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Asymptotic directions on a surface in a
4-dimensional metric Lie group

Pierre Bayard and Federico Sánchez-Bringas

Abstract.

In this paper we introduce the notion of asymptotic directions of a
surface in a 4-dimensional riemannian manifold, and study the special
case of a surface in a 4-dimensional metric Lie group. It appears that
this notion depends on the left invariant metric in general.

§1. Introduction

The aim of this paper is to introduce the notion of asymptotic direc-
tions of a surface in a general 4-dimensional riemannian manifold, and
to study their first properties.

If M is a surface in a 4-dimensional riemannian manifold M̃ , we
define the asymptotic directions of M at a point x as the directions
of TxM which annulate a natural quadratic form δ : TxM → R: this
quadratic form is constructed from the generalized Gauss map ϕ : M →
Λ2TM̃ of the surface by the formula

δ(X) := −1

2
∇Xϕ ∧∇Xϕ

for allX ∈ TxM , where∇ denotes the Levi-Civita connection on Λ2TM̃ ;
it measures the complexity of the first variation of the tangent planes
of the surface at x. The construction is explained in details in the first
section of the paper. We show that these directions may be equiva-
lently defined in terms of the second fundamental form, or in terms of
the curvature ellipses of the surface; it appears that these directions
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are also the directions of higher contact of the surface with some 3-
dimensional totally geodesic spaces. So, the definition extends to a gen-
eral 4-dimensional riemannian manifold the notion of asymptotic direc-
tions for a surface in R

4.
We then study the special case of a surface in a Lie group equipped

with a left invariant metric. The case of a surface which is also a sub-
group is particularly interesting, since the asymptotic directions satisfy
a purely algebraic equation in that case. We then give an example show-
ing that the notion of asymptotic directions generally depends on the
invariant metric on the group; this is in contrast with the notion of as-
ymptotic directions on a surface in R

4, or more generally in a Lie group
if we consider only metrics which are bi-invariant. We then finish the
paper with the special case of a surface in a 3-dimensional subgroup of
a metric Lie group, and especially study the case of a surface in the 4-
dimensional hyperbolic space H

4, which is regarded as a Lie group with
a left invariant metric.

We quote some related papers: the notion of asymptotic directions
of a surface in R

4 has been widely studied, especially in relation to the
theory of singularities, see e.g. [5, 7]. It has been extended to other
pseudo-euclidian 4-dimensional spaces in [2, 3, 4].

The outline of the paper is as follows: we introduce the generalized
Gauss map and the asymptotic directions of a surface in a 4-dimensional
riemannian manifold in Section 2; we also show in the same section
that the principal properties of the asymptotic directions of a surface
in R

4 hold in this general setting. We then study in Section 3 the
notion of asymptotic directions on a surface in a 4-dimensional metric
Lie group, especially when the surface is also a subgroup, or belongs to a
3-dimensional subgroup. We finally recall the fundamental equations of
Gauss, Codazzi and Ricci in a short appendix, at the end of the paper.

§2. Asymptotic directions on a surface in a 4-dimensional
riemannian manifold

We assume here that M̃ is a 4-dimensional riemannian manifold,
with a given orientation, and denote by ∇ its Levi-Civita connection.
We suppose that F : M → M̃ is the immersion of an oriented surface
into M̃ . The purpose of the section is to define in that context the notion
of asymptotic directions of M into M̃, and study their first properties.

2.1. The generalized Gauss map

We consider, in a neighborhood U of xo ∈ M, a positively oriented
and orthonormal frame (e1, e2) of TM . The tangent planes of M in U



Asymptotic directions on a surface in a metric Lie group 165

may be represented by e1 ∧ e2, a local section of F ∗Λ2TM̃, the bundle
of the bivectors of TM̃, induced on M : we set

ϕ : U → F ∗Λ2TM̃

x �→ e1 ∧ e2 (x);

this map is a natural generalization of the Gauss map. The connection
∇ on TM̃ naturally induces a connection on F ∗Λ2TM̃, still denoted by
∇.

Lemma 2.1. For X ∈ Γ(TU), |X| = 1, we have the formula

(1) ∇Xϕ = B(X,X) ∧X⊥ +X ∧B(X,X⊥),

where B : TM × TM → E is the second fundamental form of M in M̃
(E denotes the normal bundle of M in M̃) and X⊥ is the tangent vector
obtained from X by a rotation of angle +π/2 in TM .

Proof. We assume that (e1, e2) is a positively oriented and or-
thonormal frame in U ⊂ M such that ∇Me1 = ∇Me2 = 0 at xo (∇M is
the Levi-Civita connection in M), and we compute

∇Xϕ = {∇Xe1} ∧ e2 + e1 ∧ {∇Xe2}
= B(X, e1) ∧ e2 + e1 ∧B(X, e2),

since B(X, ei) = ∇Xei at xo. We finally choose (e1, e2) such that e1 = X
and e2 = X⊥ at xo. Q.E.D.

Remark 1. Formula (1) has the following interpretation: at xo ∈
M, ∇Xϕ represents the infinitesimal rotation of the tangent planes of M
in the direction X in the 4-space TxoM̃, and (1) is its decomposition in
infinitesimal rotations in two 3-spaces: the first term B(X,X)∧X⊥ rep-
resents an infinitesimal rotation in the 3-space TxoM⊕B(X,X), around
the tangent direction X⊥, and the second term X ∧B(X,X⊥) an infin-
itesimal rotation in the 3-space TxoM ⊕ B(X,X⊥), around the tangent
direction X.

2.2. Asymptotic directions

We note that Λ4TxoM̃ 	 R, since M̃ is 4-dimensional (by fixing a

positively oriented and orthonormal frame of TxoM̃). This allows the
following definition:

Definition 2.1. Let us consider the quadratic map

δ : TxoM → R(2)

X �→ −1

2
∇Xϕ ∧∇Xϕ.
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We will say that X ∈ TxoM, X 
= 0, defines an asymptotic direction of
M at xo if δ(X) = 0.

Remark 2. By Lemma 2.1, for all X ∈ TxoM, |X| = 1,

(3) δ(X) = X ∧X⊥ ∧B(X,X) ∧B(X,X⊥),

and X is an asymptotic direction if and only if

B(X,X) ∧B(X,X⊥) = 0.

An asymptotic direction has the following interpretation: by Remark 1,
∇Xϕ represents an infinitesimal rotation of the tangent planes of M in
the direction X, and (1) is its decomposition in two infinitesimal rota-
tions in 3-spaces; we readily see that X is an asymptotic direction of M
if and only if the two 3-spaces in the decomposition (1) coincide: the in-
finitesimal rotation of the tangent planes of M in the direction X takes
place in a 3-dimensional space ⊂ TxoM̃, instead of in the whole 4-space

TxoM̃ ; this 3-dimensional space is an osculating 3-space of M in the
direction X. We will precise this fact in the next section.

Remark 3. The notion of asymptotic directions does not really de-
pend on the metric but rather on the associated connection: this no-
tion is in fact defined for a surface in a general 4-dimensional manifold
equipped with a linear connection. For example, in R

4, the notion of
asymptotic lines does not depend on the choice of the metric invariant
by translation: we have a unique notion in R

4, R3,1 or R
2,2, since the

Levi-Civita connection is the canonical connection in all these cases.
However, we will see that in a general Lie group we may have different
notions of asymptotic lines, since different left invariant metrics give
different Levi-Civita connections in general.

Similarly to the euclidean case R
4 [5], we obtain the following:

Proposition 2.2. If R̃ is the curvature tensor of M̃ and (e1, e2) and
(n1, n2) are positively oriented and orthonormal bases of the tangent and
the normal planes of M at xo, we set

K̃N := 〈R̃(e1, e2)(n2), n1〉.
The trace of δ is

trgδ = KN − K̃N

where KN = 〈RN (e1, e2)(n2), n1〉 is the normal curvature of M.
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We moreover define
Δ := detgδ.

By definition, M has an asymptotic direction at xo if and only if Δ ≤ 0;
it has two distinct asymptotic directions if and only if Δ < 0.

Proof. We set Bi = 〈B,ni〉, i = 1, 2. Let (X,X⊥) be an orthonor-
mal basis of TM . The Ricci equation (26) in the appendix reads

(4) KN − K̃N = 〈B(X,B∗(X⊥, n2)), n1〉 − 〈B(X⊥, B∗(X,n2)), n1〉.
We compute the right-hand side terms: since (X,X⊥) is an orthonormal
basis of TM, we have

B∗(X⊥, n2) = 〈B∗(X⊥, n2),X〉X + 〈B∗(X⊥, n2),X
⊥〉X⊥

= 〈B(X⊥,X), n2〉X + 〈B(X⊥,X⊥), n2〉X⊥

= B2(X
⊥,X)X +B2(X

⊥,X⊥)X⊥

and thus

〈B(X,B∗(X⊥, n2)), n1〉 = B1(X,B∗(X⊥, n2))

= B1(X,X)B2(X
⊥,X)

+B1(X,X⊥)B2(X
⊥,X⊥).

Similarly,

B∗(X,n2) = 〈B∗(X,n2),X〉X + 〈B∗(X,n2),X
⊥〉X⊥

= 〈B(X,X), n2〉X + 〈B(X,X⊥), n2〉X⊥

= B2(X,X)X +B2(X,X⊥)X⊥

and

〈B(X⊥, B∗(X,n2)), n1〉 = B1(X
⊥, B∗(X,n2))

= B1(X
⊥,X)B2(X,X)

+B1(X
⊥,X⊥)B2(X,X⊥).

The Ricci equation (4) thus reads

KN − K̃N = B1(X,X⊥)
(
B2(X

⊥,X⊥)−B2(X,X)
)

+B2(X
⊥,X)

(
B1(X,X)−B1(X

⊥,X⊥)
)
.
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On the other hand, we note that

δ(X) = X ∧X⊥ ∧B(X,X) ∧B(X,X⊥)

= X ∧X⊥ ∧ (B1(X,X)n1 +B2(X,X)n2) ∧ (B1(X,X⊥)n1

+B2(X,X⊥)n2)

= X ∧X⊥ ∧ n1 ∧ n2(B1(X,X)B2(X,X⊥)

−B2(X,X)B1(X,X⊥))

	 B1(X,X)B2(X,X⊥)−B2(X,X)B1(X,X⊥),

and similarly

δ(X⊥) = −B1(X
⊥,X⊥)B2(X

⊥,X) +B2(X
⊥,X⊥)B1(X

⊥,X).

We thus obtain

trgδ = δ(X) + δ(X⊥) = KN − K̃N .

Q.E.D.

Remark 4. Since the metric g is positive definite, we have

(trgδ)
2 ≥ 4 detgδ,

and thus the inequality

(KN − K̃N )2 ≥ 4Δ.

We may also interpret the invariants of δ in terms of the curvature ellipse
at xo, which is an ellipse in the plane normal to the surface at xo : the
curvature ellipse of M at xo is classically defined as

Exo := {B(X,X), X ∈ TxoM, |X| = 1} ⊂ Exo .

Since B(X,X⊥) is tangent to the ellipse at B(X,X), the direction X is
an asymptotic direction of M at xo if and only if the line (0, B(X,X)) ⊂
Exo is tangent to the ellipse Exo . Moreover, the sign of Δ has the
following interpretation: Δ > 0 if and only if the null vector 0 ∈ Exo

belongs to the interior of the ellipse Exo , Δ = 0 if and only if 0 belongs
to Exo , and Δ < 0 if and only 0 is exterior to the ellipse Exo . We omit

the proofs since they are similar to the case M̃ = R
4.
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2.3. Asymptotic directions and height functions

If ν is a vector in TxoM̃, we may define the height function on a
neighborhood U of xo in M by

hν : U → R

x �→ 〈ν, exp−1
xo

(x)〉,
where expxo

is the riemannian exponential map at xo (this is a local dif-

feomorphism between a neighborhood of 0 in TxoM̃ and a neighborhood

of xo in M̃). The function hν represents the “height” of U ⊂ M with re-

spect to the totally geodesic 3-dimensional submanifold expxo(ν
⊥) ⊂ M̃ .

We have the following:

Lemma 2.3. dhν = 0 at xo if and only if ν belongs to the normal
plane Exo . In that case, the hessian of hν is

(5) ∇Mdhν = Bν ,

where Bν is the quadratic form on TxoM such that

Bν(X,Y ) = 〈B(X,Y ), ν〉
for all X,Y ∈ TxoM . Here ∇M stands for the Levi-Civita connection
on M.

Proof. Let us set, for x belonging to a neighborhood Ũ of xo in M̃,

h̃ν(x) = 〈ν, exp−1
xo

(x)〉;

the function hν is the restriction of h̃ν to U ⊂ M . Let γ : (−ε, ε) → M̃

be the geodesic of M̃ such that γ(0) = xo and γ′(0) = v ∈ TxoM . By
definition of the exponential map, γ(t) = expxo

(tv). Thus

h̃ν(γ(t)) = t〈ν, v〉
and

dhν(v) = dh̃ν(v) =
d

dt |t=0
h̃ν(γ(t)) = 〈ν, v〉.

Thus dhν = 0 at xo if and only if 〈ν, v〉 = 0 for all v ∈ TxoM, that is ν
belongs to Exo . We now assume that u and v are vector fields defined

on Ũ , whose restrictions to U are tangent to M . By definition,

∇Mdhν(u, v) = ∂u{dhν(v)} − dhν(∇M
u v)

and
∇dh̃ν(u, v) = ∂u{dh̃ν(v)} − dh̃ν(∇uv),
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and thus

∇Mdhν(u, v)−∇dh̃ν(u, v) = −dh̃ν(∇M
u v −∇uv)

= dh̃ν(B(u, v))

= 〈ν,B(u, v)〉
= Bν(u, v).

Now, if γ is a geodesic of M̃,

d2

dt2
h̃ν(γ(t)) = ∇dh̃ν(γ

′(t), γ′(t)).

For γ(t) = expxo
(tv) we get h̃ν(γ(t)) = t〈ν, v〉, and deduce that

∇dh̃ν = 0. Identity (5) follows. Q.E.D.

The following proposition shows that an asymptotic direction corre-
sponds to a direction of higher contact between M and some totally
geodesic 3-dimensional submanifold:

Proposition 2.4. M admits an asymptotic direction X at xo if and
only if there exists ν ∈ Exo , |ν| = 1, such that X ∈ Ker ∇Mdhν .

Proof. We suppose that ν is a unit vector belonging to Exo ; by
Lemma 2.3, ∇Mdhν is degenerate if and only if so is Bν , i.e. there exists
X ∈ TxoM, |X| = 1, such that Bν(X, .) : TxoM → R is the null form.
But the later is equivalent to

Bν(X,X) = Bν(X,X⊥) = 0,

i.e. the normal vectors B(X,X) and B(X,X⊥) are both orthogonal to
ν. We thus get the following: there exists a unit vector ν ∈ Exo such
that ∇Mdhν is degenerate in the direction X if and only if B(X,X)
and B(X,X⊥) are colinear, that is if and only if X is an asymptotic
direction of M at xo. Q.E.D.

The direction ν appearing in the proposition is traditionally called a
binormal direction of the surface M at the point xo; see [7] for surfaces
in R

4.

Remark 5. We may interpret Proposition 2.4 as follows: if X is an
asymptotic direction of M at xo, then, for some open subset V ⊂ TxoM⊕
RB(X,X) ⊂ TxoM̃ containing 0, the totally geodesic 3-dimensional
manifold expxo

(V) has a contact with M of order ≥ 2 in the direction
X.
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§3. Asymptotic directions on a surface in a metric Lie group

We suppose here that M̃ is a Lie group G, and denote by G its Lie
algebra: G is the space of the left invariant vector fields on G, equipped
with the Lie bracket [., .] and is identified to the linear space tangent to
G at the identity. We consider the Maurer-Cartan form ω ∈ Ω1(G,G)
defined by

ωg(v) = Lg−1∗(v) ∈ G
for all v ∈ TgG, where Lg−1 denotes the left multiplication by g−1 on
G and Lg−1∗ : TgG → G is its differential. This form induces a bundle
isomorphism

TG → G× G(6)

(g, v) �→ (g, ωg(v)).

We note that a vector field X ∈ Γ(TG) is left invariant if ω(X) : G → G
is a constant map. We consider the canonical connection∇o onG defined
by

ω(∇o
XY ) = ∂X {ω(Y )}

for all X,Y ∈ Γ(TG), where ∂X stands for the usual derivative in the
direction X; it is left invariant, and such that ∇o

XY = 0 if X,Y are left
invariant vector fields.

3.1. Left invariant metrics and Levi-Civita connections

We now assume that a left invariant metric 〈., .〉 is given on G, and
denote by ∇ its Levi-Civita connection. Since ∇ is also left invariant,
there exists a left invariant tensor Γ belonging to T ∗G⊗T ∗G⊗TG such
that, for all X,Y ∈ Γ(TG),

(7) ∇XY = ∇o
XY + Γ(X,Y ).

Since Γ is left invariant, we may alternatively consider Γ as a bilinear
map

Γ : G × G → G
(X,Y ) �→ Γ(X,Y );

it is such that, for all X,Y ∈ G
(8) ∇XY = Γ(X,Y ).

By the Koszul formula, Γ is determined by the metric as follows: for all
X,Y, Z ∈ G,

(9) 〈Γ(X,Y ), Z〉 = 1

2
〈[X,Y ], Z〉+ 1

2
〈[Z,X], Y 〉 − 1

2
〈[Y,Z],X〉.
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Since ∇ is without torsion, we have, for all X,Y ∈ G,
(10) Γ(X,Y )− Γ(Y,X) = [X,Y ].

If we consider Γ as a map

G → Λ2G ⊂ End(G)
X �→ Γ(X) : Y �→ Γ(X,Y )

(note that Γ(X) : G → G is skew-symmetric since ∇ is compatible with
the metric), the curvature of ∇ is given by

(11) R(X,Y ) = [Γ(X),Γ(Y )]− Γ([X,Y ]) ∈ Λ2G
for all X,Y ∈ G, where the first bracket in the right-hand side stands
for the commutator of the endomorphisms.

3.2. A basic example: the Lie group H
n

Here we briefly describe the group structure on H
n, and refer to [6]

for further details. Let us set

H
n = {a = (a′, an) ∈ R

n : an > 0},
and, for a ∈ H

n, the similarity of Rn−1 (by a similarity we mean an
homothety composed by a translation)

ϕa : R
n−1 → R

n−1

x �→ anx+ a′.

The similarities of Rn−1 naturally form a group under composition, and
the bijection

ϕ : H
n → {similarities Rn−1 → R

n−1}
a �→ ϕa

induces a group structure on H
n : it is such that

(12) ab = (anb
′ + a′, anbn)

for all a, b ∈ H
n; the identity element is e = (0, 1) ∈ H

n. Let us denote
by (e1, e2, . . . , en) the canonical basis of TeH

n = R
n and keep the same

letters to denote the corresponding left invariant vector fields on H
n.

The Lie bracket may be easily seen to be given by

[ei, ej ] = 0 and [en, ei] = ei
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for i, j = 1, . . . , n− 1. This may also be written in the form

[X,Y ] = l(X)Y − l(Y )X

for all X,Y ∈ R
n, where l : R

n → R is the linear form such that
l(ei) = 0 if i ≤ n−1 and l(en) = 1. This property implies that every left
invariant metric on H

n has constant negative curvature −|l|2 [8, 6]. We
now suppose that a left invariant metric 〈., .〉 is given on H

n and define

gij = 〈ei, ej〉
for all i, j = 1, . . . , n; the structure constants Γk

ij , 1 ≤ i, j, k ≤ n associ-
ated to the Levi-Civita connection are defined by

Γ(ei, ej) =
n∑

k=1

Γk
ijek

for all i, j = 1, . . . , n, and are easily computed using the Koszul formula
(9): we have

(13) Γk
ij = gkngij − δikδjn

for all i, j, k = 1, . . . , n, where (gij)1≤i,j≤n = (gij)1≤i,j≤n
−1

.

3.3. The Gauss map and the quadratic form δ of a surface
in a metric Lie group

Since the Lie algebra G of the group is supposed to be equipped with
a scalar product, so is Λ2G. Let us still denote this scalar product by
〈., .〉. There is an other symmetric and bilinear form on Λ2G

∧ : Λ2G × Λ2G → R

(η, η′) �→ η ∧ η′,

where a fixed positively oriented and orthonormal basis of G is used to
identify Λ4G to R. The Hodge operator

∗ : Λ2G → Λ2G
η �→ ∗η

is the symmetric operator on Λ2G associated to the symmetric bilinear
form ∧ : it is defined by the relation

(14) η ∧ η′ = 〈∗η, η′〉
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for all η, η′ ∈ Λ2G. We set

Q := {η ∈ Λ2G : η ∧ η = 0 and 〈η, η〉 = 1}.
Q is the set of the oriented 2-planes in G. It is well known that Q is
naturally isometric to the product of spheres S2(

√
2/2)× S2(

√
2/2).

We now use the trivialization TG 	 G × G given in (6) to identify
vector fields on G with smooth maps G → G, and sections of Λ2TG with
smooth maps G → Λ2G. If M is an oriented surface immersed in G, and
(e1, e2) is a positively oriented and orthonormal frame of M defined in
some open set U ⊂ M, identifying the vector fields e1 and e2 to maps
U → G, the generalized Gauss map introduced in Section 2.1 reads

ϕ : M → Q ⊂ Λ2G(15)

x �→ e1 ∧ e2 (x).

If ϕ = e1 ∧ e2 belongs to Λ2G, we set, for all X ∈ G,
(16) Γ(X)(ϕ) = Γ(X)(e1) ∧ e2 + e1 ∧ Γ(X)(e2).

This formula extends in fact Γ(X) to a skew-symmetric operator Λ2G →
Λ2G. If M is a surface in G, the quadratic form δ defined in Section 2.2
reads as follows: for X ∈ TxoM,

δ(X) = −1

2
∇Xϕ ∧∇Xϕ

= −1

2
{∂Xϕ+ Γ(X)(ϕ)} ∧ {∂Xϕ+ Γ(X)(ϕ)} .

Note that it is distinct to the form δo(X) = − 1
2∂Xϕ ∧ ∂Xϕ (this form

is associated to the canonical connection of G, rather than to the Levi-
Civita connection).

3.4. Asymptotic directions on a 2-dimensional subgroup

Our purpose here is to study the special case of a 2-dimensional Lie
subgroup in G; this is a surface which admits a pair of left invariant
and orthonormal vector fields. We are principally concerned with the
question of the existence of the asymptotic directions on such a surface,
and their dependence on the left invariant metric. This is indeed the
simplest case in a Lie group since we will see that it reduces to an
algebraic problem; it moreover furnishes the first basic examples.

We suppose thatH is a 2-dimensional Lie subgroup of G, and denote
by H its Lie algebra: there exist two orthonormal and left invariant
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vector fields u1, u2 on H; since ϕ = ±u1 ∧ u2 we get ∂Xϕ = 0 and the
form δ of H simply reads

δ(X) = −1

2
Γ(X)(ϕ) ∧ Γ(X)(ϕ)

for all X ∈ H. By definition, the tangent direction X is an asymptotic
direction if δ(X) = 0, which is an algebraic condition since Γ is moreover
determined by the algebraic relation (9).

3.4.1. A first negative result : the case of a bi-invariant metric.

Proposition 3.1. If the metric on G is bi-invariant, then the qua-
dratic form δ on H is identically zero: all the tangent directions of H
are asymptotic directions.

We note that this result generalizes the trivial case of a plane through
0 in R

4.

Proof. Since the metric is left invariant and H is a subgroup, it is
sufficient to show that δ = 0 at the origin e ∈ H. Since the metric is
moreover bi-invariant, then Γ(X,Y ) = 1

2 [X,Y ] (see e.g. [1] p. 61). Let
us fix an orthonormal basis (u1, u2) of TeH. Then, for all X ∈ TeH,

δ(X) = u1 ∧ u2 ∧ Γ(X)(u1) ∧ Γ(X)(u2)

=
1

4
u1 ∧ u2 ∧ [X,u1] ∧ [X,u2].

Writing X = X1u1 +X2u2, we see that δ(X) = 0. Q.E.D.

3.4.2. An intermediate case: the group H
4. We consider here the

group H
4 with a left invariant metric 〈., .〉. The metric is not bi-invariant,

since the group H
4 is not unimodular. We keep the notation of Section

3.2, and introduce the vector Uo ∈ TeH
4 such that

l(X) = 〈Uo,X〉
for all X ∈ TeH

4. By the Koszul formula (9) the Levi-Civita connection
is easily seen to be given by the map

(17) Γ(X)(Y ) = −〈Y,Uo〉X + 〈X,Y 〉Uo

for all X,Y ∈ TeH
4. We note that an arbitrary linear plane in TeH

4

is also a sub-algebra of the Lie algebra of H
4, and thus generates a

2-dimensional subgroup. The following proposition shows that the 2-
dimensional subgroups are umbilic surfaces:
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Proposition 3.2. Let H be a 2-dimensional subgroup of H4. The
second fundamental form of H in H

4 is given by

B(X,Y ) = 〈X,Y 〉U⊥
o

for all X,Y ∈ TeH, where U⊥
o denotes the orthogonal projection of Uo

onto the plane normal to H at e. Moreover, H is a totally geodesic
surface if and only if U⊥

o = 0 that is Uo belongs to TeH.
In particular, on a 2-dimensional subgroup of H4 the quadratic dif-

ferential δ vanishes identically.

Proof. Let us extend X,Y ∈ TeH to left invariant vector fields on
H. The Levi-Civita connection of H4 on left invariant vector fields is
given by (17); the first result follows since the second fundamental form
is by definition the component normal to the surface of the covariant
derivative. Finally, δ = 0 by formula (3). Q.E.D.

The previous discussion contains the special case of the 4-dimen-
sional hyperbolic space with its usual metric, if the left invariant metric
is given at e by the canonical metric in TeH

4 = R
4 (ie gij = δij in

Section 3.2). Note that in that case the vector Uo is the last vector of
the canonical basis e4.

3.4.3. A first positive example: the group H
2 ×H

2. We consider

H
2 ×H

2 = {(x1, x3), x1 ∈ R, x3 > 0} × {(x2, x4), x2 ∈ R, x4 > 0}
with the product

((x1, x3), (x2, x4)) · ((x′
1, x

′
3), (x

′
2, x

′
4)) = ((x3x

′
1 + x1, x3x

′
3),

(x4x
′
2 + x2, x4x

′
4));

this is the natural structure on the product (recall that the group struc-
ture on H

2 is given by (12), with n = 2). We also consider the subgroup

H = {((x1, 1), (x2, 1)), x1, x2 ∈ R},
and denote by

e1 = ((1, 0), (0, 0)) and e2 = ((0, 0), (1, 0))

the natural basis of TeH ⊂ Te(H
2 × H

2). We moreover suppose that a
left invariant metric is given on H

2 ×H
2.

Proposition 3.3. The subgroup H has two asymptotic directions at
every point ; moreover the two asymptotic directions depend on the left
invariant metric 〈., .〉. Especially, e1, e2 are the two asymptotic directions
at e ∈ H if and only if the left invariant metric is such that 〈e1, e2〉 = 0.
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Proof. Let us also consider the vectors

e3 = ((0, 1), (0, 0)) and e4 = ((0, 0), (0, 1)).

The Lie algebra structure of H2 ×H
2 is given by

[e3, e1] = −[e1, e3] = e1, [e4, e2] = −[e2, e4] = e2

and the other brackets are zero. The Koszul formula (9) implies that Γ
is given by the following formula: for i, j ∈ {1, 2},

(18) Γ(ei, ej) =
1

2
gij

4∑
k=1

(
gk(i+2) + gk(j+2)

)
ek.

Since the metric is left invariant and H is a subgroup, we only have to
do the computations at the origin e ∈ H. Let us fix an orthonormal
basis (u1, u2) of TeH. Then, for all X ∈ TeH,

δ(X) = u1 ∧ u2 ∧ Γ(X)(u1) ∧ Γ(X)(u2).

Since u1 ∧ u2 is proportional to e1 ∧ e2, and Γ(X)(u1) ∧ Γ(X)(u2) is
proportional to Γ(X)(e1) ∧ Γ(X)(e2), δ(X) = 0 if and only if

Γ(X)(e1) ∧ Γ(X)(e2) =
∑

1≤i<j≤4

cij(X) ei ∧ ej

is such that c34(X) = 0. A straightforward computation using (18) then
shows that, for X = X1e1 +X2e2,

c34(X) =
1

2

(
g33g44 − (g34)2

) (
g12g11X

2
1 + 2g11g22X1X2 + g12g22X

2
2

)
.

Thus δ(X) = 0 if and only if

(19) g12g11X
2
1 + 2g11g22X1X2 + g12g22X

2
2 = 0.

The discriminant of this quadratic form is

g11g22
(
g212 − g11g22

)
< 0,

which proves that there always exist two distinct asymptotic directions;
by (19) they clearly depend on the metric, and e1, e2 are these asymp-
totic directions if and only if g12 = 〈e1, e2〉 = 0. Q.E.D.

Remark 6. Note that, by contrast, the notion of asymptotic direc-
tions for a general surface in R

4 does not depend on the metric since the
Levi-Civita connection of a left invariant metric always coincide with the
canonical connection in that case (the Koszul formula (9) with [., .] = 0
yields Γ = 0, whatever the invariant metric is).
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3.5. Asymptotic directions on a surface in a 3-dimensional
subgroup

We consider here a 4-dimensional metric Lie group G, and a 3-
dimensional subgroup H of G. Our purpose is to study the asymptotic
directions of a surface belonging to H. Let G and H denote the Lie
algebras of G and H. We fix (u1, u2, u3, u4) an orthonormal basis of
G such that (u1, u2, u3) is a basis of H. If M is a surface in H, then its
Gauss map is of the form

ϕ =
∑

1≤i<j≤3

aij ui ∧ uj ∈ Λ2H

where aij , 1 ≤ i < j ≤ 3 are smooth functions on M, and, for X ∈ TM,

∂Xϕ =
∑

1≤i<j≤3

∂Xaij ui ∧ uj ∈ Λ2H.

Thus ∂Xϕ ∧ ∂Xϕ = 0 and

(20) δ(X) = −∂Xϕ ∧ Γ(X)ϕ− 1

2
Γ(X)ϕ ∧ Γ(X)ϕ

for all X ∈ TM . We note that Λ2H 	 H since dimH = 3, and the
Gauss map ϕ is equivalent to a map

N : M → S2 ⊂ H
x �→ N(x),

where N(x) is a unit vector normal to M at x, translated to the Lie
algebra H by left multiplication: precisely, if ∗ : Λ2G → Λ2G stands for
the Hodge operator, we have

ϕ = ∗(N ∧ u4).

We note that, as it is usual, dN : TM → TS2 may be regarded as an
operator of TM ; it is related to ∇N by the formula

(21) ∇XN = dN(X) + Γ(X)N

for all X ∈ TM (see (7)).
3.5.1. The group R

4. If G = R
4, then H = R

3 ⊂ R
4, Γ = 0, δ = 0,

and we recover the well known fact that all the tangent directions of a
surface in R

3 ⊂ R
4 are asymptotic directions.



Asymptotic directions on a surface in a metric Lie group 179

3.5.2. The group H
4. In that case, the situation is different:

Proposition 3.4. Let G be the group H
4, equipped with a left in-

variant metric, and let H be a 3-dimensional subgroup of G. Recall that
Uo ∈ G is such that (17) holds. If M is a surface belonging to H, then
we have the following :

(1) If Uo belongs to H then all the directions in TM are asymptotic
directions of M.

(2) If Uo does not belong to H, then X ∈ TM is an asymptotic
direction of M if and only if it is a principal direction of M,
i.e. is such that

(22) ∇XN = λX

for some λ belonging to R.

Remark 7. The connection ∇ in (22) is the Levi-Civita connection
of G; let us note that ∇N also coincides with the covariant derivative
of N with respect to the Levi-Civita connection of H, since, by (21)
and (17), it is in fact tangent to H. Thus ∇N : TM → TM is a
symmetric operator and (22) implies that the asymptotic directions are
two orthogonal directions in the case (2) (if moreover ∇N is not an
homothety of TM).

Remark 8. If H
4 is equipped with the left invariant metric such

that the canonical basis (e1, e2, e3, e4) of TeH
4 = R

4 is orthonormal (see
Section 3.2 ), then H

4 is the usual hyperbolic space, and a 3-dimensional
sub-algebra H of TeH

4 may be assumed to be generated by vectors of
the form e1, e2, λe3 + μe4, with λ, μ 
= (0, 0). In that case Uo = e4,
and Uo belongs to H if and only if λ = 0. Thus, by the proposition,
denoting by H the subgroup generated by H, if λ = 0 then all the tangent
directions of a surface in H are asymptotic directions, and if λ 
= 0 then
the asymptotic directions of a surface in H coincide with its principal
directions.

Proof. We first note that, for all X ∈ TM,

(23) Γ(X)ϕ = p(Uo) ∧X⊥

where p(Uo) is the orthogonal projection of Uo onto the normal plane
of M . Indeed, if ϕ = e1 ∧ e2 and X = X1e1 +X2e2, a straightforward
computation using (16) and (17) gives

Γ(X)ϕ = X1 (Uo − 〈e1, Uo〉e1) ∧ e2 −X2 (Uo − 〈e2, Uo〉e2) ∧ e1

= X1 p(Uo) ∧ e2 −X2 p(Uo) ∧ e1,
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since
p(Uo) = Uo − 〈e1, Uo〉e1 − 〈e2, Uo〉e2.

This gives (23) since
X1e2 −X2e1 = X⊥.

Thus Γ(X)ϕ ∧ Γ(X)ϕ = 0 and (20) reads

δ(X) = −∂Xϕ ∧ p(Uo) ∧X⊥.

Since ∂Xϕ = ∗(∂XN∧u4) and writing p(Uo) = αN+βu4, with α, β ∈ R,
we get

δ(X) = −α ∗ (∂XN ∧ u4) ∧N ∧X⊥ − β ∗ (∂XN ∧ u4) ∧ u4 ∧X⊥.

The first right-hand side term is zero since the bivectors ∗(∂XN ∧ u4)
and N ∧ X⊥ belong to Λ2H and dimH = 3. For the second term, we
note that by the very definition (14) of the Hodge operator ∗ and since
∗∗ = idΛ2G , we have

∗η ∧ η′ 	 〈η, η′〉
for all η, η′ ∈ Λ2G, which implies in particular

∗(∂XN ∧ u4) ∧ u4 ∧X⊥ = 〈∂XN ∧ u4, u4 ∧X⊥〉
= −〈∂XN,X⊥〉.

Observing that

∇XN − ∂XN = Γ(X)N = −〈N,Uo〉X
(by (21) and (17)), we finally get

(24) δ(X) = β〈∇XN,X⊥〉
for all X ∈ TM.

If β = 〈Uo, u4〉 is zero, then δ = 0, which gives the first claim of
the proposition. If now β 
= 0, then δ(X) = 0 if and only if ∇XN is
orthogonal to X⊥, i.e. is colinear to X; this is the second claim of the
proposition. Q.E.D.

§Appendix A. The fundamental equations

We recall here the equations of Gauss, Ricci and Codazzi for an
immersion of a submanifold M into a riemannian manifold M̃ : let us
denote by R̃ the curvature tensor of M̃, RT and RN the curvature tensors
of the connections on TM and on the normal bundle E, B : TM×TM →
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E the second fundamental form and B∗ : TM × E → TM the bilinear
map such that for all X,Y ∈ Γ(TM) and N ∈ Γ(E)

〈B(X,Y ), N〉 = 〈Y,B∗(X,N)〉;
then we have, for all X,Y, Z ∈ Γ(TM) and N ∈ Γ(E),

(1) the Gauss equation

(25) (R̃(X,Y )Z)T = RT (X,Y )Z −B∗(X,B(Y,Z)) +B∗(Y,B(X,Z)),

(2) the Ricci equation

(26) (R̃(X,Y )N)N = RN (X,Y )N−B(X,B∗(Y,N))+B(Y,B∗(X,N)),

(3) the Codazzi equation

(27) (R̃(X,Y )Z)N = ∇̃XB(Y,Z)− ∇̃Y B(X,Z);

in the last equation, ∇̃ denotes the natural connection on T ∗M⊗T ∗M⊗
E.
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