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A characterization of Gorenstein planar graphs

Tran Nam Trung

Abstract.

We graph-theoretically classify all Gorenstein planar graphs.

§1. Introduction

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Let Δ be
a simplicial complex on the vertex set {1, . . . , n} and IΔ the Stanley-
Reisner ideal of Δ in R. We say that Δ is Cohen-Macaulay (resp.
Gorenstein) over k if so is R/IΔ. One of the main problems is to charac-
terize the Cohen-Macaulay and the Gorenstein property of Δ from the
combinatorial data of Δ (see e.g. [13]). For example, Δ is Gorenstein
whenever its geometric realization, denoted by |Δ|, is isomorphic to a
sphere according to [13, Corollary 5.2]. In general, these properties de-
pend on not only the structure of Δ but also the characteristic of k (see
[3, 12]).

In this paper we are concerned only with flag complexes. A simplicial
complex is a flag complex if all of its minimal non-faces are two element
sets. Flag complexes are closely related to graphs.

Let G be a simple graph with the vertex set V (G) = {1, . . . , n} and
the edge set E(G). We associate to G a quadratic squarefree monomial
ideal

I(G) = (xixj | ij ∈ E(G)) ⊂ R,

which is called the edge ideal of G. An independent set in G is a set of
vertices no two of which are adjacent to each other. The independence
complex of G, denoted by Δ(G), is the set of independent sets of G.
It is well-known that IΔ(G) = I(G), so that Δ(G) is a flag complex.
Conversely, any flag complex is the independence complex of some graph.

We say that G is Cohen-Macaulay (resp. Gorenstein) over k if so is
R/I(G); G is well-covered if very maximal independent set of G has the
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same size, that is α(G), the independence number of G. A well-covered
graph G is said to be a member of the class W2 if G \ v is well-covered
with α(G \ v) = α(G) for every vertex v (see [11, 14]); where G \ v
stands for the induced subgraph of G on the vertex set V (G) \ {v}. At
first sight, if G is Gorenstein then G is in W2 (see [7, Lemma 3.1]). In
general we cannot read off the Gorenstein property of a graph just from
its structure since this property as usual depends on the characteristic
of k (see [8, Proposition 3.1]), so now we focus on some classes of graphs
such as (see [4, 6, 8]):

(1) A bipartite graph is Gorenstein if and only if it is consists of
disjoint edges.

(2) A chordal graph is Gorenstein if and only if it is consists of
disjoint edges.

(3) A triangle-free graph is Gorenstein if and only if it is a member
of W2.

The main theme of this paper is to characterize Gorenstein graphs
among planar graphs. A graph which can be drawn in the plane in such
a way that edges meet only at points corresponding to their common
ends is called a planar graph. Because a graph is Gorenstein if and only
if every its connected component is Gorenstein by Lemma 2.2, so that
it suffices to characterize Gorentein planar connected graphs.

This work is done for triangle-free planar graphs (see [7, 8]). Namely,
for m � 1, let Gm be the graph with the vertex set {1, 2, . . . , 3m − 1}
and the edge set

{{1, 2}, {{3s− 1, 3s}, {3s, 3s+ 1}, {3s+ 1, 3s+ 2},
{3s+ 2, 3s− 2}}s=1,...,m−1, {{3t− 3, 3t}}t=2,...,m−1}.

Fig. 1. The graph Gm

Then the family G = {Gm}m�1 is exactly Gorenstein triangle-free
planar connected graphs (see [8, Remark 4.5]). It is worth mentioning
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that this family can be visualized by a recursive construction due to
Pinter [10]:

(1) Begin with G1 = K2 and G2 = C5;

(2) Given the graph Gm for m � 2, let x be a vertex of degree 2 in
Gm and NG(x) = {y, z}. Then construct the graph Gm+1 with
precisely three more points than Gm as follows. Let the three
new points be a, b and c. Then join a to three points b, y, z; b
to c and c to x (see Figure 2).

x

y

z

x

y

z

abc

Fig. 2. The construction of G3 from G2

Moving away from triangle-free graphs, we get a new Gorenstein
planar graph R3 (the name due to [11]) as in Figure 3. The main result
of the paper says that Gorenstein planar connected graphs are exactly
the family G and R3.

Fig. 3. The graph R3

Theorem 3.7 Let G be a planar connected graph without isolated ver-
tices. Then, G is Gorenstein if and only if G is either Gm, where
m = α(G), or R3.

The paper is organized as follows. In Section 1 we set up some
basic terminology for simplicial complexes and graphs. In Section 2 we
characterize Gorenstein planar graphs.
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§2. Preliminaries

Let Δ be a simplicial complex on the vertex set V = {1, . . . , n}.
Thus, Δ is a collection of subsets of V closed under taking subsets; that
is, if σ ∈ Δ and τ ⊆ σ then τ ∈ Δ. Given a field k we now define the
Stanley-Reisner ideal of Δ to be the square-free monomial ideal

IΔ = (xj1 · · · xji | j1 < · · · < ji and {j1, . . . , ji} /∈ Δ)

in R = k[x1, . . . , xn] and the Stanley-Reisner ring of Δ to be the quotient
ring k[Δ] = R/IΔ. We say that Δ is Cohen-Macaulay (resp. Gorenstein)
if k[Δ] is Cohen-Macaulay (resp. Gorenstein). For F ∈ Δ, we define
the dimension of F ∈ Δ to be dimF = |F | − 1 and the dimension of
Δ to be dimΔ = max{dimF | F ∈ Δ}. The link of F inside Δ is its
subcomplex:

lkΔ F = {H ∈ Δ | H ∪ F ∈ Δ and H ∩ F = ∅}.
Let fi be the number of i-dimensional faces of Δ. Then the reduced

Euler characteristic χ̃(Δ) of Δ is defined by

χ̃(Δ) :=
d∑

i=−1

(−1)ifi,

where d = dim(Δ).
We call Δ is pure if all its facets have the same dimension, and

Eulerian if it is pure and χ̃(lkΔ F ) = (−1)dim(lkΔ F ) for all F ∈ Δ.
The restriction of Δ to a subset S of V is ΔS := {F ∈ Δ | F ⊆ S}.

The star of a vertex v in Δ is stΔ(v) := {F ∈ Δ | F ∪ {v} ∈ Δ}. Let
core(V ) := {x ∈ V | stΔ(x) �= Δ}, then the core of Δ is core(Δ) :=
Δcore(V ). For a vertex v, Δ = stΔ(v) means that Δ is a cone over v,
hence Δ = core(Δ) means that Δ is not a cone.

Let Δ and Γ be simplicial complexes with disjoint vertex sets V and
W , respectively. Define the join Δ ∗ Γ to be the simplicial complex on
the vertex set V ∪ W with faces F ∪ H, where F ∈ Δ and H ∈ Γ. It
follows that Δ = core(Δ) ∗ 〈V \ core(V )〉; where for a finite set P , we
denote 〈P 〉 to be the simplex over P .

We then have a criterion for determining when a simplicial complex
Δ is Gorenstein due to Stanley (see [13, Theorem 5.1 in Chapter II]).

Lemma 2.1. Δ is Gorenstein if and only if and only if core(Δ) is
an Euler complex which is Cohen-Macaulay.
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Let G be a simple graph. For a subset S of V (G), the neighborhood
of S in G is

NG(S) := {v ∈ V (G) \ S | uv ∈ E(G) for some u ∈ S},
the close neighborhood of S is NG[S] := S ∪NG(S). We denote by GS

the induced subgraph of G on the vertex set V (G) \ NG[S]. If v is a
vertex of G, we write NG(v) (resp. NG[v] and Gv) instead of NG({v})
(resp. NG[{v}] and G{v}). The degree of v in G is degG(v) := |NG(v)|.
If degG(v) = 0, then v is called an isolated vertex of G.

For the independence complex of G, we have dim(Δ(G)) = α(G)−1.
Clearly, G is well-covered if and only if Δ(G) is pure and Δ(G) =
core(Δ(G)) if and only if G has no isolated vertices.

Lemma 2.2. Let G be a simple graph. Then, G is Gorenstein if
and only every connected component of G is also Gorenstein.

Proof. Let G1, . . . , Gs be connected components of G. Then,

Δ(G) = Δ(G1) ∗ · · · ∗Δ(Gs).

Hence, Δ(G) is Gorenstein if and only if so are Δ(G1), . . . ,Δ(Gs) by [2],
and the lemma follows. Q.E.D.

Lemma 2.3. Let G be a Gorenstein graph without isolated vertices
and let S be an independent subset of G. Then,

(1) If GS is a Gorenstein graph without isolated vertices ;
(2) α(GS) = α(G)− |S|
Proof. (1) Since G has no isolated vertices, Δ(G) = core(Δ(G)).

By Lemma 2.1, Δ(G) is Eulerian. Note that Δ(GS) = lkΔ(G)(S), so
Δ(GS) is Eulerian. In particular, χ̃(Δ(GS)) �= 0, so Δ(G) is not a cone.
It follows that GS has no isolated vertices.

On the other hand, Δ(GS) is Cohen-Macaulay by [5, Corollary
8.1.8]. Therefore, Δ(GS) is Gorenstein by Lemma 2.1, i.e. GS is
Gorenstein.

(2) Because Δ(G) is pure, we have

α(GS) = dim(Δ(GS)) + 1 = dim(Δ(G))− |S|+ 1 = α(G)− |S|,
and the lemma follows. Q.E.D.

In the sequence we also need a criterion on deciding whether a given
graph is planar. A minor of a graph G is any graph obtainable from G by
means of a sequence of vertex and edge deletions and edge contractions.
Alternatively, consider a partition (V0, V1, . . . , Vm) of V (G) such that
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G[Vi] is connected, 1 � i � m, and let H be the graph obtained from G
by deleting V0 and shrinking each induced subgraph G[Vi], 1 � i � m,
to a single vertex. Then any spanning subgraph of H is a minor of G. A
minor which is isomorphic to K5 or K3,3 is called a Kuratowski minor.
Then, Wagner’s theorem (see [1, Theorem 10.3]) says that: G is planar
if and only if G has no Kuratowski minor.

§3. A Characterization of Planar Gorenstein graphs

In this section we characterize Gorenstein planar graphs. A graph
is called trivial if it has only one vertex. We always use the symbol G
to indicate a simple graph without isolated vertices. We first consider
graphs with small independence numbers.

Lemma 3.1. Let G be a graph with α(G) = 1. Then, G is Gorenstein
if and only if G is an edge.

Proof. Since α(G) = 1, G is a complete graph. Note that G is
not trivial by our assumption, |V (G)| � 2. By [6, Corollary 2.2], we
conclude that G is Gorenstein if and only if it is an edge. Q.E.D.

Lemma 3.2. R3 is Gorenstein.

Proof. Since the geometric realization of Δ(R3) is isomorphic to
the cycle C6, the lemma now follows from [13, Theorem 5.1 in Chapter
II]. Q.E.D.

Lemma 3.3. Let G be a planar graph with α(G) = 2. Then G is
Gorenstein if and only if G is two disjoint edges, or a pentagon, or R3.

Proof. Let n := |V (G)|. For each vertex v of G, Gv is a Gorenstein
graph without isolated vertices by Lemma 2.2. Since, α(Gv) = α(G) −
1 = 1, Gv is just one edge by Lemma 3.1. It follows that degG(v) =
n − 3 for any v ∈ V (G). Let Gc denote the complement of G. Then,
degGc(v) = 2 for all v ∈ V (Gc), and hence Gc is an n-cycle. Since
α(G) = 2, we have n � 4. We now consider the following cases depend-
ing on n:

Case 1: n = 4. Then, G is two disjoint edges.
Case 2: n = 5. Then, G is a pentagon.
Case 3: n = 6. Then, G is just R3.
Case 4: n � 7. Assume that V (G) = {1, 2, . . . , n}. If we delete all

vertices {8, . . . , n} from G, and then contract the edge {2, 6}, then we
obtain a graph that has a minor K3,3. It follows that G is not planar by
Wagner’s theorem, a contradiction.

In summary, G is Gorenstein if and only if G is two disjoint edges,
or a pentagon, or R3. Clearly, these graphs are Gorenstein. Q.E.D.
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We call a graph G is locally triangle-free if Gv is triangle-free for
every vertex v of G. The next result plays a key role in characterizing
Gorenstein graphs with higher independence numbers (see [9, Theorem
4.1]).

Lemma 3.4. Let G be a locally triangle-free graph. Then, G is
Gorenstein if and only if G is a triangle-free graph in W2 except for 4
graphs: P10, P12, Q9 and Q12 (see Figure 4).

Q9 Q12

a b
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x

c1 c2

a1

b1

b2

a b

c

d
x

y

a1 b1

z

t

c1 c2

P10 P12

Fig. 4. Four graphs Q9, Q12, P10 and P12

By using this result, we next characterize Gorenstein locally triangle-
free planar graph. Namely,

Lemma 3.5. Let G be a Gorenstein planar connected graph. If G
is locally triangle-free, then G is either a triangle-free graph or R3.

Proof. If α(G) � 2, the lemma follows from Lemmas 3.1 and 3.3.
Assume that α(G) � 3. By Lemma 3.4, G is a triangle-free graph

or one of P10, P12, Q9 or Q12. Therefore, it remains to verify that
P10, P12, Q9 andQ12 are not planar. In order to do that, we use Wagner’s
theorem.

For the graph Q9, by shrinking a1 to c1, b2 to c2, a to a2 and b to
b1 we see that P10 has a minor K5. Hence, Q9 is not planar.
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For the graph Q12, by shrinking a1, a2 and a3 to a; and b1, b2 and
b3 to b we see that Q12 has a minor K3,3. Hence, Q12 is not planar.

For the graph P10, by shrinking a and b to c, b1 to b2, x and y to
c1, we see that P10 has a minor K5. Hence, P10 is not planar.

Finally, for the graph P12, first deleting two vertices a1 and b1; and
then shrinking a and b to c, x to y, and z to t, we see that P12 has a
minor K3,3. Hence, P12 is not planar, and the lemma follows. Q.E.D.

Lemma 3.6. If G is a Gorenstein planar connected graph, then it
is locally triangle-free.

Proof. We prove by induction on α(G). If α(G) � 2, the lemma
follows from Lemmas 3.1 and 3.3.

If α(G) � 3. Assume on contrary that G is not locally triangle-free,
so that Gx would have a triangle for some vertex x of G. We first prove
the following claims.

Claim 1: Every connected component of Gv is either a triangle-free
non-trivial graph or R3 for any vertex v of G.

Indeed, by Lemma 2.3 we have Gv is Gorenstein graph with α(Gv) =
α(G)− 1 which has no isolated vertices. Note that Gv is planar as well.
By the induction hypothesis, Gv is locally triangle-free. Thus, every
component of Gv is a triangle-free graph or R3 by Lemmas 2.2 and 3.5,
as claimed.

Let G1, . . . , Gm be connected components of Gx. By Claim 1, each
Gi is either a Gorenstein non-trivial triangle-free graph or R3. Since Gx

has a triangle, we may assume that G1 is R3. Let X := NG(x).

Claim 2: There is a vertex of G1 which is not adjacent to any vertex
in X.

Indeed, assume on contrary that every vertex of G1 is adjacent to
some vertex in X. By deleting G2, . . . , Gm, and shrinking X into x, we
obtain a graph G′ as in Figure 5. By shrinking two vertices inside the
rectangle, we see that G′ has a minor K3,3, so G is not planar, and the
claim follows.

Because G is connected, there is some vertex in X which is adjacent
to some vertex of G1. Together with By Claim 2, we can partition X
into two nonempty subsets X = Y ∪ Z such that every vertex in Y is
adjacent to some vertex of G1; but every vertex in Z is not adjacent to
any vertex of G1.

Claim 3: m = 1.

Indeed, assume that m � 2. Let v be a vertex of Gi for some
i = 2, . . . ,m. If v is not adjacent to any vertex in Y , then there would
be a connected component of Gv that contains G1 and the vertex x.
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x

Fig. 5. The graph G′

This is impossible because every connected component of Gv is either
a triangle-free graph or R3 by Claim 1. Hence, every vertex of Gi for
every i = 2, . . . ,m is adjacent to all vertices in Y .

By Claim 2, there is a vertex of G1, say a, which is not adjacent
to any vertex in X. Then, Ga has a connected component, say H, that
contains NG[x] and G2, . . . , Gm. Since G2 is non-trivial by Claim 1
and every vertex of G2 is adjacent to all vertices in Y , H must contain
triangles, so H is isomorphic to R3 by Claim 1. Hence, we may assume
that E(H) = {xy, xz, xw, yz, zu, wu, yv, uv, wv}, so that G2 is just the
edge uv. In this case, Y = {w} and Z = {y, z}. But then the graph Gz

has a component that contains G1 = R3 and w. This contradicts Claim
1. Therefore, m = 1, as claimed.

We now return to prove the lemma. By Claim 3, we have Gx = G1.
Since G1 is R3, α(G) = α(R3) + 1 = 3. Assume that E(G1) =
{ab, bc, ca, de, ef, fd, ad, be, cf} and a is not adjacent to any vertex in
X. Fix any vertex z ∈ Z. Then, the set S := {a, z} is an independent
set of G, and then GS is Gorenstein with α(GS) = α(G) − |S| = 1 by
Lemma 2.3. Thus, GS is an edge by Lemma 3.1, and thus it must be
the edge ef . Consequently, NG[x] = NG[z]. Fix any another vertex y of
Y . Then, (xyz) is a triangle of G because of NG[x] = NG[z].

In the other hand, since α(Ga) = α(G) − 1 = 2 and Ga contains
the triangle (xyz), Ga must be R3 by Claim 1. Note also that x, z are
vertices of Ga and

NGa [x] = NG[x] = NG[z] = NGa [z].

This is impossible since neighborhoods of two distinct vertices of R3 are
different. Therefore, G is locally triangle-free, and the proof is complete.

Q.E.D.

We are in position to prove the main result of this paper.
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Theorem 3.7. Let G be a planar connected graph without isolated
vertices. Then, G is Gorenstein if and only if G is either Gm, where
m = α(G), or R3.

Proof. Assume thatG is Gorenstein. If α(G) � 2, then the theorem
follows from Lemmas 3.1 and 3.3. If α(G) � 3, then G is a triangle-free
graph by Lemma 3.6, and then it is a member of G by [8, Remark 4.5].
Thus, G = Gm for some m � 1. Since α(Gm) = m by [7, Lemma 3.7],
we have m = α(G).

The converse implication follows from [8, Remark 4.5] together with
Lemma 3.2. Q.E.D.
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Birkhäuser, 1996.



Gorenstein planar graphs 409

[14] J. W. Staples, On some subclasses of well-covered graphs, J. Graph Theory
3 (1979), 197–204.

Institute of Mathematics, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam
E-mail address : tntrung@math.ac.vn


