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The theory of graph-like Legendrian unfoldings :
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Abstract.

This is a half survey article on the recent development of the theory
of graph-like Legendrian unfoldings which is the sequel to the previous
surveys. The notion of big Legendrian submanifolds was introduced
by Zakalyukin for describing the wave front propagations. Graph-like
Legendrian unfoldings belong to a special class of big Legendrian sub-
manifolds. In particular, natural equivalence relations among graph-
like Legendrian unfoldings are introduced and geometric properties of
these equivalence relations are investigated. Although this is a survey
article, some new original results and proofs for some implicitly known
results are given.

§1. Introduction

The notion of graph-like Legendrian unfoldings was introduced in
[14]. It belongs to a special class of the big Legendrian submanifolds
which Zakalyukin introduced in [38, 39]. There have been some devel-
opments on this theory during past two decades [14, 15, 19, 20, 21]. This
is a sequel to a survey article on the theory of graph-like Legendrian un-
foldings and its applications [24]. The results in the first half part of this
paper have been already presented, implicitly or explicitly, in the above
articles. The later half of this paper focuses on natural equivalence re-
lations among big Legendrian submanifolds and graph-like Legendrian
unfoldings as a special case. Some of the results here explain how the the-
ory of graph-like Legendrian unfoldings is useful for applying to many
situations related to the theory of Lagrangian singularities (caustics).
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The caustic is described as the set of critical values of the projection
of a Lagrangian submanifold from the phase space onto the configura-
tion space. Moreover, it has been known that caustics equivalence (i.e.,
diffeomorphic caustics) does not imply Lagrangian equivalence. This is
one of the main differences from the theory of Legendrian singularities.
In the theory of Legendrian singularities, wave fronts equivalence (i.e.,
diffeomorphic wave fronts) implies Legendrian equivalence generically.

On the other hand, in the real world, the caustics given by refracted
rays are visible. However, the wave front propagations are not visible.
We give a picture of the caustic generated by the rays through a wine
glass (cf. Fig.1).

Fig.1: The caustic generated by the ray through a wine glass.
The picture was taken at A-TABLE in Sapporo.

We can observe the caustic but cannot observe the wave front propaga-
tion of the rays. However, if we draw the pictures of the parallels (cf.
Fig.2) and the normal lines of a parabola (cf. Fig.3) respectively, we
can observe the caustic (i.e. the evolute), the wave front propagation
(i.e. the parallels) and the family of the rays (i.e. the lines) respectively.
Therefore, we can say that there are hidden structures (i.e., wave front
propagations and the family of the rays) on the picture of caustics in
the real world.
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Fig.2: The parallels and Fig.3: The normal lines and
the evolute of a parabola. the evolute of a parabola.
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In fact, caustics are a subject of classical physics (i.e. optics). The cor-
responding Lagrangian submanifold is, however, deeply related to the
semi-classical approximation of quantum mechanics (cf. [9, 12, 29]).
Moreover, it was believed around 1989 that the correct framework to
describe the parallels of a curve is the theory of big wave fronts [2].
But it was pointed out that A1 and A2 bifurcations do not occur as
the parallels of curves [3, 7]. Therefore, the framework of the theory
of big wave fronts is too wide for describing the parallels of curves.
The theory of the graph-like Legendrian unfoldings was introduced to
construct the correct framework for the parallels of a curve in [14]. In
order to understand such geometric properties, we introduce natural five
equivalence relations among big Legendrian submanifolds. In particular,
S.P+-Legendrian equivalence is a key notion to understand the relations
between the wave front propagation and the caustics, which was intro-
duced in [15, 40] independently for different purposes. One of the main
results in the theory of graph-like Legendrian unfoldings is Theorem 6.1
which reveals the relation between caustics and wave front propagations
by using S.P+-Legendrian equivalence. In Example 6.11 we give exam-
ples of Lagrangian submanifolds with diffeomorphic caustics but are not
Lagrangian equivalent. Those examples are famous examples. However,
we clarify the reason why these have diffeomorphic caustics but are not
Lagrangian equivalent geometrically. Moreover, those examples explain
the situation that even if the phase portraits of wave front propagations
are different but those are Lagrangian equivalent (cf. Fig.7 and Fig.10).
Here, the phase portrait means that the picture of the arrangement of
both the caustics and the family of momentary fronts.

We give two examples of applications of the theory of wave front
propagations in §8. One of the examples is a brief explanation of the
results on the stability of caustics formulated in the framework of
Hamiltonian systems by Jänich [27] and Wassermann [35]. They adopted
the notion of universal unfoldings with respect to A-equivalence (i.e.
right-left equivalence). However, it is known that the Lagrangian sta-
bility of the caustic is equivalent to the universality of unfoldings with
respect to R+-equivalence (i.e. right equivalence) [1, 9, 12, 37]. There-
fore, their stability of caustics is not corresponding to the Lagrangian
stability. In this paper we show that their stability for caustics is equiv-
alent to the s-P -Legendrian stability for the corresponding graph-like
Legendrian unfolding (cf. Theorems 7.9 and 8.11).

Another example is a survey on the caustics of world hyper-sheets
in the Lorentz-Minkowski space-time [22, 23]. A world hyper-sheet in
the Lorentz-Minkowski space-time is a timelike hypersurface formed by
a one-parameter family of spacelike submanifolds of codimension two
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in the ambient space. Each spacelike submanifold in the world hyper-
sheet is called a momentary space. We consider the family of lightlike
hypersurfaces along monetary spaces in the world hyper-sheet. In [4, 5]
Bousso and Randall considered that the locus of the singularities (the
lightlike focal sets) of lightlike hypersurfaces along momentary spaces
form a caustic in the Lorentz-Minkowski space-time. This construction is
originally from the theoretical physics (the string theory, the brane world
scenario, the cosmology, and so on). We call it a BR-caustic of the world
hyper-sheet. We have no notion of the time constant in the relativity
theory. Hence everything that is moving depends on the time. Therefore,
we have to consider world hyper-sheets in the relativity theory. Even if
we consider a fixed light source (i.e. a shining surface) in the Euclidean
3-space, it must be a world hyper-sheet in the 4-dimensional Lorentz-
Minkowski space-time. So the caustic in the Euclidean 3-space is a slice
of the BR-caustic of the world hyper-sheet with a spacelike hyperplane.
Since the parameter of a world hyper-sheet is intrinsically given, we
really need the theory of graph-like Legendrian unfoldings for the study
of BR-caustics.

§2. Lagrangian and Legendrian singularities

We give a brief review of the local theory of Lagrangian and Leg-
endrian singularities. We have already written surveys on these theory
in several articles [17, 24, 26]. However, it is better to explain the basic
results in those theories here again.

Firstly, we consider the cotangent bundle π : T ∗Rn → Rn over
R

n. Let (x, p) = (x1, . . . , xn, p1, . . . , pn) be the canonical coordinates on
T ∗Rn. Then the canonical symplectic structure on T ∗Rn is given by
the canonical two form ω =

∑n
i=1 dpi ∧ dxi. Let i : L ⊂ T ∗

R
n be a

submanifold. We say that i is a Lagrangian submanifold if dimL = n
and i∗ω = 0. In this case, the set of critical values of π ◦ i is called
the caustic of i : L ⊂ T ∗Rn, which is denoted by CL. One of the main
results in the theory of Lagrangian singularities is the description of
Lagrangian submanifold germs by using families of function germs. Let
F : (Rk × R

n, 0) → (R, 0) be an n-parameter unfolding of a function
germ f = F |Rk×{0} : (Rk, 0) → (R, 0). We say that F is a Morse family
of functions if the map germ

ΔF =

(
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × R

n, 0) → (Rk, 0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk ×Rn, 0). In
this case, we have a smooth n-dimensional submanifold germ C(F ) =
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(ΔF )−1(0) ⊂ (Rk × Rn, 0) and a map germ L(F ) : (C(F ), 0) → T ∗Rn

defined by

L(F )(q, x) =

(
x,

∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

We can show that L(F )(C(F )) is a Lagrangian submanifold germ. It is
known ([1], page 300) that all Lagrangian submanifold germs in T ∗Rn

are constructed by the above method. A Morse family of functions
F : (Rk×Rn, 0) → (R, 0) is said to be a generating family of L(F )(C(F )).

We now define a natural equivalence relation among Lagrangian
submanifold germs. Let i : (L, p) ⊂ (T ∗Rn, p) and i′ : (L′, p′) ⊂
(T ∗

R
n, p′) be Lagrangian submanifold germs. Then we say that i and

i′ are Lagrangian equivalent if there exist a symplectic diffeomorphism
germ τ̂ : (T ∗

R
n, p) → (T ∗

R
n, p′) and a diffeomorphism germ

τ : (Rn, π(p)) → (Rn, π(p′)) such that (τ̂(L), p′) = (L′, p′) as set germs
and π ◦ τ̂ = τ ◦ π, where π : (T ∗

R
n, p) → (Rn, π(p)) is the canonical

projection. Here τ̂ is said to be a symplectic diffeomorphism germ if it
is a diffeomorphism germ such that τ̂∗ω = ω. Then the caustic CL is
diffeomorphic to the caustic CL′ by the diffeomorphism germ τ . We say
that L and L′ are caustics equivalent if there is a diffeomorphism germ
τ : (Rn, π(p)) → (Rn, π(p′)) such that (τ(CL), π(p

′)) = (CL′ , π(p′))
as set germs. It is known that caustic equivalence does not imply
Lagrangian equivalence even generically (cf. Example 6.11).

We can interpret the Lagrangian equivalence by using the notion
of generating families. Let F,G : (Rk × Rn, 0) → (R, 0) be func-
tion germs. We say that F and G are P -R+-equivalent if there exist
a diffeomorphism germ Φ : (Rk × Rn, 0) → (Rk × Rn, 0) of the form
Φ(q, x) = (φ1(q, x), φ2(x)) and a function germ h : (Rn, 0) → (R, 0) such
that G(q, x) = F (Φ(q, x)) + h(x). For any F1 : (Rk × Rn, 0) → (R, 0)

and F2 : (Rk′ × R
n, 0) → (R, 0), F1 and F2 are said to be stably P -R+-

equivalent if they become P -R+-equivalent after the addition to the ar-
guments qi of new arguments q′i and to the functions Fi of non-degenerate
quadratic forms Qi in the new arguments, i.e., F1 +Q1 and F2 +Q2 are
P -R+-equivalent.

Let F : (Rk ×Rn, 0) → (R, 0) be a Morse family of functions and Ek
the local ring of function germs of q = (q1, . . . , qk) variables at the origin
with the unique maximal ideal Mk = {h ∈ Ek | h(0) = 0}. We say that
F is an infinitesimally R+-versal unfolding of f = F |Rk×{0} (cf. [6]) if

Ek = Jf +

〈
∂F

∂x1
|Rk×{0}, . . . ,

∂F

∂xn
|Rk×{0}

〉
R

+ 〈1〉
R
,
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where f = F |Rk×{0} and

Jf =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q)

〉
Ek

.

Remark 2.1. There is a definition of Lagrangian stability (cf. [1,
§21.1]) of a Lagrangian submanifold germ. In this paper we do not need
the original definition of Lagrangian stability, so that we omit to give
the definition.

Then we have the following fundamental theorem of the theory of
Lagrangian singularities (cf. [1]):

Theorem 2.2. Let F : (Rk × Rn, 0) → (R, 0) and G : (Rk′ ×
R

n, 0) → (R, 0) be Morse families of functions. Then we have the fol-
lowing :
(1) L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent if and only
if F and G are stably P -R+-equivalent.
(2) L(F )(C(F )) is Lagrangian stable if and only if F is an infinitesimally
R+-versal unfolding of f = F |Rk×{0}.

On the other hand, we give a brief review on the theory of Legen-
drian singularities. Let π : PT ∗(Rm) → R

m be the projective cotangent
bundle over Rm. This fibration can be considered as a Legendrian fi-
bration with the canonical contact structure K on PT ∗(Rm). We now
review geometric properties of this space. Consider the tangent bundle
τ : TPT ∗(Rm) → PT ∗(Rm) and the differential map dπ : TPT ∗(Rm) →
TRm of π. For anyX ∈ TPT ∗(Rm), there exists an element α ∈ T ∗(Rm)
such that τ(X) = [α]. For an element V ∈ Tx(R

m), the property
α(V ) = 0 does not depend on the choice of representative of the class
[α]. Thus we can define the canonical contact structure on PT ∗(Rm) by
K = {X ∈ TPT ∗(Rm)|τ(X)(dπ(X)) = 0}. We have the trivialization
PT ∗(Rm) ∼= R

m×P (Rm∗) and we call (x, [ξ]) homogeneous coordinates,
where x = (x1, . . . , xm) ∈ Rm and [ξ] = [ξ1 : · · · : ξm] are homogeneous
coordinates of the dual projective space P (Rm∗). It is easy to show that
X ∈ K(x,[ξ]) if and only if

∑m
i=1 μiξi = 0, where dπ(X) =

∑n
i=1 μi

∂
∂xi

.

Let Φ : (Rm, 0) → (Rm, 0) be a diffeomorphism germ. Then we have a

unique contact diffeomorphism germ Φ̂ : PT ∗Rm → PT ∗Rm defined by

Φ̂(x, [ξ]) = (Φ(x), [ξ ◦ dΦ(x)(Φ
−1)]). We call Φ̂ the contact lift of Φ.

A submanifold i : L ⊂ PT ∗(Rm) is said to be a Legendrian sub-
manifold if dimL = m − 1 and dip(TpL ) ⊂ Ki(p) for any p ∈ L . We
also call π ◦ i = π|L : L → R

m a Legendrian map and W (L ) = π(L )
a wave front of i : L ⊂ PT ∗(Rm). We say that a point p ∈ L is a
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Legendrian singular point if rank d(π|L )p < m − 1. In this case π(p) is
the singular point of W (L ).

The main tool of the theory of Legendrian singularities is also the
notion of generating families. Let F : (Rk×R

m, 0) → (R, 0) be a function
germ. We say that F is a Morse family of hypersurfaces if the map germ

Δ∗F =

(
F,

∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × R

m, 0) → (R× R
k, 0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xm) ∈ (Rk × Rm, 0).
In this case we have a smooth (m− 1)-dimensional submanifold germ

Σ∗(F ) =

{
(q, x) ∈ (Rk × R

m, 0)
∣∣∣ F (q, x) =

∂F

∂qi
(q, x) = 0, i = 1, . . . , k

}
and a map germ LF : (Σ∗(F ), 0) → PT ∗

R
m defined by

LF (q, x) =

(
x,

[
∂F

∂x1
(q, x) : · · · : ∂F

∂xm
(q, x)

])
.

We can show that LF (Σ∗(F )) ⊂ PT ∗(Rm) is a Legendrian submani-
fold germ. It is known ([1, page 320]) that all Legendrian submanifold
germs in PT ∗(Rm) are constructed by the above method. We call F a
generating family of LF (Σ∗(F )). Therefore the wave front is given by

W (LF (Σ∗(F ))=
{
x ∈ R

m |∃q ∈ R
k s.t (q, x) ∈ Σ∗(F )

}
.

Since the Legendrian submanifold germ i : (L , p) ⊂ (PT ∗
R

n, p) is
uniquely determined on the regular part of the wave front W (L ), we
have the following simple but significant property of Legendrian sub-
manifold germs [39].

Proposition 2.3 (Zakalyukin). Let i : (L , p) ⊂ (PT ∗Rm, p) and
i′ : (L ′, p′) ⊂ (PT ∗

R
m, p′) be Legendrian submanifold germs such that

π ◦ i, π ◦ i′ are proper map germs and the sets singularities of these map
germs are nowhere dense respectively. Then (L , p) = (L ′, p′) if and
only if (W (L ), π(p)) = (W (L ′), π(p′)).

In order to understand the ambiguity of generating families for a
fixed Legendrian submanifold germ we introduce the following equiv-
alence relation among Morse families of hypersurfaces. For function
germs F,G : (Rk × Rm, 0) → (R, 0), we say that F and G are strictly
parametrized K-equivalent (briefly, S.P -K-equivalent) if there exists a dif-
feomorphism germ Ψ : (Rk×Rm, 0) → (Rk×Rm, 0) of the form Ψ(q, x) =
(ψ1(q, x), x) for (q, x) ∈ (Rk×R

m, 0) such that Ψ∗(〈F 〉Ek+m
) = 〈G〉Ek+m

.
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Here Ψ∗ : Ek+m → Ek+m is the pull back R-algebra isomorphism defined
by Ψ∗(h) = h ◦ Ψ. The definition of stably S.P -K-equivalence among
Morse families of hypersurfaces is similar to the definition of stably
P -R+-equivalence among Morse families of functions. The following is
the key lemma of the theory of Legendrian singularities (cf. [1, 10, 37]).

Lemma 2.4 (Zakalyukin). Let F : (Rk × Rm, 0) → (R, 0) and

G : (Rk′ × Rm, 0) → (R, 0) be Morse families of hypersurfaces. Then
(LF (Σ∗(F )), p) = (LG(Σ∗(G)), p) if and only if F and G are stably
S.P -K-equivalent.

Let F : (Rk × R
m, 0) → (R, 0) be a Morse family of hypersur-

faces and Φ : (Rm, 0) → (Rm, 0) a diffeomorphism germ. We define
Φ∗F : (Rk × Rm, 0) → (R, 0) by Φ∗F (q, x) = F (q,Φ(x)). Then we have
(1Rq × Φ)(Σ∗(Φ∗F )) = Σ∗(F ) and

LΦ∗F (Σ∗(Φ∗F ))=

{(
x,

[(
∂F

∂x
(q,Φ(x))

)
◦ dΦx

])∣∣∣(q,Φ(x)) ∈ Σ∗(F )

}
,

so that Φ̂(LΦ∗F (Σ∗(Φ∗F ))) = LF (Σ∗(F )) as set germs.

Proposition 2.5. Let F : (Rk × R
m, 0) → (R, 0) and G : (Rk′ ×

Rm, 0) → (R, 0) be Morse families of hypersurfaces. For a diffeomor-

phism germ Φ : (Rm, 0) → (Rm, 0), Φ̂(LG(Σ∗(G))) = LF (Σ∗(F )) if
and only if Φ∗F and G are stably S.P -K-equivalent.

Proof. Since Φ̂(LΦ∗F (Σ∗(Φ∗F ))) = LF (Σ∗(F )), we have

LΦ∗F (Σ∗(Φ∗F )) = LG(Σ∗(G)).

By Lemma 2.4, the assertion holds. �

We say that LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent if
there exists a diffeomorphism germ Φ : (Rm, 0) → (Rm, 0) such that the
condition in the above proposition holds. By Proposition 2.3, with the
generic condition on F and G, Φ(W (LG(Σ∗(G)))) = W (LF (Σ∗(F )))

if and only if Φ̂(LG(Σ∗(G))) = LF (Σ∗(F )) for a diffeomorphism germ
Φ : (Rm, 0) → (Rm, 0).

For function germs F,G : (Rk × Rm, 0) → (R, 0), we say that F
and G are parametrized K-equivalent (briefly, P -K-equivalent) if there
exists a diffeomorphism germ Ψ : (Rk × Rm, 0) → (Rk × Rm, 0) of the
form Ψ(q, x) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × R

m, 0) such that
Ψ∗(〈F 〉Ek+m

) = 〈G〉Ek+m
. We also say that F is an infinitesimally K-

versal unfolding of f = F |Rk×{0} if

Ek = Te(K)(f) +

〈
∂F

∂x1
|Rk×{0}, . . . ,

∂F

∂xn
|Rk×{0}

〉
R

,
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where f = F |Rk×{0} and

Te(K)(f) = Jf + 〈f〉Ek
=

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q)

〉
Ek

.

Remark 2.6. There is a definition of Legendrian stability (cf. [1,
§21.1]) of a Legendrian submanifold germ. In this paper we do not need
the original definition of Legendrian stability, so that we omit to give
the definition.

Then we have the following fundamental theorem of the theory of
Legendrian singularities (cf. [1, 37]):

Theorem 2.7. Let F : (Rk ×Rm, 0) → (R, 0), G : (Rk′ ×Rm, 0) →
(R, 0) be Morse families of hypersurfaces. Then we have the following :
(1) LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent if and only if
F and G are stably P -K-equivalent.
(2) LF (Σ∗(F )) is Legendrian stable if and only if F is an infinitesimally
K-versal unfolding of f = F |Rk×{0}.

We have the following classification theorem as a corollary of Propo-
sition 2.3 and Theorem 2.7 (cf. [16, Proposition A.4]).

Theorem 2.8. Let F : (Rk ×R
m, 0) → (R, 0), G : (Rk′ ×R

m, 0) →
(R, 0) be Morse families of hypersurfaces. Suppose that LF (Σ∗(F )) and
LG(Σ∗(G)) are Legendrian stable. Then the following conditions are
equivalent :
(1) LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent,
(2) f = F |Rk×{0} and g = G|

Rk′×{0} are stably K-equivalent,

(3) W (LF (Σ∗(F ))) and W (LG(Σ∗(G))) are diffeomorphic as set germs.

Remark 2.9. We say that f, g : (Rk, 0) → (R, 0) are K-equivalent
if there exists a diffeomorphism germ φ : (Rk, 0) → (Rk, 0) such that
φ∗(〈f〉Ek

) = 〈g〉Ek
. We also say that f is r-determined relative to K if f

and g are K-equivalent for any g ∈ Mk with f−g ∈ Mr+1
k . Suppose that

f and g are r-determined relative to K. Then it is known that f and g are
K-equivalent if and only if Qr(f) and Qr(g) are isomorphic as R-algebras
(cf. [30]), where Qr(f) = Ek/(〈g〉Ek

+Mr+1
k ). Moreover, it is known that

f = F |Rk×{0} is m + 1-determined if F : (Rk × R
m, 0) → (R, 0) is an

infinitesimally K-versal unfolding of f (cf. [28]). Therefore, condition
(2) in the above theorem can be replace by the following condition:
(2′) Qm+2(f) and Qm+2(g) are isomorphism as R-algebras.
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§3. Theory of the wave front propagations

In this section we give a brief survey of the theory of wave front
propagations (for details, see [1, 14, 39, 40], etc). We consider one pa-
rameter families of wave fronts and their bifurcations. The principal
idea is that a one parameter family of wave fronts is considered to be
a wave front whose dimension is one dimension higher than each mem-
ber of the family. This is called a big wave front. We consider the
case when m = n + 1 and distinguish space and time coordinates, so
that we denote that R

n+1 = Rn × R and coordinates are denoted by
(x, t) = (x1, . . . , xn, t) ∈ R

n×R. Then we consider the projective cotan-
gent bundle π : PT ∗(Rn × R) → Rn × R. Because of the trivialization
PT ∗(Rn×R) ∼= (Rn×R)×P ((Rn×R)∗), we have homogeneous coordi-
nates ((x1, . . . , xn, t), [ξ1 : · · · : ξn : τ ]). We remark that PT ∗(Rn ×R) is
a fiber-wise compactification of the 1-jet space as follows: We consider
an affine open subset Uτ = {((x, t), [ξ : τ ])|τ �= 0} of PT ∗(Rn × R). For
any ((x, t), [ξ : τ ]) ∈ Uτ , we have

((x1, . . . , xn, t), [ξ1 : · · · : ξn : τ ])

= ((x1, . . . , xn, t), [−(ξ1/τ) : · · · : −(ξn/τ) : −1]),

so that we may adopt the corresponding affine coordinates

((x1, . . . , xn, t), (p1, . . . , pn)),

where pi = −ξi/τ . On Uτ we can easily show that θ−1(0) = K|Uτ , where
θ = dt − ∑n

i=1 pidxi. This means that Uτ can be identified with the
1-jet space which is denoted by J1

GA(R
n,R) ⊂ PT ∗(Rn×R). We call the

above coordinates a system of graph-like affine coordinates. Throughout
this paper, we use this identification.

For a Legendrian submanifold i : L ⊂ PT ∗(Rn × R), the corre-
sponding wave front π ◦ i(L ) = W (L ) is called a big wave front. We
call

Wt(L ) = π1(π
−1
2 (t) ∩W (L )) (t ∈ R)

a momentary front (or, a small front) for each t ∈ (R, 0), where π1 :
Rn × R → Rn and π2 : Rn × R → R are the canonical projections
defined by π1(x, t) = x and π2(x, t) = t respectively. In this sense, we
call L a big Legendrian submanifold. We say that a point p ∈ L is a
space-singular point if rank d(π1 ◦ π|L )p < n and a time-singular point
if rank d(π2 ◦ π|L )p = 0, respectively. By definition, if p ∈ L is a
Legendrian singular point, then it is a space-singular point of L . Even
if we have no Legendrian singular points, we have space-singular points.
In this case we have the following lemma.
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Lemma 3.1 ([24]). Let i : L ⊂ PT ∗(Rn × R) be a big Legendrian
submanifold without Legendrian singular points. If p ∈ L is a space-
singular point of L , then p is not a time-singular point of L .

The discriminant of the family {Wt(L )}t∈(R,0) is defined as the
image of singular points of π1|W (L ). In the general case, the discriminant
consists of three components: the caustic CL = π1(Σ(W (L )), where
Σ(W (L )) is the set of singular points of W (L ) (i.e, the critical value
set of the Legendrian mapping π|L ), the Maxwell stratified set ML ,
the projection of the closure of the self intersection set of W (L ); and
also of the critical value set ΔL of π1|W (L )\Σ(W (L )). In [19, 40], it
has been stated that ΔL is the envelope of the family of momentary
fronts. However, we remark that ΔL is not necessarily the envelope of
the family of the projection of smooth momentary fronts π(Wt(L )). It
can be happened that π−1

2 (t)∩W (L ) is non-singular but π1|π−1
2 (t)∩W (L )

has singularities, so that ΔL is the set of critical values of the family of
mappings π1|π−1

2 (t)∩W (L ) for smooth π−1
2 (t) ∩W (L ) (cf. [24, §5]).

For any Legendrian submanifold germ i : (L , p0) ⊂ (PT ∗(Rn ×
R), p0), there exists a generating family. Let F : (Rk × (Rn × R), 0) →
(R, 0) be a Morse family of hypersurfaces. In this case, we call F a big
Morse family of hypersurfaces. Then Σ∗(F) = Δ∗(F)−1(0) is a smooth
n-dimensional submanifold germ. By the previous arguments, we have
a big Legendrian submanifold LF (Σ∗(F)) where

LF (q, x, t) =
(
x, t,

[
∂F
∂x

(q, x, t) :
∂F
∂t

(q, x, t)

])
,

and[
∂F
∂x

(q, x, t) :
∂F
∂t

(q, x, t)

]
=

[
∂F
∂x1

(q, x, t) : · · · : ∂F
∂xn

(q, x, t) :
∂F
∂t

(q, x, t)

]
.

§4. Equivalence relations

We now consider five equivalence relations among big Legendrian
submanifolds. Let i : (L , p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L ′, p′0) ⊂
(PT ∗(Rn × R), p′0) be big Legendrian submanifold germs. Then we re-
spectively say that i : (L , p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L ′, p′0) ⊂
(PT ∗(Rn × R), p′0) are

(1) strictly parametrized Legendrian equivalent (or, briefly S.P -
Legendrian equivalent) if there exists a diffeomorphism germ
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Φ : (Rn × R, π(p0)) → (Rn × R, π(p′0)) of the form Φ(x, t) =

(φ1(x), t) such that Φ̂(L ) = L ′ as set germs,
(2) space-time Legendrian equivalent (briefly, (s, t)-Legendrian

equivalent) if there exists a diffeomorphism germ Φ : (Rn ×
R, π(p0)) → (Rn×R, π(p′0)) of the form Φ(x, t) = (φ1(x), φ2(t))

such that Φ̂(L ) = L ′ as set germs,
(3) i and i′ are strictly parametrized+ Legendrian equivalent (briefly,

S.P+-Legendrian equivalent) if there exists a diffeomorphism
germ Φ : (Rn × R, π(p0)) → (Rn × R, π(p′0)) of the form

Φ(x, t) = (φ1(x), t+α(x)) such that Φ̂(L ) = L ′ as set germs,
(4) i and i′ are time parametrized Legendrian equivalent (briefly,

t-P -Legendrian equivalent) if there exists a diffeomorphism
germ Φ : (Rn × R, π(p0)) → (Rn × R, π(p′0)) of the form

Φ(x, t) = (φ1(x, t), φ2(t)) such that Φ̂(L ) = L ′ as set germs,
(5) i and i′ are space parametrized Legendrian equivalent (briefly,

s-P -Legendrian equivalent) if there exists a diffeomorphism
germ Φ : (Rn × R, π(p0)) → (Rn × R, π(p′0)) of the form

Φ(x, t) = (φ1(x), φ2(x, t)) such that Φ̂(L ) = L ′ as set germs,

where Φ̂ : (PT ∗(Rn × R), p0) → (PT ∗(Rn × R), p′0) is the unique con-
tact lift of Φ. We remark that (s, t)-Legendrian equivalence looks a
natural equivalence relation among big Legendrian submanifold germs.
It induces, however, the isomorphisms among divergent diagrams R ←
Rn×R → Rn on the base space which is not a geometric subgroup of A
or K in the sense of Damon [8]. Although S.P -Legendrian equivalence
relation gets rid of the difficulty for the (s, t)-Legendrian equivalence
relation, there appear function moduli for generic classifications in very
low dimensions (cf. [11], [24, §5]). In order to avoid the function mod-
uli, we define the S.P+-Legendrian equivalence among big Legendrian
submanifolds, which has been independently introduced in [15, 40] for
different purposes. If we have a generic classification of big Legendrian
submanifold germs by S.P+-Legendrian equivalence, then we have a
classification by the S.P -Legendrian equivalence modulo function mod-
uli. See [15, 40] for details. This equivalence relation plays an important
role in the theory of graph-like Legendrian unfoldings. By definition, (1)
implies (2) and (2) implies (4). Moreover, (1) implies (3) and (3) implies
(5). The weakest equivalence (5) preserves the diffeomorphism type of
CL ∪ ML ∪ ΔL . Moreover (4) preserve the bifurcations of monetary
fronts, which was deeply investigated and given a generic classification
by Zakalyukin [39]. We used s-P -Legendrian equivalence among big
Legendrian submanifolds for applying to the geometry of world sheets
in in Lorentz-Minkowski space [22]. We can also define the notion of
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stability of Legendrian submanifold germs with respect to all the above
equivalence relations which are analogous to the stability of Legendrian
submanifold germs with respect to Legendrian equivalence (cf. [1, Part
III]).

On the other hand, the assumption in Proposition 2.3 is a generic
condition for i, i′. Here, we denote that G = S.P, (s, t), S.P+, t-P or s-P .
Concerning the discriminant and the bifurcation of momentary fronts,
we define the following equivalence relation among big wave front germs.
Let i : (L , p0) ⊂ (PT ∗(Rn × R), p0) and i′ : (L ′, p′0) ⊂ (PT ∗(Rn ×
R), p′0) be big Legendrian submanifold germs. We say that W (L )
and W (L ′) are G-diffeomorphic if there exists a diffeomorphism germ
Φ : (Rn × R, π(p0)) → (Rn × R, π(p′0)) of the form corresponding to the
diffeomorphism germ in the list of G-Legendrian equivalence such that
Φ(W (L )) = W (L ′) as set germs. We also call Φ a G-diffeomorphism
germ. We remark that a G-diffeomorphism among big wave front germs
preserves the diffeomorphism types of CL ∪ML ∪ΔL . By Proposition
2.3, we have the following proposition.

Proposition 4.1. Let i : (L , p0) ⊂ (PT ∗(Rn × R), p0) and i′ :
(L ′, p′0) ⊂ (PT ∗(Rn×R), p′0) be big Legendrian submanifold germs such
that π ◦ i, π ◦ i′ are proper map germs and the sets of critical points of
these map germs are nowhere dense respectively. Then i and i′ are G-
Legendrian equivalent if and only if (W (L ), π(p0)) and (W (L ′), π(p′0))
are G-diffeomorphic.

Proof. By definition, if i and i′ are G-Legendrian equivalent, then
(W (L ), π(p0)) and (W (L ′), π(p′0)) are G-diffeomorphic. For the con-
verse, suppose that there exists a G-diffeomorphism germ Φ : (Rn ×
R, π(p0)) → (Rn×R, π(p′0)) such that Φ(W (L )) = W (L ′) as set germs.

Then Φ̂(L ) is a big Legendrian submanifold such that W (Φ̂(L )) =

Φ(W (L )) = W (L ′) as set germs. By Proposition 2.3, we have Φ̂(L ) =
L ′. This completes the proof. �

We explain s-P -Legendrian equivalence and S.P+-Legendrian equiv-
alence can be investigated by using the notion of generating families of
Legendrian submanifold germs. For t-P -Legendrian equivalence, [39] is
a good survey, so that we omit the detail here.

Let f, g : (Rk × R, 0) → (R, 0) be function germs. We say that
f and g are P -K-equivalent if there exists a diffeomorphism germ Φ :
(Rk × R, 0) → (Rk × R, 0) of the form Φ(q, t) = (φ1(q, t), φ2(t)) such
that 〈f ◦ Φ〉Ek+1

= 〈g〉Ek+1
. We also say that f and g are S.P -K-

equivalent if these are P -K-equivalent by the diffeomorphism Φ of the
form Φ(q, t) = (φ1(q, t), t). Let F ,G : (Rk × (Rn × R), 0) → (R, 0)
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be function germs. We say that F and G are space-P -K-equivalent
(or, briefly, s-P -K-equivalent) if there exists a diffeomorphism germ
Ψ : (Rk × (Rn × R), 0) → (Rk × (Rn × R), 0) of the form Ψ(q, x, t) =
(φ(q, x, t), φ1(x), φ2(x, t))) such that 〈F ◦Ψ〉Ek+n+1

= 〈G〉Ek+n+1
. We also

say that F and G are space-S.P+-K-equivalent (or, briefly, s-S.P+-K-
equivalent) if these are s-P -K-equivalent by the diffeomorphism germ Ψ
of the form Ψ(q, x, t) = (φ(q, x, t), φ1(x), t + α(x)). The notion of P -K-
versal unfoldings and S.P+-K-versal unfoldings play important roles for
our purpose. We define the extended tangent spaces of f : (Rk×R, 0) →
(R, 0) relative to P -K by

Te(P -K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek+1

+

〈
∂f

∂t

〉
E1

and the extended tangent spaces of f relative to S.P+-K by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek+1

+

〈
∂f

∂t

〉
R

,

respectively. Then we say that F an infinitesimally P -K-versal unfolding
of f = F|Rk×{0}×R if it satisfies

Ek+1 = Te(P -K)(f) +

〈
∂F
∂x1

|Rk×{0}×R, . . . ,
∂F
∂xn

|Rk×{0}×R

〉
R

and it is an infinitesimally S.P+-K-versal unfolding of f = F|Rk×{0}×R

if it satisfies

Ek+1 = Te(S.P
+-K)(f) +

〈
∂F
∂x1

|Rk×{0}×R, . . . ,
∂F
∂xn

|Rk×{0}×R

〉
R

,

respectively. We can show the following theorem analogous to those in
[15, 39, 40]. We only remark here that the proof is analogous to the
proof of [1, Theorem in §21.4].

Theorem 4.2 ([15, 24, 40]). Let F : (Rk×(Rn×R), 0) → (R, 0) and

G : (Rk′ × (Rn × R), 0) → (R, 0) be big Morse families of hypersurfaces.
Then
(1) LF (Σ∗(F)) and LG(Σ∗(G)) are s-P -Legendrian equivalent if and
only if F and G are stably s-P -K-equivalent.
(2) LF (Σ∗(F)) is s-P -Legendre stable if and only if F is an infinitesi-
mally P -K-versal unfolding of f = F|Rk×{0}×R.

(3) LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian equivalent if and
only if F and G are stably s-S.P+-K-equivalent.
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(4) LF (Σ∗(F)) is S.P+-Legendre stable if and only if F is an infinites-
imally S.P+-K-versal unfolding of f = F|Rk×{0}×R.

§5. Graph-like Legendrian unfoldings

In this section we explain the theory of graph-like Legendrian un-
foldings. Graph-like Legendrian unfoldings belong to a special class
of big Legendrian submanifolds. A big Legendrian submanifold i :
L ⊂ PT ∗(Rn × R) is said to be a graph-like Legendrian unfolding if
L ⊂ J1

GA(R
n,R). We call W (L ) = π(L ) a graph-like wave front of

L , where π : J1
GA(R

n,R) → R
n × R is the canonical projection. We

define a mapping Π : J1
GA(R

n,R) → T ∗Rn by Π(x, t, p) = (x, p), where
(x, t, p) = (x1, . . . , xn, t, p1, . . . , pn) and the canonical contact form on
J1
GA(R

n,R) is given by θ = dt−∑n
i=1 pidxi. Here, T

∗Rn is a symplectic
manifold with the canonical symplectic structure ω =

∑n
i=1 dpi ∧ dxi

(cf. [1]). Then we have the following proposition.

Proposition 5.1 ([19]). For a graph-like Legendrian unfolding L ⊂
J1
GA(R

n,R), z ∈ L is a singular point of π|L : L → R
n × R if and

only if it is a singular point of π1 ◦ π|L : L → Rn. Moreover, Π|L :
L → T ∗

R
n is immersive, so that Π(L ) is a Lagrangian submanifold in

T ∗Rn.

We have the following corollary of Proposition 5.1.

Corollary 5.2 ([19]). For a graph-like Legendrian unfolding L ⊂
J1
GA(R

n,R), ΔL is the empty set, so that the discriminant of the family
of momentary fronts is CL ∪ML .

Since L is a big Legendrian submanifold in PT ∗(Rn × R), it has
a generating family F : (Rk × (Rn × R), 0) → (R, 0) at least locally.
Since L ⊂ J1

GA(R
n,R) = Uτ ⊂ PT ∗(Rn × R), it satisfies the condition

(∂F/∂t)(0) �= 0. Let F : (Rk×(Rn×R), 0) → (R, 0) be a big Morse fam-
ily of hypersurfaces. We say that F is a graph-like Morse family of hy-
persurfaces if (∂F/∂t)(0) �= 0. It is easy to show that the corresponding
big Legendrian submanifold germ is a graph-like Legendrian unfolding.
Of course, all graph-like Legendrian unfolding germs can be constructed
by the above way. We say that F is a graph-like generating family of
LF (Σ∗(F)). We remark that the notion of graph-like Legendrian un-
foldings and corresponding generating families have been introduced in
[14] to describe the perestroikas of wave fronts given as the solutions
for general eikonal equations. In this case, there is an additional con-
dition. We say that F : (Rk × (Rn × R), 0) → (R, 0) is non-degenerate
if F satisfies the conditions (∂F/∂t)(0) �= 0 and Δ∗F|Rk×Rn×{0} is a
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submersion germ. In this case we call F a non-degenerate graph-like
generating family. We have the following proposition.

Proposition 5.3 ([24]). Let F : (Rk × (Rn × R), 0) → (R, 0) be a
graph-like Morse family of hypersurfaces. Then F is non-degenerate if
and only if π2 ◦ π|LF (Σ∗(F)) is submersive.

We say that a graph-like Legendrian unfolding L ⊂ J1
GA(R

n,R) is
non-degenerate if π2 ◦ π|L is submersive. Non-degeneracy was assumed
for general graph-like Legendrian unfoldings when the notion of graph-
like Legendrian unfoldings was introduced in [14]. However, during the
last two decades, we have clarified the situation and non-degeneracy is
now defined as above.

We can consider the following more restrictive class of graph-like
generating families: Let F be a graph-like Morse family of hypersurfaces.
By the implicit function theorem, there exists a function F : (Rk ×
Rn, 0) → (R, 0) such that

〈F(q, x, t)〉Ek+n+1
= 〈F (q, x)− t〉Ek+n+1

.

Then we have the following proposition.

Proposition 5.4 ([24]). Let F : (Rk×(Rn×R), 0) → (R, 0) and F :
(Rk × Rn, 0) → (R, 0) be function germs such that 〈F(q, x, t)〉Ek+n+1

=
〈F (q, x)−t〉Ek+n+1

. Then F is a graph-like Morse family of hypersurfaces
if and only if F is a Morse family of functions.

We now consider the case F(q, x, t) = λ(q, x, t)(F (q, x)− t). In this
case,

Σ∗(F) = {(q, x, F (q, x)) ∈ (Rk × (Rn × R), 0) | (q, x) ∈ C(F )},
where C(F ) = ΔF−1(0). Moreover, we have the Lagrangian submani-
fold germ L(F )(C(F )) ⊂ T ∗

R
n, where

L(F )(q, x) =

(
x,

∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

Since F is a graph-like Morse family of hypersurfaces, we have a big
Legendrian submanifold germ LF (Σ∗(F)) ⊂ J1

GA(R
n,R), where LF :

(Σ∗(F), 0) → J1
GA(R

n,R) ∼= T ∗
R

n × R is defined by

LF (q, x, t) =

⎛⎜⎜⎝x, t,−
∂F
∂x1

(q, x, t)

∂F
∂t

(q, x, t)
, . . . ,−

∂F
∂xn

(q, x, t)

∂F
∂t

(q, x, t)
,

⎞⎟⎟⎠ .
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We also define a map germ LF : (C(F ), 0) → J1
GA(R

n,R) by

LF (q, x) =

(
x, F (q, x),

∂F

∂x1
(q, x), . . . ,

∂F

∂xn
(q, x)

)
.

Since ∂F/∂xi = ∂λ/∂xi(F−t)+λ∂F/∂xi and ∂F/∂t = ∂λ/∂t(F−t)−λ,
we have ∂F/∂xi(q, x, t) = λ(q, x, t)∂F/∂xi(q, x, t) and ∂F/∂t(q, x, t) =
−λ(q, x, t) for (q, x, t) ∈ Σ∗(F). It follows that LF (C(F )) = LF (Σ∗(F)).
By definition, we have Π(LF (Σ∗(F))) = Π(LF (C(F ))) = L(F )(C(F )).
The graph-like wave front of LF (Σ∗(F)) = LF (C(F )) is the graph of
F |C(F ). This is the reason why we call it a graph-like Legendrian un-
folding. For a non-degenerate graph-like Morse family of hypersurfaces,
we have the following proposition.

Proposition 5.5 ([24]). With the same notations as Proposition
5.4, F is a non-degenerate graph-like Morse family of hypersurfaces if
and only if F is a Morse family of hypersurfaces. In this case, F is also
a Morse family of functions such that(

∂F

∂x1
(0), . . . ,

∂F

∂xn
(0)

)
�= 0.

The momentary front for a fixed t ∈ (R, 0) is Wt(L ) = π1(π
−1
2 (t)∩

W (L )). We define Lt = L ∩(π2◦π)−1(t) = L ∩(T ∗Rn×{t}) under the
canonical identification J1

GA(R
n,R) ∼= T ∗

R
n × R. Then Π(L ) ⊂ T ∗

R
n

and π̃ ◦ Π(Lt) ⊂ PT ∗Rn, where π̃ : T ∗Rn → PT ∗(Rn) is the canonical
projection. We also have the canonical projections π : T ∗

R
n → R

n and
� : PT ∗Rn → Rn such that π1 ◦ π = π ◦ Π and � ◦ π̃ = π. Then we
have the following proposition.

Proposition 5.6 ([24]). Let L ⊂ J1
GA(R

n,R) be a non-degenerate
graph-like Legendrian unfolding. Then π̃ ◦ Π(Lt) is a Legendrian sub-
manifold in PT ∗(Rn).

The momentary front Wt(L ) of a big Legendrian submanifold L ⊂
PT ∗(Rn × R) is not necessarily a wave front of a Legendrian subman-
ifold in the ordinary sense, generally. However, for a non-degenerate
Legendrian unfolding in J1

GA(R
n,R), we have the following corollary.

Corollary 5.7. [24] Let L ⊂ J1
GA(R

n,R) be a non-degenerate
graph-like Legendrian unfolding. Then the momentary front Wt(L ) is
the wave front set of the Legendrian submanifold π̃ ◦Π(Lt) ⊂ PT ∗(Rn).
Moreover, the caustic CL is the caustic of the Lagrangian submanifold
Π(L) ⊂ T ∗Rn. In other words, Wt(L ) = �(π̃ ◦ Π(Lt)) and CL is the
singular value set of π|Π(L ).
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§6. S.P+-Legendrian equivalence among graph-like Legendrian
unfoldings

In this section we describe the properties of S.P+-Legendrian equiv-
alence among graph-like Legendrian unfoldings. For a graph-like Morse
family of hypersurfaces F(q, x, t) = λ(q, x, t)(F (q, x)− t), F(q, x, t) and
F (q, x, t) = F (q, x) − t are s-S.P+-K-equivalent, so that we consider
F (q, x, t) = F (q, x) − t as a graph-like Morse family. Moreover, by
Proposition 5.4, F (q, x) is a Morse family of functions. We now sup-
pose that F (q, x) is a Morse family of functions. Consider the graph-like
Morse family of hypersurfaces F (q, x, t) = F (q, x)− t which is not neces-
sarily non-degenerate. Then we have LF (Σ∗(F )) = LF (C(F )). We also

denote that f(q, t) = f(q) − t for any f ∈ Mk. We can represent the
extended tangent space of f : (Rk × R, 0) → (R, 0) relative to S.P+-K
by

Te(S.P
+-K)(f) =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q)− t

〉
Ek+1

+ 〈1〉R.

For a unfolding F : (Rk × Rn × R, 0) → (R, 0) of f, F is infinitesimally
S.P+-K-versal unfolding of f if and only if

Ek+1 = Te(S.P
+-K)(f) +

〈
∂F

∂x1
|Rk×R×{0}, . . . ,

∂F

∂xn
|Rk×R×{0}

〉
R

.

We compare the equivalence relations between Lagrangian subman-
ifold germs and induced graph-like Legendrian unfoldings. As a con-
sequence, we give a relationship between caustics and graph-like wave
fronts.

Theorem 6.1 ([19, 25]). Let F : (Rk × R
n × R, 0) → (R, 0) and

G : (Rk′ × Rn × R, 0) → (R, 0) be graph-like Morse families of hyper-
surfaces of the forms F(q, x, t) = λ(q, x, t)(F (q, x)− t) and G(q′, x, t) =
μ(q′, x, t)(G(q′, x)−t). Then Lagrangian submanifold germs L(F )(C(F ))
and L(G)(C(G)) are Lagrangian equivalent if and only if the graph-like
Legendrian unfoldings LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian
equivalent.

Proof. By Theorem 2.2, if L(F )(C(F )) and L(G)(C(G)) are Lagrangian
equivalent, then F and G are stably P -R+-equivalent. In this case we
may assume that k = k′ and F and G are P -R+-equivalent, so that
there exist a diffeomorphism germ Φ : (Rk × R

n, 0) → (Rk × R
n, 0) of

the form Φ(q, x) = (φ1(q, x), φ(x)) and a function α : (Rn, 0) → R such
that G(q, x) = F ◦Φ(q, x)+α(x). Then we define a diffeomorphism germ
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Φ̃ : (Rk×Rn×R, 0) → (Rk×Rn×R, 0) by Φ̃(q, x, t) = (φ1(q, x), φ(x), t−
α(x)). It follows that G(q, x) − t = F ◦ Φ(q, x) + t − α(x). This means
that G and F are s-S.P+-K-equivalent. By Theorem 4.2, LF (Σ∗(F))
and LG(Σ∗(G)) are S.P+-Legendrian equivalent. For the converse asser-
tion, we assume that LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian
equivalent. By the assumption, there exists a diffeomorphism germ
Φ : (Rn × R, 0) → (Rn × R, 0) of the form Φ(x, t) = (φ1(x), t + α(x))

such that Φ̂(LF (Σ∗(F))) = LG(Σ∗(G)). Then we have Φ−1(x, t) =
(φ−1

1 (x), t− α(φ−1
1 (x))), so that the Jacobi matrix is

JΦ(x,t)Φ
−1 =

⎛⎜⎝ ∂φ−1
1

∂x
(φ1(x)) 0

−∂α ◦ φ−1
1

∂x
(φ1(x)) 1

⎞⎟⎠ .

It follows that

Φ̂((x, t), [ξ : τ ])=

(
Φ(x, t),

[
ξ · ∂φ

−1
1

∂x
(φ1(x))− τ

∂α ◦ φ−1
1

∂x
(φ1(x)) : τ

])
.

Since τ �= 0,[
ξ · ∂φ

−1
1

∂x
(φ1(x))− ∂α ◦ φ−1

1

∂x
(φ1(x)) : τ

]
=

[
− ξ

τ
· ∂φ

−1
1

∂x
(φ1(x)) +

∂α ◦ φ−1
1

∂x
(φ1(x)) : −1

]
.

We consider the graph-like affine coordinates ((x, t), p) ∈ J1
GA(R

n,R),

where p = − ξ

τ
. Then we have Φ̂(J1

GA(R
n,R)) = J1

GA(R
n,R) and

Φ̂((x, t), p) =

(
φ1(x), t+ α(x), p · ∂φ

−1
1

∂x
(φ1(x)) +

∂α ◦ φ−1
1

∂x
(φ1(x))

)
.

We now define a map φ̃1 : T ∗
R

n → T ∗
R

n by

φ̃1(x, p) =

(
φ1(x), p · ∂φ

−1
1

∂x
(φ1(x)) +

∂α ◦ φ−1
1

∂x
(φ1(x))

)
.

Since Φ̂ is a contact diffeomorphism germ, there exists a function germ

μ : J1
GA(R

n,R) → R with μ(x, t, p) �= 0 such that Φ̂∗θ = μθ. Therefore,
we have

dt+ dα− φ̃1

∗
(p · dx) = μ(dt− p · dx) = μdt− μ(p · dx),
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so that μ ≡ 1. It follows that −p · dx = dα− φ̃1

∗
(p · dx). Thus we have

φ̃1

∗
(ω) = φ̃1

∗
(d(p · dx)) = dφ̃1

∗
(p · dx) = d(p · dx) = ω.

This means that φ̃1 is a symplectic diffeomorphism germ (i.e. Lagrangian

diffeomorphism germ). Since Π◦ Φ̂|J1
GA(R

n,R) = φ̃1 ◦Π|J1
GA(R

n,R), we
have

L(G)(C(G)) = Π(LG(Σ∗(G))) = Π ◦ Φ̂(LF (Σ∗(F)))

= φ̃1(Π(LF (Σ∗(F))) = φ̃1(L(F )(C(F ))).

This completes the proof. �

By definition, the set of Legendrian singular points of a graph-
like Legendrian unfolding LF (Σ∗(F)) coincides with the set of singular
points of π ◦ L(F ). Therefore the singularities of graph-like wave fronts
of LF (Σ∗(F)) lie on the caustics of L(F ). It follows that we can apply
Proposition 4.1 to S.P+-Legendrian equivalence.

Corollary 6.2 ([25]). Suppose that π|LF (Σ∗(F)), π|LG(Σ∗(G)) are
proper map germs and the both sets of Legendrian singular points of
graph-like Legendrian unfoldings LF (Σ∗(F)), LG(Σ∗(G)) are no-where
dense respectively. Then the following conditions are equivalent :
(1) Lagrangian submanifold germs L(F )(C(F )), L(G)(C(G)) are
Lagrangian equivalent,
(2) graph-like wave fronts W (LF (Σ∗(F))), W (LG(Σ∗(G))) are S.P+-
diffeomorphic.

Moreover, we have the following direct corollary of Theorem 6.1.

Corollary 6.3 ([21]). Suppose that F(q, x, t) = λ(q, x, t)(F (q, x)−
t) is a graph-like Morse family of hypersurfaces. Then LF (Σ∗(F)) is
S.P+-Legendrian stable if and only if L(F )(C(F )) is Lagrangian stable.

If a Lagrangian submanifold germ L(F )(C(F )) is Lagrangian sta-
ble, then π|LF (Σ∗(F)) is a proper map germ and the regular set of this
map germ is dense. Hence we can apply Proposition 4.1 to our situa-
tion and obtain the following theorem on the relations among graph-like
Legendrian unfoldings and Lagrangian singularities.

Theorem 6.4 ([24]). Let F : (Rk × R
n × R, 0) → (R, 0) and

G : (Rk′ × Rn × R, 0) → (R, 0) be graph-like Morse families of hyper-
surfaces of the forms F(q, x, t) = λ(q, x, t)(F (q, x)− t) and G(q′, x, t) =
μ(q′, x, t)(G(q′, x)− t) such that LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-
Legendrian stable. Then the following conditions are equivalent :
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(1) LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian equivalent,
(2) F and G are stably s-S.P+-K-equivalent,
(3) f(q, t) = F (q, 0) − t and g(q′, t) = G(q′, 0) − t are stably S.P -K-
equivalent,
(4) f(q) = F (q, 0) and g(q′) = G(q′, 0) are stably R-equivalent,
(5) F (q, x) and G(q′, x) are stably P -R+-equivalent,
(6) L(F )(C(F )) and L(G)(C(G)) are Lagrangian equivalent,
(7) W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are S.P+-diffeomorphic.

Remark 6.5. (i) The above theorem was shown in [24].
(ii) By Corollary 6.3, the assumption of the above theorem is equiva-
lent to the condition that L(F )(C(F )) and L(G)(C(G)) are Lagrangian
stable.
(iii) If k = k′ and q = q′ in the above theorem, we can remove the word
“stably” in conditions (2), (3), (4) and (5).
(iv) By Theorem 6.1, conditions (1), (2), (5) and (6) are always equiv-
alent without any assumptions. This fact was not known when I wrote
the survey paper [24]. After I wrote the paper Theorem 6.1 has been
shown in [25]. Therefore, this assertion is a new result.
(v) Conditions (3) and (4) are equivalent without any assumptions.
(vi) Equivalency for (2) and (3) (respectively, (4) and (5)), we need
the assumption that the S.P+-Legendrian stability (respectively, the
Lagrangian stability). Fortunately, these two stability are equivalent by
Corollary 6.3.
(vii) The S.P+-Legendrian stability of LF (Σ∗(F)) is a generic condition
for n ≤ 5.
(viii) By Proposition 4.1 and Corollary 6.2, the conditions (1), (6) and
(7) are equivalent generically for an arbitrary dimension n without the
assumption on the S.P+-Legendrian stability.

On the other hand, we consider another geometric condition on the
generating families. For a function germ f : (Rk, 0) → (R, 0), the level
set foliation germ of f is defined to be Ff = {f−1(c) | c ∈ (R, 0) }.
For function germs f, g : (Rk, 0) → (R, 0), we say that the level set
foliation germs Ff and Fg are strictly diffeomorphic if there exists a
diffeomorphism germ ψ : (Rk, 0) → (Rk, 0) such that ψ(f−1(c)) = g−1(c)
as a set germ for any c ∈ (R, 0). Then we have the following proposition.

Proposition 6.6. For function germs f, g : (Rk, 0) → (R, 0), the
level set foliation germs Ff and Fg are strictly diffeomorphic if and
only if f and g are R-equivalent.

Proof. By definition, if f and g are R-equivalent, then Ff and Fg are
strictly diffeomorphic. If Ff and Fg are strictly diffeomorphic, then
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there exists a diffeomorphism germ ψ : (Rk, 0) → (Rk, 0) such that
ψ(f−1(c)) = g−1(c) as a set germ for any c ∈ (R, 0). We consider
ψ × 1R : (Rk × R, 0) → (Rk × R, 0) which is a diffeomorphism germ.

For any (q, f(q)) ∈ f
−1

(0), we have (ψ × 1R)(q, f(q)) = (ψ(q), f(q)). If
we set c = f(q), then ψ(q) ∈ g−1(c) = g−1(0) ∩ (Rk × {c}), so that

(ψ × 1R)(q, f(q)) ∈ g−1(0). Therefore (ψ × 1R)(f
−1

(0)) = g−1(0) as set

germs. For any q ∈ (Rk, 0), we have (q, f(q)) ∈ f
−1

(0). Then we have

0 = g((ψ × 1R)(q, f(q)) = g(ψ(q), f(q)) = g ◦ ψ(q)− f(q),

so that g ◦ ψ = f. This completes the proof. �

For function germs f : (Rk, 0) → (R, 0) and g : (Rk′
, 0) → (R, 0),

we say that the level set foliation germs Ff and Fg are stably strictly
diffeomorphic if they become strictly diffeomorphic after the addition
to the arguments qi of new arguments q′i and to functions f, g of non-
degenerate quadratic forms. Thus, we have the following proposition.

Proposition 6.7. For function germs f : (Rk, 0) → (R, 0) and

g : (Rk′
, 0) → (R, 0), the following conditions are equivalent :

(1) f and g are stably R-equivalent,
(2) Ff and Fg are stably strictly diffeomorphic,

(3) f and g are stably S.P -K-equivalent.

As a corollary of Theorem 6.4 and Proposition 6.7, we have the
following theorem.

Theorem 6.8. With the same assumptions as those in Theorem
6.4, the following condition is equivalent to (1) ∼ (7) in Theorem 6.4 :
(8) Ff and Fg are stably strictly diffeomorphic.

We consider another geometric property of graph-like Legendrian
unfoldings. Let (L , p) be a graph-like Legendrian unfolding germ. We

consider a representative L̃ of (L , p) on π−1(W ), where W ⊂ Rn × R

is an open neighborhood of π(p) ∈ R
n ×R. We now show that W (L̃ )∩

W ∩ ({π1 ◦ π(p)} × R) is a discrete set. Suppose that there exists a se-
quence of points {ui}∞i=1 ⊂ U such that limi→∞ ui = u0 and π(L(ui)) ∈
W (L̃ ) ∩ W ∩ ({π1 ◦ π(p)} × R) for any i ∈ N. Then

−−−−−−−−−→
π(p)π(L(ui)) is

parallel to the vector ∂/∂t. If necessary we can choose a subsequence of
{ui}∞i=1, we may suppose that

lim
i→∞

−−−−−−−−−→
π(p)π(L(ui))

‖−−−−−−−−−→π(p)π(L(ui))‖
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exists. Therefore ∂/∂t and ν(u0) are orthogonal. This contradicts to
the fact that ν(u) is given by (p1(u), . . . , pn(u),−1) (i.e., W (L ) is a

graph-like wave front). It follows that W (L̃ )∩W ∩ ({x}×R) is a finite
set for x ∈ π1(W ) for sufficiently small neighborhood W of π(p). We
now define

Max(W (L̃ ) ∩W ) =
⋃

x∈π1(W )

{max(W (L̃ ) ∩ ({x} × R))},

mini(W (L̃ ) ∩W ) =
⋃

x∈π1(W )

{mini(W (L̃ ) ∩ ({x} × R))}.

We denote that the germs of the above sets as (Max(W (L )), p) and
(min(W (L )), p) respectively. We call (Max(W (L )), p) a local maximum
graph and (min(W (L )), p) a local minimum graph of the graph-like wave
front W (L ) respectively. Let Φ : (Rn×R, 0) → (Rn×R, 0) be an S.P+-
diffeomorphism defined by Φ(x, t) = (φ1(x), t+ α(x)). Then there exist

neighborhoods U1, U2 ⊂ Rn × R of the origin and a diffeomorphism Φ̃ :

U1 → U2 of the form Φ̃(x, t) = (φ̃1(x), t+α̃(x)), which is a representative
of the map germ Φ. If t1 ≥ t2, then t1 + α̃(x) ≥ t2 + α̃(x) for any
x ∈ π1(U1). Therefore we have the following lemma.

Lemma 6.9. Let Φ : (Rn × R, q1) → (Rn × R, q2) be an S.P+-
diffeomorphism. Then we have

Φ(Max(W (L ))) = Max(Φ(W (L ))), Φ(min(W (L ))) = min(Φ(W (L )))

as set germs.

We have the following corollary of Theorem 6.1 and Lemma 6.9.

Corollary 6.10. Let (L1, p1) and (L2, p2) be graph-like Legendrian
unfolding germs. If (Π(L1),Π(p1)) and (Π(L2),Π(p2)) are Lagrangian
equivalent, then there exists a diffeomorphism germ Φ : (Rn×R, π(p1)) →
(Rn × R, π(p2)) of the form Φ(x, t) = (φ1(x), t + α(x)) such that
Φ(Max(W (L1))) = Max(W (L2)) and Φ(min(W (L1))) = min(W (L2))
as set germs.

The following standard examples clarify the difference between the
equivalence relations among graph-like Legendrian unfoldings.

Example 6.11. It is known that one of the germs in the list of
2-parameter R+-versal unfoldings is the cusp (cf. [6]). The normal form
is given by

F (q, x1, x2) = ∓q4 ∓ x2q
2 − x1q.
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It is P -R+-equivalent to F1(q, x1, x2) = ∓q4 ∓ x2(q
2 + 1) − x1q. Then

we have

C(F1) = {(q,∓(4q3 + 2qx2), x2) ∈ R
3 | (q, x2) ∈ (R2, 0)}.

Since ∂F1/∂x1 = −q and ∂F1/∂x2 = ∓(q2 + 1),

L(F1)(C(F1)) = {(∓(4q3 + 2qx2), x2,−q,∓(q2 + 1)) | (q, x2) ∈ (R2, 0)}
are Lagrangian submanifold germs of T ∗R2. If we set u = ∓q and v = x2,
then we have Lagrangian embeddings L±

1 : U → T ∗
R

2 ≡ R
2 × (R2)∗

defined by

L±
1 (u, v) = ((4u3 + 2uv, v), (±u,∓(u2 + 1))),

where U ⊂ R2 is an open subset. Therefore, L±
1 = L±

1 (U) are Lagrangian
submanifolds in T ∗

R
2. Moreover, if we consider graph-like Morse fami-

lies of hypersurfaces defined by F (q, x1, x2, t) = ∓q4∓x2(q
2+1)−x1q−t,

then the corresponding graph-like Legendrian unfoldings are given by
mappings L±

1 : U → J1
GA(R

2,R) where

L±
1 (u, v) = ((4u3 + 2uv, v),±(3u4 + u2v − v), (±u,∓(u2 + 1))).

Then L ±
1 = L±

1 (U) are graph-like Legendrian unfoldings such that
Π(L ±

1 ) = L±
1 .

W (L +
1 ) W (L −

1 )
Fig.4: Graph-like wave fronts.

We remark that both the graph-like wave fronts are swallowtails (cf.
Fig. 4) at (u, v) = (0, 0). We observe that (Max(W (L +

1 )), 0) is a graph
of continuous function but (Max(W (L −

1 )), 0) is not (cf. Fig.5), so that
these are not diffeomorphic as set germs.

Fig.5: MaxW (L +
1 ) MaxW (L −

1 )
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By Corollary 6.10, the germs of L+ and L− at the origin are not
Lagrangian equivalent. Since both the caustics of L+ and L− at the
origin are the ordinary cusp, these are diffeomorphic as set germs (cf.
Fig.6).

On the other hand, we consider the bifurcation of the family of mo-
mentary fronts for graph-like Legendrian unfoldings. If we consider a
diffeomorphism germ Φ : (R2 ×R, 0) → (R2 ×R, 0) defined by Φ(x, t) =
(x,−t), then we can show Φ(W (L +

1 )) = W (L −
1 ). Thus, W (L +

1 ) and
W (L −

1 ) are (s, t)-diffeomorphic but not S.P+-diffeomorphic. As we
mentioned above, L+

1 and L−
1 are not Lagrangian equivalent. The bifur-

cations of {Wt(L
±
1 )}t∈(R,0) are depicted in Fig.7. We can observe that

- 1 .5 - 1 - 0 .5 0 .5 1 1 .5

- 1 .5

- 1

- 0 .5

0 .5

1

1 .5

CL±
1

{Wt(L
±
1 )}t∈(R,0)

Fig.6: The caustic. Fig.7: The bifurcations of
momentary fronts.

both the caustics are ordinary cusps. Therefore, these are examples of
Lagrangian submanifold germs such that those caustics are diffeomor-
phic but these are not Lagrangian equivalent.

We also consider R+-versal unfoldings F2(q, x1, x2) = ∓q4∓x2(q
2−

1)− x1q which are P -R+-equivalent to F (q, x1, x2). By the calculation
similar to the above, we have embeddings L±

2 : U → T ∗R2 ≡ R2× (R2)∗

defined by

L±
2 (u, v) = ((4u3 + 2uv, v), (±u,∓(u2 − 1))),

where U ⊂ R2 is an open subset. Then L±
2 = L±

2 (U) are Lagrangian
submanifolds. Moreover, we have the corresponding graph-like Legen-
drian unfoldings defined by mappings L±

2 : U → J1
GA(R

2,R) where

L±
2 (u, v) = ((4u3 + 2uv, v),±(3u4 + u2v + v), (±u,∓(u2 − 1))).

By the same reasons as the above case, L+
2 and L−

2 are not Lagrangian
equivalent (cf. Fig.8). However, if we consider diffeomorphism germ
Φ± : (R2×R, 0) → (R2×R, 0) defined by Φ±(x1, x2, t) = (x1, x2, t±2x2),
then we have Φ±(W (L ±

1 )) = W (L ±
2 ) as set germs. By Corollary 6.2,
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W (L +
2 ) W (L −

2 )
Fig.8: Graph-like wave fronts.

L+
1 and L+

2 (respectively, L−
1 and L−

2 ) are Lagrangian equivalent. The
pictures of W (L ±

2 ) are similar to those of W (L ±
1 ). Moreover, the

caustics are the same as the above (Fig.9). However, the bifurcations of
momentary fronts {Wt(L

±
2 )}t∈(R,0) are different from {Wt(L

±
1 )}t∈(R,0)

(cf. Fig.7 and Fig.10). Actually, we can apply the criterion in [11] and
show that W (L ±

1 ) and W (L ±
2 ) are not S.P -diffeomorphic as set germs.

- 1 .5 - 1 - 0 .5 0 .5 1 1 .5

- 1 .5

- 1

- 0 .5

0 .5

1

1 .5

CL±
2

{Wt(L
±
2 )}t∈(R,0)

Fig.9: The caustic. Fig.10: The bifurcation of
momentary fronts.

§7. s-P -Legendrian equivalence among graph-like Legendrian
unfoldings

In §6 we have given a brief survey on S.P+-Legendrian equiva-
lence among graph-like Legendrian unfoldings. One of the main con-
sequences is that S.P+-Legendrian equivalence among graph-like Leg-
endrian unfoldings is equivalent to Lagrangian equivalence among in-
duced Lagrangian submanifolds. This fact can be considered as a geo-
metric interpretation of Lagrangian equivalence. On the other hand, s-
P -Legendrian equivalence is weaker than S.P+-Legendrian equivalence
among graph-like Legendrian unfoldings. Therefore, Lagrangian equiv-
alence is stronger than s-P -Legendrian equivalence. In this section we
explain detailed properties of s-P -Legendrian equivalence among graph-
like Legendrian unfoldings as an application of the results in [13, 35],
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which might be new results. We also use a graph-like Morse family
of hypersurfaces of the form F(q, x, t) = λ(q, x, t)(F (q, x) − t). Since
F(q, x, t) and F (q, x, t) = F (q, x) − t are s-S.P -K-equivalent, we con-
sider F (q, x, t) = F (q, x) − t as a graph-like Morse family. Moreover,
by Proposition 5.4, F (q, x) is a Morse family of functions. We now sup-
pose that F (q, x) is a Morse family of functions. Consider the graph-like
Morse family of hypersurfaces F (q, x, t) = F (q, x) − t which is not nec-
essarily non-degenerate. Then we have LF (Σ∗(F )) = LF (C(F )). We

also denote that f(q, t) = f(q)− t for any f ∈ Mk. For function germs
f, g : (Rk, 0) → (R, 0), we say that f, g are A-equivalent if there exist
diffeomorphism germs φ : (Rk, 0) → (Rk, 0) and ψ : (R, 0) → (R, 0)
such that ψ ◦ f = g ◦ φ. Moreover, let F,G : (Rk × R

n, 0) → (R, 0)
be function germs, we say that F,G are P-A-equivalent if there exist
diffeomorphism germs Φ : (Rk × R

n, 0) → (Rk × R
n, 0) of the form

Φ(q, x) = (φ1(q, x), φ2(x)) and Ψ : (R×Rn, 0) → (R×Rn, 0) of the form
Ψ(t, x) = (ψ(t, x), x) such that

Ψ(F (q, x), x) = (G ◦ Φ(q, x), x)
for any (q, x) ∈ (Rk×Rn, 0). We remark that if F,G are P-A-equivalent,
then f = F |Rk×{0}, g = G|Rk×{0} are A-equivalent. Then we have the
following proposition.

Proposition 7.1. Let F,G : (Rk × Rn, 0) → (R, 0) be function
germs. Then F (q, x, t) = F (q, x)− t,G(q, x, t) = G(q, x)− t are s-P -K-
equivalent if and only if F,G are P-A-equivalent.

Proof. Suppose that F ,G are s-P -K-equivalent. Then there exists a
diffeomorphism germ Ψ : (Rk × (R×Rn), 0) → (Rk × (R×Rn), 0) of the
form Ψ(q, t, x) = (ψ(q, t, x), ψ1(t, x), ψ2(x)) such that 〈F ◦ Ψ〉Ek+1+n

=

〈G〉Ek+1+n
. It follows that Ψ(G−1(0)) = F−1(0). By definition, we have

F
−1

(0) = {(q, F (q, x), x) | (q, x) ∈ (Rk × R
n, 0)},

G
−1

(0) = {(q,G(q, x), x) | (q, x) ∈ (Rk × R
n, 0)}.

Therefore, we have

Ψ(q,G(q, x), x)=(ψ(q,G(q, x), x), ψ1(G(q, x), x), ψ2(x))=(q, F (q, x), x).

Hence, we have q = (ψ(q,G(q, x), x), x = ψ2(x) and

ψ1(G(q, x), x) = F (q, x) = F (ψ(q,G(q, x), x), ψ2(x)).

If we define Φ : (Rk × Rn, 0) → (Rk × Rn, 0) by

Φ(q, x) = ψ(q,G(q, x), x), ψ2(x)),



134 S. Izumiya

then Φ is a diffeomorphism germ. Moreover, we define Ψ : (R×Rn, 0) →
(R × R

n, 0) by Ψ(t, x) = (ψ1(t, x), x). Then the above equality means
that Ψ(G(q, x), x) = (F ◦ Φ(q, x), x), so that F,G are P-A-equivalent.

Suppose that there exist diffeomorphism germs Φ : (Rk × R
n, 0) →

(Rk×Rn, 0) of the form Φ(q, x) = (φ1(q, x), φ2(x)) and Ψ : (R×Rn, 0) →
(R× R

n, 0) of the form Ψ(t, x) = (ψ(t, x), x) such that

Ψ(F (q, x), x) = (G ◦ Φ(q, x), x)
for any (q, x) ∈ (Rk × Rn, 0). We define Ψ : (Rk × (R × Rn), 0) →
(Rk × (R× R

n), 0) by Ψ(q, t, x) = (φ1(q, x), ψ(t, x), φ2(x)). Then Ψ is a
diffeomorphism germ. Since ψ(F (q, x), x) = G(φ1(q, x), φ2(x)), we have

Ψ(q, F (q, x), x) = (φ1(q, x), ψ(F (q, x), x), φ2(x))

= (φ1(q, x), G(φ1(q, x), φ2(x)), φ2(x)),

so that Ψ(F
−1

(0)) = G
−1

(0) as set germs. Thus F
−1

(0) = (G◦Ψ)−1(0).
Since F,G are submersion germs, we have 〈F 〉Ek+1+n

= 〈G ◦ Ψ〉Ek+1+n
.

This completes the proof. �

We have the following simple corollary.

Corollary 7.2. For function germs f, g : (Rk, 0) → (R, 0), f, g
are A-equivalent if and only if f(q, t) = f(q) − t, g(q, t) = g(q) − t are
P-K-equivalent.

For (q, t, x) ∈ (Rk ×R×Rn, 0) and (q′, t, x) ∈ (Rk′ ×R×Rn, 0), let
F(q, x, t) = λ(q, x, t)(F (q, x)− t) and G(q′, x, t) = μ(q′, x, t)(G(q′, x)− t)
be graph-like Morse families of hypersurfaces. By Theorem 4.2 and
Corollary 7.2, we have the following theorem.

Theorem 7.3. The graph-like Legendrian unfoldings LF (Σ∗(F)),
LG(Σ∗(G)) are s-P -Legendrian equivalent if and only if F (q, x), G(q′, x)
are stably P-A-equivalent.

The definition of stably P-A-equivalence is similar to the definition
of stably P-R+-equivalence, so that we omit to give the definition here.

We now consider the stability of graph-like Legendrian unfoldings
relative to s-P -Legendrian equivalence. Theorem 4.2 asserts that the
graph-like Legendrian unfolding LF (Σ∗(F)) is s-P -Legendrian stable if
and only if F is an infinitesimally P -K-versal unfolding of F|Rk×{0}×R.
Here, we have F(q, x, t) = λ(q, x, t)(F (q, x) − t). We can represent the
extended tangent space of f : (Rk × R, 0) → (R, 0) relative to P -K by

Te(P -K)(f) =

〈
∂f

∂q1
(q), . . . ,

∂f

∂qk
(q), f(q)− t

〉
Ek+1

+ 〈1〉E1 .
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In this case the unfolding F (q, x, t) = F (q, x)− t of f(q, t) is an infinites-
imally P -K-versal unfolding of f(q, t) if and only if

Ek+1 = Te(P -K)(f) +

〈
∂F

∂x1
|Rk×{0}×R, . . . ,

∂F

∂xn
|Rk×{0}×R

〉
R

.

Moreover, we now define P -K-versal unfolding of f (cf. [13]) as follows:
For a map germ ψ : (Rm, 0) → (Rn, 0), we define an m-dimensional
unfolding ψ∗F : (Rk × Rm × R, 0) → (R, 0) of f by ψ∗F (q, y, t) =
F (q, ψ(y), t), which we call an induced unfolding of F by ψ. We say
that F is a P -K-versal unfolding of f if for any unfolding G : (Rk ×
Rm × R, 0) → (R, 0) of f , there exists a P -K-morphism from G to F .

Here, a P -K-morphism from G to F is (ψ, Φ̃, φ̃, λ) where ψ : (Rm, 0) →
(Rn, 0) is a map-germ, Φ̃ : (Rk × Rm × R, 0) → (Rk × Rm × R, 0) is a

diffeomorphism germ of the form Φ̃(q, u, t) = (φ1(q, u, t), u, φ̃(u, t)) and

λ(q, u, t) ∈ Ek+m+1 is a function germ such that Φ̃(q, 0, t) = (q, 0, t),

λ(q, 0, t) = 1 and ψ∗F (q, u, t) = λ(q, u, t)G ◦ Φ̃(q, u, t). We have the
following theorem (cf. [8, 13]).

Theorem 7.4. An unfolding F : (Rk × Rn × R, 0) → (R, 0) is a
P -K-versal unfolding of f : (Rk × R, 0) → (R, 0) if and only if it is an
infinitesimally P -K-versal unfolding of f .

We consider the stability of the unfolding F of f relative to P -
K-equivalence. We say that F is homotopically P -K-stable if for any
one-parameter family of functions F : (Rk × (Rn × R) × R, 0) → (R, 0)
with F(q, x, 0, t) = F (q, x, t), there is a a P -K-morphism from F to F
as unfoldings of f . Here, we remark that F(q, x, s, t) can be regarded as
an unfolding of f with the parameter (x, s) ∈ R

n × R. By definition, if
F is a P -K-versal unfolding of f , then it is homotopically P -K-stable.
Moreover, suppose that F is homotopically P -K-stable. For any h(q, t) ∈
Ek+1, we consider a one-parameter family of function germ F(q, x, s, t) =
F (q, x, t) + sh(q, t). Then there exist a map-germ ψ : (Rn × R, 0) →
(Rn, 0), a diffeomorphism germ Φ̃ : (Rk × (Rn × R) × R, 0) → (Rk ×
(Rn × R) × R, 0) of the form Φ̃(q, x, s, t) = (φ1(q, x, s, t), x, s, φ̃(x, s, t))

and λ(q, x, s, t) ∈ Ek+n+1+1 is a function germ such that Φ̃(q, 0, 0, t) =
(q, 0, 0, t), λ(q, 0, 0, t) = 1 and

F (q, ψ(x, s), t)=λ(q, x, s, t)F ◦ Φ̃(q, x, s, t)
=λ(q, x, s, t)(F (φ1(q, x, s, t), x, φ̃(x, s, t))

+sh(φ1(q, x, s, t), φ̃(x, s, t)).
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Differentiating with respect to s at (x, s) = (0, 0), we have

n∑
i=1

∂F

∂xi
(q, 0, t)

∂ψi

∂s
(0, 0) =

∂λ

∂s
(q, 0, 0, t)F (q, 0, t)

+

k∑
j=1

∂F

∂qj
(q, 0, t)

∂(φ1)j
∂s

(q, 0, 0, t) +
∂F

∂t
(q, 0, t)

∂φ̃

∂s
(0, 0, t) + h(q, t).

Therefore, we have

h(q, t) ∈ Te(P -K)(f) +

〈
∂F

∂x1
|Rk×{0}×R, . . . ,

∂F

∂xn
|Rk×{0}×R

〉
R

,

so that

Ek+1 = Te(P -K)(f) +

〈
∂F

∂x1
|Rk×{0}×R, . . . ,

∂F

∂xn
|Rk×{0}×R

〉
R

.

By Theorem 7.4, we have shown the following proposition.

Proposition 7.5. An unfolding F : (Rk × R
n × R, 0) → (R, 0) of

f : (Rk × R, 0) → (R, 0) is homotopically P -K-stable if and only if it is
a P -K-versal unfolding of f.

On the other hand, Wassermann [35] investigated stability and ver-
sality of unfoldings of function germs relative to A-equivalence. We say
that F (q, x) is an infinitesimally A-versal unfolding of f(q) if

Ek = Te(A)(f) +

〈
∂F

∂x1
|Rk×{0}, . . . ,

∂F

∂xn
|Rk×{0}

〉
R

,

where

Te(A)(f) = Jf + f∗(E1) and f∗(E1) = {h ◦ f ∈ Ek | h ∈ E1}.
We also define A-versal unfoldings. An unfolding F : (Rk × R

n, 0) →
(R, 0) of f : (Rk, 0) → (R, 0) is an A-versal unfolding if for any un-
folding G : (Rk × R

m, 0) → (R, 0) of f, there exists an A-morphism
from G to F . Here, an A-morphism from G to F is (ψ,Φ, φ) where
ψ : (Rm, 0) → (Rn, 0) is a map-germ, Φ : (Rk × R

m, 0) → (Rk × R
m, 0)

is a diffeomorphism germ of the form Φ(q, u) = (φ1(q, u), u) and φ :
(R × R

m, 0) → (R, 0) is a function germ such that Φ(q, 0) = (q, 0),
φ(y, 0) = y and φ(ψ∗F (q, u), u) = G ◦ Φ(q, u). We have the following
theorem.
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Theorem 7.6 ([35]). An unfolding F : (Rk × Rn, 0) → (R, 0) is
an A-versal unfolding of f : (Rk, 0) → (R, 0) if and only if it is an
infinitesimally A-versal unfolding of f .

We say that F is homotopically A-stable if for any one-parameter
family of functions F : (Rk × (Rn × R), 0) → (R, 0) with F(q, x, 0) =
F (q, x), there is a an A-morphism from F to F as unfoldings of f .
Here, we remark that F(q, x, s) can be regarded as an unfolding of f
with the parameter (x, s) ∈ Rn × R. By definition, if F is an A-versal
unfolding of f , then it is homotopically A-stable. Moreover, suppose
that F is homotopically A-stable. For any h(q) ∈ Ek, we consider a one-
parameter family of function germ F(q, x, s) = F (q, x) + sh(q). Then
there exist a map-germ ψ : (Rn×R, 0) → (Rn, 0), a diffeomorphism germ
Φ : (Rk × (Rn × R), 0) → (Rk × (Rn × R), 0) of the form Φ(q, x, s) =
(φ1(q, x, s), x, s) and a function germ φ(y, x, s) ∈ M1+n+1 such that
Φ(q, 0, 0) = (q, 0, 0), φ(y, 0, 0) = y and

φ(F (q, ψ(x, s)), x, s) = F ◦Φ(q, x, s) = F (φ1(q, x, s), x)+ sh(φ1(q, x, s)).

Differentiating with respect to s at (x, s) = (0, 0), we have

n∑
i=1

∂F

∂xi
(q, 0)

∂ψi

∂s
(0, 0) +

∂φ

∂s
(f(q), 0, 0)

=
k∑

j=1

∂F

∂qj
(q, 0, t)

∂(φ1)j
∂s

(q, 0, 0) + h(q, t).

Therefore, we have

h(q) ∈ Te(A)(f) +

〈
∂F

∂x1
|Rk×{0}×R, . . . ,

∂F

∂xn
|Rk×{0}×R

〉
R

,

so that

Ek = Te(A)(f) +

〈
∂F

∂x1
|Rk×{0}×R, . . . ,

∂F

∂xn
|Rk×{0}×R

〉
R

.

By Theorem 7.6, we have shown the following proposition.

Proposition 7.7 ([35]). An unfolding F : (Rk × R
n, 0) → (R, 0)

of f : (Rk, 0) → (R, 0) is homotopically A-stable if and only if it is a
A-versal unfolding of f .

We also have the following proposition.
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Proposition 7.8. For an unfolding F : (Rk × Rn, 0) → (R, 0) of
f : (Rk, 0) → (R, 0), the following conditions are equivalent :
(1) F : (Rk × R

n × R, 0) → (R, 0) is homotopically P -K-stable,
(2) F : (Rk × Rn, 0) → (R, 0) is homotopically A-stable.

Proof. Suppose that F is homotopicallyA-stable. For any one-parameter
family of functions G : (Rk×(Rn×R)×R, 0) → (R, 0) with G(q, x, 0, t) =
F (q, x, t), we have ∂G/∂t(0) �= 0, so that there exists a function germ
G(q, x, s) and μ(q, x, s, t) such that

μ(0) �= 0 and G(q, x, s, t) = μ(q, x, s, t)(G(q, x, s)− t).

It follows that F (q, x) − t = G(q, x, t, 0) = μ(q, x, 0, t)(G(q, x, 0) − t).
By Proposition 7.1, F (q, x) and G(q, x, 0) are P-A-equivalent. Thus
G(q, x, 0) is a homotopically A-stable unfolding. Then there exist a
map-germ ψ : (Rn × R, 0) → (Rn, 0), a diffeomorphism germ Φ : (Rk ×
(Rn×R), 0) → (Rk×(Rn×R), 0) of the form Φ(q, x, s) = (φ1(q, x, s), x, s)
and a function germ φ(t, x, s) ∈ M1+n+1 such that Φ(q, 0, 0) = (q, 0, 0),
φ(t, 0, 0) = t and

φ(G(q, ψ(x, s), 0), x, s) = G(Φ(q, x, s)) = G(φ1(q, x, s), x, s).

We now define a diffeomorphism germ Φ̃ : (Rk × Rn × R × R, 0) →
(Rk × Rn × R × R, 0) by Φ̃(q, x, s, t) = (φ1(q, x, s), x, s, φ(t, x, s)). The
above equality means that

Φ̃(q, x, s,G(q, ψ(x, s), 0)) = (φ1(q, x, s), x, s,G(φ1(q, x, s), x, s)).

If we denote thatG(q, x, 0)=G0(q, x), then ψ∗G0(q, x, s)=G(q, ψ(x, s), 0),

so that we have Φ̃(ψ∗G0
−1

(0)) = G
−1

(0). Therefore, there exists a func-
tion germ λ(q, x, s, t) ∈ Ek+n+1+1 with λ(0) �= 0 such that

G ◦ Φ̃(q, x, s, t) = λ(q, x, s, t)ψ∗G0(q, x, s, t).

Here, Φ̃(q, 0, 0, t) = (q, 0, 0, t) and

G0(q, 0)− t = G ◦ Φ̃(q, 0, 0, t)
= λ(q, 0, 0, t)ψ∗G0(q, 0, 0, t) = λ(q, 0, 0, t)(G0(q, 0)− t),

so that λ(q, 0, 0, t) = 1. This means that G(q, x, t) is homotopically
P -K-stable. Therefore, F is homotopically P -K-stable.

For the converse assertion, suppose that F is homotopically P -K-
stable. Let G(q, x, s) ∈ Mk+n+1 be a function germ with G(q, x, 0) =
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F (q, x). Then we have G(q, x, s, t) = G(q, x, s) − t. Since F is homo-
topically P -K-stable, there exist a map-germ ψ : (Rn ×R, 0) → (Rn, 0),

a diffeomorphism germ Φ̃ : (Rk × (Rn × R) × R, 0) → (Rk × (Rn ×
R) × R, 0) of the form Φ̃(q, x, s, t) = (φ1(q, x, s, t), x, s, φ̃(x, s, t)) and

λ(q, x, s, t) ∈ Ek+n+1+1 is a function germ such that Φ̃(q, 0, 0, t) =
(q, 0, 0, t), λ(q, 0, 0, t) = 1 and

F (q, ψ(x, s), t) = λ(q, x, s, t)G ◦ Φ̃(q, x, s, t)
= λ(q, x, s, t)(G(φ1(q, x, s, t), x, s)− φ̃(x, s, t)).

It follows that ψ∗F
−1

(0) = Φ̃−1(G
−1

(0)). Here, we have

ψ∗F
−1

(0) = {(q, x, s, ψ∗F (q, x, s)) | (q, x, s) ∈ R
k × R

n × R},
G

−1
(0) = {(q, x, s,G(q, x, s)) | (q, x, s) ∈ R

k × R
n × R}.

By definition, we have

Φ̃(q, x, s, ψ∗F (q, x, s))

= (φ1(q, x, s, ψ
∗F (q, x, s)), x, s, φ̃(x, s, ψ∗F (q, x, s))).

Therefore, if we put q = φ1(q, x, s, ψ
∗F (q, x, s)), x = x, s = s, then

φ̃(x, s, ψ∗F (q, x, s)) = G(q, x, s) = G(φ1(q, x, s, ψ
∗F (q, x, s)), x, s).

We define φ : (R× (Rn × R), 0) → (R× (Rn × R), 0) by

φ(t, x, s) = (φ̃(x, s, t), x, s).

Then the above equality means that

φ(ψ∗F (q, x, s), x, s) = G(φ1(q, x, s, ψ
∗F (q, x, s)), x, s).

Since Φ̃(q, 0, 0, t) = (q, 0, 0, t), we have φ1(q, 0, 0, ψ
∗F (q, 0, 0)) = q and

φ(t, 0, 0) = φ̃(0, 0, t) = t, so that F is homotopically A-stable. This
completes the proof. �

As a consequence of the above arguments, we have the following
theorem.

Theorem 7.9. Let F(q, x, t) = λ(q, x, t)(F (q, x) − t) be a graph-
like Morse family of hyper surfaces. Then the following conditions are
equivalent :
(1) The graph-like Legendrian unfolding LF (Σ∗(F)) is s-P -Legendrian
stable,
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(2) F (q, x, t) = F (q, x)− t is a P -K-versal unfolding of f(q) = F (q, 0) =
F (q, 0)− t,
(3) F (q, x) is an A-versal unfolding of f(q) = F (q, 0).

Proof. By Theorem 4.2, (1) and (2) are equivalent. By Propositions
7.5, 7.7 and 7.8, (2) and (3) are equivalent. �

By the above arguments, A-equivalence among function germs is an
important notion for the study of s-P -Legendrian equivalence among
graph-like Legendrian unfoldings. We consider geometric characteriza-
tion for A-equivalence among function germs. For function germs f, g :
(Rk, 0) → (R, 0), we say that the level set foliation germs Ff and Fg are
diffeomorphic if there exist diffeomorphism germs ψ : (Rk, 0) → (Rk, 0)
and φ : (R, 0) → (R, 0) such that ψ(f−1(c)) = g−1(φ(c)) as a set germ
for any c ∈ (R, 0). Then we have the following proposition.

Proposition 7.10. For function germs f, g : (Rk, 0) → (R, 0), the
level set foliation germs Ff ,Fg are diffeomorphic if and only if f, g are
A-equivalent.

Proof. By definition, if f and g are A-equivalent, then Ff and Fg

are diffeomorphic. If Ff and Fg are strictly diffeomorphic, then there
exist diffeomorphism germs ψ : (Rk, 0) → (Rk, 0) and φ : (R, 0) → (R, 0)
such that ψ(f−1(c)) = g−1(φ(c)) = (φ−1 ◦ g)−1(c) as a set germ for any
c ∈ (R, 0). This means that Ff and Fφ−1◦g are strictly diffeomorphic.
By Proposition 6.6, f and φ−1 ◦ g are R-equivalent, so that f and g are
A-equivalent. This completes the proof. �

For function germs f : (Rk, 0) → (R, 0) and g : (Rk′
, 0) → (R, 0), we

say that the level set foliation germs Ff and Fg are stably diffeomorphic
if they become strictly diffeomorphic after the addition to the arguments
qi of new arguments q′i and to functions f, g of non-degenerate quadratic
forms. Then we have the following classification theorem.

Theorem 7.11. Let F : (Rk × R
n × R, 0) → (R, 0) and G : (Rk′ ×

Rn ×R, 0) → (R, 0) be graph-like Morse families of hypersurfaces of the
forms F(q, x, t) = λ(q, x, t)(F (q, x)−t) and G(q′, x, t) = μ(q′, x, t)(G(q′, x)−
t) such that LF (Σ∗(F)) and LG(Σ∗(G)) are s-P -Legendrian stable. Then
the following conditions are equivalent :
(1) LF (Σ∗(F)) and LG(Σ∗(G)) are s-P -Legendrian equivalent,
(2) F and G are stably s-P -K-equivalent,
(3) f(q, t) = F (q, 0) − t and g(q′, t) = G(q′, 0) − t are stably P -K-
equivalent,
(4) f(q) = F (q, 0) and g(q′) = G(q′, 0) are stably A-equivalent,
(5) F (q, x) and G(q′, x) are stably P -A-equivalent,
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(6) W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are s-P -diffeomorphic,
(7) Ff and Fg are stably diffeomorphic.

Proof. By Theorem 4.2, (1) and (2) are equivalent. By Proposition 7.1,
(2) and (5) are equivalent. By Corollary 7.2, (3) and (4) are equivalent.
By Proposition 7.10, (4) and (7) are equivalent. By definition, (1) implies
(6). By Proposition 4.1, (6) implies (1). By definition, (2) implies
(3). By the uniqueness of P -K-versal unfoldings, (3) implies (2). This
completes the proof. �

Remark 7.12. (i) If k = k′ and q = q′ in the above theorem, we
can remove the word “stably” in conditions (2), (3), (4), (5) and (7).
(ii) By Theorem 4.2 and Proposition 7.1, conditions (1), (2) and (5) are
always equivalent without any assumptions.
(iii) By Corollary 7.2 and Proposition 7.10, conditions (3), (4) and (7)
are equivalent without any assumptions.
(iv) By Proposition 4.1, conditions (1) and (6) are equivalent generically
for an arbitrary dimension n without the assumption on s-P -Legendrian
stability.

§8. Applications

In this section we explain some applications of the theory of wave
front propagations. In [24] we explained some applications on both of
general theory of wave front propagations and the theory of graph-like
Legendrian unfoldings. Here, we only give two important cases that the
notion of graph-like Legendrian unfoldings are essentially needed.

8.1. Stability of Caustics due to Jänich and Wassermann

Following Thom, Jänich [27] and Wassermann [36] considered the
propagation of wave fronts on a manifold depending on the choice of a
Hamiltonian on the contangent bundle of the manifold. Let H : T ∗Rn \
0 → R be a smooth function, which is called a Hamiltonian function,
where 0 is the zero-section of T ∗Rn. We suppose H to be everywhere
positive and positively homogeneous of degree one (i.e. H(x, λξ) =
λH(x, ξ) of any λ > 0, (x, ξ) ∈ T ∗Rn \ 0). If we adopt the canonical
coordinates x1, . . . , xn, p1, . . . pn of T ∗

R
n ∼= R

n × (R∗)n, then (x, ξ) =
(x1, . . . , xn, p1, . . . , pn). We have a vector field XH on T ∗Rn\0 associate
to H defined by

XH =
n∑

i=1

(
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi

)
.
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The vector field XH is determined by the relation ω(XH , Y ) = dH(Y )
for Y ∈ TT ∗

R
n, where ω =

∑n
i=1 dpi ∧ dxi. Since H is positive and

positively homogeneous one, we have

n∑
i=1

pi
∂H

∂pi
= H.

Therefore, for any point (x, ξ) ∈ H−1(1),

n∑
i=1

pi
∂H

∂pi
(x, ξ) = H(x, ξ) = 1,

so that gradp H(x, ξ) �= 0. This means that H−1(1) is a regular hy-
persurface in T ∗

R
n. Since dH(XH) = ω(XH ,XH) = 0, XH |H−1(1) is

tangent to the hypersurface H−1(1). Let π : T ∗Rn → Rn be the pro-
jection of the cotangent bundle. Since gradp H(x, p) �= 0 on H−1(1),

π|H−1(1) : H−1(1) → R
n is also a fibre bundle whose fibre is diffeo-

morphic to an (n − 1)-sphere. The image under π of the flow lines
of XH |H−1(1) are called the ray of H. The flow of the vector field

XH |H−1(1) on H−1(1) induces a map ρ : R+ × H−1(1) → H−1(1) on

at least a neighborhood of {0} × H−1(1) ⊂ R+ × H−1(1). Then we
define a map exp : R+ × H−1(1) → R

n by exp = π ◦ ρ, which is also
defined on at least a neighborhood of {0} × H−1(1). Let V0 be a co-
oriented hypersurface in R

n. We consider V0 as an initial wave front. At
any x ∈ X0 the co-oriented tangent space of V0 at x defines an element
ξ(x) ∈ T ∗

xR
n \0 such that Ker ξ(x) = TxV0 and the direction is compati-

ble with the co-orientation of V0 (i.e. the positive co-normal vector of V0

at x). ince H is positive and positively homogeneous degree one, we have
H(x, ξ(x)) = η(x) > 0 and H(x, ξ(x)/η(x)) = H(x, ξ(x))/η(x) = 1. If
we put ξ(x) = ξ(x)/η(x), then H(x, ξ(x)) = 1. Thus we have an (n−1)-
dimensional submanifold �(V0) = {(x, ξ(x)) | x ∈ V0} ⊂ H−1(1). We
now consider the Liouville form α =

∑n
i=1 pidxi on T ∗Rn. Then ω = dα.

Since Ker ξ(x) = TxV0, we have α|�(V0) =
∑n

i=1 pidxi|�(V0) = 0, so that
ω|�(V0) = 0. This means that �(V0) is an isotropic submanifold of the
symplectic structure ω. Moreover, if XH is tangent to �(V0), then we
have 0 =

∑n
i=1 pidxi(XH) =

∑n
i=1 pi(∂H/∂pi) = H(x, ξ(x)) = 1. This

is a contradiction, so that XH is not tangent to �(V0). If exp(t, ξ(x)) is
defined for all x ∈ V0 for some fixed t > 0, we call Vt = {exp(t, ξ(x)) | x ∈
V0} the wave front at time t. We also call the canonical map V0 → Vt

defined by x �→ exp (t, ξ(x)) the ray map at time t.

Remark 8.1. The restriction of the Liouville form α on H−1(1) de-
fines a contact structure on H−1(1). Moreover, the projection π|H−1(1) :
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H−1(1) → Rn is a Legendrian fibration. Since α|�(V0) = 0, �(V0) is a

Legendrian submanifold of H−1(1). By definition,

�(Vt) = {ρ(t, (x, ξ(x))) | x ∈ V0}
is a Legendrian submanifold of H−1(1), so that Vt = π(�(Vt)) is the wave
front in the sense of §2.

The singular value set of the ray map is called the caustic points at
time t. We denote the set of caustic points at time t by Ct:

Ct = {exp (t, ξ(x)) | rank d(exp)x (t, ξ(x)) < n− 1}.
The set of all the caustic points at all time t in the time interval during
which the propagation is considered is called the caustic of the propaga-
tion.

In [27, 36] Jänich and Wassermann investigated the stability of
germs of such caustics. They described the caustics as bifurcation sets
in the theory of unfoldings.

Let t0 ∈ R+ and ξ0 ∈ H−1(1) be given, such that exp (t0, ξ0) is
defined, and such that (t0, ξ0) is a regular point of the map

(π, exp) : R+ ×H−1(1) → R
n × R

n; (t, ξ) �→ (π(ξ), exp (t, ξ)).

We set x0 = π(ξ0) and u0 = exp (t0, ξ0). Under the above assumptions
(π, exp) is a local diffeomorphism at (t0, ξ0). Therefore, there exists a
local inverse s : X ×U → R+×H−1(1) of (π, exp) such that s(x0, u0) =
(t0, ξ0), where X is a neighborhood of x0 and U is a neighborhood of u0

in Rn respectively. We define a function τ = πR+ ◦ s : X × U → R+,
where πR+ : R+ × H−1(1) → R+ is the canonical projection. τ is
called a ray length function associated to (t0, ξ0). We remark that for
given H the germ of τ at (x0, u0) depends only on (t0, ξ0), not on the
choice of s We say that X and U are sufficiently small of s(X × U)
which never contains both (t, ξ) and (t,−ξ). Suppose that x0 ∈ V0 and
ξ(x0) = ξ0. Given ε > 0, we say that V0 and ε are sufficiently small
for s if (t0 − ε, t0 + ε) × �(V0) ⊂ s(X × U). With these definitions and
assumptions, Jänich has shown the following theorem.

Theorem 8.2 (Jänich [27]). Let (t0, ξ0) be a regular point of (π, exp),
let s : X ×U → R+ ×H−1(1) be a local inverse to (π, exp) near (t0, ξ0),
with associated ray-length function τ , and let V0 ⊂ R

n be a normally
oriented hypersurface such that x0 = π(ξ0) ∈ V0 and ξ(x0) = ξ0. We
define a function F : V0 × U → R by F = (τ − t0)|V0×U . Suppose that
X and U are sufficiently small, and let ε > 0 be given such that V0 and
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ε are sufficiently small for s. Then for t0 − ε < t < t0 + ε we have the
following :
(a) Vt = {u ∈ U | ∃x ∈ V0 with F (x, u) = t− t0 and dxF (x, u) = 0}
and
(b) Ct = {u ∈ U | ∃x ∈ V0 with F (x, u) = t − t0, dxF (x, u) = 0 and
d2xF (x, u) degenerate},
where dxF is the differential of F with respect to the first variable (u
fixed) and d2xF is the Hessian of F with respect to the first variable.

Remark 8.3. Since F can take values outside the interval (−ε, ε),

the full caustic set (briefly, full caustic) C =
⋃

t0−ε<t<t0+ε

Ct is not neces-

sarily be equal to the full bifurcation set

BF = {u ∈ U | ∃x ∈ V0 with dxF (x, u) = 0 and d2xF (x, u) degenerate}
of F generally. However, for sufficiently small representative F ′ of the
germ F , we have BF ′ ⊂ C ⊂ BF . Moreover, for sufficiently small
representative of the germ of V0 and sufficiently small time interval about
t0, the caustic C

′ satisfies C ′ ⊂ BF ′ ⊂ C. Therefore, a knowledge of the
germ F gives us all information about the local generation of the full
caustic.

By assertion (a) in Theorem 8.2, for t0 − ε < t < t0 + ε, we have

�(Vt) = {πH−1(1)◦s(x, u) ∈ H−1(1) | F (x, u) = t−t0 and dxF (x, u) = 0},
where πH−1(1) : R+ × H−1(1) → H−1(1) is the canonical projection.
Moreover,

L(V0; (t0, ξ0), ε) =
⋃

t0−ε<t<t0+ε

�(Vt)

is a Lagrangian submanifold in H−1(1) ⊂ T ∗
R

n. Since

Tξ0L(V0; (t0, ξ0), ε) = Tξ0�(Vt)⊕ 〈XH〉R,
rank d(π|L)ξ0 < n if and only if rank d(π|�(Vt))ξ0 = d(exp)x0 < n− 1, so
that we have C = CL(V0;(t0,ξ0),ε). Here CL(V0;(t0,ξ0),ε) is the caustic of the
Lagrangian submanifold L(V0; (t0, ξ0), ε) defined in §2. It follows that
�(Vt), (t0 − ε, t0 + ε) is considered to be a momentary front of a graph-
like Legendrian unfolding. We define a set germ L (V0; (t0, ξ0), ε) ⊂
R+ ×H−1(1) by

{s(x, u) | t0 − ε, t < t0 + ε, F (x, u) = t− t0 and dxF (x, u) = 0},
which is a graph-like Legendrian unfolding with a generating family
F(x, u, t) = F (x, u)− (t− t0).
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In [27] Jänich considered stability of the caustic in terms of germs
of F and of τ . The caustic C is said to be an A-universal caustic at
time t0 if (t0, ξ0) is a regular point of (π, exp) and if, for a ray-length
function τ : X ×U → R associated to (t0, ξ(x0)), the germ at (x0, u0) of
the function F = (τ − t0)|(V0∩X)×U , considered as an unfolding of the
germ of F (x, u0) at x0 ∈ V0 is infinitesimally A-versal. In [27] Jänich
said that C is universal if it is A-universal. However, we can consider
R+-equivalence instead of A-equivalence here. We also say that C is
an R+-universal caustic at time t0 if the germ of F (x, u0) at x0 ∈ V0 is
infinitesimally R+-versal.

Universality of the caustic is a very strong stability condition, for,
roughly speaking, a universal caustic will survive small perturbations
not only of the initial wave front but also of the Hamiltonian. However,
Jänich conjectured that the stability of the caustic under perturbations
of the initial wave front is sufficient to assure the universality of the
caustic. In [36] Wassermann has shown that the conjecture of Jänich
is true. He considered a general framework as follows: Let τ : (Rm ×
R

n, 0) → (R, 0) be a function germ and let ι : (Rk, 0) → (Rm, 0) be a
map germ. We say that the pair (τ, ι) is P -A-stable under perturbations
of ι if the following holds: Given any open neighborhood X of R

n,
and any open neighborhood U of 0 in Rn, and any representative τ ′ :
X × U → R of τ, and given any open neighborhood V of 0 in R

k and
any representative ι′ : V → X of ι, there is a neighborhood N of ι′ in
C∞(V,X) (in the weak C∞-topology) such that for every κ ∈ N there
are a point q0 ∈ V and a point x0 ∈ U such that the germ of τ(κ(q), x)
at (q0, x0) is P -A-equivalent to the germ τ ′(ι′(q), x) at 0. Wassermann
has shown the following theorem.

Theorem 8.4 ([36]). Let τ : (Rm × R
n, 0) → (R, 0) be a function

germ such that τ |Rm×{0} is submersive. Let ι : (Rk, 0) → (Rm, 0) be a

map germ and define F : (Rk × Rn, 0) → (R, 0) by F (q, x) = τ(ι(q), x).
Then (τ, ι) is P -A-stable under perturbations of ι if and only if F is an
infinitesimally A-versal unfolding of f(q) = F (q, 0).

Remark 8.5. In [36] Wassermann said that the pair (τ, ι) is r-
stable for caustics if it is P -A-stable under perturbations of ι. However,
we can change P -A-equivalence to P -R+-equivalence. We say that the
pair (τ, ι) is P -R+-stable under perturbations of ι if we change P -A-
equivalence to P -R+-equivalence in the above definition. By exactly the
same arguments as in the proof of Theorem 8.4, we have the following
theorem.

Theorem 8.6. Let τ : (Rm × Rn, 0) → (R, 0) be a function germ
such that τ |Rm × {0} is submersive. Let ι : (Rk, 0) → (Rm, 0) be a
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map germ and define F : (Rk × Rn, 0) → (R, 0) by F (q, x) = τ(ι(q), x).
Then (τ, ι) is P -R+-stable under perturbations of ι if and only if F is
an infinitesimally R+-versal unfolding of f(q) = F (q, 0).

We now apply the definition in the above general framework to our
situation. In this case ι will be the germ of an embedding. Since the
space of embedding Emb (V,X) is an open subset of C∞(V,X), we have
no problems to change ι to be an embedding. Suppose that V0 is a
normally oriented hypersurface in Rn, x0 ∈ V0 and t0 > 0. Let ξ0 ∈
T ∗
x0
R

n be given by the normally oriented tangent space to V0 at x0.
We say that V0 at x0 produces an A-stable caustics at t0 (respectively,
produces an R+-stable caustics at t0), if (t0, ξ0) is a regular point of
(π, exp) and if for some ray length function τ : X × U → R associated
to (t0, ξ0), and for some open neighborhood V of 0 in R

n and some
embedding ι : V → X whose image is contained in V0 and such that
ι(0) = x0, and in some choice of coordinates near x0 ∈ X and near
u0 = exp (t0, ξ0) ∈ U, the germ of the pair (τ, ι) at ((x0, u0), 0) is P -A-
stable (respectively, P -R+-stable) under perturbations of ι.

Remark 8.7. In [36] Wassermann said that V0 at x0 produces a
stable caustic at t0 if it produces anA-stable caustic at time t0. However,
we also consider R+-equivalence, so that we have to distinguish these
two cases.

In [36] the conjecture of Jänich [27] was solved affirmatively by
Wassermann as a corollary of Theorem 8.4.

Theorem 8.8 ([36]). With the same assumptions as the above para-
graph, V0 at x0 produces an A-universal caustic if and only if V0 at x0

produces an A-stable caustic at t0.

Of course, we have the following theorem for R+-universal caustics
as a corollary of Theorem 8.6.

Theorem 8.9. With the same assumptions as the above paragraph,
V0 at x0 produces an R+-universal caustic if and only if V0 at x0 produces
an R+-stable caustic at t0.

Moreover, we say that V0 at x0 produces a Lagrangian stable
Lagrangian submanifold at time t0 if (t0, ξ0) is a regular point of (π, exp)
and if for some ray length function τ : X×U → R associated to (t0, ξ0),
and for some open neighborhood V of 0 in R

n and some embedding
ι : V → X whose image is contained in V0 and such that ι(0) = x0, and
in some choice of coordinates near x0 ∈ X and near u0 = exp (t0, ξ0) ∈ U,
there exists a neighborhood N of ι in Emb (V,X) such that for every
κ ∈ N there are a point q0 ∈ V and x ∈ X such that the germ of
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the Lagrangian submanifold L(κ(V ); (t0, ξ0), ε) is Lagrangian equivalent
to L(ι(V ); (t0, ξ0), ε). We also say that V0 at x0 produces an S.P+-
Legendrian stable graph-like Legendrian unfolding at t0 (respectively,
produces an s-P -Legendrian stable graph-like Legendrian unfolding at t0)
if (t0, ξ0) is a regular point of (π, exp) and if for some ray length function
τ : X × U → R associated to (t0, ξ0), and for some open neighborhood
V of 0 in Rn and some embedding ι : V → X whose image is con-
tained in V0 and such that ι(0) = x0, and in some choice of coordinates
near x0 ∈ X and near u0 = exp (t0, ξ0) ∈ U, there exists a neighbor-
hood N of ι in Emb (V,X) such that for every κ ∈ N there are a point
q0 ∈ V and x ∈ X such that the germ of the graph-like Legendrian un-
folding L (κ(V ); (t0, ξ0), ε) is S.P

+-Legendrian equivalent (respectively,
s-P -Legendrian equivalent) to L (ι(V ); (t0, ξ0), ε). Then we have the
following theorem as a corollary of Theorems 2.2, 4.2, Corollary 6.3 and
Theorem 8.9.

Theorem 8.10. With the same assumptions as the above paragraph,
the following conditions are equivalent :
(1) V0 at x0 produces a Lagrangian stable Lagrangian submanifold at t0,
(2) V0 at x0 produces an R+-stable caustic at t0,
(3) V0 at x0 produces an R+-universal caustic,
(4) L(V0; (t0, ξ0), ε) is Lagrangian stable,
(5) L (V0; (t0, ξ0), ε) is S.P+-Legendrian stable,
(6) V0 at x0 produces an S.P+-Legendrian stable graph-like Legendrian
unfolding at t0.

On the other hand, Jänich and Wassermann considered A-versality
of unfoldings instead of R+-versality. It has been considered that there
might be no corresponding geometric equivalence to P -A-equivalence
among generating families. However, from the view point of the theory
of graph-like Legendrian unfoldings, we have the following theorem as a
corollary of Theorems 4.2 and 8.8.

Theorem 8.11. With the same assumptions as the above paragraph,
the following conditions are equivalent :
(1) V0 at x0 produces an A-stable caustic at t0,
(2) V0 at x0 produces an A-universal caustic,
(3) L (V0; (t0, ξ0), ε) is s-P -Legendrian stable,
(6) V0 at x0 produces an s-P -Legendrian stable graph-like Legendrian
unfolding at t0.

Example 8.12. As a special case, we have parallels of hypersur-
faces in the Euclidean space. In this case we induce the metric on
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T ∗
xR

n by 〈dxi, dxj〉 = δij , therefore T ∗
xR

n can be canonically iden-
tified to the Euclidean n-space. Thus, for (x, ξ) ∈ T ∗

R
n, we may

regard that ξ ∈ Rn ∼= T ∗
xR

n with the above identification. In this
case we consider the Hamiltonian function H : T ∗

R
n \ 0 → R de-

fined by H(x, ξ) =
√∑n

i=1 p
2
i = ‖ξ‖ for the canonical coordinates

(x, ξ) = (x1, . . . , xn, p1, . . . , pn). It follows that

∂H

∂xi
= 0,

∂H

∂pi
=

pi√∑n
i=1 p

2
i

,

so that the corresponding system of ODE for the Hamiltonian vector
field is given by

(∗)

⎧⎪⎨⎪⎩
dxi

dt
=

pi√∑n
i=1 p

2
i

,

dpi
dt

= 0.

For (x, ξ) ∈ H−1(1) ∼= Rn × Sn−1, we solve (∗) with the initial data
x(0) = x and ξ(0) = ξ. Then the solution is given by

x(t) = tξ + x, ξ(t) = ξ,

so that the flow map ρ : R+×H−1(1) → H−1(1) is given by ρ(t, (x, ξ)) =
(tξ + x, ξ). Therefore the exponential map is

exp (t, (x, ξ)) = π ◦ ρ(t, (x, ξ)) = tξ + x.

Let V0 be an initial front. We assume that V0 is parametrized by an
embedding ι : U → Rn such that ι(U) = V0, ι(0) = x0, ι(u) =
(x1(u), . . . , xn(u)) and u = (u1, . . . , un−1). Since V0 is normally ori-
ented, we have a unit normal vector field n(u) along V0 in Rn. Then we
choose a one-form (ι(u), ξ(ι(u))) ∈ T ∗

R
n such that Ker ξ(ι(u)) = Tι(u)V0

and H(ι(u), ξ(ι(u))) = 1. This means that ξ(ι(u)) = ±n(u), so that we
choose ξ(ι(u)) = n(u). For a fixed t ∈ R+, the ray map V0 → Vt is
ι(u) �→ exp (t, ξ(ι(u)) = ι(u) + tξ(ι(u)) = ι(u) + tn(u). Thus we have

Vt = {ι(u) + tn(u) ∈ R
n | u ∈ U},

which is called a parallel of V0 in the classical differential geometry
(cf. [17, 26]).

Then the map (π, exp) : R+ × H−1(1) → R
n × R

n is given by
(π, exp)(t, (x, ξ)) = (x, x+tξ), so that it is a diffeomorphism onto an open
setW in R

n×R
n. Therefore, we have the inverse mapping s : W → R+×

H−1(1) and the ray length function is τ(x, v) = πR+ ◦s(x, v). If we write
s(x, v) = (t, (x, ξ)), then we have v = x+ tξ, so that t = ‖x− v‖. This
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means that τ(x, v) = ‖x− v‖. Therefore we consider a distance function
F : U × R

n → R on V0 defined by F (u, v) = ‖ι(u) − v‖ = τ(ι(u), v). If

we consider the extended distance function F̃ (u, v, t) = F (u, v)− t, then
the discriminant set

DF̃ =

{
(v, t)

∣∣∣ ∃u ∈ U s.t. F̃ (u, v, t) =
∂F̃

∂ui
(u, v, t) = 0, i = 1, . . . , un−1

}

of F̃ is the graph-like wave front whose momentary fronts are {Vt}t∈R+ .
On the other hand, we can use the distance squared function D :

U × R
n → R defined by D(u, v) = ‖ι(u) − v‖2 = 〈ι(u) − v, ι(u) − v〉

instead of the distance function F . In this case, calculations are rather
easier than the case when we adopt the distance function F . Actually
the (full) bifurcation set BD is the caustic C and it is also called the
evolute (or, the focal set) of V0 (cf. [17]). For n = 2, V0 is a regular
curve. In this case, V0 is parametrized by an immersion γ : I → R2

from an open interval I such that t(s) = γ′(s) is a unit vector. Then we
have the Frenet frame {t(s),n(s)} along the curve γ, where n(s) is the
unit normal vector defined by the anti-clockwise π/2-rotation of t(s).
Then we have the Frenet formulae:{

t′(s) = κ(s)n(s),
n′(s) = −κ(s)t(s),

where κ(s) = 〈t′(s),n(s)〉 is the curvature of γ. In this case the parallel
is

Vt = {γ(s) + tn(s) | s ∈ I}
and the evolute of γ is

C =

{
γ(s) +

1

κ(s)
n(s)

∣∣∣ κ(s) �= 0

}
.

The evolute of γ is known to be the bifurcation set of the diastase
squared function D : I × R

2 → R. In fact, we have

∂D

∂s
(s,v) = 2〈t(s),γ(s)− v〉, ∂2D

∂s2
(s,v) = 2(〈κ(s)n(s),γ(s)− v〉+ 1),

so that BD = C. Here, the equation 〈t(s),γ(s)−v〉 = 0 defines a normal
line of γ at γ(s). Therefore, the evolute is the envelope of the normal
lines along γ. Moreover, the singular point of the evolute is s ∈ I such
that κ′(s) = 0, which is called a vertex of γ in the classical differential
geometry (cf. Fig.2 and Fig.3)
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8.2. Caustics of world hyper-sheets in Lorentz-Minkowski
space-time

In the Lorentz-Minkowski space-time, a world hyper-sheet is a time-
like hypersurface formed by a one-parameter family of spacelike subman-
ifolds. In the theory of relativity, we do not have the notion of time con-
stant, so that everything that is moving depends on the time. Therefore,
we consider world sheets. Although we have the notion of world sheets
with general codimension, we stick to the case when the codimension
one, that are called world hyper-sheets in the Lorentz-Minkowski space-
time. Recently, Bousso and Randall introduced the notion of caustics
of world hyper-sheets in order to define the notion of holographic do-
mains in the space-time. Here, we give a mathematical framework for
describing the caustics of world hyper-sheets in the Lorentz-Minkowski
space-time.

We now introduce some basic notions on the (n + 1)-dimensional
Lorentz-Minkowski space-time. For basic concepts and properties, see
[32]. Let R

n+1 = {(x0, x1, . . . , xn) | xi ∈ R (i = 0, 1, . . . , n) } be an
(n + 1)-dimensional cartesian space. For any x = (x0, x1, . . . , xn), y =
(y0, y1, . . . , yn) ∈ Rn+1, the pseudo scalar product of x and y is defined
to be 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi. We call (Rn+1, 〈, 〉) the (n + 1)-

dimensional Minkowski space-time (or briefly, the Lorentz-Minkowski
(n + 1)-space). We write R

n+1
1 instead of (Rn+1, 〈, 〉). We say that a

non-zero vector x ∈ R
n+1
1 is spacelike, lightlike or timelike if 〈x,x〉 > 0,

〈x,x〉 = 0 or 〈x,x〉 < 0, respectively. The norm of the vector x ∈ R
n+1
1

is defined to be ‖x‖ =
√|〈x,x〉|. We have the canonical projection

π : Rn+1
1 → Rn defined by π(x0, x1, . . . , xn) = (x1, . . . , xn). Here we

identify {0}×R
n with R

n and it is considered as the Euclidean n-space
whose scalar product is induced by the pseudo scalar product 〈, 〉. For
a vector v ∈ R

n+1
1 and a real number c, we define a hyperplane with

pseudo normal v by

HP (v, c) = {x ∈ R
n+1
1 | 〈x,v〉 = c }.

We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a light-
like hyperplane if v is timelike, spacelike or lightlike, respectively. We
now define

LC(λ) = {x = (x0, x1, . . . , xn) ∈ R
n+1
1 | 〈x− λ,x− λ〉 = 0}

and we call it the lightcone with the vertex λ ∈ R
n+1
1 . We write LC∗ =

LC(0) \ {0}, which is called an open lightcone at the origin.
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For any x1,x2, . . . ,xn ∈ R
n+1
1 , we define a vector x1 ∧x2 ∧ · · · ∧xn

by

x1 ∧ x2 ∧ · · · ∧ xn =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en
x1
0 x1

1 · · · x1
n

x2
0 x2

1 · · · x2
n

...
... · · · ...

xn
0 xn

1 · · · xn
n

∣∣∣∣∣∣∣∣∣∣∣
,

where ei = (0, . . . , 0,
i
1, 0, . . . , 0) and xi = (xi

0, x
i
1, . . . , x

i
n). We can easily

show that x1∧x2∧· · ·∧xn is pseudo orthogonal to any xi (i = 1, . . . , n).
We briefly review the basic geometrical framework for the study of

world hyper-sheets in the (n+1)-dimensional Lorentz-Minkowski space-
time in [22]. Let R

n+1
1 be a time-oriented space (cf. [32]). We choose

e0 = (1, 0, . . . , 0) as the future timelike vector field. A world hyper-
sheet is defined to be a timelike hypersurface foliated by codimension
one spacelike submanifolds. Here, we only investigate the local situation,
so that we consider a one-parameter family of spacelike submanifolds.
Let X : U × I → R

n+1
1 be a timelike embedding, where U ⊂ Rn−1 is

an open subset and I is an open interval. We write W = X(U × I)
and identify W and U × I through the embedding X. The embedding
X is said to be timelike if the tangent space TpW of W is a timelike
hyperplane at any point p ∈ W . We write that St = X(U × {t}) for
each t ∈ I. We have a foliation of W defined by S = {St}t∈I . We
say that W = X(U × I) (or, (W,S)) is a world hyper-sheet if W is a
time-orientable timelike hypersurface and each St is spacelike. Here, we
say that St is spacelike if the tangent space TpSt consists only spacelike

vectors (i.e. spacelike subspace of Rn+1
1 ) for any point p ∈ St. Each St

is called a momentary space of W . For any p = X(u, t) ∈ W ⊂ R
n+1
1 ,

we have

TpW = 〈Xu1(u, t), . . . ,Xun−1(u, t),Xt(u, t)〉R,
where we write (u, t) = (u1, . . . , un−1, t) ∈ U × I, Xt = ∂X/∂t and
Xuj = ∂X/∂uj . We also have

TpSt = 〈Xu1(u, t), . . . ,Xun−1(u, t)〉R.
Since W is time-orientable, there exists a timelike vector field v(u, t)
on W [32, Lemma 32] Moreover, we can choose that v is future di-
rected which means that 〈v(u, t),e0〉 < 0. Since codimW = 1, we have
codimSt = 2. Moreover, St is spacelike, so that we can apply the method
developed in [18]. We consider the unit normal spacelike vector of W
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defined by

nS(u, t) =
Xu1(u, t) ∧ · · · ∧Xun−1(u, t) ∧Xt(u, t)

‖Xu1(u, t) ∧ · · · ∧Xun−1(u, t) ∧Xt(u, t)‖ .

For any t ∈ I, Let Np(St) be the pseudo-normal space of St at p =

X(u, t) in R
n+1
1 . Since St is a codimension one in W, Np(St) is a

two dimensional Lorentz space. There exists a unique timelike unit
vector field nT (u, t) ∈ Np(St) ∩ TpW such that it is future directed

(i.e. 〈nT (u, t),e0〉 < 0). We now define maps LG
±(St) : St → LC∗

by LG
±(St)(p) = nT (u, t) ± nS(u, t), where p = X(u, t). We call

each one of LG±(St) a momentary lightcone Gauss map. These maps
lead us to the notion of curvatures (cf. [22]). We have linear maps
dLG±(St)p : TpSt → Tp̃LC

∗ ⊂ Tp̃R
n+1
1 , where p = X(u, t) and p̃ =

nT (u, t)± nS(u, t). With the identification Tp̃R
n+1
1 ≡ R

n+1
1 ≡ TpR

n+1
1 ,

we have the canonical decomposition TpR
n+1 = TpSt ⊕ Np(St). Let

Πt : TpR
n+1 = TpSt⊕Np(St) → TpSt be the canonical projection. Then

we have linear transformations

S±
� (St)p = −Πt ◦ dLG±(St)p : TpSt → TpSt.

Each one of the above mappings is called a momentary lightcone shape
operator of St at p = X(u, t). Let {κ±

i (St)(p)}n−1
i=1 be the set of eigenval-

ues of S±
� (St)p, which are called momentary lightcone principal curva-

tures of St at p = X(u, t). Then momentary lightcone Gauss-Kronecker
curvatures of St at p = X(u, t) are defined to be

K±
� (St)(p) = detS±

� (St)p.

We obtain now the lightcone Weingarten formulae. Since St is a
spacelike submanifold, we have a Riemannian metric (the first funda-

mental form) on St defined by ds2 =
∑n−1

i=1 gijduiduj , where gij(u, t) =
〈Xui(u, t),Xuj (u, t)〉 for any (u, t) ∈ U × I. Lightcone second funda-
mental invariants are defined to be

hij [±](u, t) = 〈−(nT ± nS)ui(u, t),Xuj (u, t)〉
for any (u, t) ∈ U × I. The following lightcone Weingarten formulae are
given as special cases of the formulae in [18]:

(a) (nT ± nS)ui = 〈nS ,nT
ui
〉(nT ± nS)−∑n−1

j=1 hj
i [±]Xuj

(b) Πt ◦ (nT + nS)ui = −∑n−1
j=1 hj

i [±]Xuj .

Here
(
hj
i [±]

)
= (hik[±])

(
gkj

)
and

(
gkj

)
= (gkj)

−1.
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It follows that the momentary lightcone principal curvatures are the

eigenvalues of
(
hj
i [±]

)
.

On the other hand, as an application of the theory of Legendrian
unfoldings, a geometric framework for the study of caustics of world
hyper-sheets in the Lorentz-Minkowski space-time has been constructed
in [23]. We give a brief survey here. We define hypersurfaces LH

±
St0

:

U × {t0} × R → R
n+1
1 by

LH
±
St0

(p, μ) = LH
±
St0

(u, t0, μ) = X(u, t0) + μLG±(St0)(u, t0),

where p = X(u, t0). We call LH±
St0

light sheets along St0 . A hypersur-

face H ⊂ R
n+1
1 is, generally, called a lightlike hypersurface if it is tangent

to a lightcone at any point. The light sheet along St0 is a lightlike hy-
persurface. We also define LH

±
W : U × I × R → R

n+1
1 × I by

LH
±
W (u, t, μ) = (LH±

St
(u, t, μ), t),

which are called unfolded light sheets of (W,S).
We introduce the notion of Lorentz distance-squared functions on

a world hyper-sheet, which is useful for the study of singularities of
light sheets. We define a family of functions G : W × R

n+1
1 → R on

W = X(U × I) by

G(p,λ) = G(u, t,λ) = 〈X(u, t)− λ,X(u, t)− λ〉,
where p = X(u, t). We call G a Lorentz distance-squared function on the
world hyper-sheet (W,S). For any fixed (t0,λ0) ∈ I × R

n+1
1 , we write

g(u) = G(t0,λ0)(u) = G(u, t0,λ0) and have the following proposition.

Proposition 8.13 ([23]). Let St0 be a momentary space of (W,S)
and G : W×R

n+1
1 → R the Lorentz distance-squared function on (W,S).

Suppose that p0 = X(u0, t0) �= λ0. Then we have the following :
(1) g(u0) = ∂g/∂ui(u0) = 0 (i = 1, . . . , n − 1) if and only if p0 − λ0 =
μLG±(St0)(p0) for some μ ∈ R \ {0}.
(2) g(u0) = ∂g/∂ui(u0) = detH(g)(u0) = 0 (i = 1, . . . , n − 1) if and
only if

p0 − λ0 = μLG±(St0)(p0)

for μ ∈ R \ {0} such that −1/μ is one of the non-zero momentary light-
cone principal curvatures {κ±

i (St)(p)}n−1
i=1 .

Here, detH(g)(u0) is the determinant of the Hessian matrix of g at u0.
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Inspired by the above result, we define a set LF±
St0

by

n−1⋃
i=1

{
X(u, t0) +

1

κ±
i (St)(p)

LG
±(St0)(p) | u ∈ U, p = X(u, t0)

}
,

which are called lightlike focal sets of St0 . Moreover, unfolded lightcone
focal sets of (W,S) are defined to be

LF
±
(W,S) =

⋃
t∈I

LF
±
St

× {t} ⊂ R
n+1
1 × I.

Each one of LF±
(W,S) is the critical value set of LH±

W , respectively.

We consider the relationship between the contact of a one param-
eter family of submanifolds with a submanifold and S.P -K-equivalence
among functions (cf. [13]). Let Ui ⊂ R

r, (i = 1, 2) be open sets
and gi : (Ui × I, (ui, ti)) → (Rn,yi) immersion germs. We define
gi : (Ui × I, (ui, ti)) → (Rn × I, (yi, ti)) by gi(u, t) = (gi(u), t). We
write that (Y i, (yi, ti)) = (gi(Ui × I), (yi, ti)). Let fi : (R

n,yi) → (R, 0)
be submersion germs and write that (V (fi),yi) = (f−1

i (0),yi). We say

that the contact of Y 1 with the trivial family of V (f1) at (y1, t1) is of the
same type in the strict sense as the contact of Y 2 with the trivial family of
V (f2) at (y2, t2) if there is a diffeomorphism germ Φ : (Rn×I, (y1, t1)) →
(Rn × I, (y2, t2)) of the form Φ(y, t) = (φ1(y, t), t+ (t2 − t1)) such that
Φ(Y 1) = Y 2 and Φ(V (f1) × I) = V (f2) × I. In this case we write
SK(Y 1, V (f1) × I; (y1, t1)) = SK(Y 2, V (f2) × I; (y2, t2)). In [23] we
claimed that the following proposition holds which is analogous to Mon-
taldi’s theorem on contact between submanifolds in [31]:

Proposition 8.14. With the same notations as in the above para-
graphs,

SK(Y 1, V (f1)× I; (y1, t1)) = SK(Y 2, V (f2)× I; (y2, t2))

if and only if f1 ◦ g1 and f2 ◦ g2 are S.P -K-equivalent [i.e. there exists
a diffeomorphism germ Ψ : (U1 × I, (u1, t1)) → (U2 × I, (u2, t2)) of the
form Ψ(u, t) = (ψ1(u, t), t − (t2 − t1)) and a function germ λ : (U1 ×
I, (u1, t1)) → R with λ(u1, t1) �= 0 such that (f2◦g2)◦Ψ(u, t) = λ(u, t)f1◦
g1(u, t)].

On the other hand, we also consider a little weaker version of the
above definition of the contact of a one parameter family of submanifolds
with a submanifold. We say that the contact of Y 1 with the trivial
family of V (f1) at (y1, t1) is of the same type as the contact of Y 2

with the trivial family of V (f2) at (y2, t2) if there is a diffeomorphism



Graph-like Legendrian unfoldings 155

germ Φ : (Rn × I, (y1, t1)) → (Rn × I, (y2, t2)) of the form Φ(y, t) =
(φ1(y, t), φ2(t)) such that Φ(Y 1) = Y 2 and Φ(V (f1) × I) = V (f2) × I.
In this case we write PK(Y 1, V (f1) × I; (y1, t1)) = PK(Y 2, V (f2) ×
I; (y2, t2)). We also claim that the following proposition holds which is
analogous to Montaldi’s theorem [31] and we omit to give the proof here.

Proposition 8.15. With the same notations as in the above para-
graphs,

PK(Y 1, V (f1)× I; (y1, t1)) = PK(Y 2, V (f2)× I; (y2, t2))

if and only if f1 ◦ g1 and f2 ◦ g2 are P -K-equivalent [i.e. there exists a
diffeomorphism germ Ψ : (U1×I, (u1, t1)) → (U2×I, (u2, t2)) of the form
Ψ(u, t) = (ψ1(u, t), ψ2(t)) and a function germ λ : (U1 × I, (u1, t1)) → R

with λ(u1, t1) �= 0 such that (f2 ◦ g2) ◦Ψ(u, t) = λ(u, t)f1 ◦ g1(u, t)].
We now consider a function gλ : Rn+1

1 → R defined by gλ(x) =
〈x − λ,x − λ〉, where λ ∈ R

n+1
1 \ W . For any λ0 ∈ R

n+1
1 , we have a

lightcone g−1
λ0

(0) = LC(λ0). Moreover, we consider the lightlike vectors

λ±
0 = LH

±
St0

(p0, μ0), where p0 = X(u0, t0). Then we have

gλ±
0
◦X(u0, t0) = G((u0, t0),LH

±
St0

(p0, μ0)) = 0.

By Proposition 8.13, we also have relations that

∂gλ±
0
◦X

∂ui
(u0, t0) =

∂G

∂ui
((u0, t0),LH

±
St0

(p0, μ0)) = 0.

for i = 1, . . . , n− 1. These relations mean that the lightcones g−1

λ±
0

(0) =

LC(λ±
0 ) are tangent to St0 = X(U × {t0}) at p0 = X(u0, t0). Each

one of the lightcones LC(λ±
0 ) is said to be a tangent lightcone of St0 =

X(U × {t0}) at p0 = X(u0, t0), which we write TLC(St0 ,λ
±
0 ), where

λ±
0 = LH

±
St0

(p0, μ0). Then we have the following simple lemma.

Lemma 8.16. Let X : U × I → R
n+1
1 be a world hyper-sheet.

Consider two points pi = X(ui, t0), (i = 1, 2). Then

LH
±
St0

(p1, μ1) = LH
±
St0

(p2, μ2)

if and only if

TLC(St0 ,LH
±
St0

(p1, μ1)) = TLP (St0 ,LH
±
St0

(p2, μ2)).
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As a consequence, we have tools for the study of the contact between
momentary spaces and families of lightcones. We write that gλ(u, t) =
G(u, t,λ). Then we have gλ(u, t) = gλ ◦ X(u, t), so that we have the
following proposition as a corollary of Proposition 8.14.

Proposition 8.17. Let Xi : (U × I, (ui, t0)) → (Rn+1
1 , pi),

(i = 1, 2), be world hypersheet germs and λ±
i = LH

±
St0

(pi, μi) and

Wi = Xi(U × I). Then the following conditions are equivalent :
(1) SK(W 1, TLC(St0 ,λ

±
1 )× I; (p1, t0))

= SK(W 2, TLC(St0 ,λ
±
2 )× I; (p2, t0)),

(2) g1,λ±
1
and g2,λ±

2
are S.P -K-equivalent.

Here, gi,λ±
i
(u, t) = Gi(u, t,λ

±
i ) = 〈Xi(u, t)− λ±

i ,Xi(u, t)− λ±
i 〉,

(i = 1, 2).

We also have the following proposition as a corollary of Proposition
8.15.

Proposition 8.18. With the same notations as those in Proposition
8.17, the following conditions are equivalent :
(1) PK(W 1, TLC(St0 ,λ

±
1 )× I; (p1, t0))

= PK(W 2, TLC(St0 ,λ
±
2 )× I; (p2, t0)),

(2) g1,λ±
1
and g2,λ±

2
are P -K-equivalent.

We can investigate unfolded lightcone focal sets of world hyper-
sheets as an application of the theory of graph-like Legendrian unfold-
ings. We have shown the following key-proposition in [23].

Proposition 8.19 ([23]). Let G : U × I × (Rn+1
1 \ W ) → R be a

Lorentz distance-squared function on a world hyper-sheet (W,S). For
any point (u0, t0,λ0) ∈ Σ∗(G), G is a non-degenerate graph-like Morse
family of hypersurfaces around (u0, t0,λ0).

By Proposition 8.13, we have

Σ∗(G) = {(u, t,LH±
St
(p, μ)) ∈ U × I ×R

n+1
1 | p = X(u, t), μ ∈ R \ {0}}.

We define a map LG : Σ∗(G) → J1(Rn+1
1 , I) by

LG(u, t,LH
±
St
(p, μ))

=

(
LH

±
St
(p, μ), t,

2

〈Xt(u, t),nT (u, t)〉LG
±(St)(u, t)

)
,

where we define x = (−x0, x1, . . . xn) for x = (x0, x1, . . . , xn) ∈ R
n+1
1 .

By the construction of the graph-like Legendrian unfolding from a graph-
like Morse family of hypersurfaces, LG(Σ∗(G)) is a graph-like Legen-
drian unfolding in J1(Rn+1

1 , I). Therefore, the graph-like wave front
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W (LG(Σ∗(G))) is equal to

{(LH±
St
(p, μ), t) ∈ R

n+1
1 × I | p = X(u, t), (u, t) ∈ U × I, μ ∈ R \ {0}}.

This means that W (LG(Σ∗(G))) = LH
+
W (U×I× (R\{0}))∪LH

−
W (U ×

I×(R\{0})). By Proposition 8.13, the singular set of W (LG(Σ∗(G))) is
the union of the critical value sets of LH±

W which is the union of unfolded

lightcone focal sets LF+
W ∪LF

−
W . Therefore, we have shown the following

proposition.

Proposition 8.20 ([23]). Let (W,S) be a world hyper-sheet in R
n+1
1

and G : W × (Rn+1
1 \ W ) → R the Lorentz distance squared func-

tion. Then we have the graph-like Legendrian unfolding LG(Σ∗(G)) ⊂
J1(Rn+1

1 , I) such that

W (LG(Σ∗(G))) = LH
+
W (U × I × (R \ {0})) ∪ LH

−
W (U × I × (R \ {0})).

We write LH±
(W,S) = LH

±
W (U×I×(R\{0})). We also call LH+

(W,S)∪
LH

−
(W,S) an unfolded light sheet of (W,S). On the other hand, we have

the corresponding Lagrangian submanifold Π(LG(Σ∗(G))) ⊂ T ∗
R

n+1
1 .

We now consider the natural question what are the caustic CLG(Σ∗(G))

and the Maxwell set MLG(Σ∗(G))? Moreover, are there any meanings of
CLG(Σ∗(G)) and MLG(Σ∗(G)) in physics?

In [4, 5] Bousso and Randall gave an idea of caustics of world hyper-
sheets in order to define the notion of holographic domains. The family
of light sheets {LH±

St
(U × {t})×R}t∈J sweeps out a region in R

n+1
1 . A

caustic of a world hyper-sheet is the union of the sets of critical values
of light sheets along momentary spaces {St}t∈I . A holographic domain
of the world hyper-sheet is the region where the light-sheets sweep out
until caustics. So this means that the boundary of the holographic do-
main consists the caustic of the world hyper-sheet. The set of critical
values of the light sheet of a momentary space is the lightlike focal set
of the momentary space. Therefore the notion of caustics in the sense
of Bousso-Randall is formulated as follows: Caustics of a world sheet
(W,S) are defined to be

C±(W,S) =
⋃
t∈I

LF
±
St

= π1(LF
±
(W,S)),

where π1 : R
n+1
1 × I → R

n+1
1 is the canonical projection. We call

C±(W,S) BR-caustics of (W,S) (cf. [23]). We write that C(W,S) =
π1(LF

+
W ∪ LF

−
W ) and call it a total BR-caustic of (W,S). By definition,

we have Σ(W (LG(Σ∗(G))) = LF
+
(W,S) ∪ LF

−
(W,S), so that we have the

following proposition.
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Proposition 8.21 ([23]). Let (W,S) be a world hyper-sheet in R
n+1
1

and G : U × I × (Rn+1
1 \W ) → R the Lorentz distance squared function.

Then we have C(W,S) = CLG(Σ∗(G)).

In [4, 5] the authors did not consider the Maxwell set of a world
hyper-sheet. However, the notion of Maxwell sets plays an important
role in the cosmology which has been called a crease set by Penrose
(cf. [33, 34]). Actually, the topological shape of the event horizon is
determined by the crease set of light sheets. Here, we write M(W,S) =
MLG(Σ∗(G)) and call it a BR-Maxwell set of the world sheet (W,S).

Let Xi : (Ui × Ii, (ui, ti)) → (Rn+1
1 , pi), (i = 1, 2) be germs of

timelike embeddings such that (Wi,Si) are world hyper-sheet germs,
where Wi = Xi(U). For λi = LH

+
Si
(pi, ui) or λi = LH

−
Si
(pi, ui), let

Gi : (Ui× Ii× (Rn+1
1 \Wi), (ui, ti,λi)) → R be Lorentz distance squared

function germs. We also write that gi,λi(u, t) = Gi(u, t,λi). Since

W (LGi(Σ∗(Gi))) = LH
+
(Wi,Si)

∪ LH
−
(Wi,Si)

,

we can apply Theorem 6.1 and Corollary 6.2 to our case. Then we have
the following theorem.

Theorem 8.22. Suppose that π|LGi
(Σ∗(Gi)) is a proper map germ

and the singular set of the map germ is nowhere dense for each i = 1, 2,
respectively. Then the following conditions are equivalent :
(1) (LH+

(W1,S1)
∪ LH

−
(W1,S1)

,λ1), (LH
+
(W2,S2)

∪ LH
−
(W2,S2)

,λ2) are S.P+-

diffeomorphic,
(2)LG1(Σ∗(G1)), LG2(Σ∗(G2)) are S.P+-Legendrian equivalent,
(3)Π(LG1(Σ∗(G1))), Π(LG2(Σ∗(G2)) are Lagrangian equivalent.

We remark that conditions (2) and (3) are equivalent without any as-
sumptions (cf. Theorem 6.1). Moreover, if we assume that LGi(Σ∗(Gi))
is S.P+-Legendrian stable, then we can apply Proposition 8.14 and The-
orem 6.4 and show the following theorem.

Theorem 8.23. Suppose that LGi(Σ∗(Gi)) is S.P
+-Legendrian sta-

ble for each i = 1, 2, respectively. Then the following conditions are
equivalent :
(1) (LH+

(W1,S1)
∪ LH

−
(W1,S1)

,λ1),(LH
+
(W2,S2)

∪ LH
−
(W2,S2)

,λ2) are S.P+-

diffeomorphic,
(2) LG1(Σ∗(G1)), LG2(Σ∗(G2)) are S.P+-Legendrian equivalent,
(3) Π(LG1(Σ∗(G1))), Π(LG2(Σ∗(G2)) are Lagrangian equivalent,
(4) g1,λ1 , g2,λ2 are S.P -K-equivalent,

(5) SK(W 1, TLC(St0 ,λ1)× I; (p1, t0))
= SK(W 2, TLC(St0 ,λ2)× I; (p2, t0)).



Graph-like Legendrian unfoldings 159

For s-P -Legendrian equivalence, we have the following theorem as
a corollary of Theorem 7.11 and Proposition 8.18.

Theorem 8.24. Suppose that LGi(Σ∗(Gi)) is s-P -Legendrian sta-
ble for each i = 1, 2, respectively. Then the following conditions are
equivalent :
(1) (LH+

(W1,S1)
∪ LH

−
(W1,S1)

,λ1),(LH
+
(W2,S2)

∪ LH
−
(W2,S2)

,λ2) are s-P

-diffeomorphic,
(2) LG1(Σ∗(G1)), LG2(Σ∗(G2)) are s-P -Legendrian equivalent,
(3) g1,λ1 , g2,λ2 are P -K-equivalent,

(4) PK(W 1, TLC(St0 ,λ1)× I; (p1, t0))
= PK(W 2, TLC(St0 ,λ2)× I; (p2, t0)).

Moreover, S.P+-Legendrian equivalence among graph-like Legen-
drian unfoldings implies s-P -Legendrian equivalence. By Proposition
8.19, the caustic and the Maxwell set of LG(Σ∗(G)) are the BR-caustic
and the BR-Mawxell set. Since s-P -Legendrian equivalence among
graph-like Legendrian unfoldings preserves both the diffeomorphism
types of caustics and Maxwell sets, we have the following proposition.

Proposition 8.25. If Π(LG1(Σ∗(G1))) and Π(LG2(Σ∗(G2))) are
Lagrangian equivalent, then LG1(Σ∗(G1)) and LG2(Σ∗(G2)) are s-P -
Legendrian equivalent. It follows that total BR-caustics

C(W1,S1), C(W2,S2)

and BR-Maxwell sets

M(W1,S1), M(W2,S2)

are diffeomorphic as set germs, respectively.
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