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Triply periodic zero mean curvature surfaces in
Lorentz-Minkowski 3-space

Shoichi Fujimori

Abstract.

We construct triply periodic zero mean curvature surfaces of mixed
type in the Lorentz-Minkowski 3-space L

3, with the same topology as
the triply periodic minimal surfaces in the Euclidean 3-space R3, called
Schwarz rPD surfaces.

§1. Introduction

Zero mean curvature surfaces in the Lorentz-Minkowski 3-space L
3

are smooth surfaces with mean curvature zero wherever the mean cur-
vature is defined. Having the mean curvature defined at all points is
not expected, because these surfaces can change causal type, meaning
that some parts may have spacelike tangent planes and other parts may
have timelike tangent planes, with lightlike tangent planes at bound-
ary points between these parts. An interesting aspect of these surfaces
is precisely that they change causal type, often resulting in interesting
singular and topological behaviors, and these surfaces have been investi-
gated in [1, 5, 6, 7, 9]. One of the main tools for the construction of such
surfaces is based on the fact that fold singularities of spacelike maximal
surfaces have real analytic extensions to timelike minimal surfaces [5].

In contrast to minimal surfaces in the Euclidean 3-space R3, the only
known triply periodic zero mean curvature surfaces in L3 were those in
a 1-parameter family constructed in [9], while there are many known
triply periodic minimal surfaces in R3, see for example [4, 11, 12, 16].
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This motivates us to broaden our knowledge of triply periodic zero
mean curvature surfaces in L

3, and in this paper we construct a new
1-parameter family of triply periodic zero mean curvature surfaces in L3

based on the conjugate surfaces of the triply periodic minimal surfaces
in R3 called the Schwarz H surfaces. This is the main original result of
this paper, and the family here is interesting because it exhibits both
a change of causal type, and also a greater complexity than the previ-
ously known examples. The method we use to construct the family is
essentially the same as in [9], but the surfaces here are less symmetric,
and so the construction is more involved. It is expected that by using
the method in this paper one could construct families of surfaces with
more complicated topologies, based on the data of triply periodic min-
imal surfaces in R

3 constructed in [11, 12]. It is also expected that the
family of surfaces we construct in this paper is a prototype for the study
of the moduli space of triply periodic zero mean curvature surfaces.

We remark that the surfaces constructed in this paper have the same
topology and symmetry as Schwarz rPD minimal surfaces, not Schwarz
H surfaces. (As for the symbols “rPD” and “H”, see Remark A.4 in
Appendix A.)

§2. Preliminaries

We denote by L
3 the Lorentz-Minkowsiki 3-space with indefinite

metric 〈 , 〉 = −dx2
0 + dx2

1 + dx2
2. Let M be a Riemann surface. A

conformal immersion f : M → L
3 is called a spacelike surface if the

induced metric ds2 = 〈df, df〉 is positive definite on M . A spacelike
surface f : M → L

3 is called maximal if its mean curvature vanishes
identically. In [18] a notion of maxface was introduced as a maximal
surface with certain kind of singularities. More precisely, f : M → L

3 is
called a maxface if there exists an open dense subset W of M such that
the restriction f |W of f to W gives a conformal maximal immersion and
df(p) �= 0 for all p ∈ M .

For maxfaces, a similar representation formula to Weierstrass rep-
resentation for minimal surfaces in R3 is known.

Theorem 2.1 (Weierstrass-type representation [14, 18]). Let (g, η)
be a pair of a meromorphic function g and a holomorphic differential
η on a Riemann surface M so that (1 + |g|2)2ηη̄ gives a Riemannian
metric on M . We set

(2.1) Φ =

⎛
⎝ −2gη

(1 + g2)η
i(1− g2)η

⎞
⎠ ,
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where i =
√−1. Then

(2.2) f = Re

∫ z

z0

Φ : M → L
3 (z0 ∈ M)

defines a maxface. The singular set S(f) of f is given by

S(f) = {p ∈ M ; |g(p)| = 1}.
Moreover, f is single-valued on M if and only if

(2.3) Re

∮
�

Φ = 0

for any closed curve � on M . Conversely, any maxface can be obtained
in this manner.

The pair (g, η) in Theorem 2.1 is called the Weierstrass data of f .

Remark 2.2. The first fundamental form ds2 and the second funda-
mental form II of the surface (2.2) are given by

ds2 =
(
1− |g|2)2 ηη̄, II = −ηdg − ηdg.

Moreover, g|M\S(f) : M \ S(f) → (C ∪ {∞}) \ {|z| = 1} coincides with
the composition of the Gauss map

G|M\S(f) : M \ S(f) → H2 = {x ∈ L
3 ; 〈x, x〉 = −1}

of the maximal surface and the stereographic projection

σ : H2 
 (x0, x1, x2) �→ x1 + ix2

1− x0
∈ C ∪ {∞},

that is, g|M\S(f) = σ ◦ G|M\S(f). So we call g the Gauss map of the
maxface.

Generic singularities of maxfaces are classified in [10]. Moreover
several criteria for singular points of maxfaces by using their Weierstrass
data are given in [8, 10, 18].

Definition 2.3 (Fold singular point [5]). Let f : M → L3 be a max-
face with Weierstrass data (g, η). We denote by S(f) the singular set of
f , that is, S(f) = {p ∈ M ; |g(p)| = 1}.

(1) A singular point p ∈ S(f) of f is called non-degenerate if dg
does not vanish at p.
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(2) A regular curve γ̂ on M is called a non-degenerate fold singu-
larity if it consists of non-degenerate singular points such that

Re

(
dg

g2η

)

vanish identically along the curve γ̂. Each point on the non-
degenerate fold singularity is called a fold singular point.

Remark 2.4. Let Σ be a smooth 2-manifold and f : Σ → L
3 a

smooth map. A singular point p ∈ Σ of f is called fold singularity if
there exist a local coordinate system (U ;ϕ) ccentered at p ∈ Σ and a
diffeomorphism ψ of L3 such that (ψ ◦ f ◦ ϕ−1)(u, v) = (u, v2, 0).

In [5, Lemma 2.17], it is shown that a non-degenerate fold singularity
of a maxface is indeed a fold singularity.

A regular curve γ : (a, b) → L
3 is called null or isotropic if γ′(t) =

(dγ/dt)(t) is a lightlike vector for all t ∈ (a, b).

Definition 2.5 (Non-degenerate null curve [5]). A null curve γ :
(a, b) → L

3 is called degenerate or non-degenerate at t = c if γ′′(c)
is or is not proportional to the velocity vector γ′(c), respectively. If γ
is non-degenerate at each t ∈ (a, b), it is called a non-degenerate null
curve.

Theorem 2.6 (Analytic extension of maxface [5]). Let f : M → L
3

be a maxface which has non-degenerate fold singularities along a singular
curve γ̂ : (a, b) → M . Then γ = f ◦ γ̂ is a non-degenerate null curve
and the image of the map

(2.4) f∗(u, v) =
γ(u+ v) + γ(u− v)

2

is real analytically connected to the image of f along γ as a timelike mini-
mal immersion. Conversely, any real analytic immersion with mean cur-
vature, whereever well-defined, equal to zero which changes type across
a non-degenerate null curve is obtained as a real analytic extension of
non-degenerate fold singularities of a maxface.

We call an immersion in L3 with mean curvature, whereever well-
defined, equal to zero a zero mean curvature (ZMC ) surface.

§3. Schwarz H-type ZMC surfaces

For a constant a ∈ (0,∞), we set Ma a Riemann surface of genus 3
defined by the hyperelliptic curve

w2 = z(z3 + a3)(z3 + a−3).
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Consider the family {fa}0<a<∞ of maxfaces

(3.1) fa =

⎛
⎝x0

x1

x2

⎞
⎠ = Re

∫ ⎛
⎝ −2g

1 + g2

i(1− g2)

⎞
⎠ η

in L3 with the Weierstrass data

(3.2) g = z, η = i
dz

w
.

The singular set of fa is {|z| = 1}. It is easy to verify that each singular
point is fold singularity.

We define a C3-valued 1 form Φa on Ma by

Φa =

⎛
⎝ −2g

1 + g2

i(1− g2)

⎞
⎠ η.

Direct computations show the following lemma.

Lemma 3.1 (Symmetries of the surface). Define anti-holomorphic
maps ψj : Ma → Ma (j = 1, 2, 3) as follows:

ψ1(z, w) = (z̄, w̄),

ψ2(z, w) = (e2πi/3z̄, eπi/3w̄),

ψ3(z, w) =

(
1

z̄
,
w̄

z̄

)
.

Then we have the following :

ψ∗
1Φa =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠Φa,

ψ∗
2Φa =

⎛
⎝1 0 0
0 − cos(π/3) sin(π/3)
0 sin(π/3) cos(π/3)

⎞
⎠Φa,

ψ∗
3Φa = Φa.

By the above lemma, we can consider

Ωmax
a = {fa(z) ; |z| ≤ 1, 0 ≤ arg z ≤ π/3}

as the fundamental piece of the maxface, that is, the entire maxface
consists of pieces each of which is congruent to Ωmax

a .
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Lemma 3.2. In Ωmax
a , the images of {0 ≤ |z| ≤ 1, arg z = 0} and

{a ≤ |z| ≤ 1, arg z = π/3} by fa are straight lines, and the image of
{a ≤ |z| ≤ 1, arg z = π/3} by fa is a curve in some timelike plane.

Proof. Consider the Hopf differential

Q = ηdg = i
dz2

w

of fa. If z = t (0 ≤ t ≤ 1), then Q ∈ iR. Also, if z = eπi/3t (0 ≤ t ≤ 1),
then

Q =
−dt2√

t(t3 − a3)(t3 − a−3)
∈
{
R (0 ≤ t ≤ a)

iR (a ≤ t ≤ 1)

this completes the proof. Q.E.D.

Next we consider the singular curve γ of fa. The singular curve is
the image of z = eit (0 ≤ t ≤ π/3). Hence we can write

γ(s) =

∫ s

0

⎛
⎝ 1
− cos t
− sin t

⎞
⎠ ξ(t)dt, ξ(t) =

2√
2 cos 3t+ a3 + a−3

(
0 ≤ s ≤ π

3

)

by a direct computation. Thus if we set

(3.3) f∗
a (u, v) =

1

2

(
γ(u+ v) + γ(u− v)

)
,

then f∗
a is a timelike minimal surface such that {v = 0} corresponds to

the fold singularities and f∗
a is the analytic extension of the maximal

surface fa.
Arguments similar to those in [9] show the following two lemmas.

Lemma 3.3 ([9, Lemma 3.1]). f∗
a (u, v) is an immersion on (u, v) ∈

R× (0, π).

Lemma 3.4 ([9, Lemma 3.2]). f∗
a (0, v) (0 < v < π) is a straight

line parallel to x2-axis, and f∗
a (π/3, v) (0 < v < π) is a straight line

parallel to x0 = x1 +
√
3x2 = 0.

Moreover, since f∗
a (u, π + v) = f∗

a (u, π − v) holds, we have the fol-
lowing lemma.

Lemma 3.5. f∗
a (u, π) (u ∈ R) corresponds to fold singularities.

We set Ωmin
a = {f∗

a (u, v) ; 0 ≤ u ≤ π/3, 0 ≤ v ≤ π}.
Remark 3.6. For the Schwarz D-type ZMC surface in [9], f∗

a (u, π/2)
is a straight line parallel to x0-axis, but we do not have such a symmetry
in this case.
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We set

σ(s) = f∗
a (s, π) =

1

2

(
γ(s+ π) + γ(s− π)

)
(0 ≤ s ≤ π/3)

to further extend analytically from f∗
a (u, π) to spacelike surface. Then

we have

σ′(s) =

⎛
⎝ 1
cos s
sin s

⎞
⎠ ξ̂(s),

where

ξ̂(s) = ξ(s+ π) = ξ(s− π) =
2

a3 + a−3 − 2 cos 3s
.

A direct computation shows the following lemma.

Lemma 3.7. The following equation

σ′(s) = Aγ′
(π
3
− s

)
holds, where

A =

⎛
⎝1 0 0
0 − cos(π/3) − sin(π/3)
0 − sin(π/3) cos(π/3)

⎞
⎠ .

By this lemma, we have

σ(s) = Aγ
(π
3
− s

)
+ c,

where

c = σ(0)−Aγ(π/3) = f∗
a (0, π)−Af∗

a (π/3, 0) ∈ L
3.

Thus we have the following proposition (See Fig. 3.1).

Proposition 3.8. We denote by f̂a the spacelike extension from
σ(s). Then we have

f̂a(z) = −Afa(z) + c (|z| ≤ 1, 0 ≤ arg z ≤ π/3).

We set Ω̂max
a = {f̂a(z) ; |z| ≤ 1, 0 ≤ arg z ≤ π/3}. Then the

boundary of

(3.4) Ωmax
a ∪ Ωmin

a ∪ Ω̂max
a

consists of two planar curves and two straight lines. See Fig. 3.1. Now we
extend this piece (3.4) by reflections with respect to planar curves, then
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six copies of (3.4) look like “twisted” equilateral triangular catenoid,
see Fig. 3.2. This triangular catenoid is homeomorphic and has the
same symmetry to the half of rPD family (in R3) as in Example A.5.
Therefore the ZMC surface we obtain by extending (3.4) by reflections
infinitely many times is triply periodic. Though the triply periodic ZMC
surface looks like embedded for any a ∈ (0, 1), we leave the study of
embeddedness of this family for another occasion. See Fig. 3.2.

a = 0.5

Fig. 3.1. The piece Ωmax
a ∪ Ωmin

a ∪ Ω̂max
a in different view

points. The spacelike parts are indicated by grey
shades, and the timelike part is indicated by black
shade.

We call the 1 parameter family of this triply periodic ZMC surface
by Schwarz H-type ZMC surfaces.

Remark 3.9. The 1 parameter family of the conjugate surface of the
maxface we have considered in this section, that is, the maxface with the
Weierstrass data g = z, η = dz/w, have conelike singularities, and the
half of the fundamental piece looks like “twisted” equilateral triangular
Lorentzian catenoid. See Fig. 3.3. Hence by extending these surfaces
by reflections with respect to boundary straight lines, we have triply
periodic maxfaces with conelike singularities.

§4. Limits of Schwarz H-type ZMC surfaces

In this section we consider the limits of Schwarz H-type ZMC sur-
faces. As a → 0, the surface, with rescaled by

√
a3 + a−3, converges to

the helicoid by the same arguments as in [9, Remark 3.6].
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a = 0.1

a = 0.5

a = 0.9

Fig. 3.2. Schwarz H-type ZMC surfaces.

Next we consider the limit as a → 1. Since the hyperelliptic curve
w2 = z(z3 + a3)(z3 + a−3) converges to

w2 = z(z3 + 1)2,
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a = 0.1

a = 0.5

a = 0.9

Fig. 3.3. The conjugate surfaces of Schwarz H-type surface.

the Riemann surface Ma converges to a Riemann surface with six nodes
at

z = eπi/3, −1, e−πi/3

and two branch points at
z = 0, ∞.
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This Riemann surface is of genus zero with six nodal singular points.
Hence the maxface fa converges to

(4.1) fa → ±Re

∫ ⎛
⎝ −2z

1 + z2

i(1− z2)

⎞
⎠ i dz√

z(z3 + 1)
.

Let ζ be a branch of ζ2 = z. Then ζ is a coordinates of this Riemann
surface, with six nodes at ζ = ±e±πi/6, ±i, and the right hand side of
(4.1) becomes

±2Re

∫ ⎛
⎝ −2ζ2

1 + ζ4

i(1− ζ4)

⎞
⎠ i dζ

ζ6 + 1
.

This surface coincides with the Karcher-type maxface with k = 3,
which is a maxface obtained by the conjugate of the maxface with the
Weierstrass data as in Example A.7. See Fig. 4.1.

Remark 4.1. In contrast to the Karcher tower in R3, the Karcher-
type maxface is single-valued on Mk for any k ≥ 2. Moreover, it is easy
to verify that each singular point is fold singularity.

For k = 2, the image of the analytic extension of the maxface to
ZMC surface coincides with the entire graph

(4.2) x0 = log
coshx1

coshx2

which is called the Scherk-type ZMC surface.

§Appendix A. Minimal surfaces in R
3

Here we review several examples of minimal surfaces in R3 which
are related to ZMC surfaces we constructed in this paper. For the detail
of these examples, see for example [3, 11, 12, 13].

Theorem A.1 (Weierstrass representation [15]). Let (g, η) be a
pair of a meromorphic function g and a holomorphic differential η on a
Riemann surface M so that

(A.1) (1 + |g|2)2ηη̄
gives a Riemannian metric on M . We set

(A.2) Φ =

⎛
⎝ (1− g2)η
i(1 + g2)η

2gη

⎞
⎠ .
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a = 0.9

a = 0.9 (the same surface as above with different lattice)

a → 1

Fig. 4.1. The limit of Schwarz H-type ZMC surface as a → 1.

Then

(A.3) f = Re

∫ z

z0

Φ : M → R
3 (z0 ∈ M)

defines a conformal minimal immersion. Moreover, f is single-valued
on M if and only if

(A.4) Re

∮
�

Φ = 0
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for any closed curve � on M . Conversely, any minimal surface can be
obtained in this manner.

The pair (g, η) in Theorem A.1 is called the Weierstrass data of f .

Remark A.2. To verify the periodicity of surfaces, consider the fol-
lowing map.

(A.5) Per(f) =

{
Re

∮
�

Φ ; � ∈ H1(M,Z)

}
.

The periodicity can be determined in the following way:

• If Per(f) = {0}, that is, f satisfies the condition (A.4) for any
closed curve � on M , then f : M → R3 is well-defined on M ,
that is, f is single-valued in R

3.
• If there exists only one direction v ∈ R3 \ {0} such that

Per(f) ⊂ Λ1 = {nv ; n ∈ Z},
then f is singly periodic. In this case, f is single-valued in
R

3/Λ1 ≈ R
2 × S1. (A surface invariant under screw-motions

Λ1 + R, where R is a rotation around an axis in the direction
of Λ1, is also singly periodic. See, for example, [2] and the
references therein.)

• If there exist two linearly independent vectors v1,v2 ∈ R
3 (with

span{v1,v2} uniquely determined) such that

Per(f) ⊂ Λ2 =

⎧⎨
⎩

2∑
j=1

njvj ; nj ∈ Z

⎫⎬
⎭ ,

then f is doubly periodic. In this case, f is single-valued in
R

3/Λ2 ≈ T 2 × R.
• If there exist three linearly independent vectors v1,v2,v3 ∈ R3

such that

Per(f) ⊂ Λ3 =

⎧⎨
⎩

3∑
j=1

njvj ; nj ∈ Z

⎫⎬
⎭ ,

then f is triply periodic. In this case, f is single-valued in
R3/Λ3 ≈ T 3.

Remark A.3. The first fundamental form ds2 and the second fun-
damental form II of the surface (A.3) are given by

ds2 =
(
1 + |g|2)2 ηη̄, II = −ηdg − ηdg.
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Moreover, g : M → C ∪ {∞} coincides with the composition of the
Gauss map G : M → S2 of the minimal surface and the stereographic
projection σ : S2 → C∪ {∞}, that is, g = σ ◦G. So we call g the Gauss
map of the minimal surface.

Remark A.4 (A historical remark about triply periodic minimal sur-
faces). The first examples of triply periodic minimal surfaces in R3 are
found by H. A. Schwarz in the 19th century [17]. Then in 1970, a NASA
scientist A. Schoen found many more examples, and he named three of
Schwarz’ examples P surface, D surface, and H family, because they have
the symmetry related to those of the primitive cubic lattice, diamond
crystal structure, and hexagonal crystal structure, respectively [16].

In 1989, H. Karcher found a 1-parameter family of triply periodic
minimal surfaces [12]. Since a half of the fundamental piece of the sur-
face looks like twisted (equilateral) trianglar catenoid (see Fig. A.1), he
named the family TT, but since the family contains both Schwarz P and
D surfaces, the family is now called rPD family. See for example [4].

Example A.5 (Schwarz rPD family). For a constant a ∈ (0,∞), we
set Ma a Riemann surface of genus 3 defined by the hyperelliptic curve

w2 = z(z3 − a3)(z3 + a−3).

We define the Weierstrass data

(A.6) g = z, η =
dz

w
.

Then

(A.7) fa =

⎛
⎝x1

x2

x3

⎞
⎠ = Re

∫ ⎛
⎝ 1− g2

i(1 + g2)
2g

⎞
⎠ η

gives a 1-parameter family {fa}0<a<∞ of embedded triply periodic mini-
mal surfaces in R3. This family is called the Schwarz rPD family. When
a = 1/

√
2, the surface coincides with Schwarz P surface, and when

a =
√
2, the surface coincides with Schwarz D surface.

As we mentioned in Remark A.4, a half of the fundamental piece
of rPD surface looks like “twisted” equilateral triangular catenoid. See
Fig. A.1.

Fig. A.2 shows the relation between Schwarz P and rPD for a =
1/
√
2.
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a = 0.1

a = 1.0

a = 10.0

Fig. A.1. Schwarz rPD surfaces.

Example A.6 (Schwarz H family). For a constant a ∈ (0,∞), we set
Ma a Riemann surface of genus 3 defined by the hyperelliptic curve

w2 = z(z3 + a3)(z3 + a−3).

Then the family {fa}0<a<1 of minimal surfaces (A.7) with the Weierstrass
data (A.6) is a family of embedded triply periodic minimal surfaces in
R

3. This family is called the Schwarz H family. As a → 0, fa, with
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a = 1/
√
2

Fig. A.2. Relation between Schwarz P and rPD.

rescaled by
√
a3 + a−3, converges to catenoid. Also, as a → 1, fa con-

verges to Karcher tower with k = 3 (see Example A.7).
A half of the fundamental piece of Schwarz H surface looks like

“non-twisted ” equilateral triangular catenoid. See Fig. A.3.
Fig. A.4 shows the conjugate surface of Schwarz H surface. Each

vertex of the hexagon in the right hand side figure lies in the straight
line parallel to x3-axis. Hence after reflections with respect to these
lines, we see that the surface has self-intersections.

Fig. A.3. Schwarz H surface (a = 0.5).

Example A.7 (Karcher tower). For an integer k ≥ 2, we define Mk

by

(A.8) Mk = (C ∪ {∞}) \ {z ∈ C ; z2k = −1}.
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Fig. A.4. The comjugate surface of Schwarz H surface
(a = 0.5).

Then the minimal surface (A.7) with the Weierstrass data

g = zk−1, η =
dz

z2k + 1

is embedded singly periodic with 2k ends in R
3. This minimal surface is

called the Karcher tower. When k = 2, this surface coincides with the
Scherk tower (the conjugate surface of doubly periodic Scherk surface).
See Fig. A.5.

k = 2 k = 3

Fig. A.5. The Karcher tower.
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