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Singularities of frontals

Goo Ishikawa

§1. Introduction

In this survey article we introduce the notion of frontals, which
provides a class of generalised submanifolds with singularities but with
well-defined tangent spaces. We present a review of basic theory and
known studies on frontals in several geometric problems from singularity
theory viewpoints. In particular, in this paper, we try to give some of
detailed proofs and related ideas, which were omitted in the original
papers, to the basic and important results related to frontals.

We start with one of theoretical motivations for our notion “frontal”.
Let M be a C∞ manifold of dimension m, which is regarded as an am-
bient space. Suppose n ≤ m and let f : N → M be an immersion of an
n-dimensional C∞ manifold N , which is regarded as a parameter space,
to M . Then for each point t ∈ N , we have the n-plane f∗(TtN), the im-
age of the differential map f∗ : TtN → Tf(t)M at t in the tangent space
Tf(t)M . Thus we have a field of tangential n-planes {f∗(TtN)}t∈N along
the immersion f . Moreover if M is endowed with a Riemannian metric,
then we have also a field of tangential (m−n)-planes f∗(TtN)⊥ along f .
Taking those vector bundles we can develop differential topology, theory
of characteristic classes and so on of immersed submanifolds. Besides,
taking local adapted frames for immersions, we can develop differential
geometry of immersed submanifolds in terms of frames. Then a natural
and challenging problem arises to us on the possibility to find a natural
class of singular mappings enjoying the same properties as immersed
submanifolds and to develop generalised topological and geometric the-
ories on them.
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In this paper we introduce such a class of generalised submanifolds
in terms of Grassmannians: Let Gr(n, TM) denote the Grassmannian
of tangential n-planes in the tangent bundle TM over an m-dimensional
C∞ manifold M with the canonical projection π : Gr(n, TM) → M (see
§3). Let N be a C∞ manifold of dimension n with 0 ≤ n ≤ m and
take a point a ∈ N . Then a C∞ map-germ f : (N, a) → M is called
a frontal map-germ or a frontal in short if there exists a “Legendre”
lifting of f , that is, there exist an open neighbourhood U of a and a

C∞ lift f̃ : U → Gr(n, TM) of f , π ◦ f̃ = f |U , such that the image of

differential f∗(TtN) is contained in f̃(t), for any t ∈ U . Note that f̃(t)
is an n-plane in Tf(t)M . Moreover a C∞ mapping f : N → M is called
a frontal mapping or a frontal in short if, the germ f : (N, a) → M
at any point a ∈ N is a frontal. See §4 for details. The formulation
using Grassmannians is very natural and satisfactory from the viewpoint
of differential systems and their geometric solutions as well. See for
instance [101][52][53].

Note that, if dim(N) = 1, then any frontal f : N → M has a

global Legendre lift f̃ : N → Gr(1, TM) (Lemma 12.3). However, if
dim(N) = 2, then a frontal f : N → M not necessarily has a global
Legendre lift (Example 2.5). This fact seems to be found first in the
present paper. Also note that any mapping f : N → M is a frontal if
dim(N) = dim(M) (Remark 4.2). Any constant mapping f : N → M is
a frontal.

The notion of “frontals” was introduced already in many papers,
e.g. [38][105][95][85][10][11], in the case of hypersurfaces as a natural
generalisation of wave-fronts. See §2.

We are going to give a survey on local classification of singularities
appearing in frontals in various geometric contexts. Basically we mean
by the “singularities” of frontals, as usual, the equivalence classes of
germs of frontals under the following equivalence relation:

Definition 1.1. Two map-germs f : (N, a) → (M,f(a)) and g :
(N ′, a′) → (M ′, f ′(a′)) are right-left equivalent or A-equivalent or diffeo-
morphic, if there exist diffeomorphism-germs ϕ : (N, a) → (N ′, a′) and
Φ : (M,f(a)) → (M ′, f ′(a′)) such that the following diagram commutes:

(N, a)
f−−→ (M,f(a))

ϕ ↓ ↓ Φ

(N ′, a′)
g−−→ (M ′, f ′(a′)).
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As the typical singularities of frontals, we introduce cuspidal edges,
swallowtails, folded umbrellas, open swallowtails, open folded umbrellas
and so on.

The cuspidal edge is defined as the equivalence class of the map-germ
(R2, 0) → (Rm, 0), m ≥ 3,

(t, s) �→ (t+ s, t2 + 2st, t3 + 3st2, 0, . . . , 0),

which is diffeomorphic to (u,w) �→ (u,w2, w3, 0, . . . , 0). The cuspidal
edge singularities are originally defined only in the three dimensional
space. Here we are generalising the notion of the cuspidal edge in higher
dimensional ambient space. It will be often emphasised it by writing
“embedded” cuspidal edge.

The folded umbrella (or the cuspidal cross cap) is defined as the
equivalence class of the map-germ (R2, 0) → (R3, 0),

(t, s) �→ (t+ s, t2 + 2st, t4 + 4st3),

which is diffeomorphic to (u, t) �→ (u, t2 + ut, t4 + 2
3ut

3).
The open folded umbrella is defined as the equivalence class of the

map-germ (R2, 0) → (Rm, 0), m ≥ 4,

(t, s) �→ (t+ s, t2 + 2st, t4 + 4st3, t5 + 5st4, 0, . . . , 0),

which is diffeomorphic to (u, t) �→ (u, t2+ut, t4+ 2
3ut

3, t5+ 5
8ut

4, 0, . . . , 0).
The open folded umbrella appeared for instance as a frontal-symplectic
singularity in the paper [48].

The swallowtail is defined as the equivalence class of the map-germ
(R2, 0) → (R3, 0),

(t, s) �→ (t2 + s, t3 + 3
2st, t4 + 2st2),

which is diffeomorphic to (u, t) �→ (u, t3 + ut, t4 + 2
3ut

2).
The open swallowtail is defined as the equivalence class of the map-

germ (R2, 0) → (Rm, 0), m ≥ 4,

(t, s) �→ (t2 + s, t3 + 3
2st, t4 + 2st2, t5 + 5

2st
3, 0, . . . , 0),

which is diffeomorphic to (u, t) �→ (u, t3+ut, t4+ 2
3ut

2, t5+ 5
9ut

3, 0, . . . , 0).
The open swallowtail singularity was introduced by Arnol’d (see [6]) as
a singularity of Lagrangian varieties in symplectic geometry. Here we
abstract its diffeomorphism class as the singularity of parametrised sur-
faces (see [26][43]).
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In Part I, we provide basic studies for an intrinsic understanding of
frontals as parametrised singular submanifolds with well-defined tangent
spaces.

We give the exact definition of frontals in §2 in the case of hypersur-
faces and, after the description of Grassmannian bundles and canonical
(or generalised contact) distributions in §3, we give the general definition
in §4. In §5, we have introduced the density function as a main notion
for the theory of frontals.

A frontal f : N → M is called a proper frontal in the present paper if
the singular (non-immersive) locus S(f) is nowhere dense in N (§6). In
[44][45][46][47], “frontal” maps were defined as proper frontals, namely,
the density of regular locus was assumed. Note that proper frontals
are not generic in the space of all frontals for C∞-topology in general
(Remark 6.4). In §7, we introduce the tangent bundles to frontals.

Viewed from our generalisation, the notion of frontals turns to be
closely related to the notion of openings. Though the notion of openings
of mappings seems to be noticed naively in many previous contribu-
tions, it is introduced in the author’s recent papers [44][45]. An opening
separates the self-intersections of the original map-germ, preserving its
singularities. For example, the swallowtail is an opening of theWhitney’s
cusp map-germ (R2, 0) → (R2, 0) defined by (t, s) �→ (t2 + s, t3 + 3

2st)

which is diffeomorphic to (u, t) �→ (u, t3 + ut) and the open swallowtail
is a versal opening of them. Openings of map-germs appear as typ-
ical singularities in several problems of geometry and its applications.
Note that the process of unfoldings of map-germs (Rn, 0) → (Rm, 0) pre-
serves the “relative dimension” m−n. On the other hand, the process of
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openings preserves n but changes m, and it gives bridges between map-
germs of different relative dimensions. We recall also the related notions,
“Jacobi modules” Jf and “ramification modules” Rf . They play im-
portant role to analysis and classification of singularities of mappings f ,
in particular, the study on symplectic singularities, contact singularities
and singularities of tangent surfaces ([29][30][31][34][35][37][39][40][49]).
Moreover those notions seem to be related to recognition problem of sin-
gularities (see Definition 8.4). Note that we used the notation, for the
ramification module of f , ‘Df ’ instead of Rf in [29], relating Mather’s
C-equivalence, and we denoted it by ‘Hf ’ in [30][31][33][34], because it
can be regarded as a cohomological invariant. Note that the notion of
openings, Jacobi modules and ramification modules for multi-germs is
naturally introduced in the paper [44]. We give a review on the theory
of opening related to frontals in §8 and §9. Moreover in §10 we give
ideas of “subfrontals” and “superfrontals” related to frontals.

In [97], it is introduced the related notion of “coherent tangent bun-
dles” as generalised Riemannian manifolds. Moreover Saji, Umehara,
Yamada are developing the intrinsic studies of frontals in terms of singu-
lar metrics introduced by Kossowski [72]. We intend to give an abstract
differential-topological feature of frontals, which is invariant under dif-
feomorphisms, by proving another way to study intrinsically frontals in
terms of the theory of C∞-rings (§11).

In part II, we give a survey of several results on frontals as an ap-
plication of the basic theory presented in part I.

In §12, we treat frontal curves and give basic results on them. Let
γ : N → R2 be a planar frontal curve with dim(N) = 1. By Lemma
12.3, there exists a global Legendre lifting γ̃ : I → P (T ∗R2). Thus it is
possible to perform differential geometry of planar frontals, as a gener-
alised differential geometry of planar immersions, in terms of Legendre
curves covering frontals. In fact geometric studies on planar frontals,
evolutes and involutes, are given in a series of papers [21][22][23][24]. As
a related topics to planar frontals, we gave a review the “Goursat Mon-
ster tower” found by Zhitomirskii, Montgomery, Mormul and others (cf.
[80][81][16]) and the “Legendre-Goursat duality” related to it in [46].

The study on singularities and bifurcations of wavefronts based on
Legendre singularity theory are established by Arnold-Zakalyukin’s the-
ory ([5][7][103][104]). The application of singularity theory to differen-
tial geometry has been developed by many authors (see for instance
[90][91][14][63]). The geometric study of submanifolds in hyperbolic
space Hn+1 based on singularity theory was initiated by Izumiya et
al.([66][67][68]). The Legendre duality developed in [62][18] enables us to
unify the theory of framed curves in any space form as describes in [42].
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We recall Legendre duality (see [13][82][58][52][18]) in the framework of
moving frames and flags and discuss its generalisation and relation with
the theory of frontals in §13, §14 and §15.

Let γ : I → R3 be a space frontal curve. Then the tangent surface
(tangent developable) Tan(γ) is defined as the surface ruled by tan-
gent lines to γ. Then the tangent surface has zero Gaussian curvature,
therefore it is flat with respect to Euclidean metric of R3 at least off
the singular locus. Thus the tangent surfaces serve main parts of “flat
frontals” (§16). Flat fronts or flat frontals are studied also in [83][84].

The notion of tangent surfaces ruled by “tangent lines” to directed
curves is naturally generalised in various ways: For a curve in a projec-
tive space, we regard tangent projective lines as “tangent lines”. The
classification is generalised to An-geometry (§17). For a curve in a
Riemannian manifold, we regard tangent geodesics as “tangent lines.
In fact, tangent surfaces are defined for proper frontal curves (directed
curves) in a manifold with an affine connection (§18). After discussing
useful criteria of singularities in §19, we define null tangent surface to
a null curve of a semi (pseudo)-Riemannian manifold, regarding null
geodesics as “tangent lines” (see §20). In particular we pick up several
results related to Dn-geometry ([57]). For a horizontal curve of a sub-
Riemannian manifold, we regard “tangent lines” by abnormal geodesics
(see §21). In particular the classification result of singularities of tan-
gent surfaces to generic integral curves to Cartan distribution with G2-
symmetry is introduced.

Speaking of G2, we note that the work on frontals may be related
to the rolling ball problem [1][9][8][79]. We will treat “rolling frontals”
as a generalisation of rolling bodies [4] in a forthcoming paper.

In the last section (§22), as an appendix, we show the Malgrange’s
preparation theorem on differentiable algebras ([74]) from the ordinary
Malgrange-Mather’s preparation theorem (see for example [15]), relating
to the theory of C∞-rings which we have utilised in this paper.

The author hopes very much that this survey paper helps to raise
wider reader’s interest to the mathematics on frontals.

The author would like to thank the anonymous referee for the valu-
able comment to improve the paper.

In this paper a manifold or a mapping is supposed to be of class C∞

unless otherwise stated. The symbol ⊆ of inclusion is often used, which
has the same meaning as ⊂ just to stress that the equality may occur.
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Part I. Basic Theory

§2. The case of hypersurfaces

Let M be a manifold of dimension m. Let P (T ∗M) denote the
projective cotangent bundle of M , which consists of non-zero cotangent
vectors somewhere on M considered up to a non-zero scalar multiplica-
tion. Note that P (T ∗M) is naturally identified with the Grassmannian
bundle Gr(m−1, TM) (see §3) by sending each class (x, [α]) ∈ P (T ∗M)
of a non-zero covector α ∈ T ∗M to its kernel Ker(α) ∈ Gr(m−1, TxM).
Note that α ∈ T ∗

xM , that α : TxM → R is a non-zero linear map, and
that Ker(α) ⊂ TxM is an (m−1)-plane. Then the (2m−1)-dimensional
manifold P (T ∗M) has a canonical contact structure D ⊂ TP (T ∗M). In
fact it is defined by D =

⋃
(x,[α]) D(x,[α]), and D(x,[α]) = π−1

∗ (Ker(α)),

where π : P (T ∗M) → M is the canonical projection.
We recall the coordinate description of the contact structure, which

will be needed for the detailed computation on singularities.
Let (x1, x2, . . . , xm) be a local coordinate system on an open subset

U of M . Let
(x1, x2, . . . , xm, p1, p2, . . . , pm)

be the associated system of coordinates on T ∗U such that any element
α ∈ T ∗U is expressed as

α = p1dx
1 + p2dx

2 + · · ·+ pmdxm,

by its coordinates. Set Vi = {pi �= 0} ⊂ T ∗U, 1 ≤ i ≤ m. Then we have
a local system of coordinates of P (T ∗M) associated to Vi,

x1, x2, . . . , xm,−p1/pi, . . . ,−pi−1/pi,−pi+1/pi, . . . ,−pm/pi.

To avoid non-essential complexity, we will discuss just for i = m in what
follows. Then set ai = −pi/pm, 1 ≤ i ≤ m− 1. Then

x1, x2, . . . , xm, a1, a2, . . . , am−1

give a local system of coordinates of P (T ∗M) and the contact structure
D ⊂ TP (T ∗M) is given locally by

dxm − (a1dx
1 + a2dx

2 + · · ·+ am−1dx
m−1) = 0.

Let N be a submanifold of dimension n with n < m. Then the
submanifold N induces the projective conormal bundle

Ñ = P (T ∗
NM) = {(x, [α]) ∈ P (T ∗M) | α|TxN = 0},
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which satisfies that TÑ ⊂ D and dim(Ñ) = m − 1, in other words, a
Legendre submanifold in the contact manifold P (T ∗M).

In particular, suppose n = m− 1, that is, N is a hypersurface of M .

Then π|
Ñ

: Ñ → N is a diffeomorphism. Its inverse N → Ñ is given by
x �→ (x, TxN).

Let f : N → M be an immersion of an (m−1)-dimensional manifold

N to an m-dimensional manifold M . Then we have an immersion f̃ :

N → P (T ∗M) defined by f̃(t) = (f(t), f∗(TtN)). Then f̃ is a lift of f

and f̃ is D-integral, i.e. f̃∗(TtN) ⊂ Df(t) for any t ∈ N . In other words,

f̃ is a Legendre immersion.

Remark 2.1. Set f̃(t) = (f(t), [α(t)]) ∈ P (T ∗
f(t)M). Then the

condition f̃∗(TtN) ⊂ Df(t) is equivalent to that α(t)|f∗(TtN) = 0.

Definition 2.2. Let N be a manifold of dimension m− 1 and M a
manifold of dimension m. A map-germ f : (N, a) → M is called a wave-
front or a front in short if there exists a germ of Legendre immersion

f̃ : (N, a) → P (T ∗M) with π ◦ f̃ = f .
A mapping f : N → M is called a wave-front or a front in short if,

for any point a ∈ N , the germ of f at a is a front.

A map-germ f : (N, a) → M is a front if and only if there exists a
representative of f , which is a front.

Remark 2.3. In the original and naive context, the image f(N)
was called a wave-front rather than the parametrisation f itself.

Definition 2.4. Let N be a manifold of dimension m− 1 and M a
manifold of dimension m. Let a ∈ N . A map-germ f : (N, a) → M is
called a frontal map-germ or a frontal in short if there exist a germ of

Legendre lifting f̃ : (N, a) → P (T ∗M) of f , that is, there exist an open
neighbourhood U of a, a representative f : U → M of f and a Legendre

lifting f̃ : U → P (T ∗M) of f |U , i.e. f̃∗(TtN) ⊂ Df(t) for any t ∈ U and

π ◦ f̃ = f |U . Here we do not assume that f̃ is an immersion.
A mapping f : N → M is called a frontal mapping or a frontal in

short if, for any a ∈ N , the germ of f at a is a frontal.

A map-germ f : (N, a) → M is a frontal if and only if there exists a
representative of f , which is a frontal.

In Definition 2.4 we have defined the notion of frontals by the local
existence of its Legendre liftings. A frontal f : N → M not necessarily

has its global Legendre lifting f̃ : N → P (T ∗M).
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Example 2.5. Define a C∞ function ϕ : R → R by ϕ(t) =

e−1/t2(t > 0), ϕ(t) = 0(t ≤ 0). Then define h : R2 → R3 by h(t1, t2) =
(t1, t

2
2, t

3
2 + ϕ(t1)t2), which we will call a half cuspidal edge.

The graph of ϕ(t). The image of the half cuspidal edge.

The mapping h is not frontal. In fact the local existence of Legendre
lift for h does not hold at the origin (t1, t2) = (0, 0). Moreover h is a
front on R2 \ {(0, 0)} with cuspidal edge along {(t1, 0) | t1 < 0} and

the Legendre lifting h̃ : R2 \ {(0, 0)} → P (T ∗R3) ∼= R3 × RP 2 is not

homotopically trivial. In fact h̃ restricted to a loop around the origin of
R2 generates the fundamental group π1(P (T ∗R3)) ∼= π1(RP 2) ∼= Z/2Z.

Define k : R2 → R2 by k(t1, t2) = ϕ(t21 + t22 − 1)(t1, t2). Then k is
a C∞ mapping which collapses the unit disc to the origin and maps the
outside of the unit disc to R2 \{(0, 0)} diffeomorphically. Set f = h◦k :
R2 → R3. Then
(1) f is a frontal.

(2) There does not exist a global Legendre lifting f̃ : R2 → P (T ∗R3) of
f .
To see (1), let t = (t1, t2) satisfy t21 + t22 < 1. Then the germ of f at t
is constant and therefore it is a frontal. Let t satisfy t21 + t22 > 1. Then
the germ of f at t is right equivalent to h at k(t) ∈ R2 \ {(0, 0)}, which
is a frontal. Let t satisfy t21 + t22 = 1. Then any local extension of h̃ ◦ k
to (R2, t) turns to be a Legendre lift of the germ of f at t. Therefore
f is a frontal. Thus we have (1). To see (2), it is sufficient to observe

that h̃ ◦ k : R2 \D2 → P (T ∗R3), which is the unique Legendre lift of f
restricted to R2 \D2, is never extended continuously to R2.

§3. Grassmannian bundle and generalised contact distribution

Let N be a manifold of dimension n and M a manifold of dimension
m with n ≤ m. Note that in the previous section we assumed m = n+1.
However in the next section we treat the general case under the weaker
condition n ≤ m.

To treat the general cases, we recall the Grassmannian bundle asso-
ciated to the tangent bundle TM of M . For each x ∈ M , Gr(n, TxM)
denotes the Grassmannian manifold consisting of n-dimensional sub-
spaces of TxM . Then let Gr(n, TM) =

⋃
x∈M Gr(n, TxM). Note that
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Gr(n, TM) is a bundle over M with fibres Gr(n, TxM) and that the di-
mension dim(Gr(n, TxM)) = n(m − n). Note also that Gr(n, TxM) is
identified with Gr(m − n, T ∗

xM) and therefore that, when m = n + 1,
Gr(n, TM) is identified with P (T ∗M). Let π : Gr(n, TM) → M be
the canonical projection, π(x, V ) = x for any (x, V ) ∈ Gr(n, TM) with
V ∈ Gr(n, TxM), x ∈ M . If n = m, then π : Gr(m,TM) → M is a
diffeomorphism.

Lemma 3.1. Let Φ : M → M ′ be a diffeomorphism. Let n be an
integer with 0 ≤ n ≤ m = dim(M). Let Φ� : Gr(n, TM) → Gr(n, TM ′)
denote the diffeomorphism induced by the differential map Φ∗ which is
regarded as the bundle isomorphism Φ∗ : TM → TM ′ covering Φ. Then
we have π ◦Φ� = Φ ◦ π : Gr(n, TM) → M ′. Here π means the canonical
projection Gr(n, TM ′) → M ′ as well as Gr(n, TM) → M .

Proof : Let (x, V ) ∈ Gr(n, TM). Then Φ�(x, V ) = (Φ(x),Φ∗(V )). There-
fore (π ◦ Φ�)(x, V ) = π(Φ(x),Φ∗(V )) = Φ(x) = (Φ ◦ π)(x, V ). �

We recall the coordinate description of Grassmannians. Let (x0, V0) ∈
Gr(n, TM). Here x0 ∈ M and V0 ∈ Gr(n, Tx0M) so that V0 ⊂ Tx0M is
a fixed n-plane. The suffix 0 is used to indicate that (x0, V0) becomes
the centre of the local coordinate system we are going to provide. Let us
take a local coordinate system (x1, . . . , xn, xn+1, . . . , xm) on a coordinate
neighbourhood U ⊂ M with the centre at x0 such that ∂/∂x1, . . . , ∂/∂xn

generate V0 at x0. Let π′ : U → Rn denote the coordinate projection
defined by (x1, . . . , xn, . . . , xm) �→ (x1, . . . , xn). Let Ω ⊂ π−1(U) be the
set of (x, V ) with x ∈ U, V ∈ Gr(n, TxM) such that V is mapped iso-
morphically by π′

∗ : TU → TRn to π′
∗(V ). Then, for any (x, V ), there

exist unique real numbers akj , (1 ≤ j ≤ n, n+ 1 ≤ k ≤ m) such that the
n-plane V has the basis h1, h2, . . . , hn of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 =
∂

∂x1
(x) +an+1

1

∂

∂xn+1
(x) + · · ·+ am1

∂

∂xm
(x),

h2 =
∂

∂x2
(x) +an+1

2

∂

∂xn+1
(x) + · · ·+ am2

∂

∂xm
(x),

.

.

.
. . .

hn =
∂

∂xn
(x) +an+1

n
∂

∂xn+1
(x) + · · ·+ amn

∂

∂xm
(x).

Thus we have a system of coordinates (x1, . . . , xm, akj , (1 ≤ j ≤ n, n +
1 ≤ k ≤ m)) on Ω of Gr(n, TM) with the centre at (x0, V0).

We call the coordinate systems constructed as above Grassmannian
coordinates.
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The canonical distribution D ⊂ T (Gr(n, TM)) on the Grassmann
bundle Gr(n, TM) is defined by D =

⋃
(x,V ) D(x,V ) where (x, V ) runs

over Gr(n, TM), V being an n-plane of TxM , x ∈ M , and, for v ∈
T(x,V )(Gr(n, TM)),

v ∈ D(x,V ) ⇐⇒ π∗(v) ∈ V (⊂ TxM).

We call the canonical distribution D on Gr(n, TM) also the canonical
differential system and also the contact distribution, in a generalised and
wider sense. If n = m−1, then D is the contact distribution in the strict
sense. Note that, if n = m, then D = T (Gr(n, TM)) ∼= TM .

Definition 3.2. A mapping F : N → Gr(n, TM) is called an in-
tegral mapping of the contact distribution D ⊂ TGr(n, TM) or a D-
integral mapping if F∗(TN) ⊂ D. If dim(N) = n, then we call an
integral mapping f : Nn → Gr(n, TM) of the contact structure D ⊂
TGr(n, TM) a Legendre mapping in a generalised and wider sense.

Lemma 3.3. A mapping F : Nn → Gr(n, TM) is a Legendre map-
ping if and only if, (π ◦F )∗(TtN) ⊆ F (t), (t ∈ N). If F is Legendre and
π ◦ F is an immersion at t ∈ N , then F (t) = (π ◦ F )∗(TtN).

Proof : By definition, F is Legendre if and only if, for any t ∈ N ,
F∗(TtN) ⊂ DF (t). Since DF (t) = π−1

∗ (F (t)), regarding F (t) as an n-
plane in T(π◦F )(t)M , the condition is equivalent to that π∗(F∗(TtN)) ⊆
F (t), that is, (π ◦ F )∗(TtN) ⊆ F (t), for any t ∈ N . Moreover if π ◦ F
is an immersion at t ∈ N , then dim((π ◦ F )∗(TtN)) = n. Therefore we
have (π ◦ F )∗(TtN) = F (t). �

The following result shows one of fundamental properties of the
canonical differential systems (the generalised contact distributions).

Proposition 3.4. Let Φ : M → M ′ be a diffeomorphism. Let 0 ≤
n ≤ m = dim(M). Let D denote the contact distribution of Gr(n, TM ′)
as well as that of Gr(n, TM). Then, for any (x, V ) ∈ Gr(n, TM), we
have

(Φ�)∗(D(x,V )) = D(Φ(x),Φ∗(V )).

In particular we have (Φ�)∗(D) = D ⊂ T (Gr(n, TM ′)) (see Lemma
3.1 ).

Proof : Let v ∈ D(x,V ). Then π∗v ∈ V . Then we have, by Lemma 3.1,

π∗((Φ�)∗(v)) = (π ◦ Φ�)∗(v) = (Φ ◦ π)∗(v) = Φ∗(π∗v) ∈ Φ∗(V ).
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Therefore we have (Φ�)∗(D(x,V )) ⊆ D(Φ(x),Φ∗(V )). The converse inclu-

sion is obtained by considering Φ−1, or, by counting the dimension of
the vector spaces. �

We conclude this section by the coordinate description of the contact
distribution: Take the Grassmannian coordinates (x1, . . . , xm, akj , (1 ≤
j ≤ n, n + 1 ≤ k ≤ m)) of Gr(n, TM) on an open set Ω ⊂ Gr(n, TM).
Set

θk := dxk −
n∑

j=1

akj dx
j , (n+ 1 ≤ k ≤ m).

Lemma 3.5. Let 0 ≤ n ≤ dim(M). The local description of the
contact distribution D of Gr(n, TM) is given by

D|TΩ = {v ∈ TΩ | θn+1(v) = 0, . . . , θm(v) = 0}.

Proof : Let (x, V ) ∈ Ω and v =
∑m

i=1 b
i∂/∂xi +

∑
j,k c

k
j ∂/∂a

k
j ∈ T(x,V )Ω.

Then v ∈ D(x,V ) if and only if π∗(v) ∈ V . Now V = 〈h1, . . . , hn〉R
in terms of the above basis (described after Lemma 3.1). Then the
condition is equivalent to that

∑m
i=1 b

i∂/∂xi =
∑n

j=1 λ
jhj for some

λ1, . . . , λn ∈ R, which is equivalent to that bj = λj , 1 ≤ j ≤ n and
bk =

∑n
j=1 b

jakj , n + 1 ≤ k ≤ m, and thus equivalent to that θk(v) = 0,
n+ 1 ≤ k ≤ m. �

§4. Generalised frontals

We give the exact definition of our main notion in this paper:

Definition 4.1. Let N be an n-dimensional manifold and M an
m-dimensional manifold with n ≤ m. A map-germ f : (N, a) → M is
called a frontal map-germ or a frontal in a generalised sense, if there

exists a germ of Legendre lift f̃ : (N, a) → Gr(n, TM) of f , that is, if

there exists an open neighbourhood U of a and a D-integral lift f̃ : U →
Gr(n, TM) of f for the canonical distribution D ⊂ TGr(n, TM) and
for the canonical projection π : Gr(n, TM) → M , which satisfies that

f∗(TtN) ⊆ f̃(t) for any t ∈ U and π ◦ f̃ = f .
We call a mapping f : Nn → Mm a frontal mapping or a frontal

in a generalised sense, if, for any point a ∈ N , the germ of f at a is a
frontal.

Remark 4.2. Note that, in the equi-dimensional case n = m, any

mapping f : N → M is a frontal. In fact the mapping f̃ : N →
Gr(m,TM) defined by f̃(t) := Tf(t)M is a Legendre lift of f .
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Proposition 4.3. Let f : (N, a) → (M,f(a)) and g : (N ′, a′) →
(M ′, f(a′)) be map-germs. If f is a frontal and g is right-left equivalent
to f , then g is a frontal.

Proof : Suppose g◦ϕ = Φ◦f for some diffeomorphism-germs ϕ : (N, a) →
(N ′, a′) and Φ : (M,f(a)) → (M ′, f(a′)). Let f̃ : (N, a) → Gr(n, TM)

be a Legendre lift of f . Set g̃ := Φ� ◦ f̃ ◦ ϕ−1 : (N ′, a′) → Gr(n, TM ′).
For t′ ∈ (N, a′), we have, by Proposition 3.4,

g̃∗(Tt′N
′) = (Φ�)∗(f̃∗(ϕ−1

∗ (Tt′N))) = (Φ�)∗(f̃∗(Tϕ−1(t)N)) ⊂ (Φ�)∗D = D.

Therefore g̃ is Legendre. Moreover, by Lemma 3.1, we have

π ◦ g̃ = π ◦ Φ� ◦ f̃ ◦ ϕ−1 = Φ ◦ π ◦ f̃ ◦ ϕ−1 = Φ ◦ f ◦ ϕ−1 = g.

Therefore g̃ is a Legendre lifting of g, and hence g is a frontal. �

Definition 4.4. A map-germ f : (N, a) → M is called a front in the

generalised sense if there exists a Legendre lift f̃ : (N, a) → Gr(n, TM)

of f such that f̃ is an immersion-germ. A mapping f : Nn → Mm is
called a front in the generalised sense if, for any a ∈ N , the germ of f
at a is a front.

A map-germ f : (N, a) → M is a front in the generalised sense if and
only if there exists a representative of f which is a front. The condition
that f : N → M is a front in the generalised sense is equivalent to

the local existence, at each point of N , of an immersive lift f̃ : U →
Gr(n, TM) of f satisfying f∗(TtN) ⊂ f̃(t), (t ∈ U).

§5. Density function

The notion of density functions is a key to understand the geometry
of frontals, which was introduced in [71][25][95] first. We introduce its
generalisation (see also [59][60]):

Proposition 5.1. Let f : (N, a) → M be a map-germ with dim(N) =
n ≤ m = dim(M). Then the following conditions are equivalent :
(1) f is a frontal map-germ.
(2) There exists a frame h1, h2, . . . , hn : (N, a) → TM along f and a
function-germ σ : (N, a) → R such that(

∂f

∂t1
∧ ∂f

∂t2
∧ · · · ∧ ∂f

∂tn

)
(t) = σ(t)(h1 ∧ h2 ∧ · · · ∧ hn)(t),

as germs of n-vector fields (N, a) → ∧nTM over f . Here t1, t2, . . . , tn
are coordinates on (N, a).
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The function σ : (N, a) → R in Proposition 5.1 is called a signed
area density function or briefly an s-function of the frontal f associated
with the frame. Note that the function σ is essentially the same thing
with the function λ introduced in [71][25] in the case dim(M) = 3.

Two function-germs σ, σ̃ : (N, a) → R are called K-equivalent if
there exists a diffeomorphism-germ T : (N, a) → (N, a) and a non-
vanishing function-germ c : (N, a) → R, c(a) �= 0, such that σ̃(T (t)) =
c(t)σ(t), (t ∈ (N, a)) (see [75]).

Lemma 5.2. The K-equivalence class of a signed area density func-
tion σ is independent of the choice of the frame h1, h2, . . . , hn and of the
coordinates t1, t2, . . . , tn on (Rn, a) and depend only on the frontal f .

Proof : Let us take another frame k1, . . . , kn. Then there exists A =
(aij) : (Rn, a) → GL(n,R) such that (h1, . . . , hn) = (k1, . . . , kn)A.
Then h1 ∧ h2 ∧ · · · ∧ hn = (detA)(k1 ∧ k2 ∧ · · · ∧ kn). Therefore σ is
transformed to (detA)σ. Let us take another coordinates T1, T2, . . . , Tn

on (Rn, a). Then(
∂f

∂T1
∧ ∂f

∂T2
∧ · · · ∧ ∂f

∂Tn

)
(T (t)) = J(t)

(
∂f

∂t1
∧ ∂f

∂t2
∧ · · · ∧ ∂f

∂tn

)
(t),

where J(t) is the Jacobian function ∂(T1, . . . , Tn)/∂(t1, . . . , tn) at t.
Therefore σ(t) is transformed to the function J(t)σ(T (t)). Thus we
have the required result. �

We call the signed density function of a frontal, considered up to
K-equivalence, a density function of the frontal. The singular locus
(non-immersive locus) S(f) of f coincides with the zero locus {σ = 0}
of the density function σ.

§6. Proper frontals

Frontals can be collapsing in general. For example, any constant
mapping f : N → M is a frontal. In fact any lifting F : N → Gr(n, TM)
of f is Legendre in that case. See also Example 2.5.

Definition 6.1. A frontal f : N → M is called a proper frontal if
the regular locus

R(f) := {t ∈ N | f∗ : TtN → Tf(t)M is injective.}
of f is dense in N . A germ of frontal f : (N, a) → M is called a germ
of proper frontal if there exists a representative of f which is a proper
frontal.



Singularities of frontals 69

Note that R(f) is an open subset ofN in general. Then the condition
that f is a proper frontal requires that R(f) is open and dense.

The fundamental property of proper frontals is the following:

Proposition 6.2. Let f : N → M be a proper frontal. Then

there exists the unique global Legendre (i.e. D-integral) lift f̃ : N →
Gr(n, TM) of f , for the canonical projection π : Gr(n, TM) → M ,

π◦f̃ = f . Here D is the contact distribution on Gr(n, TM), n = dim(N),
introduced in §4.
Proof : Consider the mapping F : R(f) → Gr(n, TM) defined by F (t) =
f∗(TtN) ∈ Gr(n, Tf(t)M) ⊂ Gr(n, TM). Then F is a D-integral map-
ping and π ◦ F = f |R(f). By Lemma 3.3, F is a unique Legendre lifting
of f |R(f). Since f is a frontal, for any a ∈ N , there exists an open neigh-

bourhood U of a and a D-integral lift f̃ : U → Gr(n, TM) of f . Then

by the uniqueness of F , we have f̃ = F on U ∩R(f). Since f is a proper
frontal, R(f) is dense in N , and therefore U ∩R(f) is dense in U . Thus
the Legendre lift F of f is uniquely extended to U ∪ R(f). Since a is

arbitrary, we have the unique Legendre lift f̃ : N → Gr(n, TM) of f . �

Proposition 6.3. If f : N → M is a frontal and it has a unique

Legendre lift f̃ : N → Gr(n, TM), then f is a proper frontal.

Proof : Suppose the regular locus R(f) of f is not dense in N . Then there
exists a non-void open subset U ⊂ N such that the maximal rank of f |U
is 
 < n. Then there exists a non-void open subset V ⊂ U such that f |V
is of constant rank 
. Then there exists a non-void open subset W ⊂ V
and an open subset Ω ⊂ M such that f |W : W → Ω is right-left equiv-
alent to h : Rn → Rm which is defined by h(s1, . . . , s�, s�+1, . . . , sn) =

(s1, . . . , s�, 0, . . . , 0) (“Rank theorem”, see [15]). Let f̃ : N → Gr(n, TM)

be a Legendre lift and h̃ : Rn → Gr(n, TRm) be the induced lift of h by

f̃ |W (cf. Proposition 4.3). Then Th(s)(R
�×{0}) ⊂ h̃(s), (s ∈ Rn). Then

there exists a non-trivial perturbation of h̃ therefore of f̃ with compact
support. �

Remark 6.4. Proper frontals are not generic in C∞-topology in
general. In fact the frontal mapping f : R2 → R3 constructed in Exam-
ple 2.5 can not be approximated by any proper frontal.

Now we introduce the notion of non-degenerate frontals which was
originated in [71].

Definition 6.5. We say that a frontal f : (N, a) → M has a non-
degenerate singular point at a if the density function σ of f satisfies that
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σ(a) = 0 and dσ(a) �= 0. Note that the condition is invariant under the
K-equivalence of σ (see Proposition 5.2).

To study the property of non-degenerate singular points of frontals,
we recall the following result.

Lemma 6.6. Let N be a manifold of dimension n. Let g : (N, a) →
(N, g(a)) be a map-germ. Let Jg denote the Jacobi matrix of g and
det(Jg) : (N, a) → R the Jacobian determinant of g. Suppose (det Jg)(a)
= 0. Then (d det(Jg))(a) = 0 if rank(Jg)(a) ≤ n − 2, that is, if g is of
corank ≥ 2 at a.

Proof : It is easy to see, as a fundamental fact in the linear algebra,
for the determinant function det : M(n, n;R) on the space of n × n-
matrices, and for any A ∈ M(n, n;R) with det(A) = 0, (d det)(A) = 0
if and only if rank(A) ≤ n− 2. Then we have, if rank(Jg) ≤ n− 2, then
(d det(Jg))(p) = (Jg)

∗(d det)(p) = 0. �

Lemma 6.7. If a frontal f : (N, a) → M has a non-degenerate
singular point at a, then f is of corank 1 such that the singular locus
S(f) ⊂ (N, a) is a regular hypersurface.

Proof : Let us take a representative f : U → M of f , using the same
symbol, satisfying that dσ(t) �= 0 for any t ∈ U . Then S(f) = {t ∈ U |
σ(t) = 0} is a regular hypersurface of U . In particular S(f) is nowhere

dense in U . Therefore f is a proper frontal. Let f̃ : U → Gr(n, TM)

be the unique Legendre lifting of f . Set V = f̃(a) ⊂ Tf(p)M . Take

a local coordinate system (x1, . . . , xn, xn+1, . . . , xm) around f(a) of M
such that V = 〈(∂/∂x1)(f(a)), . . . , (∂/∂xn)(f(a))〉R Define g : U → Rn

by g = (x1 ◦ f, . . . , xn ◦ f), deleting U if necessary. Then the rank of g∗
at a is equal to the rank of f∗ at a. Moreover the signed area density
function of g is K-equivalent to that of f . Note that the signed area
density function of g is K-equivalent to the Jacobian determinant of g.
Suppose the rank of g∗ at p is less than n− 1. Then by Lemma 6.6 we
see that (dσ)(a) = d(det(Jg))(a) = 0. This leads a contradiction to the
assumption of non-degeneracy. Therefore we have that the rank of g∗ is
equal to n− 1. Thus we have the required result. �

§7. Tangent bundles and complementary bundles

Let f : N → M be a proper frontal. Let dim(N) = n and f̃ : N →
Gr(n, TM) be the unique Legendre lifting of f (Proposition 6.2). Then
we have a subbundle Tf of the pull-back bundle f∗TM over N defined
by

Tf := {(t, v) ∈ N × TM | v ∈ f̃(t)} ⊂ f∗TM.
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We call Tf the tangent bundle to the proper frontal f . Moreover we call
the quotient bundle Qf := f∗TM/Tf the complementary bundle.

Definition 7.1. A proper frontal f : N → M is called oriented
(resp. co-oriented) if the bundle Tf (resp. Qf ) is oriented. f is called
orientable (resp. co-orientable) if Tf (resp. Qf ) is orientable.

Example 7.2. The proper front f : S1(⊂ C) → R2(= C) defined
by z �→ 2z − z2, for z ∈ C, |z| = 1 (“cardioid”) is not orientable nor co-
orientable. The half cuspidal edge h : R2 \ {(0, 0)} → R3 (see Example
2.5) restricted to R2 \ {(0, 0)} is a proper front which is not orientable
nor co-orientable. The mapping R2 → R3 defined by the normal form of
the cuspidal edge (resp. folded umbrella) is a proper front (resp. frontal)
which is orientable and co-orientable.

Let f : N → M be a proper frontal. Then the bundle homomor-
phism ϕf : TN → Tf , ϕ(t, v) = (t, f∗(v)) is induced. Then we have

R(f) = {t ∈ N | f∗ : TtN → Tf(t)M is injective}
= {t ∈ N | ϕf is injective at t}.

The notion of frontals will play important role in differential geom-
etry. Therefore the following observations are important. First we treat
the case of hypersurfaces (m = n+ 1).

Lemma 7.3. If M is endowed with a Riemannian metric, then
f : Nn → Mn+1 is a frontal if and only if, for any a ∈ N , there exists
an open neighbourhood U of a and a unit vector field ν along f such that
ν(t) is normal to the subspace f∗(TtN) for any t ∈ U .

Proof : Let f be frontal. Let f̃(t) = (f(t), [α(t)]) be a Legendre lifting
of f . It defines the local integral tangential hyperplane field Ker(α(t))

along f . Then we associate the normal line field Ker(α(t))⊥ with f̃(t)
and take a local unit frame ν(t) of Ker(α(t))⊥. Conversely let ν(t) be
a local unit normal field along f with f∗(TtN). Regarding the metric,
we associate a non-zero cotangent vector field α(t) with ν(t) so that
Ker(α(t)) = ν(t)⊥. Then the tangential hyperplane field ν(t)⊥ satisfies
the condition f∗(TtN) ⊆ ν(t)⊥. The condition is equivalent to that

f̃(t) = (f(t), [α(t)]) is a Legendre map. �

Lemma 7.4. If M is endowed with a Riemannian metric, then
f : Nn → Mn+1 is a front if and only if locally there exists a normal
unit vector field ν along f such that (f, ν) is an immersion to the unit
tangent bundle T1M .
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Proof : Regarding each unit vector ν ∈ TxM as an element of T ∗
xM

by v �→ ν · v, we have the natural double covering T1M → P (T ∗M).
Therefore we have required result by Lemma 7.3. �

In generalised cases, we have:

Lemma 7.5. If M is endowed with a Riemannian metric, then
f : Nn → Mm is a frontal if and only if, for any a ∈ N , there exists
an open neighbourhood U of a and a system of orthonormal vector fields
ν1, . . . , νm−n over U along f such that νi(t) is normal to the subspace
f∗(TtN) for any t ∈ U , i = 1, . . . ,m− n.

Proof : Suppose f is a frontal. For any a, let f̃ : U → Gr(n, TM) be a
Legendre local lifting of f |U . Deleting U if necessary, take an orthonor-
mal frame h1, . . . , hn, ν1, . . . , νm−n on U such that h1(t), . . . , hn(t) form

a basis of f̃(t) ⊂ Tf(t)M for any t ∈ U . Then ν1, . . . , νm−n satisfy the

required condition. Conversely we may set f̃(t) = 〈ν1(t), . . . , νm−n(t)〉⊥.
Then π◦ f̃ = f and (π◦ f̃)∗(TtN) = f∗(TtN) ⊂ f̃(t), hence f̃ is Legendre
by Lemma 3.3. �

The following is clear:

Lemma 7.6. If M is a Riemannian manifold, then the condition
that f : Nn → Mm is a front is equivalent to the local existence of
an orthonormal unit frame ν1, . . . , νn along f such that t �→
(f(t), 〈ν1(t), . . . , νn(t)〉⊥) is an immersion to Gr(n, TM).

Let f : N → M be a proper frontal. If M is endowed with a
Riemannian metric, then we define the normal bundle to f by

Nf := {(t, w) ∈ N × TM | w ∈ f̃(t)⊥} ⊂ f∗TM,

which is isomorphic to the complementary bundle Qf (see §7). Note that
both bundles Tf and Nf have induced Riemannian bundle structures
from TM .

§8. Openings and frontals

In this section, we review the known results on “geometric” open-
ings.

We denote by EN,a the R-algebra of C∞ function-germs on (N, a)
with the maximal ideal mN,a. If (N, a) = (Rn, 0) is the origin, then we
use En,mn instead of EN,a,mN,a respectively.
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Definition 8.1. ([30][35]) Let f : (N, a) → (M, b) be a C∞ map-
germ with dim(N) = n ≤ m = dim(M). We define the Jacobi module
of f :

Jf := EN,a d(f
∗ΩM,b) =

{ m∑
j=1

aj df j | aj ∈ EN,a, 1 ≤ j ≤ m

}

in the space Ω1
N,a of 1-form germs on (N, a). Here f j = xj ◦ f , for

a system of coordinates (x1, . . . , xm) of (M, b). Further we define the
ramification module Rf by

Rf := {h ∈ EN,a | dh ∈ Jf}.

Example 8.2. Let μ be a positive integer and g : (R, 0) → (R, 0) a

map-germ defined by g(t) = tμ. Then Jg = mμ−1
1 dt and Rg = R+mμ

1 .

Here mμ
1 = tμE1 = {h ∈ E1 | dkh

dtk
(0) = 0, (0 ≤ k ≤ μ)}. In fact, since

dg = μtμ−1dt, we gave Jg = mμ−1
1 dt. Moreover, for a k ∈ E1, we have

that k ∈ Rf if and only if dk
dt ∈ mμ−1

1 if and only if k ∈ R+mμ
1 .

Note that Jf is just the first order component of the graded dif-
ferential ideal J •

f in Ω•
N,a generated by df1, . . . , dfm. Then the singular

locus is given by S(f) = {x ∈ (N, a) | rankJf (x) < n}. Also we consider
the kernel field Ker(f∗ : TN → TM), of f near a. Then we see that,
for another map-germ f ′ : (N, a) → (M ′, b′) with Jf ′ = Jf , n ≤ m′,
we have Sf ′ = Sf and Ker(f ′

∗) = Ker(f∗). Note that related notion was
introduced in [78].

Lemma 8.3. Let f : (N, a) → (M, b) be a map-germ. Then we
have:
(1) f∗EM,b ⊂ Rf ⊂ EN,a and Rf is an EM,b-module via f∗.
(2) For another map-germ f ′ : (N, a) → (M ′, b′), Jf ′ = Jf if and only
if Rf ′ = Rf .
(3) If τ : (M, b) → (M ′, b′) is a diffeomorphism-germ, then Rτ◦f = Rf .
If σ : (N ′, a′) → (N, a) is a diffeomorphism-germ, then Rf◦σ = σ∗(Rf ).

Proof : (1) follows from that, if h ∈ Rf and dh =
∑m

j=1 pjdfj , then we
have

d{(k ◦ f)h} =
m∑
j=1

{(k ◦ f)pj + h (∂k/∂yj)} dfj .

(2) It is clear that Jf ′ = Jf implies Rf ′ = Rf . Conversely suppose
Rf ′ = Rf . Then any component f ′

j of f ′ belongs to Rf ′ = Rf , hence
dfj ∈ Jf . Therefore Jf ′ ⊂ Jf . By the symmetry we have Jf ′ = Jf .

(3) follows from that Jτ◦f = Jf and Jf◦σ = σ∗(Jf ). �
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Definition 8.4. Let f : (N, a) → M and g : (N ′, a′) → M ′

be map-germs. Then f and g are called J -equivalent if there exists
a diffeomorphism-germ σ : (N, a) → (N ′, a′) such that Jg◦σ = Jf .
Here Jf = EN,t0f

∗Ω1
M,f(t0)

(see Definition 8.1). Note that dim(M) and

dim(M ′) can be different.

Definition 8.5. Let f : (Rn, a) → (Rm, b) be a map-germ. Let
h1, . . . , hr ∈ Rf . Then the map-germ F : (Rn, a) → Rm ×Rr = Rm+r

defined by
F = (f1, . . . , fm, h1, . . . , hr)

is called an opening of f , while f is called a closing of F .

Proposition 8.6. Let M,N be a manifold of dimension m,n re-
spectively. A map-germ f : (N, a) → M is a frontal if and only if f is
right-left equivalent to an opening of a map-germ g : (Rn, 0) → (Rn, 0).

Proof : Suppose f : (N, a) → M be a frontal map-germ. Then, since

f̃(a) is an n-dimensional vector subspace of Tf(a)M , there exists of a
system of local coordinates of (M,f(a))

y1, . . . , yn, z1, . . . , zk, (k = m− n),

such that, for g = (y1 ◦ f, . . . , yn ◦ f), the component zj ◦ f, (1 ≤ j ≤ k)
belongs to the Rg and therefore f is right-left equivalent to an open-
ing of g. Conversely, suppose f is right-left equivalent to an opening
G : (Rn, a) → Rn+k = Rm of a germ g = (g1, . . . , gn) : (Rn, a) →
(Rn, g(a)). Set G = (g1, . . . , g�, h1, . . . , hk). Then, since hj ∈ Rg, 1 ≤
j ≤ n dhj =

∑n
i=1 a

i
jdgi, for some function-germs aij : (R

n, a) → R. De-

fine G̃ : (Rn, a) → Gr(n, TRm), in terms of Grassmannian coordinates,

G̃(t) =
(
g1(t), . . . , g�(t), h1(t), . . . , hk(t), a

i
j(t)

)
, (t ∈ (Rn, a)).

Then, by Lemma 3.5, G̃ is a D-integral lift of g. Therefore G is an

-frontal, and so is f . �

§9. Versal openings

Definition 9.1. An opening F = (f, h1, . . . , hr) of f is called a
versal opening (resp. a mini-versal opening) of f : (Rn, a) → (Rm, b), if
1, h1, . . . , hr form a (minimal) system of generators of Rf as an ERm,b-
module via f∗ : ERm,b → ERn,a.
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A C∞ map-germ f : (Rn, a) → (Rm, b) is called analytic if f is right-
left equivalent to a real analytic map-germ ([35]). Moreover f is called a
finite map-germ if ERn,a is a finite f∗(ERm,b)-module. Then f is finite if
and only if dimR(ERn,a/〈f1, . . . , fm〉ERn,a

< ∞. If f is analytic, then f
is finite if and only if its complexification has isolated zero set ([100]). By
mRm,a, we denote the maximal ideal of ERm,a which consists of function-
germs vanishing at 0. By the projection πm : Rm+r = Rm ×Rr → Rm

we regard Rm+r as an affine bundle over Rm. If f is finite and analytic,
then, in the analytic category, Rωf is a finite ORm,b-module.

We summarise the known results on the existence of versal openings:

Theorem 9.2. Let f : (Rn, a) → (Rm, b) be a map-germ. Suppose
that (I) f is finite and of corank at most one, or (II) f is finite analytic.
Then we have
(1) The ramification module Rf of f is a finitely generated f∗(ERm,b)-
module. In particular f has a versal opening.
(2) 1, h1, . . . , hr ∈ Rf form a system of generators of Rf as a f∗(ERm,b)-

module if and only if the residue classes 1, h1, . . . , hr form an R-basis
of the vector space V = Rf/f

∗(mRm,b)Rf . In particular there exists a
versal opening F = (f, h1, . . . , hr) of f . If r = dimR V − 1, then F is
called a mini-versal opening of f .
(3) For any versal opening F : (Rn, a) → Rm+r of f and for any
opening G : (Rn, a) → Rm+s of f , there exists an affine bundle map
Ψ : (Rm+r, F (a)) → (Rm+s, G(a)) such that G = Ψ ◦ F .
(4) For any two mini-versal openings F, F ′ : (Rn, a) → Rm+r of f , there
exists an affine bundle isomorphism Φ : (Rm+r, F (0)) → (Rm+r, F ′(0))
such that F ′ = Φ ◦ F .

Proof of Theorem 9.2 : Case (I): (1) is proved as Lemma 2.1 of [35].
Then f∗ : ERm,b → Rf is a homomorphism of differentiable algebras
in the sense of Malgrange [74]. Therefore, by Malgrange’s preparation
theorem ([74] Corollary 4.4) we have (2). Case (II): Let 1, h1, . . . , hr

generate Rωf over ORm,b via f∗. Then 1, h1, . . . , hr generate Rf over
ERm,b via f∗ by Proposition 5.2 of [45]. Therefore we have (1) and (2).
The assertion (3) is clear from the definitions. (4) follows from (2). �

We do not repeat the proofs of Lemma 2.1 in [35] nor Proposition 5.2
in [45]. However we give an exposition, relating the theory of C∞-rings,
on Malgrange’s preparation theorem in §22 of this paper.
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§10. Subfrontals and superfrontals

Relating the theory of frontals with that of openings, we are led to
the following generalisations of frontals naturally.

Definition 10.1. Let M be a manifold and 
 an integer with 0 ≤

 ≤ dim(M). A map-germ f : (N, a) → M is called an 
-frontal if

there exists a D-integral lift f̃ : (N, a) → Gr(
, TM) of f . Here we
do not assume that 
 = dim(N) and D is the contact distribution on

Gr(
, TM). The condition on the C∞ mapping f̃ is that f∗(TtN) ⊂
f̃(t) ∈ Gr(
, Tf(t)M) for any t ∈ (N, a). If 0 < 
 < dim(N), then an

-frontal is called a subfrontal. If dim(N) < 
 < dim(M), then an an

-frontal is called a superfrontal.

Proposition 10.2. Let f : (N, a) → M be an 
-frontal and f ′ :
(N ′, a′) → M ′ be right-left equivalent to f . Then also f ′ is an 
-frontal.

Proof : The proof is performed similarly to Proposition 4.3 using Propo-
sition 3.4. �

Proposition 10.3. Let M,N be a manifold of dimension m,n re-
spectively and 
 an integer with 0 ≤ 
 ≤ m. A map-germ f : (N, a) → M
is an 
-frontal if and only if f is right-left equivalent to an opening of a
map-germ g : (Rn, 0) → (R�, 0).

Proof : Suppose f : (N, a) → M be an 
-frontal map-germ. Then, since

f̃(a) is an 
-dimensional vector subspace of Tf(a)M , there exists of a
system of local coordinates of (M,f(a))

y1, . . . , y�, z1, . . . , zk, (k = m− 
),

such that, for g = (y1 ◦ f, . . . , y� ◦ f), the component zj ◦ f, (1 ≤ j ≤ k)
belongs to the Rg and therefore f is right-left equivalent to an opening
of g. Conversely, suppose f is right-left equivalent to an opening G :
(Rn, a) → R�+k = Rm of a germ g = (g1, . . . , g�) : (R

n, a) → (R�, g(a)).
Set G = (g1, . . . , g�, h1, . . . , hk). Then, since hj ∈ Rg, 1 ≤ j ≤ 
, dhj =∑�

i=1 a
i
jdgi, for some function-germs aij : (Rn, a) → R. Define G̃ :

(Rn, a) → Gr(
, TRm), in terms of Grassmannian coordinates,

G̃(t) =
(
g1(t), . . . , g�(t), h1(t), . . . , hk(t), a

i
j(t)

)
, (t ∈ (Rn, a)).

Then, by Lemma 3.5, G̃ is a D-integral lift of g. Therefore G is an

-frontal, and so is f . �



Singularities of frontals 77

§11. Algebraic openings

In this section we will utilise the notion of sheaves which describes
locally-defined objects ([12]) to introduce an algebraic notion which is
related to frontals.

Let N be a manifold. Let EN denote the sheaf of C∞ function-germs
on N . For any open subset U ⊂ N , EN (U) = C∞(U), the C∞-ring of all
real-valued C∞ functions on U . Note that EN has the natural structure
of C∞-ring sheaf. See §22 for the notion of C∞-rings.

Definition 11.1. Let F be a sub C∞-ring sheaves of EN . The

versal opening F̃ of F is defined as follows: For any open subset U ⊂ N ,

F̃(U) is the set of h ∈ EN (U) satisfying that, for any p ∈ U , there exists
g1, . . . , gr ∈ Fp and a1, . . . , ar ∈ EN,p such that

dh =
r∑

i=1

aidgi

in Ω1
N,p. Here Ω1

N means the sheaf of C∞ 1-form-germs on N , EN,p

(resp. Ω1
N,p) the stalk of EN (resp. of Ω1

N ) at p, i.e. the set of germs at

p, and d : EN,p → Ω1
N,p the exterior differential.

Let F ,G be a sub C∞-ring sheaves of EN . Then G is called an

opening of F if F ⊆ G ⊆ F̃ .

We have that following basic properties of algebraic openings.

Proposition 11.2. Let N be a C∞ manifold and let EN denote the
sheaf of C∞ function-germs on N . Let F be a sub C∞-ring sheaf of EN .
Then we have

(1) F̃ is a sub C∞-ring sheaf of EN . (2) F ⊂ F̃ . (3)
˜̃F = F̃ .

Proof : (1) Let p ∈ N . Let h1, . . . , hr ∈ F̃p and f ∈ C∞(Rr). Let
dhi =

∑si
j=1 aijdgij for some aij ∈ EN,p, gij ∈ Fp. Then

d(f(h1, . . . , hr)) =
r∑

i=1

∂f

∂xi

(h1, . . . , hr) dhi =
r∑

i=1

si∑
j=1

(
∂f

∂xi

(h1, . . . , hr)aij

)
dgij .

Therefore f(h1, . . . , hr) ∈ F̃p. (2) Let p ∈ N and g ∈ Fp. Then we

have dg = 1 · dg, and therefore g ∈ F̃p. (3) Let p ∈ N and h ∈ ˜̃Fp. Then

dh =
∑r

i=1 aidhi for some ai ∈ EN,p, hi ∈ F̃p. Since hi ∈ F̃p for each
i, dhi =

∑si
j=1 bijdgij for some bij ∈ EN,p and gij ∈ Fp. Then we have

dh =
∑r

i=1

∑si
j=1(aibij)dgij , therefore h ∈ F̃p. �
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We call F full if F̃ = F . Then Proposition 11.2 shows that F̃ is the
minimal full sheaf containing F .

Let ϕ : N ′ → N be a C∞ mapping and F a subsheaf of EN on
N . We define a subsheaf ϕ∗F of EN ′ on N ′ by (ϕ∗F)q = ϕ∗(Fϕ(q)),
where ϕ∗ : EN,ϕ(q) → EN ′,q is defined by ϕ∗(h) = h ◦ ϕ, (h ∈ EN,ϕ(q)).
If ϕ = Φ is a diffeomorphism, then (Φ∗F)(U ′) = Φ∗(F(Φ(U ′))) for any
open U ′ ⊂ N ′.

Then we have the naturality of versal openings:

Proposition 11.3. Let F be a sub C∞-ring sheaves of EN . For
any diffeomorphism Φ : N ′ → N from another manifold N ′, we have

Φ̃∗F = Φ∗F̃ .

Proof : Let q ∈ N ′ and h ∈ Φ̃∗Fq. Then dh =
∑r

i=1 aid(Φ
∗gi) for some

ai ∈ EN ′,q and gi ∈ FΦ(q). Then d(Φ−1∗h) = Φ−1∗(
∑r

i=1 aid(Φ
∗gi)) =∑r

i=1(Φ
−1∗ai)dgi. Since Φ−1∗ai ∈ EN,Φ(q), we see Φ

−1∗h ∈ F̃Φ(q), there-

fore h ∈ Φ∗((F̃)Φ(q)) = (Φ∗F̃)q. Thus we have Φ̃∗Fq ⊆ (Φ∗F̃)q. Apply-

ing the same argument to Φ−1 and Φ∗F , then we have Φ̃∗Fq ⊇ (Φ∗F̃)q.
Therefore we have the required equality. �

Definition 11.4. Let N be a manifold. Let F be a sub C∞-ring
sheaf of EN . A mapping f : N → M is called a realisation of F if
F = f∗EM .

The following is clear:

Proposition 11.5. Let f : (Rn, a) → (Rm, b) be a map-germ. Let
F = f∗ERm,b be the germ of subsheaf of ERn,a. Let F : (Rn, a) → Rm+r

be an opening of f . Then F is a versal opening of f if and only if F is

a realisation of the algebraic opening F̃ of F .

Definition 11.6. A mapping f : N → M is called locally injective
if for any a ∈ N , there exists an open neighbourhood U of a in N such
that f |U : U → M is injective.

Proposition 11.7. Let f : N → M be a finite mapping and F :

N → M ′ a realisation of the versal opening ˜f∗EM of f∗EM . Then F is
locally injective.

Proof : Let a ∈ N . Then F ∗EM ′,F (a) = ˜f∗EMa = Rf,a. Then the germ
of F at a is a versal opening of f . Therefore by Proposition 2.16 of [45]
we have the result. �

Definition 11.8. Let F be a sub C∞-ring of EN . We call F lo-
cally injective if for any a ∈ N , there exist h1, . . . , hr ∈ Fa such that
(h1, . . . , hr) : (N, a) → Rr has an injective representative.
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Proposition 11.9. If f : N → M is a realisation of a locally
injective sub C∞-ring F of EN , then f is locally injective.

Proof : Let a ∈ N . There exist h1, . . . , hr ∈ Fa such that (h1, . . . , hr) :
(N, a) → Rr has an injective representative. There exists a gi ∈ EM,f(a)

such that hi = gi ◦ f for each i, 1 ≤ i ≤ r. After taking representatives
of germs we have hi = gi ◦ f : U → R, (1 ≤ i ≤ r) on an open neigh-
bourhood of a. Deleting U if necessary, (h1, . . . , hr) = (g1, . . . , gr) ◦ f :
U → Rr is injective. Therefore f |U is injective. �

Part II. Advanced studies and applications

§12. Frontal curves

Let us give several observations on frontal map-germs and frontal
maps N → M with dim(N) = 1.

Let f : (N, a) → M be a map-germ with dim(N) = 1. We consider
the classification problem of germs up to the right-left equivalence. To
simplify this, let (N, a) = (R, 0) and (M,f(a)) = (Rm, 0). Let t be the
coordinate of (R, 0) and x1, . . . , xm of (Rm, 0). We define the order of
f at 0 by

ord(f) := inf

{
k ∈ N

∣∣∣∣ dkf

dtk
(0) �= 0

}
If the Taylor infinite series of f is 0, then we set ord(f) = ∞. It is easy
to see that ord(f) is invariant under right-left equivalence.

Lemma 12.1. If ord(f) < ∞, then f is a frontal. Moreover f is
right-left equivalent to an opening of the map-germ g : (R, 0) → (R, 0)
defined by t �→ tμ, where μ = ord(f).

Proof : For a diffeomorphism-germ σ : (R, 0) → (R, 0) and a linear
transformation Φ : (Rm, 0) → (Rm, 0), Φ ◦ f ◦ σ is of form:

Φ ◦ f ◦ σ = (tμ, h2(t), . . . , hm(t)),

with hi ∈ mμ+1
1 , 2 ≤ i ≤ m. Set g(t) = tμ. Then Rg = R + mμ

1 and
hi ∈ Rg, 2 ≤ i ≤ m (see Example 8.2). Therefore Φ ◦ f ◦σ is an opening
of g. �

Since a constant map-germ is a frontal and a non-constant analytic
curve-germ has a finite order, by Lemma 12.1 we have

Corollary 12.2. If f : (R, a) → Rm is an analytic map-germ, then
f is a frontal.
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As for a global result, we have:

Lemma 12.3. Let dim(N) = 1 and f : N → M a frontal. Then

there exists a global Legendre lift f̃ : N → M .

Proof : Let R(f) denote the immersion locus of f and set S := N \
R(f). We have the Legendre lift F : R(f) → Gr(1, TM) of f |R(f) which

is defined by F (t) = f∗(TtN). The mapping F is extended to R(f)
continuously. Since f is a frontal. F is extended to a C∞ Legendre
lift of f on an open neighbourhood of R(f). Now take any connected
component J of the open set S. Then J is diffeomorphic to S1 or an
open interval. In the case that J is diffeomorphic to S1, then f |J is
of constant rank 0 and it is a constant mapping. Let us consider the
case that J ⊂ N is diffeomorphic to an open interval. Take the closure
I = J in N , which is diffeomorphic to an interval, [0, 1], (0, 1] or (0, 1).
In the case I is diffeomorphic to [0, 1], consider the boundary points of I,
which belong to R(f) necessarily. Since the fibre of π : Gr(1, TM) → M
is diffeomorphic to the projective space Gr(1,Rm) = RPm−1 which is
connected, we can extend the given Legendre lift F : R(f) → Gr(1, TM)

to a Legendre lift on an open set containing R(f) ∪ I. The extension is
performed independently for each connected component of S. Thus we

have a global Legendre lift f̃ : N → M . �

Remark 12.4. If dim(N) = 2, then a frontal f : N → M does not
necessarily have a global Legendre lifting. See Example 2.5.

Next we study the genericity problem of frontal curves. To simplify

the story we treat frontals f : R → Rm. Let f̃ : R → Gr(1, TRm) =
P (TRm) = Rm ×RPm−1 be an integral lifting of f (see Lemma 12.3).
Then, turning upside-down the view point, we start from an integral map
F : R → Gr(1, TRm). Let F be, in terms of Grassmannian coordinates
x1, . . . , xm, a2, . . . , am,

F (t) = (x1(t), . . . , xm(t), a2(t), . . . , am(t)),

which satisfies F ∗θ2 = 0, . . . , F ∗θm = 0, namely that

dx2 − a2dx1 = 0, . . . , dxm − amdx1 = 0.

The condition is equivalent to that

dx2

dt
(t) = a2(t)

dx1

dt
(t), . . . ,

dxm

dt
(t) = am(t)

dx1

dt
(t).
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Therefore, if functions x1(t), a2(t), . . . , am(t) and values x2(0), . . . , xm(0)
are arbitrarily given, then the integral mapping F is uniquely deter-
mined. Thus we can apply ordinary transversality theorem to discuss
the genericity of frontal curves through Legendre curves.

Remark 12.5. In general we can apply a transversality argument
to Legendre mappings of corank ≤ 1 and obtain the classification of
generic singularities (see [33][40]). However the similar argument does
not work for Legendre mappings having singularities of corank ≥ 2 (see
Example 2.5, Remark 6.4).

§13. Frames and flags

As refinements of the notion of frontal curves, we consider framed
curves or “flagged” curves. Flagged curves and framed curves in a space-
form play important roles in topology, geometry and singularity theory.
For example, as it is well-known, the self-linking number in 3-space is de-
fined via framing ([88]). The fundamental theory of curves is formulated
via osculation framing. Surface boundaries have adapted framings, etc.
Two kinds of frames, adapted frames and osculating frames, are consid-
ered in [43] from the viewpoint of duality. We classify the singularities
of envelopes associated to framed curves. The singularities of envelopes
in E3 were studied in [41] to apply to the flat extension problem of a
surface with boundary. The problem on extensions by tangentially de-
generate surfaces motivates to study the envelopes associated to framings
on curves in a space form.

In this article already we have used Grassmannians to introduce the
frontals. Then we are naturally led to the following definitions.

Let M be a manifold of dimension m and 
1, . . . , 
r integers with
0 ≤ 
1 < · · · < 
r ≤ m. Define the flag bundle Fl(
1, . . . , 
r;TM)
over M of type (
1, . . . , 
r) as the totality of flags V�1 ⊂ · · · ⊂ V�r ⊂
TxM with dim(V�i) = 
i, (1 ≤ i ≤ r), x running over M . Then π :
Fl(
1, . . . , 
r;TM) → M is a fibration with fibres of dimension


1(m− 
1) + (
2 − 
1)(m− 
2) + · · ·+ (
r − 
r−1)(m− 
r)

Moreover Fl(n;TM) = Gr(n, TM).
Set F = Fl(
1, . . . , 
r;TM). Suppose M is endowed with an affine

connection ∇. Let γ(t) = (x(t), V�1(t), . . . , V�r (t)) be a curve on F . Let
vectors v1(t), . . . v�r(t) ∈ Tx(t)M satisfy that V�j (t) = 〈v1(t), . . . , v�j (t)〉R
for each t and 1 ≤ j ≤ r. Then consider the condition

x′(t) ∈ V�1(t), ∇v1(t), . . . ,∇v�j (t) ∈ V�j+1(t), (1 ≤ j < r),
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at t. Here, for a vector field v(t) along a curve x(t) in M , we define
∇v(t) := ∇x′(t)v(t), the covariant derivative of v(t) by the velocity vector
x′(t). By this condition we define the distribution D ⊂ TF , which
depends on the given affine connection.

If M is a projective space, then the above construction is more
clarified ([43]). Let V be a real vector space of dimension m + 1 and
n1, . . . , ns integers satisfying 0 < n1 < · · · < ns ≤ m+1. Define the flag
manifold Fl(n1, . . . , ns, V ) of type (n1, . . . , ns) by the totality of flags
Vn1 ⊂ · · · ⊂ Vns ⊂ V of linear subspaces with dim(Vni) = ni, (1 ≤ i ≤ s).
Set F = Fl(n1, . . . , ns, V ). Then the canonical distribution D ⊂ TF is
defined as follows: Denote by πi : F → Gr(ni, V ) the canonical projec-
tion to the i-th member of the flag. Then, for v ∈ TVF ,V ∈ F ,

v ∈ DV ⇐⇒ πi∗(v) ∈ TGr(ni, Vni+1)(⊂ TGr(ni, V )), (1 ≤ i ≤ s− 1).

Then D is a subbundle of TF with

rank(D) = n1(n2−n1)+(n2−n1)(n3−n2)+· · ·+(ns−ns−1)(m+1−ns).

Note that the flag bundle Fl(
1, . . . , 
r;TP (V )) is naturally identified
with the flag manifold Fl(1, 
1 + 1, . . . , 
r + 1, V ). Therefore the canon-
ical differential system on Fl(
1, . . . , 
s;TP (V )) is induced. Then the
canonical distribution D on the Grassmannian bundle Gr(n, T (P (V )) =
Fl(1, n+ 1, V ) introduced in §3 coincides with that introduced here.

Definition 13.1. Let V be a real vector space of dimension m+1.
A curve-germ f : (N, a) → P (V ),dim(N) = 1 is called a flagged curve

if there exists a D-integral lift f̃ : (N, a) → Fl(1, 2, . . . ,m, V ) of f with
respect to the projection π1 : Fl(1, 2, . . . ,m, V ) = Gr(1, V ) = P (V ).

Let γ : N → RPm be a curve and t0 ∈ N . Take a system of
projective local coordinates (x1, x2, . . . , xm) of RPm with the centre at
γ(t0) and the local affine representation (R, t0) → (Rm, 0),

γ(t) = T (x1(t), x2(t), . . . , xm(t))

of γ. Consider the (m× k)-matrix

Wk(t0) :=
(
γ′(t0), γ′′(t0), · · · , γ(k)(t0)

)
for any integer k ≥ 1 and k = ∞. Note that the rank of Wk(t0) is
independent of the choice on representations for γ.
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Definition 13.2. We call γ of finite type at t = t0 ∈ N if the
(m×∞)-matrix

W∞(t0) =
(
γ′(t0), γ′′(t0), · · · , γ(k)(t0), · · · · · ·

)
is of rank m. Define, for 1 ≤ i ≤ m, ai := min {k | rankWk(t0) = i} .
Then we have a sequence of natural numbers 1 ≤ a1 < a2 < · · · < am,
and we call γ of type (a1, a2, . . . , am) at t = t0 ∈ N .

If (a1, a2, . . . , am) = (1, 2, . . . ,m), then t = t0 is called an ordinary
point of γ.

Let f : N → RPm be of finite type at t0 ∈ N . Then the osculating
flag to f at t0 is defined by

O1(t0) ⊂ O2(t0) ⊂ · · · ⊂ Ok(t0) ⊂ · · · ⊂ Om(t0) = Tf(t0)RPm,

where Or is the linear subspace of Tf(t0)RPm generated by

γ′(t0), γ′′(t0), · · · , γ(k)(t0).

The corresponding projective subspace through f(t0) to Ok(t0) is also
regarded ([34]). Then there exists unique integral lift

f̃ : N → Fl(1, 2, . . . , k, . . . ,m, V )

of f .
The classification results on singularities which are related to flagged

curves are given in [41][42][43].

§14. Legendre duality

The Legendre duality is a natural geometric framework where the
frontals play fundamental roles. In this section we review several studies
of frontals in specified (semi-)Riemannian manifolds from [42][53].

LetRn,m denote the metric vector space of signature (n,m), nminus
and m plus ([27][87]).

We write R0,n as Rn simply. Recall the space-models, the sphere
and the hyperbolic space,

Sn+1 = {x ∈ Rn+2 | x·x = 1}, Hn+1 = {x ∈ R1,n+1 | x·x = −1, x0 > 0},
where R1,n+1 = Rn+2

1 = {(x0, x1, . . . , xn+1)} is the Minkowski space of
index (1, n+1) (See for instance [66][27]). The inner product in R1,n+1

is defined by x ·y = −x0y0+
∑n+1

i=1 xiyi. Moreover we identify Euclidean
space En+1 with {x ∈ Rn+2 | x0 = 1} ⊂ Rn+2 if necessary.
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Let X denote Sn+1,Hn+1 or En+1. Set Z = G̃r(n, TX), the ori-
ented Grassmannian bundle over X. Then Z is a double covering of
Gr(n, TX). The space Z is identified with T1X, the unit tangent bun-
dle to X. In fact,

T1S
n+1 = {(x, y) ∈ Sn+1 × Sn+1 | x · y = 0},

T1H
n+1 = {(x, y) ∈ Hn+1 × S1,n | x · y = 0},

where S1,n = {x ∈ R1,n+1 | x · x = 1} is the de Sitter space. Note
that Z = T1H

n+1 is identified with T−1S
1,n = {(y, v) | y ∈ S1,n, v ∈

TyS
1,n, v · v = −1}. Moreover T1E

n+1 = En+1 × Sn. We set Y =
Sn+1, S1,n,R×Sn corresponding to Sn+1,Hn+1, En+1 respectively. De-
fine π1 : Z → X by the projection to the first component in three
cases. Define π2 : Z → Y by the projection to the second component
in the cases (X,Y ) = (Sn+1, Sn+1), (X,Y ) = (Hn+1, S1,n). In the case
(X,Y ) = (En+1,R × Sn), we define π2 : Z = En+1 × Sn → R × Sn

by π2(x, y) = (−x · y, y). The space has the canonical contact structure
and all fibres of π1 and π2 are Legendre submanifolds. Therefore π1 and
π2 are Legendre fibrations. Then we have the double Legendre fibration
in each case:

X
π1←− Z

π2−→ Y.

As the model of duality, we do have the projective duality ([98][58]):
We set

Z = In+2 := {([x], [y]) ∈ Pn+1 × Pn+1∗ | x · y = 0}.
Here Pn+1∗ is the dual projective space and · means the natural paring.
The contact structure on In+2 is defined by dx · y = x · dy = 0 ([58]).
The projections π1 : In+2 → X = Pn+1, π2 : In+2 → Y = Pn+1∗ are
both Legendre fibrations.

The following fact is basic to unify our treatment:

Proposition 14.1. ([52][53]) All Legendre double fibrations X ←−
Z −→ Y constructed above are locally isomorphic to each other. In
particular each of them is locally isomorphic to the double fibration of
the projective duality Pn+1 ←− In+2 −→ Pn+1∗.

Let f : Nn → X be a co-oriented proper frontal (see Definition 7.1).

Then there arises naturally the Legendre lift f̃ : N → T1X = Z for
π1 : Z → X by attaching the unit normal vector field along f . The

Legendre dual of f is defined by f∨ := π2 ◦ f̃ : N → Y . Then f∨ is a
frontal. If f∨ is a proper frontal. Then we have the equality f∨∨ = f .
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Let γ : I → X be a C∞ immersion from an interval or a circle I.
In general, we mean by a framing of the immersed curve γ, an oriented
orthonormal frame (e1, e2, . . . , en+1) along γ. An immersion γ is called
framed if a framing is given.

Remark 14.2. Note that in [62][18], more general framings are
considered to treat also light cone in Minkowski space.

If X = Sn+1, then we set e0(t) = γ(t) ∈ Sn+1, and we have the
moving frame γ̃ = (e0, e1, . . . , en+1) : I → G = SO(n + 2) ⊂ GL+(n +
2,R).

If X = Hn+1, then we set e0(t) = γ(t) ∈ Hn+1, and we have
the moving frame γ̃ = (e0, e1, . . . , en+1) : I → G = SO(1, n + 1) ⊂
GL+(n+ 2,R).

In any of three cases, the frame manifold G is identified with an

open subset of the oriented flag manifold F̃n+2 consisting of oriented
complete flags

V1 ⊂ V2 ⊂ · · · ⊂ Vn+1 ⊂ Rn+2

in Rn+2. For each g = (e0, e1, . . . , en+1) ∈ GL+(n + 2,R), we set the
oriented subspace

Vi = 〈e0, e1, . . . , ei−1〉R ⊂ Rn+2, (1 ≤ i ≤ n+ 1).

This induces an open embedding G → F̃n+2 = Fl(1, 2, . . . , n+1). Thus,
for a framed curve γ : I → X in X = En+1, Sn+1,Hn+1, with the frame
(e1, . . . , en+1), we have the flagged curve γ̃ by setting

Vi(t) = 〈e0(t), e1(t), . . . , ei−1(t)〉R ⊂ Rn+2, (1 ≤ i ≤ n+ 1).

Then γ̃ is a lifting of γ for the projection π1 : F̃l(1, 2, . . . , n+1,Rn+2) →
G̃r(1,Rn+2) to Grassmannian of oriented lines in Rn+2. Note that there

is the natural open embedding X ⊂ G̃r(1,Rn+2) in each of three cases.
The projective duality plays an essential role, for instance, to for-

mulate the famous Plücker-Klein’s formula, to analyse generic projec-
tive hypersurface (Bruce, Platonova, Landis [7]), tangent surfaces and
Monge-Ampère equations ([52]).

Let f : Nn −→ RPn+1 be a frontal. Then we have the Legendre

lifting f̃ : N −→ Gr(n, TRPn+1) = PT ∗RPn+1. Then we get the

projective dual f∨ : N −→ RPn+1∗ of f by the composition of f̃ with
the projection π∗ : PT ∗RPn+1∗ −→ RPn+1∗. If f is sufficiently generic,
then f∨ is also frontal, and we get the presumable equality f∨∨ = f .

Viewed from Legendre duality, we consider the class of tangentially
degenerate frontals.



86 G. Ishikawa

Definition 14.3. Let f : N → RPn+1(Sn+1,Hn+1, En+1) be a
proper frontal. Then f is called tangentially degenerate if the regular
locus R(f∨) = {t ∈ N | f∨ is an immersion at t} of the dual f∨ of f is
not dense in N .

See the basic text [3] for the tangentially degenerate submanifolds.

§15. Grassmannian frontals

With the notion of frontals, we are naturally led to the following
generalization of the projective duality.

Let f : Nn −→ RPm be a frontal of codimension r = m− n. Then,
consider the Legendre lifting of f :

f̃ : N −→ Gr(n, TRPm) ↪→ Gr(1,Rm+1)×Gr(n+ 1,Rm+1)
∼= Gr(1,Rm+1)×Gr(r,Rm+1∗).

The Grassmannian bundle Gr(n, TRPm) is identified with

I = {(p, q) ∈ Gr(1,Rm+1)×Gr(r,Rm+1∗) | p ⊆ q∨}.
Here, for q ∈ Gr(r,Rm+1∗), we set q∨ := {v ∈ Rm+1 | α(v) = 0(α ∈ q)}.

Therefore we are naturally led to define the Grassmannian dual

f∨ : N −→ Gr(r,Rm+1∗) of f : N −→ RPm by f̃ composed with
the projection to the second component, (p, q) �→ q.

Definition 15.1. A proper (co-oriented) frontal f : Nn → RPm

(Sn+1,Hn+1, En+1) is called tangentially degenerate if the regular locus
R(f∨) = {t ∈ N | f∨ is an immersion at t} of the Grassmannian dual
f∨ of f is not dense in N .

Returning to the general case, we remark that the equality “f∨∨ =
f ” does not have any meaning, even if f∨ is a proper frontal in the sense
of Definition 4.1. Therefore, for a mapping into a Grassmannian, it is
natural to specialise the definition of frontals as follows:

Let f : N −→ Gr(r,Rm+1) be a C∞ mapping with n+ r ≤ m+ 1.
Set s = m + 1 − n − r. Then f is called Grassmannian frontal if there

exists the unique integral lift f̃ : M −→ (I,D) of f with respect to a
fibration π1 : I −→ Gr(r,Rm+1) and a distribution D on I defined as
follows: First set

I := {(p, q) ∈ Gr(r,Rm+1)×Gr(s,Rm+1∗) | p ⊆ q∨},
and consider the projection π1 : I → Gr(r,Rn+2) (resp. π2 : I →
Gr(s,Rm+1∗)). Moreover set

P := {(p, q, p′) ∈ Gr(r,Rm+1)×Gr(s,Rm+1∗)×Gr(r,Rm+1) | p ⊆ q∨ , p′ ⊆ q∨},



Singularities of frontals 87

and consider the projection ρ : P → I to the first and second factors
(resp. ϕ : P → Gr(r,Rm+1) to the third factor). Then we get the
double fibration (ρ, ϕ):

I ρ←− P ϕ−→ Gr(r,Rm+1).

For each c = (p, q) ∈ I, we consider ρ−1(c). Then we consider its
projection

ϕ(ρ−1(c)) = {p′ ∈ Gr(r,Rm+1) | p′ ⊆ q∨}
by ϕ, which is regarded as Gr(r,Rr+n). Note that dim q∨ = r + n,
p ∈ ϕ(ρ−1(c)) and that ϕ(ρ−1(c)) ⊂ Gr(r,Rm+1) is a submanifold of
codimension r(m+ 1− r)− rn = rs.

Define the tautological subbundle D ⊂ TI of codimension rs, for
each c = (p, q) ∈ I, by

Dc = π−1
∗ (Tp(ϕ(ρ

−1(c)))) ⊂ TcI.
Note that, if r �= 1, or, r �= n + 1, then the “system of tangential
linear subspaces” {ϕ(ρ−1(c)) | c ∈ I} in the Grassmannian Gr(r,Rm+1)
defined by D does not represent general tangential linear subspaces of
the Grassmannian.

If we take local Grassmannian coordinates (aij)1≤i≤r,1≤j≤n+s of
Gr(r,Rm+1) and (bk�)1≤k≤n+r,1≤�≤s of Gr(s,Rm+1∗), then I is defined
by the system of equations

bij + ai1br+1 j + · · ·+ ainbr+n j + ai n+j = 0, 1 ≤ i ≤ r, 1 ≤ j ≤ s,

and D is defined by the system of 1-forms

br+1 jdai1 + · · ·+ br+n jdain + dai n+j = 0, 1 ≤ i ≤ r, 1 ≤ j ≤ s.

The integral lifting f̃ is called the Legendre lifting of f in the gen-
eralised sense. The relation to the original definition of frontals is as
follows:

Lemma 15.2. Let F : (Rn, 0) −→ (I, (p0, q0)) be an integral map-
germ to the distribution D ⊂ TI. Then f = π1 ◦ F : (Rn, 0) −→
(Gr(r,Rm+1), p0) is Grassmannian frontal if and only if κ ◦ f is proper,
i.e. S(κ ◦ f) ⊂ (Rn, 0) is nowhere dense, for some projection

κ : (Gr(r,Rm+1), p0) ↪→ (Hom(Rr,Rn+s), 0)
i∗−→ (Hom(R,Rn+s), 0)

↪→ RPn+s−1,

induced from a linear inclusion i : R ↪→ Rr.
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Now, from the duality, we have another distribution D′ ⊂ TI from
the projection π′ : I −→ Gr(s,Rm+1∗) to the second factor, setting

P ′ = {(q′, p, q) ∈ Gr(s,Rm+1∗)×Gr(r,Rn+2)×Gr(s,Rm+1∗) | q ⊆ p∨, q′ ⊆ p∨}.

Then the fundamental result is the following:

Proposition 15.3. Two distributions D and D′ on the incidental
manifold I coincide.

We conclude this section by the following observation:

Proposition 15.4. Let F : Nn → I ⊂ Gr(r,Rm+1)×Gr(s,Rm+1∗)
be an integral mapping to the distribution D with n + r + s = m + 1.
Suppose π ◦ F =: f and π′ ◦ F =: f∨ are Grassmannian frontals respec-
tively. Then we have f∨∨ = f .

§16. Tangent varieties

Given a curve in Euclidean 3-space E3 = R3, the embedded tangent
lines to the curve draw a surface in R3, which is called the tangent sur-
face (or tangent developable) to the curve ([17][35]). It is known that the
tangent surfaces (tangent developables) are developable surfaces. Devel-
opable surfaces which are locally isometric to the plane keep on inter-
esting many mathematicians, for instance, Monge (1764), Euler (1772),
Cayley (1845), Lebesgue (1899). See [73] for details. Therefore the tan-
gent surfaces are regarded as generalised solutions (with singularities)
of the Monge-Ampère equation

∂2z

∂x2

∂2z

∂y2
−
(

∂2z

∂x∂y

)2

= 0

on spacial surfaces z = z(x, y). Tangent surfaces are flat in E3. However
they are not flat but “extrinsically flat” or tangentially degenerate in S3

and H3 (cf. [3][71]). See also §14. The notion of types (a1, a2, a3)
for a curve-germ is introduced (Definition 13.2). Then the cuspidal
edge, (resp. the swallowtail, the cuspidal beaks (Mond surface), the
cuspidal butterfly) is obtained as the tangent developable of a curve of
type (1, 2, 3) (resp. (2, 3, 4), (1, 3, 4), (3, 4, 5)).

This property is related to “projective duality”: The projective dual
of a tangent surface collapse to a curve (the dual curve). See [36].

Let γ : R → R3 be an immersed curve. Then the tangent surface
has the natural parametrization

Tan(γ) : R2 → R3, Tan(γ)(t, s) := γ(t) + sγ′(t).
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The tangent surface necessarily has singularities at least along γ, “the
edge of regression”.

It is known that the tangent surface to a generic curve γ : R →
R3 in R3 has singularities only along γ and is locally diffeomorphic to
the cuspidal edge or to the folded umbrella (also called, the cuspidal
cross cap), as is found by Cayley and Cleave (1980). Cuspidal edge
singularities appear along ordinary points where γ′, γ′′, γ′′′ are linearly
independent, while the folded umbrellas appear at isolated points of
zero torsion where γ′, γ′′, γ′′′ are linearly dependent but γ′, γ′′, γ′′′′ are
linearly independent.

In a higher dimensional space Rm,m ≥ 4, for an immersed curve
γ : R → Rm, we define the tangent surface Tan(γ) : R2 → Rm by
Tan(γ)(t, s) := γ(t) + sγ′(t). Then we have generically that γ′, γ′′, γ′′′

are linearly independent and Tan(γ) is locally diffeomorphic to the (em-
bedded) cuspidal edge in Rm. Now we give the general definition:

Definition 16.1. Let N be an n-dimensional manifold. Let f :

Nn → Rm be a proper frontal. Let f̃ : N → Gr(n, TRm) be the
Legendre lift of f . Then the tangent mapping Tan(f) : Tf → Rm of f

is defined by, for t ∈ N and v ∈ f̃(t) ⊂ Tf(t)R
m,

Tan(f)(t, v) := f(t) + v, (t, v) ∈ Tf ,

using the affine structure of Rm. Then we define the tangent variety of
f as the parametrised variety which is defined by the right equivalence
class of Tan(f). If (t1, . . . , tn) is a system of local coordinates of N ,
and (t1, . . . , tn, s1, . . . , sn) the induced system of local coordinates of Tf

induced by a system of local frame v1(t), . . . , vn(t) of f̃ , then Tan(f) is
given by

Tan(f)(t, s) = f(t) +
n∑

j=1

sjvj(t).

Also note that we can define similarly the tangent varieties of map-
pings to a projective space. Tangent varieties appear in various geomet-
ric problems and applications naturally ([3][14][54][55][56][64][69][65][90]
[73][102]). See [36][43], for the geometric exposition on the local classifi-
cation problem of tangent varieties. In particular it is proved in [43][56]
the following:

Proposition 16.2. Let γ : (N, t0) → RPm be a curve-germ of
finite type (Definition 13.2 ). Then Tan(γ) : (N ×R, (t0, 0)) → RPm is
a proper frontal.
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A proper frontal f : N → M is called a directed curve if dim(N) = 1
([59][60][61]). A directed curve γ is called orientable if there exists a
frame u : N → TM , u(t) �= 0, along γ such that γ′(t) ∈ 〈 u(t) 〉R, t ∈
R, which projects to the unique Legendre lift γ̃ : N → P (TM) =
Gr(1, TM) of γ satisfying γ′(t) ∈ γ̃(t), (t ∈ R).

Let γ : N → M be a directed curve and γ̃ : N → P (TM) the unique
D-integral lift of f . Recall that the tangent bundle to f is defined by
Tγ := {(t, v) ∈ N × TM | v ∈ γ̃(t)}, which is a line bundle over N
(see §7). Let M be a manifold with an affine connection. We define
the tangent mapping Tan(γ) : Tγ → M by (t, v) → exp(v), using the
exponential map (see §18).

Remark 16.3. By Lemma 12.3, there exists a global Legendre lift
γ̃ : N → P (TM) of f . Then the orientability condition means that the
line bundle Tf̃ over N is orientable.

Let M = Rm and γ : N → Rm be a directed and orientable curve.
Then the tangent surface Tan(γ) : N ×R → Rm of a directed curve γ
is defined by

Tan(γ)(t, s) := γ(t) + s u(t)

The right equivalence class of Tan(γ) is independent of the choice of
frame u.

The singularities of the tangent surface Tan(γ) for a generic directed
curve γ : R → Rm on a neighbourhood of the curve are only the cuspidal
edge, the folded umbrella, and swallowtail if m = 3, and the embedded
cuspidal edge and the open swallowtail if m ≥ 4. See [20][59]. Several
degenerate cases are studied in [76][77][32][34][35][36].

§17. Grassmannian geometry

We will give a series of classification results of singularities of tan-
gent surfaces in An-geometry, i.e. the geometry associated to the group
PGL(n+ 1,R) (see [57]).

Let V = Rm+1 be the vector space of dimension m+1 and consider
a flag in V of the following type (a complete flag):

V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ Vm ⊂ V, dim(Vi) = i.

The set of such flags form a manifold Fl(1, 2, 3, . . . ,m) of dimension
n(n+1)

2 .

A curve γ : R → P (V ) = P (V m+1) induces a D-integral curve
Γ : R → Fl(1, 2, 3, . . . ,m) for the canonical distribution D on the flag
manifold TFl(1, 2, 3, . . . ,m), if we regard its osculating planes: the curve



Singularities of frontals 91

itself is given by V1(t), the tangent line is given by V2(t), the osculating
plane is given by V3(t) and so on.

Let m = 2. Let V1(t) ⊂ V2(t) ⊂ V = R3 be an admissible curve.
For each a, planes V2 satisfying V1(a) ⊂ V2 ⊂ V form the tangent line to
the curve {V1(t)} at t = a in P (V ) = P 2. Similarly lines V1 satisfying
V1 ⊂ V2(a) form the tangent line to the dual curve {V2(t)} at t = a
in Gr(2, V ) = P (V ∗) = P 2∗, the dual projective plane. For a generic
admissible curve, we have the duality on “tangent maps”:

Let m = 3. Let Γ : R → Fl(1, 2, 3) be a D-integral curve. Set
Γ(t) = (V1(t), V2(t), V3(t)), V1(t) ⊂ V2(t) ⊂ V3(t) ⊂ V = R4. Then Γ
induces the curve π1 ◦ Γ in P 3 = P (R4), the curve π2 ◦ Γ in Gr(2,R4)
and the curve π3 ◦ Γ in P 3∗ = Gr(3,R4). Then we have the following
duality on their tangent surfaces in A3-geometry:

3© 4© 3©
Cuspidal Edge Cuspidal Edge Cuspidal Edge
Swallow Tail Cuspidal Edge Folded Umbrella
Mond Surface Open Swallowtail Mond Surface

Folded Umbrella Cuspidal Edge Swallow Tail

In general for a generic D-integral curve Γ : R → Fl(1, 2, 3, . . . ,m),

V1(t) ⊂ V2(t) ⊂ V3(t) ⊂ · · · ⊂ Vm(t) ⊂ V = Rm+1,

we have the classification of singularities of tangent surfaces:

Theorem 17.1. (An, n ≥ 4) The classification list consists of n+1
cases for curves in Grassmannians :

Pn Gr(2, V ) Gr(3, V ) Gr(4, V ) · · · Gr(n, V )

CE CE CE CE · · · CE
OSW CE CE CE · · · CE
OM OSW CE CE · · · OFU
OFU CE OSW CE · · · OM
CE CE CE OSW · · · CE
...

...
...

...
. . .

...
CE CE CE CE · · · OSW

The cuspidal edge (resp. open swallowtail, open Mond surface, open
folded umbrella) is defined as a diffeomorphism equivalence class of the
tangent surface-germ to a curve of type (1, 2, 3, · · · ) (resp. (2, 3, 4, 5, · · · ),
(1, 3, 4, 5, · · · ), (1, 2, 4, 5, · · · )) in an affine space.
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Mond surface (cuspidal-beaks) open Mond surface

§18. Affine connection and tangent surface

Now let us consider the case of directed curves in a Riemannian
manifold, or more generally, the case of directed curves in a manifold
with any affine connection, which is not necessarily projectively flat. For
any directed curve, we have the well-defined tangent geodesic to each
point of the curve. If we regard it as the “tangent line”, then we have
the well-defined tangent surface for the directed curve.

It is proved in [59], for any affine connection on a manifold of dimen-
sion m ≥ 3, the singularities of the tangent surface to a generic directed
curve on a neighbourhood of the curve are only the cuspidal edge, the
folded umbrella, and swallowtail if m = 3, and the embedded cuspidal
edge and the open swallowtail if m ≥ 4. Moreover we have:

Theorem 18.1. ([59]) Let ∇ be any torsion-free affine connection
on a manifold M . Let γ : R → M be a C∞ curve.

(1) Let dim(M) = 3. If (∇γ)(a), (∇2γ)(a), (∇3γ)(a) are linearly
independent at t = a ∈ R, then the tangent surface Tan(γ) is locally
diffeomorphic to the cuspidal edge at (a, 0) ∈ R2. If (∇γ)(a), (∇2γ)(a),
(∇3γ)(a) are linearly dependent, and (∇γ)(a), (∇2γ)(a), (∇4γ)(a) are
linearly independent, then the tangent surface Tan(γ) is locally diffeo-
morphic to the folded umbrella at (a, 0) ∈ R2. If (∇γ)(a) = 0 and
(∇2γ)(a), (∇3γ)(a), (∇4γ)(a) are linearly independent, then the tangent
surface Tan(γ) is locally diffeomorphic to the swallowtail at (a, 0) ∈ R2.

(2) Let dim(M) ≥ 4. If (∇γ)(a), (∇2γ)(a), (∇3γ)(a) are linearly
independent at t = a ∈ R, then the tangent surface Tan(γ) is locally dif-
feomorphic to the embedded cuspidal edge at (a, 0) ∈ R2. If (∇γ)(a) = 0
and (∇2γ)(a), (∇3γ)(a), (∇4γ)(a), (∇5γ)(a) are linearly independent at
t = a ∈ R, then the tangent surface Tan(γ) is locally diffeomorphic to
the open swallowtail at (a, 0) ∈ R2.

For the proof of Theorem 18.1, we apply the characterisation theo-
rems found in [71][25][43].

In [59][60], singularities of tangent surfaces of torsionless curves are
studied. In that case, so called fold singularities and (2, 5)-cuspidal edges
appear. See also [28].
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§19. Characterisation of frontal singularities

When we treat singularities in a general ambient space as in the
previous section, we need the intrinsic characterisations of singularities.
Note that the characterization of swallowtails was applied to hyperbolic
geometry in [71] and to Euclidean and affine geometries in [52]. The
characterization of folded umbrellas is applied to Lorenz-Minkowski ge-
ometry in [25]. In Theorem 18.1, we apply to non-flat projective geom-
etry the characterisations and their some generalization via the notion
of openings introduced in §8.

Let f : (R2, p) → M3 be a frontal with a non-degenerate singular

point at p (see Lemma 6.7) and f̃ : (R2, p) → Gr(2, TM) the integral
lifting of f . Let V1, V2 : (R2, p) → TM be an associated frame with

f̃ . Let L : (R2, p) → T ∗M \ ζ be an annihilator of f̃ . The condition
is that 〈L, V1〉 = 0, 〈L, V2〉 = 0. Here ζ means the zero section. Let
c : (R, t0) → (R2, p) be a parametrization of the singular locus S(f),
p = c(t0), and η : (R2, p) → TR2 be a vector field which restricts to the
kernel field of f∗ on S(f). Suppose that V2(p) �∈ f∗(TpR

2). Then, for
any affine connection ∇ on M , we define

ψ(t) := 〈L(c(t)), (∇f
ηV2)(c(t))〉.

Note that the vector field (∇f
ηV2)(c(t)) is independent of the extension

η and the choice of affine connection ∇, since η|S(f) is a kernel field of
f∗. We call the function ψ(t) the characteristic function of f .

Then the following characterisations of cuspidal edges and folded
umbrellas are given in [71][25]:

Theorem 19.1. (Theorem 1.4 of [25]). Let f : (R2, p) → M3

be a germ of frontal with a non-degenerate singular point at p. Let
c : (R, t0) → (R2, p) be a parametrization of the singular locus of f .
Suppose f∗c′(t0) �= 0. Then, for the characteristic function ψ,
(1) f is diffeomorphic to the cuspidal edge if and only if ψ(t0) �= 0.
(2) f is diffeomorphic to the folded umbrella if and only if ψ(t0) = 0,
ψ′(t0) �= 0.

We can summarise several known results as those on openings of the
fold:

Theorem 19.2. ([59][60]) Let f : (R2, p) → Mm,m ≥ 2 be a

germ of frontal with a non-degenerate singular point at p, f̃ : (R2, p) →
Gr(2, TM) the integral lifting of f and V1, V2 : (R2, p) → TM an associ-

ated frame with f̃ . Let c : (R, t0) → (R2, p) be a parametrization of the
singular locus of f . Suppose f∗c′(t0) �= 0. Then f is diffeomorphic to
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an opening of the fold, namely to the germ (u,w) �→ (u, 1
2w

2). Moreover
we have:
(0) Let m = 2. Then f is diffeomorphic to the fold.
(1) Let m ≥ 3. Then f is diffeomorphic to the cuspidal edge if and only
if ψ(t0) �= 0.
(2) Let m = 3. Then f is diffeomorphic to the folded umbrella if and
only if ψ(t0) = 0, ψ′(t0) �= 0.

Based on results in [71] and [43], we summarise the characterization
results on openings of the Whitney’s cusp map-germ:

Theorem 19.3. ([59][61]) Let f : (R2, p) → Mm,m ≥ 2 be a germ
of frontal with a non-degenerate singular point at p, V1, V2 : (R2, p) →
TM an associated frame with f̃ with V2(p) �∈ f∗(TpR

2), and η : (R2, p) →
TR2 an extension of a kernel field along of f∗. Let c : (R, t0) → (R2, p)
be a parametrization of the singular locus of f . Set γ = f ◦ c : (R, t0) →
M . Suppose (∇γ)(t0) = 0 and (∇2γ)(t0) �= 0. Then f is diffeomorphic
to an opening of Whitney’s cusp, namely to the germ (u, t) �→ (u, t3+ut).
Moreover we have

(0) Let m = 2. Then f is diffeomorphic to Whitney’s cusp.
(1) Let m = 3. Then f is diffeomorphic to the swallowtail if and

only if
V1(c(t0)), V2(c(t0)), (∇f

ηV2)(c(t0))

are linearly independent in Tf(p)M .
(2) Let m ≥ 4. Then f is diffeomorphic to the open swallowtail if

and only if

(V1 ◦ c)(t0), (V2 ◦ c)(t0), ((∇f
ηV2) ◦ c)(t0), (∇γ

∂/∂t((∇f
ηV2) ◦ c))(t0)

are linearly independent in Tf(p)M .

Note that the conditions appeared in Theorem 19.1 are invariant
under diffeomorphism equivalence introduced in Introduction. In fact
the conditions are invariant under a weaker equivalence relation. In
Definition 8.4, we have introduce the notion of J -equivalence of map-
germs.

Corollary 19.4. Let f : (R2, 0) → (Rm, 0) be a frontal. Then f is
J -equivalent to Whitney’s cusp if and only if f is diffeomorphic to an
opening of Whitney’s cusp. Moreover. if m = 2, then f is diffeomorphic
to Whitney’s cusp. If m = 3 and f is a front, then f is diffeomorphic
to swallowtail.

The known criteria of singularities (see for instance [93][94][70]) seem
to be closely related with frontals, openings and J -equivalence. The
detailed relations are still open to be studied.
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§20. Null frontals

Let (M, g) be a semi-Riemannian manifold with an indefinite metric
g. Denote by C ⊂ TM the null cone field associated with the indefinite
metric g, i.e. C is the set of null vectors:

C =
⋃

x∈M

Cx, Cx = {u ∈ TxM | gx(u, u) = 0}.

Let π : C → M be the canonical projection.

Definition 20.1. A mapping f : N → M is called totally null (resp.
null) if the induced metric f∗g is identically zero (resp. f∗g is degenerate
everywhere). The condition that f is totally null is equivalent to that
f∗(TtN) ⊂ Cf(t) (resp. f∗(TtN) is tangent to Cf(t)), for any t ∈ N .

Definition 20.2. A curve-germ γ : (R, a) → M is called null if
γ′(t) ∈ C (t ∈ (R, a)). Moreover γ : (R, a) → M is called null-directed
if there exists a lift u : (R, a) → C such that π ◦ u = γ, u(t) �= 0, γ′(t) ∈
〈u(t)〉R, t ∈ (R, a).

A map-germ is null (resp. null-directed) if and only if it is totally
null (resp. totally null frontal).

Definition 20.3. Let γ : (R, a) → M be null-directed. Define the
null tangent surface Tan(γ) : (R2, a×R) → M of γ as the ruled surface
by null geodesics through points γ(t) with the directions u(t).

The right equivalence class of Tan(γ) is independent of the choice
of the lift u.

We have the following classification results. For the details see
[56][57]: The singularities of tangent surface Tan(γ) for a generic null
directed curve γ : R → R2,2 are cuspidal edges and open swallowtails.
The singularities of tangent surface Tan(γ) for a generic null directed
curve γ : R → R2,3 are cuspidal edges, open swallowtails, open Mond
surfaces and unfurled folded umbrellas. The singularities of tangent sur-
face Tan(γ) for a generic null directed curve γ : R → R3,3 (the projection
of a generic “Engel integral” curve) are embedded cuspidal edges, open
swallowtails and open Mond surfaces. See [43] for the normal forms and
pictures of the singularities.

In general the tangent surface to a null curve is a ruled surface
by null lines, which is not necessarily a totally null surface, but a null
surface, which we call the null tangent surface.

LetX be a 3-dimensional Lorentzian manifold (with signature (1, 2)).
A smooth map-germ ϕ : (R2, 0) → X is called a null frontal surface
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or a null frontal in short if there exists a smooth lift ϕ̃ : (R2, 0) →
PT ∗X = Gr(2, TX) of ϕ such that ϕ̃(t) is a lightlike plane in Tϕ(t)X

and ϕ∗(TtR
2) ⊂ ϕ̃(t), for any t ∈ (R2, 0). The notion of null frontals

is a natural generalization of null immersions to singular surfaces. We
have presented several classification results of singularities which arise
in null frontals up to local diffeomorphisms and up to O(2, 3)-conformal
transformations in the conformally flat case (cf. [54]). The classification
is achieved by using the fact that null frontals are obtained as tangent
surfaces to null curves in X, as well as “associated varieties” to Legendre
curves in the space Y of null geodesics on X (cf. [55][56][57]). A related
result is obtained in [19].

§21. Abnormal frontals

Let M be a 5-dimensional manifold and D ⊂ TM a distribution of
rank 2. Then D is called a Cartan distribution if it has growth (2, 3, 5),
namely, if rank(D(2)) = 3 and rank(D(3)) = 5, where, we define in terms
of Lie bracket, D(2) = D + [D,D] and D(3) = D2 + [D,D2]. It is known
that, for any point x of M and for any direction 
 ⊂ Dx, there exists an
abnormal geodesic, which is unique up to parametrisations, through x
with the given direction 
 (see [50][51]).

Then, for a given D-directed curve γ, we define abnormal tangent
surface of γ, which is ruled by abnormal geodesics through points γ(t)
with the directions u(t).

On R5 with coordinates (λ, ν, μ, τ, σ), define the distribution
D ⊂ TR5 generated by the pair of vector fields

η1 =
∂

∂λ
+ ν

∂

∂μ
− (λν − μ)

∂

∂τ
+ ν2

∂

∂σ
,

η2 =
∂

∂ν
− λ

∂

∂μ
+ λ2 ∂

∂τ
− (λν + μ)

∂

∂σ
.

Then D ⊂ TR5 is a Cartan distribution and it has maximal symmetry
of dimension 14, maximal among all Cartan distributions, which is of
type G2, one of simple Lie algebras.

For a generic G2-Cartan directed curve γ : R → R5, the tangent
surfaces at any point a ∈ R is classified, up to local diffeomorphisms,
into embedded cuspidal edge, open Mond surface, and generic open folded
pleat (see [55] for details). The classification of singularities in abnormal
tangent surfaces to generic Cartan directed curves for general Cartan
distributions seems to be un-known yet.
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§22. Appendix: Malgrange preparation theorem on differen-
tiable algebras

We show the Malgrange’s preparation theorem on differentiable al-
gebras [74] from the ordinary Malgrange-Mather’s preparation theorem
(see for example [15]), relating to the theory of C∞-rings which we have
utilised in this paper.

An R-algebra A is called local if it has a unique maximal ideal mA.

Example 22.1. Let En denote the R-algebra of C∞-functions-
germs (Rn, 0) → R. Then En is a local R-algebra with the unique
maximal ideal mn = {h ∈ En | h(0) = 0}.

Definition 22.2. ([74]) A localR-algebra A is called a differentiable
algebra if a surjective R-algebra homomorphism, mapping 1 to 1, π :
Em → A, for some m ∈ N is endowed.

A differentiable algebra A has the unique maximal ideal mA =
π(mm).

Let A and B be differentiable algebras with the surjective homo-
morphisms π : Em → A and ψ : En → B respectively. An R-algebra
homomorphism u : A → B is called a morphism of differentiable alge-
bras if there exists a C∞ map-germ g : (Rn, 0) → (Rm, 0) such that the
diagram

Em g∗
→ En

π ↓ ↓ ψ

A
u→ B

commutes.

A morphism u : A → B of differentiable algebras is called finite
(resp. quasi-finite) if B is a finite A-module via u (resp. B/mAB is a
finite dimensional R-vector space).

If u is finite, then it is quasi-finite. Then we have:

Theorem 22.3. (Malgrange preparation theorem on differentiable
algebras. Theorem 4.1 in [74] p.73) Let u : A → B be a morphism
of differentiable algebras. Then u is finite if and only if it is quasi-
finite. Moreover b1, . . . , br ∈ B generate B over A via u if and only if
b1, . . . , br ∈ B/mAB generate B/mAB over R.

Theorem 22.4. (Malgrange-Mather’s preparation theorem: The-
orem 6.5, Corollary 6.6 in [15]) Let f : (Rn, 0) → (Rm, 0) be a C∞

map-germ with the induced homomorphism f∗ : Em → En. Let C be
a finite En-module. Then C is a finite Em-module via f∗ if and only if
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C/mmC is a finite dimensional R-vector space. Moreover c1, . . . , cr ∈ C
generate C over Em via f∗ if and only if c1, . . . , cr ∈ C/mmC generate
C/mmC over R.

Proof of the statement that Theorem 22.4 implies Theorem 22.3 :
Let u be quasi-finite. Suppose b1, . . . , br ∈ B and b1, . . . , br ∈ B/mAB
generate B/mAB over R. Let g : (Rn, 0) → (Rm, 0) and g∗ : Em → En
cover u : A → B. Note B is a finite En-module via ψ. In fact 1 ∈
B generates B over En via the surjection ψ. Also note that mmB =
π(mm)B ⊆ mAB. Then b1, . . . , br ∈ B/mmB generate B/mmB over R
via u ◦ π = ψ ◦ g∗. Therefore, by Theorem 22.4, b1, . . . , br ∈ B generate
B over A. Thus u is finite. This implies also the remaining statement
naturally. �

Definition 22.5. A commutative ring A is called a C∞-ring if the
following conditions are satisfied:
(1) A contains the field R of real numbers.
(2) For any positive integer r, for any a1, . . . , ar ∈ A, and for any C∞

function f ∈ C∞(Rr), an element f(a1, . . . , ar) ∈ A is assigned, such
that the equality

(g(f1, . . . , fs))(a1, . . . , ar) = g(f1(a1, . . . , ar), . . . , fs(a1, . . . , ar))

holds for any g ∈ C∞(Rs), f1, . . . , fs ∈ C∞(Rn).
(3) The operations on A by C∞ functions are compatible with the struc-
ture of R-algebra on A, i.e. if f is a polynomial, f = P (x1, . . . , xr) ∈
R[x1, . . . , xr] ⊂ C∞(Rr), then f(a1, . . . , ar) is equal to the element
P (a1, . . . , ar) obtained just by substitutions (see [29]).

Note that by the condition (1), a C∞-ring is naturally an R-algebra.
A C∞-ring A is called a local C∞-ring if A is a local R-algebra. Let
mA denote the unique maximal ideal of a local C∞-ring. Let A be a
C∞-ring. We say that a1, . . . , an ∈ A generate A as the C∞-ring if for
any a ∈ A, there exists f ∈ C∞(Rn) such that a = f(a1, . . . , an). A
is called a finitely generated C∞-ring if there exists a finite number of
elements generating A as the C∞-ring. Let π : A → A/mA denote the
natural projection and i : R → A the inclusion.

Lemma 22.6. Let A be a differentiable algebra with a surjective
R-algebra homomorphism π : Em → A. Then we have:
(1) A has the induced structure of a local C∞-ring.
(2) A is generated by π(x1), . . . , π(xm) as the C∞-ring. Here (x1, . . . , xm)
is a system of coordinates of (Rm, 0) with the centre at 0.
(3) π ◦ i : R → A/mA is a bijection.
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Proof : (1) For any positive integer r, for any a1, . . . , ar ∈ A, and for
any C∞ function f ∈ C∞(Rr), we take a system of lifts ã1, . . . , ãr ∈ Em
for π and define f(a1, . . . , ar) := π(f(ã1, . . . , ãr)). If we take another
system of lifts â1, . . . , âr ∈ Em for π, we have

f(ã1, . . . , ãr)− f(â1, . . . , âr) =
r∑

i=1

gi(ã, â)(ãi − âi) ∈ Ker(π),

for some C∞ functions gi(x̃1, . . . , x̃r; x̂1, . . . , x̂r) ∈ C∞(R2r), 1 ≤ i ≤ r.
Thus π(f(â1, . . . , âr)) = π(f(ã1, . . . , ãr)). Moreover, take any a ∈ A.
Then there exists h ∈ Em such that a = π(h). (2) Take an H ∈
C∞(Rm) having h as the germ at 0. Then H(π(x1), . . . , π(xm)) =
π(H(x1, . . . , xm)) = π(h) = a. (3) R ∼= Em/mm

∼= A/mA. �

Proposition 22.7. Let (A,mA) be a local C∞-ring. Then the fol-
lowing conditions are equivalent :
(1) A is finitely generated as C∞-ring and the natural map π ◦ i : R →
A/mA is bijective.
(2) A is a differentiable algebra in the sense of Malgrange.

Proof : (1) ⇒ (2): Let a1, . . . , am be a system of generators of A as C∞-
ring. Define Π : C∞(Rm) → A by Π(f) = f(a1, . . . , am). Then Π is
surjective. Set I = Π−1(mA) which is a maximal ideal of C∞(Rm) with
C∞(Rm)/I ∼= R. Then there exists a point p ∈ Rm such that I = {f ∈
C∞(Rm) | f(p) = 0} (see Proposition 2.1 [2] for instance). Moreover
Ker(Π) ⊂ I. Set J = {f ∈ C∞(Rm) | the germ of f at p is zero}. We
show that J ⊆ Ker(Π). Let h ∈ J . Then there exists k ∈ C∞(Rm) such
that k(p) �= 0 and hk = 0. Then

0 = (hk)(a1, . . . , am) = h(a1, . . . , am)k(a1, . . . , am).

On the other hand k(a1, . . . , am) �∈ mA. Hence k(a1, . . . , am) is invert-
ible. Then Π(h) = h(a1, . . . , am) = 0 and thus h ∈ Ker(Π). Now
Π : C∞(Rn) → A induces a surjective homomorphism π′ : ERm,p → A.

Define π : Em = ERm,0 → A by π(f) = π′(f̃), where f̃(x) = f(x− p).
The implication (2) ⇒ (1) follows by Lemma 22.6. �

Example 22.8. Let I = {h ∈ C∞(R) | ∃n0 ∈ N, h(n) = 0(n ∈
N, n ≥ n0)}. Then I is a maximal ideal of C∞(R). Let A = C∞(R)I be
the localisation (a localisation at infinity). Then A is an R-algebra with
the unique maximal ideal mA. However A is not a differentiable algebra
in the sense of Malgrange. In fact, the quotient field A/mA

∼= C∞(R)/I
is a Robinson’s hyper-real number field [92].
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We call an R-algebra homomorphism u a C∞-ring homomorphism
if

u(f(a1, . . . , ar)) = f(u(a1), . . . , u(ar)),

for any r ≥ 1, for any a1, . . . , ar ∈ A and for any f ∈ C∞(Rr).

Lemma 22.9. Let ϕ : Em → En be an R-algebra homomorphism.
Then the following conditions are equivalent :
(1) There exists a C∞ map-germ g : (Rn, 0) → (Rm, 0) such that ϕ = g∗.
(2) ϕ is a C∞-ring homomorphism.

Proof : (1) ⇒ (2): Let a1, . . . , ar ∈ Em and h ∈ C∞(Rr). Then

h(ϕ(a1), . . . , ϕ(ar)) = h(g∗a1, . . . , g∗ar) = h ◦ (a1, . . . , ar) ◦ g
= g∗(h(a1, . . . , ar)) = ϕ(h(a1, . . . , ar)).

(2) ⇒ (1): Let x1, . . . , xm be coordinates of (Rm, 0). Then we have
ϕ(x1), . . . , ϕ(xm) ∈ mn. Take representatives g̃i : U → R of ϕ(yi) over
a common open neighbourhood of 0 in Rn, (1 ≤ i ≤ m). We set g̃ =
(g̃1, . . . , g̃m) : U → Rm. Then g̃(0) = 0. Take the germ g : (Rn, 0) →
(Rm, 0) of g̃ at 0. Let h ∈ Em. Take a representative h̃ ∈ C∞(Rm).

Then we have ϕ(h) = ϕ(h̃(x1, . . . , xm)) = h̃(ϕ(x1), . . . , ϕ(xm)) = h◦g =
g∗(h). Therefore ϕ = g∗. �

Lemma 22.10. Let u : A → B be an R-algebra homomorphism of
differentiable algebras. Then the following conditions are equivalent :
(1) u is a morphism of differentiable algebras.
(2) u is a C∞-ring homomorphism.

Proof : (1) ⇒ (2): Let a1, . . . , ar ∈ A and f ∈ C∞(Rr). Take ãi ∈
Em with π(ãi) = ai. Then ψ(g∗ãi) = u(ai). Then u(f(a1, . . . , ar) =
u(π(f(ã1, . . . , ãr))) = ψ(f ◦ (ã1, . . . , ãr) ◦ g) = ψ(f(g∗ã1, . . . , g∗ãr)) =
f(u(a1), . . . , u(ar)).
(2) ⇒ (1): Take gi ∈ En with u(π(xi)) = ψ(gi). Since ψ(gi) ∈ mB , we
have gi ∈ mm. Set g = (g1, . . . , gm) : (Rn, 0) → (Rm, 0). Let h ∈ Em
and take a representative H ∈ C∞(Rm) of the germ h. Then we have

u(π(h)) = u(H(π(x1), . . . , π(xm))) = H(u(π(x1)), . . . , u(π(xm)))

= H(ψ(g1), . . . , ψ(gm)) = ψ(H(g1, . . . , gm) = ψ(g∗(h)).

�
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