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A new method for computing the limiting tangent
space of an isolated hypersurface singularity

via algebraic local cohomology

Katsusuke Nabeshima and Shinichi Tajima

Abstract.

Limiting tangent hyperplanes associated with isolated hypersur-
face singularities are considered in the context of symbolic computa-
tion. A new effective method is proposed to compute the limiting
tangent space of a given hypersurface. The key of the method is the
concept of parametric local cohomology systems. The proposed method
can provide the decomposition of the limiting tangent space by Milnor
numbers of hyperplane sections of a given hypersurface. The result-
ing algorithm has been implemented in the computer algebra system
Risa/Asir. Examples of the computation for some typical cases are
given.

§1. Introduction

We introduce a new approach for studying limiting tangent spaces of
an isolated hypersurface singularity. The limiting tangent spaces were
introduced in 1965 by H. Whitney [21, 22] and have been extensively
utilized in various ways in singularity theory, especially in problems that
involve Whitney stratifications.

In pioneering works [7, 11] published in 1977 and 1979, J-P. G. Henry,
Lê Dũng Tráng and B. Teissier studied the geometry of the limiting tan-
gent space of a complex analytic surface, and they have highlighted in
a series of papers the importance of limiting tangent spaces themselves
([8, 9, 10]). In general, limiting tangent spaces encode, as H. Whitney
already showed in [21, 22], much more information of singularities than
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tangent cones. Note that A. G. Flores [2] recently generalized some
results on limiting tangent spaces of [12].

In 1991, D. O’Shea gave computation methods of limiting tangent
spaces in [17] by noticing the fact that only few computations of limiting
tangent spaces had been made. The methods require Gröbner bases
computation that involves elimination of many variables.

In this paper, we propose a new method for computing the limiting
tangent space of a hypersurface with an isolated singularity. By utilizing
the theory of algebraic local cohomology and the Grothendieck local
duality theorem on residues, we have introduced, in previous papers
[4, 5, 13, 14, 18], a concept of parametric local cohomology systems and
have developed a framework for treating parametric problems in local
rings.

Based on some results due to B. Teissier [19, 20], we derive in the
present paper a new method of computing limiting tangent spaces by
adapting the algorithms described in [14]. One of the advantage of the
proposed method lies in the fact that the method is free from Gröbner
bases computation and the main body consists of linear algebra com-
putation. We emphasize here the fact that the resulting algorithm can
provide a stratification of the limiting tangent space by Milnor numbers
of hyperplane sections of a given hypersurface. This is another advan-
tage.

This paper is organized as follows. Section 2 reviews algebraic local
cohomology, parametric local cohomology systems, μ-stratifications, a
definition of limiting tangent spaces and O’Shea’s theorem. Section 3
provides a new method for computing limiting tangent spaces of isolated
hypersurface singularities and gives some limiting tangent spaces.

§2. Preliminaries

Here we briefly recall the notions of algebraic local cohomology,
parametric local cohomology systems and limiting tangent spaces and
fix some notations. For details, we refer the reader to [4, 5, 13, 14, 18] for
local cohomology, [7, 11, 17, 21, 22] for limiting tangent spaces. The set
of natural numbers N includes zero. C is the field of complex numbers.

2.1. Algebraic local cohomology

Let X be an open neighborhood of the origin O of the n-dimensional
complex space C

n with coordinates x = (x1, x2, . . . , xn) and let OX

be the sheaf on X of holomorphic functions. Let Hn
[O](OX) denote

the set of algebraic local cohomology classes, defined by Hn
[O](OX) =
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limk→∞ ExtnOX
(OX/〈x1, x2, . . . , xn〉k,OX), where 〈x1, x2, . . . , xn〉 is the

maximal ideal generated by x1, x2, . . . , xn.
We represent an algebraic local cohomology class as

∑
λ

cλξ
λ =

∑
cλξ

λ1
1 ξλ2

2 · · · ξλn
n

where ξλ = ξλ1
1 ξλ2

2 · · · ξλn
n and ξ1, ξ2, . . . , ξn correspond to x1, x2, . . . , xn

(see [18]). The multiplication is defined as follows:

xα ∗ ξλ :=

⎧⎨
⎩

ξλ−α, if λi ≥ αi, i = 1, . . . , n,

0, otherwise,

where xα = xα1
1 · · · xαn

n ∈ C[x], ξλ = ξλ1
1 · · · ξλn

n ∈ Hn
[O](OX), α =

(α1, . . . , αn) ∈ N
n, λ = (λ1, . . . , λn) ∈ N

n, and λ−α = (λ1−α1, . . . , λn−
αn). We use the symbol “ ∗ ” to represent the multiplication. The
action of monomials on algebraic local cohomology classes is extended
to polynomials by linearity. For example, let f = 2x2

1x2+x2 ∈ C[x1, x2]
and ψ = 3ξ31ξ

2
2 + ξ2 ∈ H2

[O](OX), where X ⊂ C
2 with coordinates

(x1, x2). Then,

f ∗ ψ = 2x2
1x2 ∗ ψ + x2 ∗ ψ

= (2x2
1x2 ∗ 3ξ31ξ22 + 2x2

1x2 ∗ ξ2) + (x2 ∗ 3ξ21ξ22 + 3x2 ∗ ξ2)
= 6ξ1ξ2 + 0 + 3ξ21ξ2 + 1

= 3ξ21ξ2 + 6ξ1ξ2 + 1.

Let f be a holomorphic function defined on X with an isolated
singularity at the origin. We define a vector space HJ(f) to be the set
of algebraic local cohomology classes in Hn

[O](OX) that are annihilated

by the Jacobi ideal J(f) = 〈 ∂f
∂x1

, . . . , ∂f
∂xn

〉 :

HJ(f) :=

{
ψ ∈ Hn

[O](OX)

∣∣∣∣ ∂f

∂x1
∗ ψ =

∂f

∂x2
∗ ψ = · · · = ∂f

∂xn
∗ ψ = 0

}
.

It follows from the Grothendieck local duality theorem [4, 5] on
residues that the vector space HJ(f) is a dual space to the Milnor algebra
OX,O/J(f). Therefore dimC(HJ(f)) is equal to the Milnor number μ(f)
of the singularity.

It is known that, according to a result of M. Artin [1], a defining
holomorphic function of any isolated hypersurface singularity can be
represented by a polynomial. We can assume therefore that the defining
holomorphic function is actually a polynomial.
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In our previous works [13, 18], we introduced and implemented algo-
rithms for computing bases of the vector space HJ(f) for the case where
f is a polynomial.

2.2. Parametric local cohomology systems

We turn to parametric cases of algebraic local cohomology. For
details, we refer the reader to [13, 14].

We use the notation t as the abbreviation ofm parameters t1, . . . , tm.
For g1, . . . , gk in C[t], V(g1, . . . , gk) denotes the affine variety of g1, . . . ,
gk, i.e., V(g1, . . . , gk) := {t ∈ C

m | g1(t) = · · · = gk(t) = 0}. We consider
a finite partition of Cm into disjoint algebraically constructible subsets
of the form V(g1, . . . , gk)\ V(g′1, . . . , g

′
k′) ⊆ C

m. For simplicity, we call
those subsets strata and let notations A1, . . . ,Aq, B1, . . . ,Br stand for
them.

We define C[t]A, for a stratum A ⊆ C
m, as C[t]A = { c

b |c, b ∈
C[t], b(t) 	= 0 for t ∈ A}. Then, for every ā ∈ A, we can define the
canonical specialization homomorphism σā : C[t]A[x] → C[x] (or σā :
C[t]A[ξ] → C[ξ]) by putting t = ā. When we say that σā(ht) makes sense
for ht ∈ C(t)[x], it has to be understood that ht ∈ C[t]A[x] for some A

with ā ∈ A where C(t) is the field of rational functions of t. For instance,
let ht = t1x

3
1x2 +

1
t2
x1 in C(t1, t2)[x1, x2] and (2, 1), (0, 2

3 ) ∈ C
2 \V(t2).

Then, σ(2,1)(ht) = 2x3
1x2 + x1 and σ(0, 23 )

(ht) =
3
2x1.

Let ht be a polynomial in C[x] with parameters t = (t1, t2, . . . , tm)
which generically has an isolated singularity at the origin O, namely,
there exists a Zariski open dense subset U ⊂ C

m such that for all t in
U , ht has an isolated singularity at the origin. The following notion is
used to describe the parameter dependency of the structure of the vector
space HJ(ht).

Definition 2.1. Let A1, . . . ,Aq,B1, . . . ,Br be strata in C
m suth that

A1 ∪ · · · ∪ Aq ∪B1 ∪ · · · ∪ Br = C
m, S1, . . . , Sq subsets of C(t)[ξ]. Set

S = {(A1, S1), . . . , (Aq, Sq)} and W = {B1, . . . , Br}. Then, a pair
(S,W) is called a parametric local cohomology system (PLCS) of
HJ(ht) on the parameter space Cm, if for all i ∈ {1, . . . , q}, Si ⊂ C[t]Ai [ξ]
and ā ∈ Ai, σā(Si) is a basis of the vector space HJ(σā(ht)) and for all

j ∈ {1, . . . , r} and b̄ ∈ Bj , σb̄(ht) does not define an isolated singularity
at the origin. We call a pair (Ai, Si) a segment of the PLCS of HJ(ht),
for 1 ≤ i ≤ q.

In the papers [13, 14], we have introduced algorithms for comput-
ing a PLCS of HJ(ht) on the parameter space C

m, which have been
implemented in a computer algebra system Risa/Asir [16].
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Definition 2.2. Let A1, . . . ,Aq, B1, . . . ,Br strata in C
m such that

A1 ∪ · · · ∪ Aq ∪B1 ∪ · · · ∪ Br = C
m and μ1, . . . , μq natural numbers.

Set M = {(A1, μ1), . . . , (Aq, μq)} and W = {B1, . . . , Br}. Then, a pair
(M,W) is called a μ-stratification of Cm for ht if for all i ∈ {1, . . . , q},
μi is the Milnor number of ht at the origin O ∈ C

n on Ai, and for all
j ∈ {1, . . . , r} and b̄ ∈ Bj , σb̄(ht) does not define an isolated singularity
at the origin. We call a pair (Ai, μi) a segment of the μ-stratification
of ht, for 1 ≤ i ≤ q.

Example 1. Let us consider ht = x3
1 + t1x1x

3
2 + x6

2 + t2x
4
2 where

x1, x2 are variables and t1, t2 are parameters. Then, our Risa/Asir-
implementation outputs Table 1 as a PLCS of HJ(ht) and Milnor num-
bers μ.

stratum basis of HJ(ht) μ

C
2 \V(t1t2) {1, ξ1, ξ2, ξ1ξ2, ξ22 ,− 3

4 t1ξ
3
2 + t2ξ1ξ2 +

1
4a

2ξ21} 6

V(t2)\V(t1, t2) {1, ξ1, ξ2, ξ1ξ2, ξ22 , ξ32 − 1
3aξ

2
1 , ξ

4
2 − 1

3aξ
2
1ξ2} 7

V(t1)\V(t1, t2) {1, ξ1, ξ2, ξ1ξ2, ξ22 , ξ1ξ22} 6

V(t1, t2) {1, ξ1, ξ2, ξ1ξ2, ξ22 , ξ1ξ22 , ξ32 , ξ1ξ32 , ξ42 , ξ1ξ42} 10

Table 1. A PLCS of HJ(ht) on C
2

Since the dimension of the vector space HJ(ht) is equal to the Milnor
number of ht, μ-stratifications of parametric polynomials can be con-
structed by computing PLCS of HJ(ht).

2.3. Limiting tangent spaces

Here we recall a definition of the limiting tangent space for a hyper-
surface with an isolated singularity and O’Shea’s method for computing
limiting tangent spaces.

Let f(x) be an holomorphic function with an isolated singularity at
the origin and S = {x ∈ X|f(x) = 0}. If x ∈ S − {O}, we let T (S, x)
denote the tangent hyperplane to S at x in C

n translated so that it passes
through the origin. If we identify a hyperplane p1x1+p2x2+· · ·+pnxn= 0

with the conormal vector [p1, p2, . . . , pn] in projective space P̌
n−1

, then
we can write the map

grad(f) : x −→
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]
∈ P̌

n−1
.
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Consider the graph graph(grad(f)) ⊂ S × P̌
n−1

and the closure

graph(grad(f)). Projection onto the first factor S× P̌
n−1 −→ S induces

the Nash blow up ν.

graph(grad(f)) S × P̌
n−1

S

�

�
�

�
���

ν
�
�
�
���

We denote the second factor of the fiber ν−1(O) as K(S,O). The

space K(S,O) ⊂ P̌
n−1

is called the limiting tangent space of S. We
refer [6, 9, 10, 15, 21, 22] for the notion of limiting tangent spaces.

In general, the limiting tangent space of the tangent cone of S is a
subset of the limiting tangent space of the hypersurface S, which means
in particular that the limiting tangent space has more information than
the tangent cone.

D. O’Shea proved the following theorem for computing limiting tan-
gent spaces in [17].

Theorem 1 (D. O’Shea [17]). Let f be polynomial in C[x1, . . . , xn]
with an isolated singularity at the origin and S = {x ∈ X|f(x) = 0}.
Let K(S,O) ⊂ P̌

n−1
be the limiting tangent space. Let A denote the

ideal in C[x1, . . . , xn, u, p1, . . . , pn] given by setting

A =

〈
f, p1 − u

∂f

∂x1
, . . . , pn − u

∂f

∂xn

〉
.

Then, the ideal I(K(S,O)) of K(S,O) in P̌
n−1

is the radical of the ideal
in C[p1, . . . , pn] given by eliminating u and setting x1, . . . , xn equal to
zero. That is,

I(K(S,O)) =
√
A ∩ C[x1, . . . , xn, p1, . . . , pn]/〈x1, . . . , xn〉).

(For an ideal I,
√
I is a radical ideal of I.)

The theorem above implies that the limiting tangent space can be
obtained by Gröbner bases computation of A w.r.t. the elimination term
order.

§3. Main results

Here we see some results of B. Teissier and give a new computation
method of limiting tangent spaces at the singular point O. The key
ingredient of the method is the μ-stratification (i.e., PLCS).
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3.1. A new computation method

Let p = (p1, p2, . . . , pn) be a non-zero vector and let [p] be the cor-

responding point in the complex projective space P̌
n−1

. We identify the
hyperplane

Hp = {x ∈ C
n | p1x1 + p2x2 + · · ·+ pnxn = 0}

with the point [p] in P̌
n−1

.
Let f(x) be a holomorphic function defined on X with an isolated

singularity at the origin O and S = {x ∈ X|f(x) = 0}. If the restriction
f |Hp of f on Hp ∩X has an isolated singularity at the origin of Hp, we

define μ(n−1)(f |Hp) to be μ(S ∩Hp), the Milnor number at the origin of

the hyperplane section S ∩Hp. Otherwise we define μ(n−1)(f |Hp) = ∞.

Definition 3.1. Let f(x) be a holomorphic function defined on X
with an isolated singularity at the origin. Then, μ(n−1)(f) is defined by

μ(n−1)(f) = min
[p]∈P̌

n−1
μ(f |Hp).

B. Teissier proved the following important theorems [19, 20].

Theorem 2 (B. Teissier). Let U = {[p] ∈ P̌
n−1 | μ(n−1)(f |Hp) =

μ(n−1)(f)}. Then, U is Zariski open and a dense subset of P̌
n−1

.

Theorem 3 (B. Teissier). For [p] ∈ P̌
n−1

, the following are equiv-
alent :

(i) [p] ∈ K(S,O).
(ii) μ(n−1)(f |Hp) > μ(n−1)(f).

Let us recall the cell decomposition of the projective space P̌
n−1

given by

P̌
n−1

= (P̌
n−1 − P̌

n−2
) ∪ (P̌

n−2 − P̌
n−3

) ∪ · · · ∪ (P̌
1 − P̌

0
) ∪ P̌

0

∼= C
n−1 ∪C

n−2 ∪ · · · ∪ C∪ P̌
0

where

P̌
n−i

= {[p] ∈ P̌
n−1 | p1 = p2 = · · · = pi = 0}, i = 1, 2, ..., n− 1.

Let κi = (P̌
n−i − P̌

n−i−1
) ∩K(S,O). Then,

κi = {[p] ∈ P̌
n−i − P̌

n−i−1 | μ(n−1)(f |Hp) > μ(n−1)(f)}.
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Now, we are ready to describe a method to compute the limiting
tangent space K(S,O).

Method 1

Let f(x1, x2, . . . , xn) be a polynomial with an isolated singularity at
the origin.

Step 1: Let us assume p1 	= 0 and [p1, p2, . . . , pn] ∈ P̌
n−1

. Consider
the hyperplane x1 = s2x2 + s3x3 + · · ·+ snxn where si = − pi

p1

and i ∈ {2, . . . , n}. Compute a μ-stratification of f(s2x2 +
s3x3 + · · ·+ snxn, x2, . . . , xn) on the cell Cn−1 by the method
that is described in section 2.2, where s2, s3, . . . , sn are parame-
ters. After that, compute the union of the strata whose Milnor
number is not the minimum (or the open dense subset’s one),

and compute κ1 by si = − pi

p1
and p1 	= 0. Then, κ1 ⊂ P̌

n−1

becomes a part of the limiting tangent space K(S,O) by The-
orem 2 and Theorem 3.

Step 2: Next, we consider the case p1 = 0, p2 	= 0 and x2 = s3x3 +
· · · + snxn where si = − pi

p2
and i ∈ {3, . . . , n}. Compute a

μ-stratification of f(x1, s3x3 + · · ·+ snxn, x3, . . . , xn) on C
n−2

where s3, . . . , sn are parameters. Compute the union of the
strata whose Milnor number is not μ(n−1)(f) and compute κ2

by si = − pi

p2
, p1 = 0 and p2 	= 0. The set κ2 becomes a part of

the limiting tangent space K(S,O).
Repeat: Repeat the same procedure until xn = 0 i.e., (p1, . . . , pn−1, pn)

= (0, . . . , 0, pn) with pn 	= 0. Then,

K(S,O) = κ1 ∪ κ2 ∪ · · · ∪ κn.

Remark that an inequality μ(n)(f) ≥ μ(n−1)(f) holds [20]. Thus,
if a number of elements of a basis of algebraic local cohomology classes
associated with f |Hp becomes bigger than μ(f) on a stratum A as the
halfway result in the computation of a PLCS, then we can stop the
computation on the stratum A. That is, A ⊂ K(S,O). This technique
have been implemented in our implementation of μ-stratifications.

Theorem 4. Method 1 returns the limiting tangent space of S cor-
rectly and terminates.

Proof. Since the algorithm for computing a μ-stratification always
terminates by the remark above and the algorithm for computing PLCSs
[14], this method terminates. The correctness also follows from the
algorithm for computing a μ-stratification, Theorem 2 and Theorem 3.

Q.E.D.
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We can compute a limiting tangent space of S via PLCSs. We give
an example to facilitate the method.

Example 2. Let us consider f(x1, x2, x3) = x2
1x3 + x3

2 + x4
3 + x2x

3
3

(Q10-singularity) with an isolated singularity at the origin. (S = {x ∈
X|f(x) = 0})

Set a hyperplane Hp with the point [p1, p2, p3] in P̌
2
. First, we

consider the case p1 	= 0. Set x1 = s2x2 + s3x3 where s2 = −p2

p1

and s3 = −p3

p1
. Let compute a μ-stratification of h(s2,s3)(x2, x3) =

f(s2x2 + s3x3, x2, x3) where s2 and s3 are parameters. Then, our im-
plementation for computing μ-stratifications, returns Table 2.

strata μ

C
2 \V(s2s3(4s32 − 27s3)), V(s2)\V(s2, s3) 4

V(s3)\V(s2, s3), V(4s32 − 27s3)\V(4s33 − s3, s2 − 3s3) 5

V(4s33 − s3, s2 − 3s3)\V(s2, s3), V(s2, s3) 6

Table 2. μ-stratification of h(s2,s3)

Since the stratum C
2 \V(s2s3(4s32−27s3)) is open and dense, μ(2)(f)

= 4. (Obviously 4 is the minimum.) Thus, the union of strata whose
Milnor number is not 4, is

(V(s3)\V(s2, s3)) ∪
(
V(4s32 − 27s3)\V(4s33 − s3, s2 − 3s3)

)
∪ (

V(4s33 − s3, s2 − 3s3)\V(s2, s3)
) ∪ V(s2, s3) = V(s3(4s

3
2 − 27s3)).

As s2 = −p2

p1
, s3 = −p3

p1
and p1 	= 0, the stratum defined by s3(4s

3
2 −

27s3) = 0 on C
2 can be written as κ1 = V(p3(4p

3
2−27p21p3))\V(p1, p2p3).

Second, we consider the case p1 = 0 and p2 	= 0, i.e., x2 = −p3

p2
x3.

Set x2 = t3x3 where t3 = −p3

p2
. Let compute a μ-stratification of

h(t3)(x1, x3) = f(x1, t3x3, x3) where t3 is a parameter. Our implemen-
tation returns Table 3.

strata μ

C
2 \V(t23 + t3), V(t3 + 1) 4

V(t3) 5

Table 3. μ-stratification of h(t3)
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As μ(2)(f) = 4, we require t3 = −p3

p1
= 0 as a part of K(S,O).

Thus, in this case, p3 = 0 corresponds to the limiting tangent hyperplane
H{(0,p2,0)} = {p2x2|p2 	= 0}. Hence, we have κ2 = V(p1, p3)\V(p1, p2,
p3).

Finally, we consider the case p1 = 0, p2 = 0 and p3 	= 0, i.e., x3 = 0.
Then, the Milnor number of f(x1, x2, 0) = x3

2 is infinity (∞). Thus,
H{(0,0,p3)} = {p3x3|p3 	= 0} is a limiting tangent hyperplane. Hence, we
have κ3 = V(p1, p2)\V(p1, p2, p3). Since(
V(p3(4p

3
2 − 27p21p3))\V(p1)

) ∪ (V(p1, p3)\V(p2)) ∪ (V(p1, p2)\V(p3))
= V(p3(4p

3
2 − 27p21p3))\V(p1, p2, p3),

p3(4p
3
2−27p21p3) = 0 is the limiting tangent space of S. (As (p1, p2, p3) 	=

(0, 0, 0), we omit V(p1, p2, p3).)
It is easy to see that the limiting tangent space of the tangent cone

x2
1x3 + x3

2 = 0 of the hypersurface S is 4p32 − 27p21p3 = 0.

Let MS be the set of all Milnor numbers at the origin of hyperplane

sections of S: MS = {μ(n−1)(f |Hp) ∈ N∪{∞} | [p] ∈ P̌
n−1}. Then,

Method 1 can also compute

τμ = {p ∈ P̌
n−1 |μ(n−1)(f |Hp) = μ}, μ ∈ MS .

The next example is a parametric case.

Example 3. Let us consider f(x1, x2, x3) = x2
1x2+x1x

3
3+x2

2x3+ax5
3

(S12 singularity) with an isolated singularity at the origin where “a” is
a deformation parameter.

First, set h(s2,s3)(x2, x3) = f(s2x2 + s3x3, x2, x3) with parameters
s2 and s3. Then, we can obtain a μ-stratification of h(s2,s3) by our
implementation, that is Table 4.

strata μ

C
3 \V(s3(4s2s3 + 1)a), V(a)\V(s3(4s2s3 + 1), a) 4

V(s3)\V(s2(4a− s22)a, s3), V(s2, s3)\V(a, s2, s3) 6

V(s3, a)\V(a, s2, s3)
V(4s2s3 + 1)\V(a, 4s2s3 + 1), V(4s2s3 + 1, a) 5

V(4a− s22, s3)\V(a, s2, s3) 7

V(a, s2, s3) ∞
Table 4. μ-stratification of h(s1,s2)
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Since the stratum C
3 \V(s3(4s2s3+1)a) is open and dense, μ(2)(f) =

4. Thus, the union of strata whose Milnor number is not 4, is V(s3(4s2s3
+1)). As s2 = −p2

p1
, s3 = −p3

p1
and p1 	= 0, the stratum s3(4s2s3+1) = 0

on C
3 can be written as

κ1 = V(p3(4p2p3 + p21))\V(p1, p2p3).
Second, set h(t3)(x1, x3) = f(x1, t3x3, x3) with a parameter t3. A

μ-stratification of h(t3) is Table 5.

strata μ

C
2 \V(t3(10at3 − 3)(4at3 − 1)), V(10at3 − 3), V(4at3 − 1) 4

V(t3) ∞
Table 5. μ-stratification of h(t3)

As t3 = −p3

p2
, p1 = 0 and p2 	= 0, the stratum t3 = 0 can be written

as κ2 = V(p1, p3)\V(p1, p2, p3).
Finally, we consider the case p1 = 0, p2 = 0 and p3 	= 0, i.e., x3 = 0.

Then, the Milnor number of h(x1, x2) = f(x1, x2, 0) = x2
1x2 is infinity

(∞). Thus, κ3 = V(p1, p2)\V(p1, p2, p3).
Hence,

κ1 ∪ κ2 ∪ κ3 = V(p3(4p2p3 + p21)).

Therefore, p3(4p2p3+ p21) = 0 is the limiting tangent space of S that
does not depend on the parameter a.

Notice that, if a = 0, then MS = {4, 5, 6,∞}, and if a 	= 0 then
MS = {4, 5, 6, 7,∞} holds. Furthermore, τ7 = V(4a − s22, s3)\V(a, s2,
s3). Namely, the μ-stratification depends on the deformation parameter
“a” (see [3]).

3.2. Comparisons

Here we give the results of benchmark tests and some limiting tan-
gent spaces. Table 6 shows a comparison of the Risa/Asir implementa-
tion of Method 1 with our Risa/Asir implementation of O’Shea’s method
(Theorem 1) in computation time (CPU time). x, y, z are variables and
the hyperplane is p1x+p2y+p3z = 0. The term order is the block term
order {x, y, z} � {p1, p2, p3} with the total degree reverse lexicographic
term order on each block.

All results of limiting tangent spaces in this paper have been com-
puted on a PC with [OS: Windows 7 (64bit), CPU: Intel(R) Core i-7-
2600 CPU @ 3.40 GHz 3.40 GHz, RAM: 4 GB]. The time is given in
second. In Table 6, > 2h means it takes more than 2 hours.
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We use the following typical polynomials that define an isolated
singularity.

Q11 : x3 + y2z + xz3 + z5,
Q12 : x3 + y5 + yz2 + xy4,
S11 : x4 + y2z + xz2 + x3z,
S12 : x2y + y2z + xz3 + z5,
U12 : x3 + y3 + z4 + xyz2,
S16 : x2z + yz2 + xy4 + y6,
S17 : x2z + yz2 + y6 + y4z,
Q16 : x3 + yz2 + y7 + xy5,
Q17 : x3 + yz2 + xy5 + y8,
Q18 : x3 + yz2 + y8 + xy6,
U16 : x3 + xz2 + y5 + x2y2,
U1,3 : x3 + xz2 + xy3 + y3z2 + y4z2 (μ = 17),
Q2,3 : x3 + yz2 + x2y2 + y9 + y10 (μ = 17),
S1,3 : x2z + yz2 + x2y2 + y8 + y9 (μ = 17).

V �
1,10 : x2y + z3 + y2z2 + y3z2 + y4 + z9 + z10 (μ = 25).

Singularity O’Shea Method 1 Limiting tangent space

Q11 0.6084 0.0156 p3(4p
3
1 − 27p22p3) = 0

Q12 2.184 0.0312 p2(4p
3
1 − 27p2p

2
3) = 0

S11 1.466 0.0624 p1(4p1p3 + p22) = 0

S12 1.279 0.0312 p3(p
2
1 + 4p2p3) = 0

U12 0.4056 0.0312 p3 = 0

S16 3.869 0.1092 p2(p
2
1 + 4p2p3) = 0

S17 0.5772 0.0468 p2(p
2
1 + 4p2p3) = 0

Q17 345.8 0.0468 p2(4p
3
1 − 27p2p

2
3) = 0

Q18 5.756 0.156 p2(4p
3
1 − 27p2p

2
3) = 0

U16 1.966 0.0312 p3 = 0

U1,3 70.68 0.1248 p2 = 0

Q2,3 >2h 0.078 p2(4p
3
1 − 27p2p

2
3) = 0

S1,3 > 2h 0.0624 p2(p
2
1 + 4p2p3) = 0

V �
1,10 >2h 5.881 p2(27p2p

2
1 − 4p33) = 0

Table 6. comparisons of Method 1 with O’Shea’s method
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As is evident from Table 6, Method 1 results in better performance
in contrast to O’Shea’s method. O’Shea’s method requires Gröbner
bases computation whose computational complexity is quite big (double
exponential). In contrast, the new method use PLCSs computation that
mainly consists of linear algebra computation. This is the big advantage.
That’s why the new method results in better performance.
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