Adv. Math. 26 (1977), 225-274.
[42] C.L. Siegel, Analytic Functions of Several Complex Variables, Tokyo University International Edition, No. 44, 1962.
[43] J.H. Silverman, The arithmetic of elliptic curves, Graduate Texts Math., 106, Springer Verlag, 1986.
[44] W. C. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts Math., 66, Springer Verlag, 1979.

Department of Mathematics, Hokkaido University,Sapporo, 060-0810
E-mail address: nakamura@math.sci.hokudai.ac.jp

[^0]: ${ }^{1} \mathcal{V}=\pi_{*} \mathcal{L}$ for T-smooth PSQASes.

