On keen Heegaard splittings

Ayako Ido, Yeonhee Jang and Tsuyoshi Kobayashi

Abstract

. In this paper, we introduce a new concept of strongly keen for Heegaard splittings, and show that, for any integers $n \geq 2$ and $g \geq 3$, there exists a strongly keen Heegaard splitting of genus g whose Hempel distance is n.

§1. Introduction

The curve complex $\mathcal{C}(S)$ of a compact surface S introduced by Harvey[4] has been used to prove many deep results in 3-dimentional topology. In particular, Hempel [5] defined the Hempel distance for a Heegaard splitting $V_{1} \cup_{S} V_{2}$ by $d(S)=d_{S}\left(\mathcal{D}\left(V_{1}\right), \mathcal{D}\left(V_{2}\right)\right)=\min \left\{d_{S}(x, y) \mid\right.$ $\left.x \in \mathcal{D}\left(V_{1}\right), y \in \mathcal{D}\left(V_{2}\right)\right\}$, where d_{S} is the simplicial distance of $\mathcal{C}(S)$ (for the definition, see Section 2), and $\mathcal{D}\left(V_{i}\right)$ is the disk complex of the handlebody $V_{i}(i=1,2)$. There have been many works on Hempel distance. For example, some authors showed that the existence of high distance Heegaard splittings (see $[1,3,5]$, for example). Moreover, it is also shown that there exist Heegaard splittings of Hempel distance exactly n for various integers n (see $[2,6,7,11,12]$, for example). Here we note that the pair (x, y) in the above definition that realizes $d(S)$ may not be unique. Hence it may be natural to settle: we say that a Heegaard splitting $V_{1} \cup_{S} V_{2}$ is keen if its Hempel distance is realized by a unique pair of elements of $\mathcal{D}\left(V_{1}\right)$ and $\mathcal{D}\left(V_{2}\right)$. Namely, $V_{1} \cup_{S} V_{2}$ is keen if it satisfies the following.

- If $d_{S}(a, b)=d_{S}\left(a^{\prime}, b^{\prime}\right)=d_{S}\left(\mathcal{D}\left(V_{1}\right), \mathcal{D}\left(V_{2}\right)\right)$ for $a, a^{\prime} \in \mathcal{D}\left(V_{1}\right)$ and $b, b^{\prime} \in \mathcal{D}\left(V_{2}\right)$, then $a=a^{\prime}$ and $b=b^{\prime}$.
In Proposition 3.1, we give necessary conditions for a Heegaard splitting to be keen. We note that these show that Heegaard splittings given in
[6, 7, 11] are not keen (Remark 3.2). We also note that Proposition 3.1 shows that every genus-2 Heegaard splitting with Hempel distance $n(\geq 1)$ is not keen.

By the way, for a keen Heegaard splitting $V_{1} \cup_{S} V_{2}$, the geodesics joining the unique pair of elements of $\mathcal{D}\left(V_{1}\right)$ and $\mathcal{D}\left(V_{2}\right)$ may not be unique (see Remark 4.15). We say that a Heegaard splitting $V_{1} \cup_{S} V_{2}$ is strongly keen if the geodesics joining the pair of elements of $D\left(V_{1}\right)$ and $D\left(V_{2}\right)$ are unique. The main result of this paper gives the existence of strongly keen Heegaard splitting with Hempel distance n for each $g \geq 3$ and $n \geq 2$ as follows.

Theorem 1.1. For any integers $n \geq 2$ and $g \geq 3$, there exists a 3-manifold with a strongly keen genus-g Heegaard splitting of Hempel distance n.

§2. Preliminaries

Let S be a compact connected orientable surface. A simple closed curve in S is essential if it does not bound a disk in S and is not parallel to a component of ∂S. An arc properly embedded in S is essential if it does not co-bound a disk in S together with an arc on ∂S.

Heegaard splittings

A connected 3-manifold C is a compression-body if there exists a closed (possibly empty) surface F and a 0 -handle B such that C is obtained from $(F \times[0,1]) \cup B$ by adding 1-handles to $F \times\{1\} \cup \partial B$. The subsurface of ∂C corresponding to $F \times\{0\}$ is denoted by $\partial_{-} C$, and $\partial_{+} C$ denotes the subsurface $\partial C \backslash \partial_{-} C$ of ∂C. A compression-body C is called a handlebody if $\partial_{-} C=\emptyset$.

Let M be a closed orientable 3-manifold. We say that $V_{1} \cup_{S} V_{2}$ is a Heegaard splitting of M if V_{1} and V_{2} are handlebodies in M such that $V_{1} \cup V_{2}=M$ and $V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}=S$. The genus of S is called the genus of the Heegaard splitting $V_{1} \cup_{S} V_{2}$. Alternatively, given a Heegaard splitting $V_{1} \cup_{S} V_{2}$ of M, we may regard that there is a homeomorphism $f: \partial V_{2} \rightarrow \partial V_{1}$ such that M is obtained from V_{1} and V_{2} by identifying ∂V_{1} and ∂V_{2} via f. When we take this viewpoint, we will denote the Heegaard splitting by the expression $V_{1} \cup_{f} V_{2}$.

Curve complexes

Let S be a compact connected orientable surface with genus g and p boundary components, where $3 g+b>4$. We call such surfaces nonsporadic. The curve complex $\mathcal{C}(S)$ is defined as follows: each vertex of $\mathcal{C}(S)$ is the isotopy class of an essential simple closed curve on S, and a collection of $k+1$ vertices forms a k-simplex of $\mathcal{C}(S)$ if they
can be realized by mutually disjoint curves in S. The arc-and-curve complex $\mathcal{A C}(S)$ is defined similarly, as follows: each vertex of $\mathcal{A C}(S)$ is the isotopy class of an essential properly embedded arc or an essential simple closed curve on S, and a collection of $k+1$ vertices forms a k-simplex of $\mathcal{A C}(S)$ if they can be realized by mutually disjoint arcs or simple closed curves in S. The symbol $\mathcal{C}^{0}(S)$ (resp. $\mathcal{A C}^{0}(S)$) denotes the 0 -skeleton of $\mathcal{C}(S)$ (resp. $\mathcal{A C}(S)$). Throughout this paper, for a vertex $x \in \mathcal{C}^{0}(S)$ we often abuse notation and use x to represent (the isotopy class of) a geometric representative of x, and we assume that any pair of geometric representatives has minimal intersections.

For two vertices a, b of $\mathcal{C}(S)$, we define the distance $d_{\mathcal{C}(S)}(a, b)$ between a and b, which will be denoted by $d_{S}(a, b)$ in brief, as the minimal number of 1-simplexes of a simplicial path in $\mathcal{C}(S)$ joining a and b. For a subset A of $\mathcal{C}^{0}(S)$, we define $\operatorname{diam}_{S}(A):=$ the diameter of A in $\mathcal{C}(S)$. Similarly, we can define $d_{\mathcal{A C}(S)}(a, b)$ for $a, b \in \mathcal{A C}^{0}(S)$ and diam $\mathcal{A C}(S)(A)$ for $A \subset \mathcal{A C}^{0}(S)$.

For a sequence $a_{0}, a_{1}, \ldots, a_{n}$ of vertices in $\mathcal{C}(S)$ with $a_{i} \cap a_{i+1}=\emptyset$ in $S(i=0,1, \ldots, n-1)$, we denote by $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ the path in $\mathcal{C}(S)$ with vertices $a_{0}, a_{1}, \ldots, a_{n}$ in this order. We say that a path $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ is a geodesic if $n=d_{S}\left(a_{0}, a_{n}\right)$.

Let C be a compression-body. A disk D properly embedded in C is essential if ∂D is an essential simple closed curve in $\partial_{+} C$. Then the disk complex $\mathcal{D}(C)$ is the subset of $\mathcal{C}^{0}\left(\partial_{+} C\right)$ consisting of the vertices with representatives bounding essential disks of C.

For a genus- $g(\geq 2)$ Heegaard splitting $V_{1} \cup_{S} V_{2}$, the Hempel distance of $V_{1} \cup_{S} V_{2}$ is defined by $d_{S}\left(\mathcal{D}\left(V_{1}\right), \mathcal{D}\left(V_{2}\right)\right)=\min \left\{d_{S}(x, y) \mid x \in\right.$ $\left.\mathcal{D}\left(V_{1}\right), y \in \mathcal{D}\left(V_{2}\right)\right\}$.

Subsurface projection maps

For a set Y, let $\mathcal{P}(Y)$ denote the set consisting of the finite subsets of Y. Let S be a compact connected orientable surface, and let X be a subsurface of S. We suppose that both S and X are non-sporadic, and each component of ∂X is either contained in ∂S or essential in S. Let $\pi_{A}: \mathcal{C}^{0}(S) \rightarrow \mathcal{P}\left(\mathcal{A C}^{0}(X)\right)$ and $\pi_{0}: \mathcal{P}\left(\mathcal{C}^{0}(X)\right) \rightarrow \mathcal{P}\left(\mathcal{C}^{0}(X)\right)$ be maps defined as follows: for $\alpha \in \mathcal{C}^{0}(S)$, take a representative of α so that $|\alpha \cap X|$ is minimal, where $|\cdot|$ is the number of connected components. Then

- $\pi_{A}(\alpha)$ is the set of all isotopy classes of the components of $\alpha \cap X$,
- $\pi_{0}\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$ is the union, for all $i=1, \ldots, n$, of the set of all isotopy classes of the components of $\partial N\left(\alpha_{i} \cup \partial X\right)$ which are
essential in X, where $N\left(\alpha_{i} \cup \partial X\right)$ is a regular neighborhood of $\alpha_{i} \cup \partial X$ in X.
We call the composition $\pi_{0} \circ \pi_{A}$ the subsurface projection and denote it by π_{X}. We say that α misses X (resp. α cuts X) if $\alpha \cap X=\emptyset$ (resp. $\alpha \cap X \neq \emptyset)$. The following lemma can be proved by using [10, Lemma 2.2].

Lemma 2.1. Let $A \in \mathcal{P}\left(\mathcal{A C}^{0}(X)\right)$ and $n \in \mathbb{N}$. If $\operatorname{diam}_{\mathcal{A C}(X)}(A) \leq$ n, then $\operatorname{diam}_{X}\left(\pi_{0}(A)\right) \leq 2 n$.

The following lemma is proved by using the above lemma.
Lemma 2.2. ([6, Lemma 2.1]) Let $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right]$ be a path in $\mathcal{C}(S)$ such that every α_{i} cuts X. Then $\operatorname{diam}_{X}\left(\pi_{X}\left(\alpha_{0}\right) \cup \pi_{X}\left(\alpha_{n}\right)\right) \leq 2 n$.

Maps induced on curve complexes

Let Y, Z be non-sporadic surfaces. Suppose that there exists an embedding $\varphi: Y \rightarrow Z$ such that for each component l of ∂Y either $\varphi(l) \subset \partial Z$ or $\varphi(l)$ is essential in Z. Note that φ naturally induces maps $\mathcal{C}^{0}(Y) \rightarrow \mathcal{C}^{0}(Z)$ and $\mathcal{P}\left(\mathcal{C}^{0}(Y)\right) \rightarrow \mathcal{P}\left(\mathcal{C}^{0}(Z)\right)$. Throughout this paper, under this setting, we abuse notation and use φ to denote these maps.

Let S be a non-sporadic closed surface.
Lemma 2.3. Let X be a non-sporadic subsurface of S such that each component of ∂X is essential in S. Let $\alpha, \beta \in \mathcal{C}^{0}(S)$ such that α, β cut X. For any $k \in \mathbb{N}$, there exists a homeomorphism $h: S \rightarrow S$ such that $\left.h\right|_{S \backslash X}=\operatorname{id}_{S \backslash X}$ and that $\operatorname{diam}_{X}\left(\pi_{X}(\alpha) \cup \pi_{X}(h(\beta))\right)>k$.

Proof. Let γ be an element of $\pi_{X}(\beta)$. Take and fix a pseudoAnosov homeomorphism $f: X \rightarrow X$ such that $\left.f\right|_{\partial X}=\operatorname{id}_{\partial X}$. Then, by [9, Proposition 4.6], there is a positive integer n such that

$$
d_{X}\left(\gamma, f^{n}(\gamma)\right)>k+\operatorname{diam}_{X}\left(\pi_{X}(\alpha) \cup \pi_{X}(\beta)\right)
$$

Let $h: S \rightarrow S$ be the extension of f^{n}. Then

$$
\begin{aligned}
& k+\operatorname{diam}_{X}\left(\pi_{X}(\alpha) \cup \pi_{X}(\beta)\right) \\
& <d_{X}(\gamma, h(\gamma)) \\
& \leq \operatorname{diam}_{X}\left(\pi_{X}(\beta) \cup \pi_{X}(\alpha)\right)+\operatorname{diam}_{X}\left(\pi_{X}(\alpha) \cup h\left(\pi_{X}(\beta)\right)\right) \\
& =\operatorname{diam}_{X}\left(\pi_{X}(\beta) \cup \pi_{X}(\alpha)\right)+\operatorname{diam}_{X}\left(\pi_{X}(\alpha) \cup \pi_{X}(h(\beta))\right)
\end{aligned}
$$

and hence we have $\operatorname{diam}_{X}\left(\pi_{X}(\alpha) \cup \pi_{X}(h(\beta))\right)>k$.
Q.E.D.

The following two lemmas can be proved by using arguments in the proof of [6, Propositions 4.1, 4.4].

Lemma 2.4. Let $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right]$ and $\left[\beta_{0}, \beta_{1}, \ldots, \beta_{m}\right]$ be geodesics in $\mathcal{C}(S)$. Suppose that α_{n} and β_{0} are non-separating on S, and let $X=\operatorname{Cl}\left(S \backslash N\left(\alpha_{n}\right)\right)$. Let $h: S \rightarrow S$ be a homeomorphism such that

- $h\left(\beta_{0}\right)=\alpha_{n}$, and
- $\operatorname{diam}_{X}\left(\pi_{X}\left(\alpha_{0}\right) \cup \pi_{X}\left(h\left(\beta_{m}\right)\right)\right)>2(n+m)$.

Then $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\left(=h\left(\beta_{0}\right)\right), h\left(\beta_{1}\right), \ldots, h\left(\beta_{m}\right)\right]$ is a geodesic in $\mathcal{C}(S)$.
Moreover, every geodesic connecting α_{0} and $h\left(\beta_{m}\right)$ passes through α_{n}. In fact, for any geodesic $\left[\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n+m}\right]$ in $\mathcal{C}(S)$ such that $\gamma_{0}=\alpha_{0}$ and $\gamma_{n+m}=h\left(\beta_{m}\right)$, we have $\gamma_{n}=\alpha_{n}$.

Lemma 2.5. Suppose that the genus of S is greater than 2. Let $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right]$ and $\left[\beta_{0}, \beta_{1}, \ldots, \beta_{m}\right]$ be geodesics in $\mathcal{C}(S)$. Suppose that $\alpha_{n-1} \cup \alpha_{n}$ and $\beta_{0} \cup \beta_{1}$ are non-separating on S, and let $X=\operatorname{Cl}(S \backslash$ $\left.N\left(\alpha_{n-1} \cup \alpha_{n}\right)\right)$. Let $h: S \rightarrow S$ be a homeomorphism such that

- $h\left(\beta_{0}\right)=\alpha_{n-1}, h\left(\beta_{1}\right)=\alpha_{n}$, and
- $\operatorname{diam}_{X}\left(\pi_{X}\left(\alpha_{0}\right) \cup \pi_{X}\left(h\left(\beta_{m}\right)\right)\right)>2(n+m-1)$.

Then $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\left(=h\left(\beta_{0}\right)\right), \alpha_{n}\left(=h\left(\beta_{1}\right)\right), h\left(\beta_{2}\right), \ldots, h\left(\beta_{m}\right)\right]$ is a geodesic in $\mathcal{C}(S)$.

Moreover, every geodesic connecting α_{0} and $h\left(\beta_{m}\right)$ passes through α_{n-1} or α_{n}. In fact, for any geodesic $\left[\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n+m-1}\right]$ in $\mathcal{C}(S)$ such that $\gamma_{0}=\alpha_{0}$ and $\gamma_{n+m-1}=h\left(\beta_{m}\right)$, we have $\gamma_{n-1}=\alpha_{n-1}$ or $\gamma_{n}=\alpha_{n}$.

Remark 2.6. Note that, in Lemmas 2.4 and 2.5, since S is closed and non-sporadic (that is, the genus of S is greater than 1) in Lemma 2.4 and the genus of S is greater than 2 in Lemma 2.5, the subsurfaces denoted by X are non-sporadic.

§3. Keen Heegaard splittings

Recall that a Heegaard splitting $V_{1} \cup_{S} V_{2}$ is called keen if its Hempel distance is realized by a unique pair of elements of $\mathcal{D}\left(V_{1}\right)$ and $\mathcal{D}\left(V_{2}\right)$.

Proposition 3.1. Let $V_{1} \cup_{S} V_{2}$ be a genus- $g(\geq 2)$ Heegaard splitting with Hempel distance $n(\geq 1)$. Let $\left[l_{0}, l_{1}, \ldots, l_{n}\right]$ be a geodesic in $\mathcal{C}(S)$ such that $l_{0} \in \mathcal{D}\left(V_{1}\right)$ and $l_{n} \in \mathcal{D}\left(V_{2}\right)$. If $V_{1} \cup_{S} V_{2}$ is keen, then the following holds.
(1) l_{0} and l_{n} are non-separating on S.
(2) l_{1} and l_{n-1} are non-separating on S.
(3) $l_{0} \cup l_{1}$ and $l_{n-1} \cup l_{n}$ are separating on S.

Proof. (1) Assume on the contrary that either l_{0} or l_{n} is separating on S. Without loss of generality, we may assume that l_{0} is separating on S. Let D_{0} be a disk properly embedded in V_{1} such that $\partial D_{0}=l_{0}$.

Let $V_{1}^{(1)}$ be the component of $V_{1} \backslash D_{0}$ that contains l_{1}, and let $V_{1}^{(2)}$ be the other component. It is easy to see that there is an essential disk D_{0}^{\prime} properly embedded in $V_{1}^{(2)}$ such that $D_{0}^{\prime} \cap D_{0}=\emptyset$. Then $l_{0}^{\prime}:=\partial D_{0}^{\prime}$ is also disjoint from l_{1}, and hence, $\left[l_{0}^{\prime}, l_{1}, \ldots, l_{n}\right]$ is a geodesic in $\mathcal{C}(S)$. Hence, we have $d_{S}\left(l_{0}^{\prime}, l_{n}\right)=d_{S}\left(\mathcal{D}\left(V_{1}\right), \mathcal{D}\left(V_{2}\right)\right)$, where l_{0}^{\prime} is an element of $\mathcal{D}\left(V_{1}\right)$ different from l_{0}, a contradiction.
(2) Assume on the contrary that either l_{1} or l_{n-1}, say l_{1}, is separating on S. Let $S^{(1)}$ be the component of $S \backslash l_{1}$ that contains l_{0}. Since l_{0} is non-separating on S by (1) and l_{1} is separating on S, we can see that l_{0} is non-separating on $S^{(1)}$. Then there exists an essential simple closed curve l^{*} on $S^{(1)}$ such that l^{*} intersects l_{0} transversely in one point. Let D_{0} be a disk properly embedded in V_{1} such that $\partial D_{0}=l_{0}$, and let D_{0}^{+} and D_{0}^{-}be the components of $\mathrm{Cl}\left(\partial N\left(D_{0}\right) \backslash \partial V_{1}\right)$, where $N\left(D_{0}\right)$ is a regular neighborhood of D_{0} in V_{1}. Take the subarc of l^{*} lying outside of the product region $N\left(D_{0}\right)$ between D_{0}^{+}and D_{0}^{-}, and let $D_{0}^{\prime \prime}$ be the disk in V_{1} obtained from $D_{0}^{+} \cup D_{0}^{-}$by adding a band along the subarc of l^{*}. Then $l_{0}^{\prime \prime}:=\partial D_{0}^{\prime \prime}$ is also disjoint from l_{1}, and hence, $\left[l_{0}^{\prime \prime}, l_{1}, \ldots, l_{n}\right]$ is a geodesic in $\mathcal{C}(S)$. Hence, we have $d_{S}\left(l_{0}^{\prime \prime}, l_{n}\right)=d_{S}\left(\mathcal{D}\left(V_{1}\right), \mathcal{D}\left(V_{2}\right)\right)$, where $l_{0}^{\prime \prime}$ is an element of $\mathcal{D}\left(V_{1}\right)$ different from l_{0}, a contradiction.
(3) Assume on the contrary that either $l_{0} \cup l_{1}$ or $l_{n-1} \cup l_{n}$, say $l_{0} \cup l_{1}$, is non-separating on S. Then there exists an essential simple closed curve l^{*} on S such that l^{*} intersects l_{0} transversely in one point and $l^{*} \cap l_{1}=\emptyset$. We can lead to a contradiction by the arguments in (2). Q.E.D.

Remark 3.2. (1) By Proposition 3.1, we see that every genus-2 Heegaard splitting with Hempel distance $n(\geq 1)$ is not keen. In fact, if a genus-2 Heegaard splitting $V_{1} \cup_{S} V_{2}$ is keen, and $\left[l_{0}, l_{1}, \ldots, l_{n}\right]$ is a path that realizes the Hempel distance, then by (1) and (2) of Proposition 3.1, we see that $l_{0} \cup l_{1}$ cuts S into four punctured sphere, contradicting (3) of Proposition 3.1. Hence, if a genus- g Heegaard splitting with Hempel distance $n(\geq 1)$ is keen, then $g \geq 3$.
(2) Heegaard splittings given in $[6,7,11]$ are not keen, since their Hempel distances are realized by pairs of separating elements.

§4. Proof of Theorem 1.1 when $n \geq 4$

Let n and g be integers with $n \geq 4$ and $g \geq 3$. Let S be a closed connected orientable surface of genus g. Let l_{0} and l_{1} be non-separating simple closed curves on S such that $l_{0} \cap l_{1}=\emptyset, l_{0} \cup l_{1}$ is separating and l_{0}, l_{1} are not parallel on S. Let $F_{1}=\mathrm{Cl}\left(S \backslash N\left(l_{1}\right)\right)$. Choose and fix an integer $k \in\{2,3, \ldots, n-2\}$. Let $\left[l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{k}^{\prime}\right]$ and $\left[l_{1}^{\prime \prime}, l_{2}^{\prime \prime}, \ldots, l_{n-k}^{\prime \prime}\right]$ be geodesics in $\mathcal{C}(S)$ such that $l_{1}^{\prime}, l_{k}^{\prime}, l_{1}^{\prime \prime}$ and $l_{n-k}^{\prime \prime}$ are non-separating on S. (For the
existence of such geodesics, see [6] or the proof of Proposition 4.14 below for example.) By Lemma 2.3, there exist homeomorphisms $h_{1}: S \rightarrow S$ and $h_{2}: S \rightarrow S$ such that

- $h_{1}\left(l_{1}^{\prime}\right)=l_{1}$,
- $h_{2}\left(l_{1}^{\prime \prime}\right)=l_{1}$,
- $\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(h_{1}\left(l_{k}^{\prime}\right)\right)\right) \geq 4 n+16$, and
- $\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(h_{2}\left(l_{n-k}^{\prime \prime}\right)\right)\right) \geq 4 n+16$.

Note that $\pi_{F_{1}}\left(l_{0}\right)=\left\{l_{0}\right\}$ since $l_{0} \cap l_{1}=\emptyset$. By Lemma 2.4, $\left[l_{0}, l_{1}\right.$ $\left.\left(=h_{1}\left(l_{1}^{\prime}\right)\right), h_{1}\left(l_{2}^{\prime}\right), \ldots, h_{1}\left(l_{k}^{\prime}\right)\right]$ and $\left[l_{0}, l_{1}\left(=h_{2}\left(l_{1}^{\prime \prime}\right)\right), h_{2}\left(l_{2}^{\prime \prime}\right), \ldots, h_{2}\left(l_{n-k}^{\prime \prime}\right)\right]$ are geodesics in $\mathcal{C}(S)$. Let $F_{k}=\mathrm{Cl}\left(S \backslash N\left(h_{1}\left(l_{k}^{\prime}\right)\right)\right)$. By Lemma 2.3, there exists a homeomorphism $h_{3}: S \rightarrow S$ such that

- $h_{3}\left(h_{2}\left(l_{n-k}^{\prime \prime}\right)\right)=h_{1}\left(l_{k}^{\prime}\right)$, and
- $\operatorname{diam}_{F_{k}}\left(\pi_{F_{k}}\left(l_{0}\right) \cup \pi_{F_{k}}\left(h_{3}\left(l_{0}\right)\right)\right)>2 n$.

Let $l_{i}=h_{1}\left(l_{i}^{\prime}\right)$ for $i \in\{2, \ldots, k\}, l_{i}=h_{3}\left(h_{2}\left(l_{n-i}^{\prime \prime}\right)\right)$ for $i \in\{k+1, \ldots, n-$ $1\}$, and $l_{n}=h_{3}\left(l_{0}\right)$. By Lemma 2.4, $\left[l_{0}, l_{1}, \ldots, l_{n}\right]$ is a geodesic in $\mathcal{C}(S)$. Moreover, by the construction of the geodesic, the following are satisfied.
(G1) l_{0}, l_{1}, l_{n-1} and l_{n} are non-separating on S,
(G2) $l_{0} \cup l_{1}$ and $l_{n-1} \cup l_{n}$ are separating on S,
(G3) $\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) \geq 4 n+16$,
(G4) $\operatorname{diam}_{F_{n-1}}\left(\pi_{F_{n-1}}\left(l_{k}\right) \cup \pi_{F_{n-1}}\left(l_{n}\right)\right) \geq 4 n+16$, and
(G5) $\operatorname{diam}_{F_{k}}\left(\pi_{F_{k}}\left(l_{0}\right) \cup \pi_{F_{k}}\left(l_{n}\right)\right)>2 n$,
where $F_{n-1}=\mathrm{Cl}\left(S \backslash N\left(l_{n-1}\right)\right)$.
Let C_{1} and C_{2} be copies of the compression-body obtained by adding a 1-handle to $F \times[0,1]$, where F is a closed connected orientable surface of genus $g-1$. Let D_{1} (resp. D_{2}) be the non-separating essential disk properly embedded in C_{1} (resp. C_{2}) corresponding to the co-core of the 1-handle. We may assume that $\partial_{+} C_{1}=S$ and $\partial D_{1}=l_{0}$. Choose a homeomorphism $f: \partial_{+} C_{2} \rightarrow \partial_{+} C_{1}$ such that $f\left(\partial D_{2}\right)=l_{n}$.

Let H_{1} and H_{2} be copies of the handlebody of genus $g-1$. In the remainder of this section, we identify ∂H_{i} and $\partial_{-} C_{i}(i=1,2)$ so that we obtain a keen Heegaard splitting of genus g whose Hempel distance is n.

For each $i=1,2$, let $C_{i}^{\prime}=\mathrm{Cl}\left(C_{i} \backslash N\left(D_{i}\right)\right)$ and $X_{i}=\partial C_{i}^{\prime} \cap \partial_{+} C_{i}$. Note that C_{i}^{\prime} is homeomorphic to $\partial_{-} C_{i} \times[0,1]$. Let $\varphi_{i}: C_{i}^{\prime} \rightarrow \partial_{-} C_{i} \times$ $[0,1]$ be a homeomorphism such that $\varphi_{i}\left(\partial C_{i}^{\prime} \backslash \partial_{-} C_{i}\right)=\partial_{-} C_{i} \times\{1\}$ and $\varphi_{i}\left(\partial_{-} C_{i}\right)=\partial_{-} C_{i} \times\{0\}$, and let $\psi_{i}: \partial_{-} C_{i} \times\{1\} \rightarrow \partial_{-} C_{i} \times\{0\}$ be the natural homeomorphism. Let $P_{i}: X_{i} \rightarrow \partial_{-} C_{i}$ be the composition of the inclusion map $X_{i} \rightarrow \partial C_{i}^{\prime} \backslash \partial_{-} C_{i}$ and the map $\left(\left.\varphi_{i}\right|_{\partial_{-} C_{i}}\right)^{-1} \circ \psi_{i} \circ$ $\left(\left.\varphi_{i}\right|_{\partial C_{i}^{\prime} \backslash \partial_{-} C_{i}}\right): \partial C_{i}^{\prime} \backslash \partial_{-} C_{i} \rightarrow \partial_{-} C_{i}$.

It is clear that l_{1} represents an essential simple closed curve on X_{1}. Since l_{1} is non-separating on $S, P_{1}\left(l_{1}\right)$ is an essential simple closed curve on $\partial_{-} C_{1}$. By [5, Theorem 2.7] and its proof (see also [1, Theorem 2.4]), there exists a homeomorphism $f_{1}: \partial H_{1} \rightarrow \partial_{-} C_{1}$ such that

$$
\begin{equation*}
d_{\partial_{-} C_{1}}\left(f_{1}\left(\mathcal{D}\left(H_{1}\right)\right), P_{1}\left(l_{1}\right)\right) \geq 2 \tag{1}
\end{equation*}
$$

Let $V_{1}=C_{1} \cup_{f_{1}} H_{1}$, that is, V_{1} is the manifold obtained from C_{1} and H_{1} by identifying $\partial_{-} C_{1}$ and ∂H_{1} via f_{1}. Note that V_{1} is a handlebody.

Claim 4.1. l_{1} intersects every element of $\mathcal{D}\left(V_{1}\right) \backslash\left\{l_{0}\right\}$.
Proof. Assume on the contrary that there exists an element a of $\mathcal{D}\left(V_{1}\right) \backslash\left\{l_{0}\right\}$ such that $a \cap l_{1}=\emptyset$. Let D_{a} be a disk in V_{1} bounded by a, and recall that l_{0} bounds the disk D_{1} in C_{1}, and hence, in V_{1} (see Fig. 1). We may assume that $\left|D_{a} \cap D_{1}\right|=\left|D_{a} \cap N\left(D_{1}\right)\right|$ and is minimal. By using innermost disk arguments, we see that $D_{a} \cap D_{1}$ has no loop components. Let Δ be a disk properly embedded in $C_{1}^{\prime} \cup_{f_{1}} H_{1}$ defined as follows.

- If $D_{a} \cap D_{1}=\emptyset$, let $\Delta=D_{a}$.
- If $D_{a} \cap D_{1} \neq \emptyset$, let Δ be the closure of a component of $D_{a} \backslash$ $N\left(D_{1}\right)$ that is outermost in D_{a}.
Since $a \cap l_{1}=\emptyset$, the disk Δ is disjoint from l_{1}. Since l_{0}, l_{1} are nonseparating and $l_{0} \cup l_{1}$ is separating on S by the condition (G2), and $a \neq l_{0}$, we see that Δ is essential in $C_{1}^{\prime} \cup_{f_{1}} H_{1}$.

Fig. 1

Since C_{1}^{\prime} is homeomorphic to $\partial_{-} C_{1} \times[0,1]$, we may assume that Δ is obtained by gluing a vertical annulus in C_{1}^{\prime} and an essential disk Δ^{\prime} in H_{1} via f_{1}, after boundary compressions and isotopies toward $\partial_{-} C_{1}$ if necessary. This together with $\Delta \cap l_{1}=\emptyset$ implies that $d_{\partial_{-} C_{1}}\left(f_{1}\left(\partial \Delta^{\prime}\right), P_{1}\left(l_{1}\right)\right) \leq$ 1. Since $f_{1}\left(\partial \Delta^{\prime}\right) \in f_{1}\left(\mathcal{D}\left(H_{1}\right)\right)$, we have $d_{\partial_{-} C_{1}}\left(f_{1}\left(\mathcal{D}\left(H_{1}\right)\right), P_{1}\left(l_{1}\right)\right) \leq 1$, a contradiction to the inequality (1).
Q.E.D.

Let $\pi_{F_{1}}=\pi_{0} \circ \pi_{A}: \mathcal{C}^{0}(S) \rightarrow \mathcal{P}\left(\mathcal{A C}^{0}\left(F_{1}\right)\right) \rightarrow \mathcal{P}\left(\mathcal{C}^{0}\left(F_{1}\right)\right)$ be the subsurface projection introduced in Section 2. Recall that $\pi_{F_{1}}\left(l_{0}\right)=\left\{l_{0}\right\}$ since $l_{0} \cap l_{1}=\emptyset$.

Claim 4.2. For any element $a \in \mathcal{D}\left(V_{1}\right)$, we have $\pi_{F_{1}}(a) \neq \emptyset$, and $\operatorname{diam}_{F_{1}}\left(l_{0} \cup \pi_{F_{1}}(a)\right) \leq 4$.

Proof. Note that, by Claim 4.1, we immediately have $\pi_{F_{1}}(a) \neq \emptyset$. If $a=l_{0}$ or $a \cap l_{0}=\emptyset$, that is, $d_{S}\left(l_{0}, a\right) \leq 1$, then we have $\operatorname{diam}_{F_{1}}\left(l_{0} \cup\right.$ $\left.\pi_{F_{1}}(a)\right) \leq 2$ by Lemma 2.2. Hence, we suppose that $a \neq l_{0}$ and $a \cap l_{0} \neq \emptyset$ in the following.

Let D_{a} be a disk in V_{1} bounded by a, and recall that l_{0} bounds the disk D_{1} in V_{1}. Here, we may assume that $\left|a \cap l_{1}\right|=\left|a \cap N\left(l_{1}\right)\right|$ and is minimal. We may also assume that $\left|D_{a} \cap D_{1}\right|=\left|D_{a} \cap N\left(D_{1}\right)\right|$ and is minimal. Let Δ be the closure of a component of $D_{a} \backslash N\left(D_{1}\right)$ that is outermost in D_{a}. If $\Delta \cap l_{1}=\emptyset$, then we can lead to a contradiction by arguments in the proof of Claim 4.1. Hence, $\Delta \cap l_{1} \neq \emptyset$. Since $l_{0} \cup l_{1}$ is separating on S by the condition (G2), there exists a component γ of $\mathrm{Cl}\left(\partial \Delta \backslash\left(N\left(D_{1}\right) \cup N\left(l_{1}\right)\right)\right)$ such that $\partial \gamma \subset \partial N\left(l_{1}\right)$. It is clear that γ is an essential arc on F_{1}. Note that γ is disjoint from l_{0}, that is, $d_{\mathcal{A C}\left(F_{1}\right)}\left(l_{0}, \gamma\right)=1$, since $l_{0} \cap \Delta=\emptyset$ and γ is a subarc of $\partial \Delta$. Since $\gamma \in \pi_{A}(a)$, we have $d_{\mathcal{A C}\left(F_{1}\right)}\left(l_{0}, \pi_{A}(a)\right) \leq d_{\mathcal{A C}\left(F_{1}\right)}\left(l_{0}, \gamma\right)=1$. Hence,

$$
\begin{aligned}
\operatorname{diam}_{\mathcal{A C}\left(F_{1}\right)}\left(l_{0} \cup \pi_{A}(a)\right) & \leq d_{\mathcal{A C}\left(F_{1}\right)}\left(l_{0}, \pi_{A}(a)\right)+\operatorname{diam}_{\mathcal{A C}\left(F_{1}\right)}\left(\pi_{A}(a)\right) \\
& \leq 1+1=2
\end{aligned}
$$

By Lemma 2.1, we have $\operatorname{diam}_{F_{1}}\left(l_{0} \cup \pi_{F_{1}}(a)\right) \leq 4$.
Q.E.D.

Lemma 4.3. $d_{S}\left(\mathcal{D}\left(V_{1}\right), l_{n}\right)=n$.
Proof. Since $l_{0} \in \mathcal{D}\left(V_{1}\right)$, we have $d_{S}\left(\mathcal{D}\left(V_{1}\right), l_{n}\right) \leq n$. To prove $d_{S}\left(\mathcal{D}\left(V_{1}\right), l_{n}\right)=n$, assume on the contrary that $d_{S}\left(\mathcal{D}\left(V_{1}\right), l_{n}\right)<n$. Then there exists a geodesic $\left[m_{0}, m_{1}, \ldots, m_{p}\right]$ in $\mathcal{C}(S)$ such that $p<n$, $m_{0} \in \mathcal{D}\left(V_{1}\right)$ and $m_{p}=l_{n}$.

Claim 4.4. $m_{i}=l_{1}$ for some $i \in\{0,1, \ldots, p\}$.
Proof. Assume on the contrary that $m_{i} \neq l_{1}$ for every $i \in\{0,1, \ldots$, $p\}$. Namely, every m_{i} cuts F_{1}. By Lemma 2.2, we have

$$
\begin{equation*}
\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(m_{0}\right) \cup \pi_{F_{1}}\left(m_{p}\right)\right) \leq 2 p \tag{2}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{n}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) \leq 2(n-k) \tag{3}
\end{equation*}
$$

By the triangle inequality, we have

$$
\begin{align*}
\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) \leq & \operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(m_{0}\right)\right) \\
& +\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(m_{0}\right) \cup \pi_{F_{1}}\left(m_{p}\right)\right) \tag{4}\\
& +\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{n}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) .
\end{align*}
$$

By the inequalities (2), (3), (4) and Claim 4.2, we obtain

$$
\begin{align*}
\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) & \leq 4+2 p+2(n-k) \tag{5}\\
& <4+2 n+2 n
\end{align*}
$$

which contradicts the condition (G3). Q.E.D.

By Claim 4.4, we have $d_{S}\left(m_{i}, m_{p}\right)=d_{S}\left(l_{1}, l_{n}\right)$. Since $\left[m_{0}, m_{1}, \ldots\right.$, $\left.m_{p}\right]$ and $\left[l_{0}, l_{1}, \ldots, l_{n}\right]$ are geodesics, $d_{S}\left(m_{i}, m_{p}\right)=p-i$ and $d_{S}\left(l_{1}, l_{n}\right)=$ $n-1>p-1$. Hence, $p-i>p-1$, which implies $i=0$, that is, $m_{0}=l_{1}$. This contradicts Claim 4.1. Hence, we have $d_{S}\left(\mathcal{D}\left(V_{1}\right), l_{n}\right)=n$. Q.E.D.

Note that $f^{-1}\left(l_{n-1}\right)$ represents an essential simple closed curve on X_{2}. Since $f^{-1}\left(l_{n-1}\right)$ is non-separating on $\partial_{+} C_{2}$ by the condition (G1), $P_{2}\left(f^{-1}\left(l_{n-1}\right)\right)$ is an essential simple closed curve on $\partial_{-} C_{2}$. By [5, Theorem 2.7] and its proof (see also [1, Theorem 2.4]), there exists a homeomorphism $f_{2}: \partial H_{2} \rightarrow \partial_{-} C_{2}$ such that

$$
\begin{equation*}
d_{\partial_{-} C_{2}}\left(f_{2}\left(\mathcal{D}\left(H_{2}\right)\right), P_{2}\left(f^{-1}\left(l_{n-1}\right)\right)\right) \geq 2 \tag{6}
\end{equation*}
$$

Let $V_{2}=C_{2} \cup_{f_{2}} H_{2}$. Then $V_{1} \cup_{f} V_{2}$ is a genus- g Heegaard splitting.
Claims 4.5, 4.6 and Lemma 4.7 below can be proved by the arguments similar to those for Claims 4.1, 4.2 and Lemma 4.3, respectively.

Claim 4.5. l_{n-1} intersects every element of $f\left(\mathcal{D}\left(V_{2}\right)\right) \backslash\left\{l_{n}\right\}$.
Claim 4.6. For any element $a \in f\left(\mathcal{D}\left(V_{2}\right)\right)$, we have $\pi_{F_{n-1}}(a) \neq \emptyset$, and $\operatorname{diam}_{F_{n-1}}\left(l_{n} \cup \pi_{F_{n-1}}(a)\right) \leq 4$.

Lemma 4.7. $d_{S}\left(f\left(\mathcal{D}\left(V_{2}\right)\right), l_{0}\right)=n$.
Claim 4.8. (1) $\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(f\left(\mathcal{D}\left(V_{2}\right)\right)\right)\right) \leq 12$.
(2) $\operatorname{diam}_{F_{n-1}}\left(\pi_{F_{n-1}}\left(\mathcal{D}\left(V_{1}\right)\right)\right) \leq 12$.

Proof. By Lemma 4.3, we have $d_{S}\left(\mathcal{D}\left(V_{1}\right), l_{n-1}\right)=n-1 \geq 3$. Hence, by $\left[8\right.$, Theorem 1], $\operatorname{diam}_{F_{n-1}}\left(\pi_{F_{n-1}}\left(\mathcal{D}\left(V_{1}\right)\right)\right) \leq 12$. Similarly, we have $\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(f\left(\mathcal{D}\left(V_{2}\right)\right)\right)\right) \leq 12$ by Lemma 4.7 and [8].
Q.E.D.

Lemma 4.9. $d_{S}\left(\mathcal{D}\left(V_{1}\right), f\left(\mathcal{D}\left(V_{2}\right)\right)\right)=n$. Namely, the Hempel distance of the Heegaard splitting $V_{1} \cup_{f} V_{2}$ is n.

Proof. Since $l_{0} \in \mathcal{D}\left(V_{1}\right)$ and $l_{n} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$, we have

$$
d_{S}\left(\mathcal{D}\left(V_{1}\right), f\left(\mathcal{D}\left(V_{2}\right)\right)\right) \leq n
$$

Let $\left[m_{0}, m_{1}, \ldots, m_{p}\right]$ be a geodesic in $\mathcal{C}(S)$ such that $m_{0} \in \mathcal{D}\left(V_{1}\right), m_{p} \in$ $f\left(\mathcal{D}\left(V_{2}\right)\right)$ and $p \leq n$.

Claim 4.10. $m_{i}=l_{1}$ for some $i \in\{0,1, \ldots, p\}$.
Proof. Assume on the contrary that $m_{i} \neq l_{1}$ for every $i \in\{0,1, \ldots$, $p\}$. Namely, every m_{i} cuts F_{1}. By Lemma 2.2, we have

$$
\begin{equation*}
\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(m_{0}\right) \cup \pi_{F_{1}}\left(m_{p}\right)\right) \leq 2 p \tag{7}
\end{equation*}
$$

Recall that $k \in\{2,3, \ldots, n-2\}$. Similarly, we have

$$
\begin{equation*}
\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{n}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) \leq 2(n-k) \tag{8}
\end{equation*}
$$

By the triangle inequality, we have

$$
\begin{align*}
\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) \leq & \operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(m_{0}\right)\right) \\
& +\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(m_{0}\right) \cup \pi_{F_{1}}\left(m_{p}\right)\right) \tag{9}\\
& +\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(m_{p}\right) \cup \pi_{F_{1}}\left(l_{n}\right)\right) \\
& +\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{n}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) .
\end{align*}
$$

By the inequalities (7), (8), (9) together with Claims 4.2 and 4.8, we obtain

$$
\begin{align*}
\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(l_{0}\right) \cup \pi_{F_{1}}\left(l_{k}\right)\right) & \leq 4+2 p+12+2(n-k) \tag{10}\\
& <4+2 n+12+2 n,
\end{align*}
$$

which contradicts the condition (G3).
Q.E.D.

The following claim can be proved similarly.
Claim 4.11. $m_{j}=l_{n-1}$ for some $j \in\{0,1, \ldots, p\}$.
Note that $l_{1} \notin \mathcal{D}\left(V_{1}\right)$ by Claim 4.1. Note also that $l_{1} \notin f\left(\mathcal{D}\left(V_{2}\right)\right)$ since, otherwise, we have $d_{S}\left(f\left(\mathcal{D}\left(V_{2}\right)\right), l_{0}\right) \leq d_{S}\left(l_{1}, l_{0}\right)=1$, which contradicts Lemma 4.7. Since $m_{0} \in \mathcal{D}\left(V_{1}\right)$ and $m_{p} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$ by the assumption, we have $m_{i}\left(=l_{1}\right) \neq m_{0}$ and $m_{i}\left(=l_{1}\right) \neq m_{p}$, which implies $1 \leq i \leq p-1$. Similarly, we have $1 \leq j \leq p-1$. Hence, we have

$$
\begin{equation*}
|i-j| \leq(p-1)-1=p-2 \tag{11}
\end{equation*}
$$

On the other hand, by Claims 4.10 and 4.11 , we have

$$
|i-j|=d_{S}\left(m_{i}, m_{j}\right)=d_{S}\left(l_{1}, l_{n-1}\right)=n-2
$$

which together with the inequality (11) implies $p=n$. Hence,

$$
d_{S}\left(\mathcal{D}\left(V_{1}\right), f\left(\mathcal{D}\left(V_{2}\right)\right)\right)=n
$$

> Q.E.D.

Lemma 4.12. The Heegaard splitting $V_{1} \cup_{f} V_{2}$ is keen.
Proof. Let $\left[m_{0}, m_{1}, \ldots, m_{n}\right]$ be a geodesic in $\mathcal{C}(S)$ such that $m_{0} \in \mathcal{D}\left(V_{1}\right)$ and $m_{n} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$. By the proof of Lemma 4.9, we have $m_{1}=l_{1}$ and $m_{n-1}=l_{n-1}$. By Claims 4.1 and 4.5, we have $m_{0}=l_{0}$ and $m_{n}=l_{n}$.
Q.E.D.

In Claim 4.13 and Proposition 4.14, we show that the existence of strongly keen Heegaard splitting.

Claim 4.13. In the above construction, if the following conditions are satisfied, then the Heegaard splitting constructed from the geodesic $\left[l_{0}, l_{1}, \ldots, l_{n}\right]$ is strongly keen.

- The geodesic $\left[l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{k}^{\prime}\right]\left(\right.$ resp. $\left.\left[l_{1}^{\prime \prime}, l_{2}^{\prime \prime}, \ldots, l_{n-k}^{\prime \prime}\right]\right)$ is the unique geodesic from l_{1}^{\prime} to l_{k}^{\prime} (resp. $l_{1}^{\prime \prime}$ to $l_{n-k}^{\prime \prime}$).
Proof. By the proof of Lemma 4.12, $m_{i}=l_{i}$ holds for $i=0,1$, $n-1$ and n. Moreover, by the condition (G5) and Lemma 2.4, we have $m_{k}=l_{k}$. Hence, if the geodesics $\left[l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{k}^{\prime}\right]$ (resp. $\left.\left[l_{1}^{\prime \prime}, l_{2}^{\prime \prime}, \ldots, l_{n-k}^{\prime \prime}\right]\right)$ is the unique geodesic connecting l_{1}^{\prime} and l_{k}^{\prime} (resp. $l_{1}^{\prime \prime}$ and $l_{n-k}^{\prime \prime}$), then we obtain the desired result.
Q.E.D.

Hence the next proposition completes the proof of Theorem 1.1.
Proposition 4.14. Let S be a closed, non-sporadic surface. For each p, there exists a geodesic $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right]$ in $\mathcal{C}(S)$ such that each α_{i} $(i=0,1, \ldots, p)$ is non-separating on S and $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right]$ is the unique geodesic connecting α_{0} and α_{p}.

Proof. Let α_{0} and α_{1} be non-separating simple closed curve on S such that $\alpha_{0} \cap \alpha_{1}=\emptyset$, and let $X_{1}=\operatorname{Cl}\left(S \backslash N\left(\alpha_{1}\right)\right)$. Let α_{2}^{\prime} be a nonseparating simple closed curve on S disjoint from α_{1}. By Lemma 2.3, there exists a homeomorphism $g_{1}: S \rightarrow S$ such that $g_{1}\left(\alpha_{1}\right)=\alpha_{1}$ and $\operatorname{diam}_{X_{1}}\left(\pi_{X_{1}}\left(\alpha_{0}\right) \cup \pi_{X_{1}}\left(g_{1}\left(\alpha_{2}^{\prime}\right)\right)\right)>4$. Let $\alpha_{2}=g_{1}\left(\alpha_{2}^{\prime}\right)$. By Lemma 2.4, $\left[\alpha_{0}, \alpha_{1}, \alpha_{2}\right]$ is a geodesic in $\mathcal{C}(S)$. Moreover, by Lemma 2.4, $\left[\alpha_{0}, \alpha_{1}, \alpha_{2}\right]$ is the unique geodesic connecting α_{0} and α_{2}.

For any positive integer p, we repeat this process to construct a geodesic $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right]$ inductively as follows. Suppose we have constructed a geodesic $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}\right]$ for $i<p$ such that

- α_{i} is non-separating on S, and
- $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}\right]$ is the unique geodesic connecting α_{0} and α_{i}.

Let $X_{i}=\operatorname{Cl}\left(S \backslash N\left(\alpha_{i}\right)\right)$. Let α_{i+1}^{\prime} be a non-separating simple closed curve on S disjoint from α_{i}. By Lemma 2.3, there exists a homeomorphism $g_{i}: S \rightarrow S$ such that $g_{i}\left(\alpha_{i}\right)=\alpha_{i}$ and $\operatorname{diam}_{X_{i}}\left(\pi_{X_{i}}\left(\alpha_{0}\right) \cup \pi_{X_{i}}\left(g_{i}\left(\alpha_{i+1}^{\prime}\right)\right)\right)>$ $2(i+1)$. Let $\alpha_{i+1}=g_{i}\left(\alpha_{i+1}^{\prime}\right)$. By Lemma 2.4, $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i+1}\right]$ is a geodesic in $\mathcal{C}(S)$. Moreover, every geodesic connecting α_{0} and α_{i+1} passes through α_{i}. Since $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}\right]$ is the unique geodesic connecting α_{0} and α_{i}, we have that $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i+1}\right]$ is the unique geodesic connecting α_{0} and α_{i+1}. Hence, we obtain a geodesic $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right]$ such that every $\alpha_{i}(i=0,1, \ldots, p)$ is non-separating on S and $\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right]$ is the unique geodesic connecting α_{0} and α_{p}.
Q.E.D.

Remark 4.15. There exists a keen Heegaard splitting which is not strongly keen. For example, in the construction at the beginning of this section, let $k=3$ and take l_{1}^{\prime} and l_{3}^{\prime} such that l_{1}^{\prime} and l_{3}^{\prime} intersect transversely in one point. Let l_{2}^{\prime} be an essential simple closed curve disjoint from $l_{1}^{\prime} \cup l_{3}^{\prime}$. Then $\left[l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}\right]$ is a geodesic in $\mathcal{C}(S)$. We can apply the arguments up to Lemma 4.12 to obtain a geodesic $\left[l_{0}, l_{1}, \ldots, l_{n}\right]$ and obtain a keen Heegaard splitting $V_{1} \cup_{f} V_{2}$. Since l_{1} and l_{3} intersect transversely in one point, there exists an essential simple closed curve l_{2}^{*} that is disjoint from $l_{1} \cup l_{3}$ and different from l_{2}. Then $\left[l_{0}, l_{1}, l_{2}^{*}, l_{3}, \ldots, l_{n}\right]$ is a geodesic realizing the Hempel distance of $V_{1} \cup_{f} V_{2}$ which is different from $\left[l_{0}, l_{1}, l_{2}, l_{3}, \ldots, l_{n}\right]$. Hence, $V_{1} \cup_{f} V_{2}$ is not strongly keen.

§5. Proof of Theorem 1.1 when $n=2$

Let $n=2$ and g be an integer with $g \geq 3$. Let S be a closed connected orientable surface of genus g. Let l_{0} and l_{1} be non-separating simple closed curves on S such that $l_{0} \cup l_{1}$ is separating on S and l_{0}, l_{1} are not parallel on S. By Lemma 2.3, there exists a homeomorphism $h: S \rightarrow S$ such that $h\left(l_{1}\right)=l_{1}$ and

$$
d_{F_{1}}\left(l_{0}, h\left(l_{0}\right)\right)>12
$$

where $F_{1}=\mathrm{Cl}\left(S \backslash N\left(l_{1}\right)\right)$. Let $l_{2}=h\left(l_{0}\right)$. By Lemma 2.4, $\left[l_{0}, l_{1}, l_{2}\right]$ is a geodesic in $\mathcal{C}(S)$.

Let C_{1} and C_{2} be copies of the compression-body obtained by adding a 1-handle to $F \times[0,1]$, where F is a closed connected orientable surface of genus $g-1$. Let D_{1} and D_{2} be the non-separating essential disk properly embedded in C_{1} and C_{2} corresponding to the co-cores of the 1-handles, respectively. We may assume that $\partial_{+} C_{1}=S$ and $\partial D_{1}=l_{0}$. Choose a homeomorphism $f: \partial_{+} C_{2} \rightarrow \partial_{+} C_{1}$ such that $f\left(\partial D_{2}\right)=l_{2}$.

Let $H_{i}, C_{i}^{\prime}, X_{i}, P_{i}(i=1,2)$ be as in Section 4. Note that l_{1} is non-separating on S, and hence, $P_{1}\left(l_{1}\right)$ and $P_{2}\left(f^{-1}\left(l_{1}\right)\right)$ are essential simple closed curves on $\partial_{-} C_{1}$ and $\partial_{-} C_{2}$, respectively. By [5, Theorem 2.7] and its proof (see also [1, Theorem 2.4]), there exist homeomorphisms $f_{1}: \partial H_{1} \rightarrow \partial_{-} C_{1}$ and $f_{2}: \partial H_{2} \rightarrow \partial_{-} C_{2}$ such that $d_{\partial_{-} C_{1}}\left(f_{1}\left(\mathcal{D}\left(H_{1}\right)\right), P_{1}\left(l_{1}\right)\right) \geq 2$ and $d_{\partial_{-} C_{2}}\left(f_{2}\left(\mathcal{D}\left(H_{2}\right)\right), P_{2}\left(f^{-1}\left(l_{1}\right)\right)\right) \geq 2$, respectively. Let $V_{i}=C_{i} \cup_{f_{i}} H_{i}(i=1,2)$. Then, $V_{1} \cup_{f} V_{2}$ is a genus- g Heegaard splitting. By the arguments similar to those for Claims 4.1, 4.2, 4.5 and 4.6, we obtain the following.

Claim 5.1. (1) l_{1} intersects every element of $\mathcal{D}\left(V_{1}\right) \backslash\left\{l_{0}\right\}$ and every element of $f\left(\mathcal{D}\left(V_{2}\right)\right) \backslash\left\{l_{2}\right\}$.
(2) For any element $a \in \mathcal{D}\left(V_{1}\right)$, we have $\pi_{F_{1}}(a) \neq \emptyset$, and $\operatorname{diam}_{F_{1}}\left(l_{0} \cup\right.$ $\left.\pi_{F_{1}}(a)\right) \leq 4$.
(3) For any element $a \in f\left(\mathcal{D}\left(V_{2}\right)\right)$, we have $\pi_{F_{1}}(a) \neq \emptyset$, and $\operatorname{diam}_{F_{1}}$ $\left(l_{2} \cup \pi_{F_{1}}(a)\right) \leq 4$.

Lemma 5.2. $V_{1} \cup_{f} V_{2}$ is a strongly keen Heegaard splitting whose Hempel distance is 2 .

Proof. Since $l_{0} \in \mathcal{D}\left(V_{1}\right)$ and $l_{2} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$, we have

$$
d_{S}\left(\mathcal{D}\left(V_{1}\right), f\left(\mathcal{D}\left(V_{2}\right)\right)\right) \leq 2
$$

Let $\left[m_{0}, m_{1}, m_{2}\right]$ be a geodesic in $\mathcal{C}(S)$ such that $m_{0} \in \mathcal{D}\left(V_{1}\right)$ and $m_{2} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$. (Possibly, $m_{1} \in \mathcal{D}\left(V_{1}\right)$ or $m_{1} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$.) By Claim 5.1 (1), both m_{0} and m_{2} cut F_{1}. If m_{1} also cuts F_{1}, then we have $\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(m_{0}\right) \cup \pi_{F_{1}}\left(m_{2}\right)\right) \leq 4$ by Lemma 2.2 , which together with Claim 5.1 (2) and (3) implies that

$$
\begin{aligned}
d_{F_{1}}\left(l_{0}, l_{2}\right) \leq & \operatorname{diam}_{F_{1}}\left(l_{0} \cup \pi_{F_{1}}\left(m_{0}\right)\right)+\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(m_{0}\right) \cup \pi_{F_{1}}\left(m_{2}\right)\right) \\
& +\operatorname{diam}_{F_{1}}\left(\pi_{F_{1}}\left(m_{2}\right) \cup l_{2}\right) \\
\leq & 4+4+4=12
\end{aligned}
$$

This contradicts the fact that $d_{F_{1}}\left(l_{0}, l_{2}\right)>12$. Hence, m_{1} misses F_{1}, that is, $m_{1}=l_{1}$. By Claim 5.1 (1), we have $m_{0}=l_{0}$ and $m_{2}=l_{2}$, and we obtain the desired result.
Q.E.D.

§6. Proof of Theorem 1.1 when $n=3$

Let $n=3$ and g be an integer with $g \geq 3$. Let S be a closed connected orientable surface of genus g. Let l_{0} and l_{1} be non-separating simple closed curves on S such that $l_{0} \cup l_{1}$ is separating on S and l_{0}, l_{1} are not parallel on S. Let l_{2}^{\prime} be a simple closed curve on S such that
$l_{2}^{\prime} \cap l_{1}=\emptyset$ and $l_{1} \cup l_{2}^{\prime}$ is non-separating on S. By Lemma 2.3, there exists a homeomorphism $h_{1}: S \rightarrow S$ such that $h_{1}\left(l_{1}\right)=l_{1}$ and

$$
d_{F_{1}}\left(l_{0}, h_{1}\left(l_{2}^{\prime}\right)\right)>8
$$

where $F_{1}=\mathrm{Cl}\left(S \backslash N\left(l_{1}\right)\right)$. Let $l_{2}=h_{1}\left(l_{2}^{\prime}\right)$. By Lemma 2.4, $\left[l_{0}, l_{1}, l_{2}\right]$ is a geodesic in $\mathcal{C}(S)$. Note that there exists a homeomorphism $h_{2}: S \rightarrow S$ such that $h_{2}\left(l_{1}\right)=l_{2}$ and $h_{2}\left(l_{2}\right)=l_{1}$, since l_{1} and l_{2} are non-separating on S. Let $l_{3}^{\prime}=h_{2}\left(l_{0}\right)$. Note that $\left[l_{1}, l_{2}, l_{3}^{\prime}\right]$ is a geodesic in $\mathcal{C}(S)$.

Let $S^{\prime}=\mathrm{Cl}\left(S \backslash N\left(l_{1} \cup l_{2}\right)\right)$. Let $\pi_{S^{\prime}}=\pi_{0} \circ \pi_{A}: \mathcal{C}^{0}(S) \rightarrow \mathcal{P}\left(\mathcal{A C}^{0}\left(S^{\prime}\right)\right) \rightarrow$ $\mathcal{P}\left(\mathcal{C}^{0}\left(S^{\prime}\right)\right)$ be the subsurface projection introduced in Section 2.

Claim 6.1. There exists a homeomorphism $h: S \rightarrow S$ such that $h\left(l_{1}\right)=l_{1}, h\left(l_{2}\right)=l_{2}$ and $\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}\left(h\left(l_{3}^{\prime}\right)\right)\right)>14$.

Proof. Let γ be the closure of a component of $l_{3}^{\prime} \backslash l_{1}$. Since $l_{3}^{\prime} \cap l_{2}=$ \emptyset, we have $\gamma \in \pi_{A}\left(l_{3}^{\prime}\right)$, and hence, $\pi_{0}(\gamma) \in \pi_{0}\left(\pi_{A}\left(l_{3}^{\prime}\right)\right)=\pi_{S^{\prime}}\left(l_{3}^{\prime}\right)$. Note that $\pi_{0}(\gamma)$ consists of a single simple closed curve or two disjoint simple closed curves on S^{\prime}. By Lemma 2.3, there exists a homeomorphism $h: S \rightarrow S$ such that $h\left(l_{1}\right)=l_{1}, h\left(l_{2}\right)=l_{2}$ and $d_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right), h\left(\pi_{0}(\gamma)\right)\right)>$ 14. This inequality, together with the fact that $h\left(\pi_{0}(\gamma)\right) \in h\left(\pi_{S^{\prime}}\left(l_{3}^{\prime}\right)\right)$, implies

$$
\begin{aligned}
\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}\left(h\left(l_{3}^{\prime}\right)\right)\right) & =\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup h\left(\pi_{S^{\prime}}\left(l_{3}^{\prime}\right)\right)\right) \\
& \geq d_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right), h\left(\pi_{0}(\gamma)\right)\right) \\
& >14 .
\end{aligned}
$$

Q.E.D.

Let $l_{3}=h\left(l_{3}^{\prime}\right)$. By Lemma 2.5, $\left[l_{0}, l_{1}, l_{2}, l_{3}\right]$ is a geodesic in $\mathcal{C}(S)$. Note that the following hold.

- $d_{F_{1}}\left(l_{0}, l_{2}\right)>8$.
- $d_{F_{2}}\left(l_{1}, l_{3}\right)>8$, where $F_{2}=\mathrm{Cl}\left(S \backslash N\left(l_{2}\right)\right)$, since $d_{F_{1}}\left(l_{0}, l_{2}\right)>8$ and the homeomorphism $h \circ h_{2}$ sends l_{0}, l_{1}, l_{2} to l_{3}, l_{2}, l_{1}, respectively.
- $\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}\left(l_{3}\right)\right)>14$.

Let C_{1} and C_{2} be copies of the compression-body obtained by adding a 1-handle to $F \times[0,1]$, where F is a closed connected orientable surface of genus $g-1$. Let D_{1} and D_{2} be the non-separating essential disk properly embedded in C_{1} and C_{2} corresponding to the co-cores of the 1-handles, respectively. We may assume that $\partial_{+} C_{1}=S$ and $\partial D_{1}=l_{0}$. Choose a homeomorphism $f: \partial_{+} C_{2} \rightarrow \partial_{+} C_{1}$ such that $f\left(\partial D_{2}\right)=l_{3}$.

Let $H_{i}, C_{i}^{\prime}, X_{i}, P_{i}(i=1,2)$ be as in Section 4. Note that l_{1} and l_{2} are non-separating on S and not isotopic to l_{0} or l_{3}. Hence, $P_{1}\left(l_{1}\right)$ and
$P_{2}\left(f^{-1}\left(l_{2}\right)\right)$ are essential simple closed curves on $\partial_{-} C_{1}$ and $\partial_{-} C_{2}$, respectively. By [5, Theorem 2.7] and its proof (see also [1, Theorem 2.4]), there exist homeomorphisms $f_{1}: \partial H_{1} \rightarrow \partial_{-} C_{1}$ and $f_{2}: \partial H_{2} \rightarrow \partial_{-} C_{2}$ such that $d_{\partial_{-} C_{1}}\left(f_{1}\left(\mathcal{D}\left(H_{1}\right)\right), P_{1}\left(l_{1}\right)\right) \geq 2$ and $d_{\partial_{-} C_{2}}\left(f_{2}\left(\mathcal{D}\left(H_{2}\right)\right), P_{2}\left(f^{-1}\left(l_{2}\right)\right)\right) \geq$ 2, respectively. Let $V_{i}=C_{i} \cup_{f_{i}} H_{i}(i=1,2)$. Then, $V_{1} \cup_{f} V_{2}$ is a genus- g Heegaard splitting. By the arguments similar to those for Claims 4.1, $4.2,4.5$ and 4.6 , we obtain the following.

Claim 6.2. (1) l_{1} intersects every element of $\mathcal{D}\left(V_{1}\right) \backslash\left\{l_{0}\right\}$, and l_{2} intersects every element of $f\left(\mathcal{D}\left(V_{2}\right)\right) \backslash\left\{l_{3}\right\}$.
(2) For any element $a \in \mathcal{D}\left(V_{1}\right)$, we have $\pi_{F_{1}}(a) \neq \emptyset$, and $\operatorname{diam}_{F_{1}}\left(l_{0} \cup\right.$ $\left.\pi_{F_{1}}(a)\right) \leq 4$.
(3) For any element $a \in f\left(\mathcal{D}\left(V_{2}\right)\right)$, we have $\pi_{F_{2}}(a) \neq \emptyset$, and $\operatorname{diam}_{F_{2}}$ $\left(l_{3} \cup \pi_{F_{2}}(a)\right) \leq 4$.

Lemma 6.3. (1) For any element $a \in \mathcal{D}\left(V_{1}\right)$, we have $\pi_{S^{\prime}}\left(l_{0}\right) \neq \emptyset$, $\pi_{S^{\prime}}(a) \neq \emptyset$, and $\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}(a)\right) \leq 4$.
(2) For any element $a \in f\left(\mathcal{D}\left(V_{2}\right)\right)$, we have $\pi_{S^{\prime}}\left(l_{3}\right) \neq \emptyset, \pi_{S^{\prime}}(a) \neq \emptyset$, and $\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{3}\right) \cup \pi_{S^{\prime}}(a)\right) \leq 4$.

Proof. We give a proof for (1) only, since (2) can be proved similarly. Suppose that $\pi_{S^{\prime}}\left(l_{0}\right)=\emptyset$ (resp. $\left.\pi_{S^{\prime}}(a)=\emptyset\right)$. This means that for each component γ of $l_{0} \cap S^{\prime}$ (resp. $a \cap S^{\prime}$), each component of $S^{\prime} \backslash \gamma$ is an annulus. This shows that S^{\prime} is a sphere with three boundary components, a contradiction. If $a=l_{0}$ or $a \cap l_{0}=\emptyset$, then we have $\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}(a)\right) \leq 2$ by Lemma 2.2 . Hence, we suppose that $a \neq l_{0}$ and $a \cap l_{0} \neq \emptyset$ in the following.

Let D_{a} be a disk in V_{1} bounded by a, and recall l_{0} bounds the disk D_{1} in V_{1}. We may assume that $\left|D_{a} \cap D_{1}\right|$ is minimal. Let Δ be the closure of a component of $D_{a} \backslash D_{1}$ that is outermost in D_{a}. Let $D_{1}^{(1)}$ and $D_{1}^{(2)}$ be the components of $D_{1} \backslash \Delta$. By the minimality of $\left|D_{a} \cap D_{1}\right|$, the disks $D_{1}^{(1)} \cup \Delta$ and $D_{1}^{(2)} \cup \Delta$ are essential in V_{1}.

Claim 6.4. $D_{1}^{(1)} \cup \Delta$ or $D_{1}^{(2)} \cup \Delta$, say $D_{1}^{(1)} \cup \Delta$, is not isotopic to D_{1} in V_{1}.

Proof. Let m_{1} and m_{2} be the two simple closed curves obtained from $l_{0}\left(=\partial D_{1}\right)$ by a band move along $\Delta \cap \partial V_{1}$. Suppose both $D_{1}^{(1)} \cup \Delta$ and $D_{1}^{(2)} \cup \Delta$ are isotopic to D_{1} in V_{1}. This implies that m_{1} and m_{2} are parallel in ∂V_{1}, and hence, they co-bound an annulus, say A, in S. Further, by slight isotopy, we may suppose that $l_{0} \cap\left(m_{1} \cup m_{2}\right)=\emptyset$. Note that l_{0} is retrieved from $m_{1} \cup m_{2}$ by a band move along an arc α such that $\left|\alpha \cap\left(\Delta \cap \partial V_{1}\right)\right|=1$. Since l_{0} is essential, (int $\left.\alpha\right) \cap A=\emptyset$. This
shows that l_{0} cuts off a punctured torus from ∂V_{1}, which contradicts the assumption that l_{0} is non-separating on ∂V_{1}.
Q.E.D.

Hence, by Claim $6.2(1), l_{1}$ intersects $D_{1}^{(1)} \cup \Delta$. Since $l_{1} \cap D_{1}=\emptyset$, l_{1} intersects $\partial \Delta \backslash D_{1}$. Since $l_{0} \cup l_{1}$ is separating on S, there is a subarc γ of $\partial \Delta \backslash D_{1}$ such that $\partial \gamma \subset l_{1}$. Let γ^{\prime} be the closure of a component of $\gamma \backslash N\left(l_{1} \cup l_{2}\right)$. Then γ^{\prime} is an element of $\pi_{A}(a)\left(\subset \mathcal{A C}^{0}\left(S^{\prime}\right)\right)$. Hence, we have

$$
\operatorname{diam}_{\mathcal{A C}\left(S^{\prime}\right)}\left(\gamma^{\prime} \cup \pi_{A}(a)\right) \leq 1
$$

On the other hand, since γ^{\prime} is disjoint from l_{0}, we have

$$
\operatorname{diam}_{\mathcal{A C}\left(S^{\prime}\right)}\left(\pi_{A}\left(l_{0}\right) \cup \gamma^{\prime}\right) \leq 1
$$

By the triangle inequality, we have

$$
\begin{aligned}
\operatorname{diam}_{\mathcal{A C}\left(S^{\prime}\right)}\left(\pi_{A}\left(l_{0}\right) \cup \pi_{A}(a)\right) \leq & \operatorname{diam}_{\mathcal{A C}\left(S^{\prime}\right)}\left(\pi_{A}\left(l_{0}\right) \cup \gamma^{\prime}\right) \\
& +\operatorname{diam}_{\mathcal{A C}\left(S^{\prime}\right)}\left(\gamma^{\prime} \cup \pi_{A}(a)\right) \\
\leq & 1+1=2
\end{aligned}
$$

By Lemma 2.1, we have $\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}(a)\right) \leq 4$. This completes the proof of Lemma 6.3 (1).
Q.E.D.

Lemma 6.5. $V_{1} \cup_{f} V_{2}$ is a strongly keen Heegaard splitting whose Hempel distance is 3 .

Proof. Since $l_{0} \in \mathcal{D}\left(V_{1}\right)$ and $l_{3} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$, we have

$$
d_{S}\left(\mathcal{D}\left(V_{1}\right), f\left(\mathcal{D}\left(V_{2}\right)\right)\right) \leq 3
$$

Let $\left[m_{0}, \ldots, m_{p}\right]$ be a geodesic in $\mathcal{C}(S)$ such that $m_{0} \in \mathcal{D}\left(V_{1}\right)$, $m_{p} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$ and $p \leq 3$.

Claim 6.6. $m_{i}=l_{1}$ or $m_{i}=l_{2}$ for some $i \in\{0, \ldots, p\}$.
Proof. Assume on the contrary that $m_{i} \neq l_{1}$ and $m_{i} \neq l_{2}$ for every $i \in\{0, \ldots, p\}$. Namely, every m_{i} cuts S^{\prime}. By Lemma 2.2, we have

$$
\begin{equation*}
\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(m_{0}\right) \cup \pi_{S^{\prime}}\left(m_{p}\right)\right) \leq 2 p \leq 6 \tag{12}
\end{equation*}
$$

By the triangle inequality, we have

$$
\begin{align*}
\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}\left(l_{3}\right)\right) \leq & \operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}\left(m_{0}\right)\right) \\
& +\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(m_{0}\right) \cup \pi_{S^{\prime}}\left(m_{p}\right)\right) \tag{13}\\
& +\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(m_{p}\right) \cup \pi_{S^{\prime}}\left(l_{3}\right)\right)
\end{align*}
$$

By the inequalities (12), (13) together with Lemma 6.3, we obtain

$$
\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}\left(l_{3}\right)\right) \leq 4+6+4=14
$$

which contradicts the inequality $\operatorname{diam}_{S^{\prime}}\left(\pi_{S^{\prime}}\left(l_{0}\right) \cup \pi_{S^{\prime}}\left(l_{3}\right)\right)>14$ (see Claim 6.1).
Q.E.D.

Assume that $m_{i}=l_{1}$ for some $i \in\{0, \ldots, p\}$. (The case where $m_{i}=l_{2}$ for some $i \in\{0, \ldots, p\}$ can be treated similarly.) By Claim 6.2 (1), we have $l_{1} \notin \mathcal{D}\left(V_{1}\right)$ and $l_{1} \notin f\left(\mathcal{D}\left(V_{2}\right)\right)$, which imply $i \neq 0$ and $i \neq p$, respectively. Hence, we have $1 \leq i \leq p-1$ and $2 \leq p(\leq 3)$. If $p=2$, then $m_{1}=l_{1}$ and $m_{2} \in f\left(\mathcal{D}\left(V_{2}\right)\right)$, and hence

$$
\begin{align*}
d_{F_{2}}\left(l_{1}, l_{3}\right) & =d_{F_{2}}\left(m_{1}, l_{3}\right) \\
& \leq \operatorname{diam}_{F_{2}}\left(m_{1} \cup \pi_{F_{2}}\left(m_{2}\right)\right)+\operatorname{diam}_{F_{2}}\left(\pi_{F_{2}}\left(m_{2}\right) \cup l_{3}\right) \tag{14}\\
& \leq 2+4=6,
\end{align*}
$$

which contradicts the inequality $d_{F_{2}}\left(l_{1}, l_{3}\right)>8$. Hence, $p=3$, and this implies that the Hempel distance of $V_{1} \cup_{f} V_{2}$ is 3 . Moreover, we have $i=1$ (that is, $\left.m_{1}=l_{1}\right)$ since, if $i=2$, then $\left[l_{0}, l_{1}\left(=m_{2}\right), m_{3}\right]$ is a path of length 2 from $\mathcal{D}\left(V_{1}\right)$ to $f\left(\mathcal{D}\left(V_{2}\right)\right.$), a contradiction.

To prove $m_{2}=l_{2}$, assume on the contrary that $m_{2} \neq l_{2}$. Then m_{2}, as well as $m_{1}\left(=l_{1}\right)$ and m_{3}, cuts F_{2}. By Lemma 2.2 and Claim 6.2 (3),

$$
\begin{align*}
d_{F_{2}}\left(l_{1}, l_{3}\right) & =d_{F_{2}}\left(m_{1}, l_{3}\right) \\
& \leq \operatorname{diam}_{F_{2}}\left(m_{1} \cup \pi_{F_{2}}\left(m_{3}\right)\right)+\operatorname{diam}_{F_{2}}\left(\pi_{F_{2}}\left(m_{3}\right) \cup l_{3}\right) \tag{15}\\
& \leq 4+4=8
\end{align*}
$$

which contradicts the inequality $d_{F_{2}}\left(l_{1}, l_{3}\right)>8$. Hence, $m_{2}=l_{2}$.
By Claim 6.2 (1), we have $m_{0}=l_{0}$ and $m_{3}=l_{3}$. Hence, $\left[l_{0}, l_{1}, l_{2}, l_{3}\right]$ is the unique geodesic realizing the Hempel distance.
Q.E.D.

§ Acknowledgement

We would like to thank Dr Jesse Johnson for many helpful discussions, particularly for teaching us an idea of constructing a unique geodesic path in the curve complex. We would also like to thank the referee for careful reading of the paper and helpful suggestions.

References

[1] A. Abrams and S. Schleimer, Distances of Heegaard splittings, Geom. Topology, 9 (2005), 95-119.
[2] J. Berge and M. Scharlemann, Multiple genus 2 Heegaard splittings: a missed case, Algebraic and Geometric Topology, 11 (2011), 1781-1792.
[3] T. Evans, High distance Heegaard splittings of 3-manifolds, Topology Appl., 153 (2006), 2631-2647.
[4] W. J. Harvey, Boundary structure of the modular group. In Riemann surfaces and related topics, Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pages 245-251, Princeton, N.J., 1981. Princeton Univ. Press.
[5] J. Hempel, 3-manifolds as viewed from the curve complex, Topology, 40 (2001), 631-657.
[6] A. Ido, Y. Jang and T. Kobayashi, Heegaard splittings of distance exactly n, Algebr. Geom. Topol., 14 (2014), 1395-1411.
[7] J. Johnson, Non-uniqueness of high distance Heegaard splittings, arXiv:1308.4599.
[8] T. Li, Images of the disk complex, Geom. Dedicata., 158 (2012), 121-136.
[9] H. Masur and Y. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103-149.
[10] H. Masur and Y. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal., 10 (2000), 902-974.
[11] Ruifeng Qiu, Yanqing Zou and Qilong Guo, The Heegaard distances cover all non-negative integers, Pacific J. Math., 275 (2015), 231-255.
[12] M. Yoshizawa, High distance Heegaard splittings via Dehn twists, Algebr. Geom. Topol., 14 (2014), 979-1004.
(A. Ido) Department of Mathematics Education, Aichi University of Education 1 Hirosawa, Igaya-cho, Kariya-shi, 448-8542, Japan
(Y. Jang, T. Kobayashi) Department of Mathematics, Nara Women's University Kitauoya Nishimachi, Nara, 630-8506 Japan

E-mail address, A. Ido: ayakoido@auecc.aichi-edu.ac.jp
E-mail address, Y. Jang: yeonheejang@cc.nara-wu.ac.jp
E-mail address, T. Kobayashi: tsuyoshi@cc.nara-wu.ac.jp

