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Rectifying developable surfaces of framed base
curves and framed helices
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Abstract.

We study the rectifying developable surface of a framed base curve
and a framed helix in the Euclidean space. A framed base curve is a
smooth curve with a moving frame which may have singular points. By
using the curvature of a framed base curve, we investigate the rectifying
developable surface and a framed helix. Moreover, we introduce two
new invariants of a framed base curve, which characterize singularities
of the rectifying developable surface and a framed helix.

§1. Introduction

There are several articles concerning singularities of the tangent de-
velopable surface and the focal developable surface of a space curve with
singular points ([5, 6, 7, 8]). In [6, 7, 8] Ishikawa investigated relation-
ships between singularities of the tangent developable surface and the
type (a1, a2, a3) of a space curve. In [5] the author and Takahashi intro-
duced relationships between singularities of the focal developable surface
of a framed base curve and invariants, that is, the curvature of a framed
curve. On the other hand, Izumiya, Katsumi and Yamasaki introduced
the rectifying developable surface of a regular space curve in [9]. They
showed relationships between singularities of the rectifying developable
surface of a regular space curve and geometric invariants of the curve
which are deeply related to the order of contact with a helix. A regular
space curve γ is always a geodesic of its rectifying developable surface.
In this sense, the rectifying developable surface is an interesting subject.
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In this paper we consider the rectifying developable surface of a
space curve with singular points, and a helix which may have singular
points. In order to define these notions, we apply the theory of framed
base curves under a certain condition. A framed base curve is a smooth
space curve with a moving frame which may have singular points, see
[4] and Appendix A. In Section 3, we define the rectifying developable
surface of a framed base curve under a certain condition. That is a
natural generalization of the rectifying developable surface of a regular
space curve in [9]. By using two new invariants, we give basic properties
of the rectifying developable surface (cf. Proposition 3.2 and Theorem
3.3). Moreover, we define a framed helix and consider relationships
between the rectifying developable surface of a framed base curve and
a framed helix in Section 4. In Section 5, we introduce the notion of
support functions of a framed base curve. By using this function, we give
relationships between singularities of the rectifying developable surface
and invariants of a framed base curve. The proof of Theorem 3.3 is
given in Section 5. We give some examples of the rectifying developable
surface of a framed base curve and a framed helix in Section 6.

All maps and manifolds considered here are differential of class C∞.

Acknowledgements. The author would like to express sincere grati-
tude to Professor Izumiya and the referee for helpful comments.

§2. Basic notions

Let R
3 be the 3-dimensional Euclidean space equipped with the

canonical inner product 〈a, b〉 = a1b1+a2b2+a3b3, where a = (a1, a2, a3),

b = (b1, b2, b3) ∈ R
3. The norm of a is given by ‖a‖ =

√
〈a,a〉. We

define the vector product of a and b by

a× b =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
e1 e2 e3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ ,
where e1,e2,e3 are the canonical basis on R

3.
We quickly review some basic concepts on classical differential ge-

ometry of regular space curves in R
3. Let I be an interval. Suppose

that γ : I → R
3 is a regular space curve with linearly independent

condition, that is, γ̇(t) and γ̈(t) are linearly independent for all t ∈ I,
where γ̇(t) = (dγ/dt)(t) and γ̈(t) = (d2γ/dt2)(t). Then we have an
orthonormal frame

{T (t), N(t), B(t)} =

{
γ̇(t)

‖γ̇(t)‖ ,
(γ̇(t)× γ̈(t))× γ̇(t)

‖(γ̇(t)× γ̈(t))× γ̇(t)‖ ,
γ̇(t)× γ̈(t)

‖γ̇(t)× γ̈(t)‖

}
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along γ(t), which is called the Frenet frame along γ(t). Then we have
the following Frenet-Serret formula:⎛⎝ Ṫ (t)

Ṅ(t)

Ḃ(t)

⎞⎠ =

⎛⎝ 0 ‖γ̇(t)‖κ(t) 0
−‖γ̇(t)‖κ(t) 0 ‖γ̇(t)‖τ(t)

0 −‖γ̇(t)‖τ(t) 0

⎞⎠⎛⎝ T (t)
N(t)
B(t)

⎞⎠ ,

where

κ(t) =
‖γ̇(t)× γ̈(t)‖

‖γ̇(t)‖3 , τ(t) =
det(γ̇(t), γ̈(t),

...
γ (t))

‖γ̇(t)× γ̈(t)‖2 ,

where
...
γ (t) = (d3γ/dt3)(t). We call κ(t) a curvature and τ(t) a torsion of

γ(t). Note that the curvature κ(t) and the torsion τ(t) are independent
of a choice of parametrization. For any regular space curve γ : I → R

3,
we define a vector D(t) = τ(t)T (t) + κ(t)B(t) and we call it a Darboux
vector along γ(t) (cf. [9, 11]). Since κ(t) > 0, we also define a spherical
Darboux vector D : I → S2 by

D(t) =
τ(t)T (t) + κ(t)B(t)√

κ2(t) + τ2(t)
.

and the rectifying developable surface RDγ : I × R → R
3 of γ(t) by

RDγ(t, u) = γ(t) + uD(t) = γ(t) + u
τ(t)T (t) + κ(t)B(t)√

κ2(t) + τ2(t)
.

By a direct calculation, we have

∂RDγ

∂t
(t, u)× ∂RDγ

∂u
(t, u)

= −
(

κ(t)‖γ̇(t)‖√
κ2(t) + τ2(t)

+ u
κ(t)τ̇(t)− κ̇(t)τ(t)

κ2(t) + τ2(t)

)
N(t).

Therefore, (t0, u0) ∈ I × R is a singular point of RDγ if and only if

κ(t0)‖γ̇(t0)‖√
κ2(t0) + τ2(t0)

+ u0
κ(t0)τ̇(t0)− κ̇(t0)τ(t0)

κ2(t0) + τ2(t0)
= 0.

If (t0, u0) is a singular point of RDγ , then we have u0 �= 0, that is, RDγ

has no singular value on the base curve γ(t). Izumiya, Katsumi and
Yamasaki investigated the rectifying developable surfaces of a regular
space curve in [9].

In this paper we do not assume that γ : I → R
3 is a regular curve

with linearly independent condition, so that γ may have singular points.
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If γ has a singular point, we can not construct the Frenet frame along
γ(t). However, we can define the Frenet type frame along γ(t) under a
certain condition.

Definition 2.1. We say that γ : I → R
3 is a Frenet type framed

base curve if there exist a regular spherical curve T : I → S2 and a
smooth function α : I → R such that γ̇(t) = α(t)T (t) for all t ∈ I.
Then we call T (t) a unit tangent vector and α(t) a speed function of
γ(t).

Clearly, t0 is a singular point of γ if and only if α(t0) = 0. We define

a unit principal normal vector N (t) = Ṫ (t)/‖Ṫ (t)‖ and a unit binormal
vector B(t) = T (t)×N (t) of γ(t). Then we have an orthonormal frame
{T (t),N (t),B(t)} along γ(t), which is called the Frenet type frame along
γ(t). Then we have the following Frenet-Serret type formula:⎛⎝ Ṫ (t)

Ṅ (t)

Ḃ(t)

⎞⎠ =

⎛⎝ 0 κ(t) 0
−κ(t) 0 τ(t)
0 −τ(t) 0

⎞⎠⎛⎝ T (t)
N (t)
B(t)

⎞⎠ ,

where

κ(t) = ‖Ṫ (t)‖, τ(t) =
det(T (t), Ṫ (t), T̈ (t))

‖Ṫ (t)‖2
.

We call κ(t) a curvature and τ(t) a torsion of γ. Note that the curvature
κ(t) and the torsion τ(t) are depend on a choice of parametrization.

We define a vector D(t) along γ(t) by

D(t) = τ(t)T (t) + κ(t)B(t),

which is called a Darboux type vector along γ(t). By using the Darboux
type vector, the Frenet-Serret type formula is rewritten as follows:⎧⎨⎩

Ṫ (t) = D(t)× T (t),

Ṅ (t) = D(t)×N (t),

Ḃ(t) = D(t)× B(t).

Thus the Darboux type vector plays an important role for the study
of framed base curves. Since κ(t) > 0, we can define a spherical Darboux-
type vector by

D(t) =
τ(t)T (t) + κ(t)B(t)√

κ2(t) + τ2(t)
.

Remark 2.2. Since T (t) is a regular curve, we uniquely obtain the
unit principal normal vector N (t) and the unit binormal vector N (t).
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Therefore, κ(t), τ(t) and D(t) is uniquely determined with respect to
T (t). On the other hand, we can easily check that D(t) is a spherical
dual of N (t) (cf. [12]).

Example 2.3. Above objects are natural generalizations of corre-
sponding notions for regular space curves. In fact, let γ : I → R

3 be
a regular space curve with linearly independent condition. If we take
T (t) = T (t) and α(t) = ‖γ̇(t)‖, then N (t) = N(t), B(t) = B(t) and the
curvature κ(t) (respectively, τ(t)) as a framed base curve coincides with
the curvature κ(t) (respectively, the torsion τ(t)) in the sense of classical
differential geometry. Therefore, we have D(t) = D(t) and D(t) = D(t).

We can easily check that γ : I → R
3 is a framed base curve

(cf. [4] and Appendix A). More precisely, (γ,N ,B) : I → R
3 × Δ ⊂

R
3 × S2 × S2 is a framed curve with the curvature of the framed curve

(τ(t),−κ(t), 0, α(t)). This is the reason why we call γ the Frenet type
framed base curve. In [4], the author and Takahashi have shown the
existence and the uniqueness for framed curves. Since Remark 2.2, the
speed function α(t), the curvature κ(t) and the torsion τ(t) are invariants
of the pair (γ, T ).

§3. Rectifying developable surfaces

In this section, we consider the rectifying developable surface of a
Frenet type framed base curve. Let γ : I → R

3 be a Frenet type framed
base curve with unit tangent vector T (t).

Definition 3.1. We define a map RDγ : I × R → R
3 by

RDγ(t, u) = γ(t) + uD(t) = γ(t) + u
τ(t)T (t) + κ(t)B(t)√

κ2(t) + τ2(t)
.

We call RDγ the rectifying developable surface of Frenet type framed
curve γ.

Since Example 2.3, Definition 3.1 is a natural generalization of the
rectifying developable surface of a regular space curve in [9]. The recti-
fying developable surface RDγ(t, u) is a ruled surface and we have

Ḋ(t) =

(
κ(t)τ̇ (t)− κ̇(t)τ(t)

κ2(t) + τ2(t)

)
κ(t)T (t)− τ(t)B(t)√

κ2(t) + τ2(t)
,

so that we have

det
(
γ̇,D, Ḋ

)
= det

(
αT ,

τT + κB√
κ2 + τ2

,

(
κτ̇ − κ̇τ

κ2 + τ2

)
κT − τB√
κ2 + τ2

)
= 0
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for all t ∈ I. This means that RDγ is a developable surface (cf. [10]).
Moreover, we introduce two invariants δ(t), σ(t) as follows:

δ(t) =
κ(t)τ̇(t)− κ̇(t)τ(t)

κ2(t) + τ2(t)
,

σ(t) =
α(t)τ(t)√

κ2(t) + τ2(t)
− d

dt

(
α(t)κ(t)

δ(t)
√
κ2(t) + τ2(t)

)
, (when δ(t) �= 0).

We remark that δ(t) corresponds to (d/dt)(τ/κ)(t) which is investigated

in [9]. By a direct calculation, δ(t) = 0 if and only if Ḋ(t) = 0. We can
also calculate that

∂RDγ

∂t
(t, u)× ∂RDγ

∂u
(t, u) = −

(
α(t)κ(t)√

κ2(t) + τ2(t)
+ uδ(t)

)
N (t).

Therefore, (t0, u0) ∈ I × R is a singular point of RDγ if and only if

α(t0)κ(t0)√
κ2(t0) + τ2(t0)

+ u0
κ(t0)τ̇(t0)− κ̇(t0)τ(t0)

κ2(t0) + τ2(t0)
= 0.

Since Ṅ (t) �= 0 for all t ∈ I, RDγ is a wave front (cf. [1, 2]).

Proposition 3.2. Let γ : I → R
3 be a Frenet type framed base

curve with T (t). Then we have the following :

(A) The following are equivalent :
(1) RDγ is a cylinder,
(2) δ(t) = 0 for all t ∈ I.

(B) If δ(t) �= 0 for all t ∈ I, then the following are equivalent :
(3) RDγ is a conical surface,
(4) σ(t) = 0 for all t ∈ I.

Proof. (A) By definition, RDγ is a cylinder if and only if D(t) is a
constant. Since

Ḋ(t) = δ(t)
κ(t)T (t)− τ(t)B(t)√

κ2(t) + τ2(t)
,

D(t) is a constant if and only if δ(t) = 0 for all t ∈ I.
(B) We consider the striction curve σ(t) defined by

σ(t) = γ(t)− 〈γ̇(t), Ḋ(t)〉
〈Ḋ(t), Ḋ(t)〉

D(t) = γ(t)− α(t)κ(t)

δ(t)
√
κ2(t) + τ2(t)

D(t).
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Then (B)-(3) is equivalent to the condition σ̇(t) = 0 for all t ∈ I. We
can calculate that

σ̇ = γ̇ − d

dt

(
ακ

δ
√
κ2 + τ2

)
D − ακ

δ
√
κ2 + τ2

Ḋ

= αT − d

dt

(
ακ

δ
√
κ2 + τ2

)
D − ακ√

κ2 + τ2
κT − τB√
κ2 + τ2

=

(
ατ√

κ2 + τ2
− d

dt

(
ακ

δ
√
κ2 + τ2

))
τT + κB√
κ2 + τ2

= σD.

It follows that (B)-(3) and (B)-(4) are equivalent. �

We give relationships between singularities of the rectifying devel-
opable surface of a framed base curve and such invariants.

Theorem 3.3. Let γ : I → R
3 be a Frenet type framed base curve

with T (t). Then we have the following :

(1) (t0, u0) is a regular point of RDγ if and only if

α(t0)κ(t0)√
κ2(t0) + τ2(t0)

+ u0δ(t0) �= 0.

(2) Suppose that (t0, u0) is a singular point of RDγ , then the rectifying
developable surface RDγ is locally diffeomorphic to the cuspidal
edge ce at (t0, u0) if
(i) δ(t0) �= 0, σ(t0) �= 0 and

u0 = − α(t0)κ(t0)

δ(t0)
√
κ2(t0) + τ2(t0)

,

or
(ii) δ(t0) = α(t0) = 0, δ̇(t0) �= 0 and

u0 �= −α̇(t0)κ(t0)

√
κ2(t0) + τ2(t0)

κ(t0)τ̈(t0)− κ̈(t0)τ(t0)
,

or
(iii) δ(t0) = α(t0) = 0 and α̇(t0) �= 0.

(3) Suppose that (t0, u0) is a singular point of RDγ , then the rectifying
developable surface RDγ is locally diffeomorphic to the swallowtail
sw at (t0, u0) if δ(t0) �= 0, σ(t0) = 0, σ̇(t0) �= 0 and

u0 = − α(t0)κ(t0)

δ(t0)
√
κ2(t0) + τ2(t0)

.
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Here, ce : (R2, 0) → (R3, 0); (u, v) 
→ (u, v2, v3) is the cuspidal
edge, sw : (R2, 0) → (R3, 0); (u, v) 
→ (3u4 + u2v, 4u3 + 2uv, v) is the
swallowtail.

Remark 3.4. Suppose that t0 is a singular point of γ. Then (t0, 0)
is a singular point of RDγ .

Remark 3.5. γ is always a geodesic of the rectifying developable
surface RDγ(t), away from singular points of γ (cf. [9]). Therefore, γ
is the geodesic which formed to stride over singular points of RDγ .

§4. Framed helices

In this section, we define a helix which may have singular points.
Let γ : I → R

3 be a Frenet type framed base curve with T (t).

Definition 4.1. We say that γ : I → R
3 is a framed helix if there

exist constants v ∈ S2 and C ∈ R such that T (t) · v = C for all t ∈ I.

Definition 4.1 means that the tangent line of γ makes a constant
angle with a fixed direction. In this sense, a framed helix is a natural
generalization of a regular helix. The invariant δ(t) characterize a framed
helix. In fact, we can prove the following Proposition.

Proposition 4.2. Let γ : I → R
3 be a Frenet type framed base

curve with T (t). Then the following are equivalent :

(1) γ is a framed helix.
(2) δ(t) = 0 for all t ∈ I.

Proof. Suppose that γ(t) is a framed helix. Here we put v = a(t)T (t)+
b(t)N (t) + c(t)B(t), where a(t), b(t) and c(t) are smooth functions. By
the assumption,

(1) 〈v, T (t)〉 = a(t) = C.

Moreover, taking the derivative of the both sides of the formula (1), we
have

−b(t)κ(t)T (t)+(Cκ(t)+ ḃ(t)−c(t)τ(t))N (t)+(ċ(t) + b(t)τ(t))B(t) = 0.

Then we have b(t) = 0, c(t) = C1 and C = C1(τ(t)/κ(t)), where C1 is a
constant. On the other hand, since

1 = ‖v‖2 = C2
1

(
τ2(t)

κ2(t)
+ 1

)
,



Rectifying developable surfaces and framed helices 281

C1 �= 0. Thus, C/C1 = τ(t)/κ(t). We remark that δ(t) = 0 if and only
if (d/dt)(τ/κ)(t) = 0. Hence, we have δ(t) = 0 for all t ∈ I.

Conversely, suppose that δ(t) = 0 for all t ∈ I. We put a constant
vector v = (τ(t)/κ(t))T (t) + B(t) and v = v/‖v‖. Then

〈v, T (t)〉 =
τ(t)
κ(t)√

τ2(t)
κ2(t) + 1

,

that is, 〈v, T (t)〉 is a constant. This means that γ(t) is a framed helix.
�

Corollary 4.3. Let γ : I → R
3 be a Frenet type framed base curve

with T (t). Then the following are equivalent :

(1) RDγ is a cylinder,
(2) δ(t) = 0 for all t ∈ I,
(3) γ is a framed helix.

We recall the notion of the contact between framed curves, see [4].

Let (γ,ν1,ν2) : I → R
3×Δ; t 
→ (γ(t),ν1(t),ν2(t)) and (γ̃, ν̃1, ν̃2) : Ĩ →

R
3×Δ;u 
→ (γ̃(u), ν̃1(u), ν̃2(u)) be framed curves, respectively. Let k be

a natural number. We denote the curvatures F(t) = (	(t),m(t), n(t), α(t))

and F̃(u) = (	̃(u), m̃(u), ñ(u), α̃(u)) for convenience. We say that
(γ,ν1,ν2) and (γ̃, ν̃1, ν̃2) have k-th order contact at t = t0, u = u0 if

di

dti
(γ,ν1,ν2)(t0) =

di

dui
(γ̃, ν̃1, ν̃2)(u0),

dk

dtk
(γ,ν1,ν2)(t0) �=

dk

duk
(γ̃, ν̃1, ν̃2)(u0)

for i = 0, 1, ..., k − 1. Moreover, we say that (γ,ν1,ν2) and (γ̃, ν̃1, ν̃2)
have at least k-th order contact at t = t0, u = u0 if

di

dti
(γ,ν1,ν2)(t0) =

di

dui
(γ̃, ν̃1, ν̃2)(u0),

for i = 0, 1, ..., k − 1.
In general, we may assume that (γ,ν1,ν2) and (γ̃, ν̃1, ν̃2) have at

least first order contact at any point t = t0, u = u0, up to congruence
as framed curves.

Theorem 4.4. ([4]) If (γ,ν1,ν2) and (γ̃, ν̃1, ν̃2) have at least
(k + 1)-th order contact at t = t0, u = u0 then

(2)
di

dti
F(t0) =

di

dui
F̃(u0),
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for i = 0, 1, ..., k−1. Conversely, if the condition (2) hold, then (γ,ν1,ν2)
and (γ̃, ν̃1, ν̃2) have at least (k + 1)-th order contact at t = t0, u = u0,
up to congruence as framed curves.

By Theorem 4.4, we can show the following propositions:

Proposition 4.5. If (γ,N ,B)(t0) and (γ̃, Ñ , B̃)(u0) have at least

(k + 2)-th order contact as framed curves, then δ(p)(t0) = δ̃(p)(u0) (for
0 ≤ p ≤ k − 1), where

δ(p)(t0) = (dpδ/dtp)(t0) and δ̃(p)(u0) = (dpδ̃/dup)(u0).

Proposition 4.6. Let γ : I → R
3 be a Frenet type framed base curve

with T (t). Then there exists a framed curve (γ̃, Ñ , B̃) : I → R
3 × Δ

such that γ̃(t) is a framed helix, and (γ,N ,B) and (γ̃, Ñ , B̃) have at
least second order contact as framed curves at a point t0 ∈ I.

Proof. Choose any fixed value t = t0 of the parameter. We consider a
new curvature as a framed curve

(τ̃(t),−κ̃(t), 0, α̃(t)) = ((τ(t0)/κ(t0))κ(t),−κ(t), 0, α(t)).

Since the existence and the uniqueness of framed curves, there exists a

framed curve (γ̃, Ñ , B̃) with (τ̃(t),−κ̃(t), 0, α̃(t)). Moreover, by Theorem

4.4 and an appropriate Euclid transformation, (γ,N ,B) and (γ̃, Ñ , B̃)
have at least second order contact as framed curves at t0 ∈ I. On the
other hand, by a direct calculation, we have δ̃(t) = 0 for all t ∈ I. Thus,
γ̃(t) is a framed helix. �

§5. Support functions

For a Frenet type framed base curve γ : I → R
3, we define a function

G : I × R
3 → R by G(t,x) = 〈x − γ(t),N (t)〉. We call G a support

function of γ with respect to the unit principal normal vector N (t).
We denote that gx0(t) = G(t,x0) for any x0 ∈ R

3. Then we have the
following proposition.

Proposition 5.1. For a support function gx0(t) = 〈x0−γ(t),N (t)〉,
we have the following :

(1) gx0(t0) = 0 if and only if there exist u, v ∈ R such that
x0 − γ(t0) = uT (t0) + vB(t0).

(2) gx0(t0) = ˙gx0(t0) = 0 if and only if there exists u ∈ R such that

x0 − γ(t0) = u
τ(t0)T (t0) + κ(t0)B(t0)√

κ2(t0) + τ2(t0)
.
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(A) Suppose that δ(t0) �= 0. Then we have the following :
(3) gx0(t0) = ˙gx0(t0) = ¨gx0(t0) = 0 if and only if

(∗) x0 − γ(t0) = − α(t0)κ(t0)

δ(t0)
√
κ2(t0) + τ2(t0)

τ(t0)T (t0) + κ(t0)B(t0)√
κ2(t0) + τ2(t0)

.

(4) gx0(t0) = ˙gx0(t0) = ¨gx0(t0) = g
(3)
x0 (t0) = 0 if and only if

σ(t0) = 0 and (∗).
(5) gx0(t0) = ˙gx0(t0) = ¨gx0(t0) = g

(3)
x0 (t0) = g

(4)
x0 (t0) = 0 if and

only if σ(t0) = 0, σ̇(t0) = 0 and (∗).
(B) Suppose that δ(t0) = 0. Then we have the following :

(6) gx0(t0) = ˙gx0(t0) = ¨gx0(t0) = 0 if and only if α(t0) = 0 and
there exists u ∈ R such that

x0 − γ(t0) = u
τ(t0)T (t0) + κ(t0)B(t0)√

κ2(t0) + τ2(t0)
.

(7) gx0(t0) = ˙gx0(t0) = ¨gx0(t0) = g
(3)
x0 (t0) = 0 if and only if one

of the following conditions holds:
(a) δ̇(t0) �= 0, α(t0) = 0 and

x0 − γ(t0) = −α̇(t0)κ(t0)
τ(t0)T (t0) + κ(t0)B(t0)
κ(t0)τ̈(t0)− κ̈(t0)τ(t0)

.

(b) δ̇(t0) = 0, α(t0) = α̇(t0) = 0 and there exists u ∈ R

such that

x0 − γ(t0) = u
τ(t0)T (t0) + κ(t0)B(t0)√

κ2(t0) + τ2(t0)
.

Proof. Since gx0(t) = 〈x0 − γ(t),N (t)〉, we have the following calcula-
tions:

(α) gx0 = 〈x0 − γ,N〉,
(β) ˙gx0 = 〈x0 − γ,−κT + τB〉,
(γ) ¨gx0 = ακ+ 〈x0 − γ,−κ̇T − (κ2 + τ2)N + τ̇B〉,
(δ) g(3)x0

= 2ακ̇+ α̇κ+ 〈x0 − γ, (κ(κ2 + τ2)− κ̈)T
− 3(κκ̇+ τ τ̇)N + (−τ(κ2 + τ2) + τ̈)B〉,

(ε) g(4)x0
= α̈κ+ 3α̇κ̇+ 3ακ̈− ακ(κ2 + τ2)

+ 〈x0 − γ, (κ̇(6κ2 + τ2) + 5κτ τ̇ − ...
κ )T

+ ((κ2 + τ2)2 − 4(κκ̈+ τ τ̈)− 3(κ̇2 + τ̇2))N
+ (−τ̇(κ2 + 6τ2)− 5κκ̇τ +

...
τ )B〉.
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By definition and (α), (1) follows.
By (β), gx0(t0) = ˙gx0(t0) = 0 if and only if there exist u, v ∈ R such

that x0 − γ(t0) = uT (t0) + vB(t0) and −κ(t0)u + τ(t0)v = 0. Since
κ(t0) > 0, we have

u = v
τ(t0)

κ(t0)
,

so that there exists w ∈ R such that

x0 − γ(t0) = w
τ(t0)T (t0) + κ(t0)B(t0)√

κ2(t0) + τ2(t0)
.

Therefore (2) holds.
By (γ), gx0(t0) = ˙gx0(t0) = ¨gx0(t0) = 0 if and only if there exists

u ∈ R such that

x0 − γ(t0) = u
τ(t0)T (t0) + κ(t0)B(t0)√

κ2(t0) + τ2(t0)

and

α(t0)κ(t0) + u
κ(t0)τ̇(t0)− κ̇(t0)τ(t0)√

κ2(t0) + τ2(t0)
= 0.

It follows that

α(t0)κ(t0)√
κ2(t0) + τ2(t0)

+ u
κ(t0)τ̇(t0)− κ̇(t0)τ(t0)

κ2(t0) + τ2(t0)
= 0.

Thus,

δ(t0) =
κ(t0)τ̇(t0)− κ̇(t0)τ(t0)

κ2(t0) + τ2(t0)
�= 0 and u = − α(t0)κ(t0)

δ(t0)
√
κ2(t0) + τ2(t0)

,

or δ(t0) = 0 and α(t0) = 0. This completes the proof of (A)-(3), and
(B)-(6).

Suppose that δ(t0) �= 0. By (δ),

gx0(t0) = ˙gx0(t0) = ¨gx0(t0) = g(3)x0
(t0) = 0

if and only if

x0 − γ(t0) = − α(t0)κ(t0)

δ(t0)
√
κ2(t0) + τ2(t0)

τ(t0)T (t0) + κ(t0)B(t0)√
κ2(t0) + τ2(t0)

and

2α(t0)κ̇(t0) + α̇(t0)κ(t0)−
α(t0)κ(t0)

δ(t0)

(
κ(t0)τ̈(t0)− κ̈(t0)τ(t0)

κ2(t0) + τ2(t0)

)
= 0.
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We can rewrite σ(t):

σ = −
√

κ2 + τ2
(
2ακ̇+ α̇κ− ακ

δ

(
κτ̈ − κ̈τ

κ2 + τ2

))
.

Therefore, (A)-(3) holds. By the similar arguments to the above, we
have (A)-(5).

Suppose that δ(t0) = 0. Then by (δ), gx0(t0) = ˙gx0(t0) = ¨gx0(t0) =

g
(3)
x0 (t0) = 0 if and only if α(t0) = 0, there exists u ∈ R such that

x0 − γ(t0) = u
τ(t0)T (t0) + κ(t0)B(t0)√

κ2(t0) + τ2(t0)

and

α̇(t0)κ(t0)
√
κ2(t0) + τ2(t0) + u (κ(t0)τ̈(t0)− κ̈(t0)τ(t0)) = 0.

It follows that

κ(t0)τ̈(t0)− κ̈(t0)τ(t0) �= 0 and u = −α̇(t0)κ(t0)

√
κ2(t0) + τ2(t0)

κ(t0)τ̈(t0)− κ̈(t0)τ(t0)
,

or
κ(t0)τ̈(t0)− κ̈(t0)τ(t0) = 0 and α̇(t0) = 0.

Therefore, we have (B)-(7)-(a) and (B)-(7)-(b). This completes the
proof. �

In order to prove Theorem 3.3, we use some general results on the
singularity theory for families of function germs. Detailed descriptions
are found in the book [3]. Let Rr be the r-dimensional Euclidean space
with coordinates (x1, x2, ..., xr) and F : (R × R

r, (t0,x0)) → R be a
function germ. We call F an r-parameter unfolding of f , where f(t) =
F (t,x0). We say that f has the Ak-singularity at t0 if f (p)(t0) = 0 for
all 1 ≤ p ≤ k, and f (k+1)(t0) �= 0. Let F be an unfolding of f and f has
the Ak-singularity (k ≥ 1) at t0. We write the (k − 1)-jet of the partial

derivative ∂F
∂xi

at t0 by j(k−1)( ∂F
∂xi

(t,x0))(t0) =
∑k−1

j=0 αji(t − t0)
j for

i = 1, ..., r. Then F is called an R-versal unfolding if the k× r matrix of
coefficients (αji)j=0,...,k−1;i=1,...,r has rank k (k ≤ r). We introduce an
important set concerning the unfoldings relative to the above notions.
The discriminant set of F is defined to be

DF =

{
x ∈ R

r | there exists s such that F =
∂F

∂t
= 0 at (s,x)

}
.

Then we have the following classification (cf. [3]).
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Theorem 5.2. Let F : (R × R
r, (t,x0)) → R be an r-parameter

unfolding of f which has the Ak-singularity at t0. Suppose that F is an
R-versal unfolding.

(1) If k = 2, then DF is locally diffeomorphic to the cuspidal edge ce.
(2) If k = 3, then DF is locally diffeomorphic to the swallowtail sw.

For the proof of Theorem 3.3, we have the following proposition.

Proposition 5.3. Let γ : I → R
3 be a Frenet type framed base

curve with T (t). If gx0 has the Ak-singularity (k = 2, 3) at t0, then G is
an R-versal unfolding of gx0 . Here, we assume that δ(t0) �= 0 for k = 3.

Proof. We write that x = (x1, x2, x3), γ(t) = (γ1(t), γ2(t), γ3(t)) and
N (t) = (n1(t), n2(t), n3(t)). Then we have

G(t,x) = n1(t)(x1 − γ1(t)) + n2(t)(x2 − γ2(t)) + n3(t)(x3 − γ3(t)),

so that
∂G

∂xi
(t,x) = ni(t), (i = 1, 2, 3).

Therefore the 2-jet is

j2
∂G

∂xi
(t0,x0) = ni(t0) + ṅi(t0)(t− t0) +

1

2
n̈i(t0)(t− t0)

2.

We consider the following matrix:

A =

⎛⎝ n1(t0) n2(t0) n3(t0)
ṅ1(t0) ṅ2(t0) ṅ3(t0)
n̈1(t0) n̈2(t0) n̈3(t0)

⎞⎠ =

⎛⎝ N (t0)

Ṅ (t0)

N̈ (t0)

⎞⎠ .

By the Frenet-Serret type formula, we have

Ṅ (t0) = −κ(t0)T (t0) + τ(t0)B(t0),
N̈ (t0) = −κ̇(t0)T (t0)− (κ2(t0) + τ2(t0))N (t0) + τ̇(t0)B(t0).

Since {T (t0),N (t0),B(t0)} is an orthonormal basis of R3, the rank of

A =

⎛⎝ N (t0)
−κ(t0)T (t0) + τ(t0)B(t0)

−κ̇(t0)T (t0)− (κ2(t0) + τ2(t0))N (t0) + τ̇(t0)B(t0)

⎞⎠
is equal to the rank of⎛⎝ 0 1 0

−κ(t0) 0 τ(t0)
−κ̇(t0) −(κ2(t0) + τ2(t0)) τ̇(t0)

⎞⎠ .
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Therefore, rank A = 3 if and only if

0 �= κ(t0)τ̇(t0)− κ̇(t0)τ(t0).

The last condition is equivalent to the condition δ(t0) �= 0. Moreover,
the rank of (

N (t0)

Ṅ (t0)

)
=

(
N (t0)

−κ(t0)T (t0) + τ(t0)B(t0)

)
is always two.

If gx0 has the Ak-singularity (k = 2, 3) at t0, then G is the R-versal
unfolding of gx0 . This completes the proof. �

Proof of Theorem 3.3. By a straightforward calculation, we have

∂RDγ

∂t
(t, u)× ∂RDγ

∂u
(t, u) = −

(
α(t)κ(t)√

κ2(t) + τ2(t)
+ uδ(t)

)
N (t).

Therefore, (t0, u0) is a regular point of RDγ if and only if

α(t0)κ(t0)√
κ2(t0) + τ2(t0)

+ u0δ(t0) �= 0.

This completes the proof of (1).
By Proposition 5.1-(2), the discriminant set DG of the support func-

tionG of γ with respect toN (t) is the image of the rectifying developable
surface of γ.

Suppose that δ(t0) �= 0. It follows from Proposition 5.1-(A)-(3), (4)
and (5) that gx0 has the A2-type singularity (respectively, the A3-type
singularity) at t = t0 if and only if

(∗∗) u0 = − α(t0)κ(t0)

δ(t0)
√
κ2(t0) + τ2(t0)

and σ(t0) �= 0 (respectively, (∗∗), σ(t0) = 0 and σ̇(t0) �= 0). By Theorem
5.2 and Proposition 5.3, we have (2)-(i) and (3).

Suppose that δ(t0) = 0. It follows from Proposition 5.1 (B)-(6)
and (7) that gx0 has the A3-type singularity if and only if α(t0) = 0,

α̇(t0) �= 0 and δ̇(t0) = 0, or α(t0) = 0, δ̇(t0) �= 0 and

α̇(t0)κ(t0)
√

κ2(t0) + τ2(t0) + u0(κ(t0)τ̈(t0)− κ̈(t0)τ(t0)) �= 0.

By Theorem 5.2 and Proposition 5.3, we have the assertion (2)-(β). This
completes the proof. �
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§6. Examples

We give examples to understand the phenomena for rectifying de-
velopable surfaces of framed base curves and framed helices.

Example 6.1 (The astroid). The astroid γ : [0, 2π) → R
3 is defined

by γ(t) = (cos3 t, sin3 t, cos 2t). See Fig.1. Then

T (t) =
1

5
(−3 cos t, 3 sin t,−4)

gives the unit tangent vector and α(t) = 5 cos t sin t is a speed function.
By a direct calculation, we have

N (t) = (sin t, cos t, 0) , B(t) = 1

5
(4 cos t,−4 sin t,−3) ,

κ(t) = 3/5 and τ(t) = 4/5. Since δ(t) ≡ 0 and Corollary 4.3, γ is
a framed helix. For the astroid γ, the rectifying developable surface
is given by RDγ(t, u) =

(
cos3 t, sin3 t,−u+ cos 2t

)
. By Theorem 3.3

(2)-(iii), we have the cuspidal edge singularities at t = 0, π/2, π, 3π/2
(Fig.2).

Fig. 1. γ of Example 6.1 Fig. 2. γ and RDγ

of Example 6.1

Example 6.2 (The spherical nephroid (cf. [13])). The spherical
nephroid γ : [0, 2π) → S2 ⊂ R

3 is defined by

γ(t) =

(
3

4
cos t− 1

4
cos 3t,

3

4
sin t− 1

4
sin 3t,

√
3

2
cos t

)
.

See Fig.3. Then

T (t) =
1

2

(√
3 cos 2t,

√
3 sin 2t,−1

)
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gives the unit tangent vector and α(t) =
√
3 sin(t) is a speed function.

By a direct calculation, we have

N (t) = (− sin 2t, cos 2t, 0) , B(t) = 1

2

(
cos 2t, sin 2t,

√
3
)
,

κ(t) =
√
3 and τ(t) = −1. Since δ(t) ≡ 0 and Corollary 4.3, γ is a framed

helix. For the spherical nephroid, the rectifying developable surface is
given by

RDγ(t, u) =

(
3

4
cos t− 1

4
cos 3t,

3

4
sin t− 1

4
sin 3t, u+

√
3

2
cos t

)
.

By Theorem 3.3 (2)-(iii), we have the cuspidal edge singularities at
t = 0, π (Fig.4).

Fig. 3. γ of Example 6.2 Fig. 4. γ and RDγ

of Example 6.2

Example 6.3 ((2, 3, 5)-type). Let γ : R → R
3 be

γ(t) =

(
1

2
t2,

1

3
t3,

1

5
t5
)
.

See Fig.5. We say that γ is of type (2, 3, 5). Then

T (t) =
1√

1 + t2 + t6

(
1, t, t3

)
gives the unit tangent vector and α(t) = t

√
1 + t2 + t6 is a speed func-

tion. By a direct calculation, we have

κ(t) =

√
1 + 9t4 + 4t6

1 + t2 + t6
, τ(t) =

6t
√
1 + t2 + t6

1 + 9t4 + 4t6
.
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Since δ(0) = 6, σ(0) = 1/6 and α(0) = 0 and Theorem 3.3 (2)-(i), the
rectifying developable surface RD(t, u) is locally diffeomorphic to the
cuspidal edge ce at (0, 0) (Fig.6).

Fig. 5. γ of Example 6.3 Fig. 6. γ and RDγ

of Example 6.3

§Appendix A. Framed base curves in the Euclidean space

We define a set

Δ = {(ν1,ν2) ∈ R
3 × R

3 | 〈ν1,ν1〉 = 〈ν2,ν2〉 = 1, 〈ν1,ν2〉 = 0}
= {(ν1,ν2) ∈ S2 × S2 | 〈ν1,ν2〉 = 0}.

Definition A.1. We say that (γ,ν1,ν2) : I → R
3×Δ ⊂ R

3×S2×S2

is a framed curve if 〈γ̇(t),ν1(t)〉 = 0 and 〈γ̇(t),ν2(t)〉 = 0 for all t ∈ I.
We also say that γ : I → R

3 is a framed base curve if there exists
(ν1,ν2) : I → Δ such that (γ,ν1,ν2) is a framed curve.

Then we have the Frenet-Serret type formula of the framed curve
γ. We define μ(t) = ν1(t)× ν2(t) and call {ν1(t),ν2(t),μ(t)} a moving
frame along the framed base curve γ(t). By standard arguments, we have
the Frenet-Serret type formulae as follows:

Proposition A.2. ([4]) Let (γ,ν1,ν2) : I → R
3 × Δ be a framed

curve. Then we have⎛⎝ ν̇1(t)
ν̇2(t)
μ̇(t)

⎞⎠ =

⎛⎝ 0 	(t) m(t)
−	(t) 0 n(t)
−m(t) −n(t) 0

⎞⎠⎛⎝ ν1(t)
ν2(t)
μ(t)

⎞⎠ ,

where 	(t) = 〈ν̇1(t),ν2(t)〉, m(t) = 〈ν̇1(t),μ(t)〉 and n(t) = 〈ν̇2(t),μ(t)〉.
Moreover, there exists a smooth function α(t) such that γ̇(t) = α(t)μ(t).

The quadruplet (	,m, n, α) is an important invariant of a framed
curve. We call (	,m, n, α) the curvature of the framed curve. Note that
t0 is a singular point of γ if and only if α(t0) = 0.
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Definition A.3. Let (γ,ν1,ν2) and (γ̃, ν̃1, ν̃2) : I → R
3 × Δ be

framed curves. We say that (γ,ν1,ν2) and (γ̃, ν̃1, ν̃2) are congruent as
framed curves if there exists a rotation A ∈ SO(3) and a translation a ∈
R

3 such that γ̃(t) = A(γ(t))+a, ν̃1(t) = A(ν1(t)) and ν̃2(t) = A(ν2(t))
for all t ∈ I.

We have shown the existence and the uniqueness for framed curves
similarly to the case of regular space curves in [4].

Theorem A.4 (The Existence Theorem, [4]). Let (	,m, n, α) : I →
R

4 be a smooth mapping. There exists a framed curve (γ,ν1,ν2) : I →
R

3 ×Δ whose curvature is (	,m, n, α).

Theorem A.5 (The Uniqueness Theorem, [4]). Let (γ,ν1,ν2) and
(γ̃, ν̃1, ν̃2) : I → R

3×Δ be framed curves with curvatures (	,m, n, α) and

(	̃, m̃, ñ, α̃). If (	,m, n, α) = (	̃, m̃, ñ, α̃), then (γ,ν1,ν2) and (γ̃, ν̃1, ν̃2)
are congruent as framed curves.
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