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Abstract.

This is an enlarged and revised version of the slides presented in
a series of survey lectures given by the present author at MSJ SI 2015
in Osaka. The goal is to introduce an algorithm for computing a holo-
nomic system of linear (ordinary or partial) differential equations for
the integral of a holonomic function over the domain defined by polyno-
mial inequalities. It applies to the cumulative function of a polynomial
of several independent random variables with e.g., a normal distribution
or a gamma distribution. Our method consists in Gröbner basis com-
putation in the Weyl algebra, i.e., the ring of differential operators with
polynomial coefficients. In the algorithm, generalized functions are in-
evitably involved even if the integrand is a usual function. Hence we
need to make sure to what extent purely algebraic method of Gröbner
basis applies to generalized functions which are based on real analysis.
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§1. Introduction: aim and an example from statistics

A univariate function is called holonomic if it satisfies a (non-trivial)
linear ordinary differential equation. Special functions such as the hy-
pergeometric function or the Bessel function are holonomic, as well as ra-
tional functions and their exponential and logarithm. As is well-known,
the solutions of a linear ordinary differential equation constitute a finite
dimensional vector space.

A D-module is a system of linear (partial or ordinary) differential
equations with polynomial (or analytic function) coefficients. There is
a special class of D-modules which are called holonomic, the solution
spaces of which are finite dimensional vector spaces. This notion was
introduced by Mikio Sato and J. Bernstein independently. Bernstein
[2], [3] introduced a special class of linear partial differential equations
with polynomial coefficients which was called the Bernstein class in [4].
On the other hand, Sato and his collaborators M. Kashiwara, T. Kawai
[31] introduced the notion of a holonomic system, which was called at
first a maximally overdetermined system, in the category of differential
operators with analytic coefficients.

A holonomic function is a differentiable or a generalized function
which is a solution of a holonomic system. For example, exp(f) = ef is
a holonomic function for any polynomial f = f(x1, . . . , xn). In statis-
tics, most of important probability density functions, such as those of the
multivariate normal distribution and the gamma distribution are holo-
nomic. Our aim is to find a holonomic system which is satisfied by the
integral of a holonomic function over the domain defined by polynomial
inequalities.

As an example, let us consider the integral

F (t) =
1

2π

∫
D(t)

exp
(
−1

2
(x2+y2)

)
dxdy, D(t) = {(x, y) ∈ R2 | xy ≤ t}.

It can be regarded as the cumulative distribution function of xy with
(x, y) being a random vector with the two dimensional standard normal
(Gaussian) distribution. Let us introduce the Heaviside function Y (t)
such that Y (t) = 1 for t > 0 and Y (t) = 0 for t < 0. (One does not
need to mind the value at t = 0.) Y (t) is discontinuous at t = 0 and
its derivative Y ′(t) as a generalized function coincides with Dirac’s delta
function δ(t). As a generalized function, δ(t) vanishes outside of t = 0
and tδ(t) = 0 holds everywhere in R.

By using the Heaviside function, we rewrite F (t) as

F (t) =
1

2π

∫
R2

exp
(
−1

2
(x2 + y2)

)
Y (t− xy) dxdy.
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Differentiation under the integral sign yields

v(t) := F ′(t) =
1

2π

∫
R2

exp
(
−1

2
(x2 + y2)

)
δ(t− xy) dxdy.

The integrand u(x, y, t) := exp
(
−1

2
(x2 + y2)

)
δ(t− xy) satisfies a holo-

nomic system

(∂y + x∂t + y)u = (∂x + y∂t + x)u = (t− xy)u = 0

with ∂x = ∂/∂x, ∂y = ∂/∂y, ∂t = ∂/∂t as is easily checked. The
integration algorithm for D-modules (see 5.2) outputs an answer

(1) (t∂2
t + ∂t − t)v(t) = 0.

In fact, we have an equality

y∂t(∂y + x∂t + y)− y(∂x + y∂t + x) + (∂2
t − 1)(t− xy)

= −∂xy + ∂yy∂t + t∂2
t + ∂t − t

in the ring of differential operators. Since the differential operator on
the left-hand side annihilates u(x, y, t), we get

(t∂2
t + ∂t − t)v(t) =

1

2π

∫
R2

(t∂2
t + ∂t − t)u(x, y, t) dxdy

=
1

2π

∫
R2

∂x(yu(x, y, t)) dxdy − 1

2π

∫
R2

∂y(y∂tu(x, y, t)) dxdy = 0.

The integrals on the last line vanish since yu(x, y, t) and y∂tu(x, y, t) are
‘rapidly decreasing’ in x, y; this reasoning shall be made precise in 4.3.

It follows that w(z) := v(−iz) satisfies the Bessel differential equa-
tion

z2
d2w

dz2
+ z

dw

dz
+ z2w = 0.

Together with the property that v(t) → 0 as t → ±∞ and v(−t) = v(t),
this implies

v(t) = CH
(1)
0 (i|t|) (t �= 0)

with some constant C, where H
(1)
0 (z) is a Hankel function. This fact was

observed, for example, by Wishart and Bartlett [36] as a special case.
Note that v(t) is discontinuous at t = 0 but is integrable and satisfies
(1) in the sense of generalized functions on the whole real line R.
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It also follows from (1) that the characteristic function, i.e., the
Fourier transform

v̂(τ) =

∫ ∞

−∞
eitτv(t) dt =

∫
R2

exp
(
iτxy − 1

2
(x2 + y2)

)
dxdy

satisfies a differential equation

(τ2 + 1)
d

dτ
v̂(τ) + τ v̂(τ) = 0.

Together with v̂(0) = 1, this implies v̂(τ) = (τ2 + 1)−1/2. Thus we get
an alternative expression

v(t) = V+(t+ i0) + V−(t− i0) = lim
ε→+0

(V+(t+ iε) + V−(t− iε))

as a hyperfunction of Mikio Sato ([30]) with

V+(t+ is) =
1

2π

∫ 0

−∞

exp(−i(t+ is)τ)√
τ2 + 1

dτ,

V−(t+ is) =
1

2π

∫ ∞

0

exp(−i(t+ is)τ)√
τ2 + 1

dτ,

where V+(t+is) and V−(t+is) are holomorphic functions of t+is on the
upper half plane s > 0 and on the lower half plane s < 0 respectively.

In general, for a holonomic function u(x, y) with x = (x1, . . . , xn)
and y = (y1, . . . , yd), let us consider the integral

v(y) =

∫
D(y)

u(x, y) dx1 · · · dxn,

D(y) = {x ∈ Rn | fj(x, y) ≥ 0 (1 ≤ j ≤ m)}
with real polynomials f1, . . . , fm in (x, y). We rewrite it as

v(y) =

∫
Rn

u(x, y)Y (f1(x, y)) · · ·Y (fm(x, y)) dx1 · · · dxn

and apply the D-module theoretic integration algorithm to obtain a
holonomic system for v(y), assuming that the integrand and its deriva-
tives are ‘rapidly decreasing’ with respect to the integration variables x.
In the process, we also need an algorithm to compute a holonomic sys-
tem for the product uY (f1) · · ·Y (fm) as a generalized function. Then
the D-module theory assures us that the obtained system of differential
equations for v(y) is holonomic.
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Finally, let us remark that we cannot use differential operators with
rational function coefficients since generalized functions are involved in
the computation. For example, x∂xY (x) = 0 does not imply ∂xY (x) =
δ(x) = 0; we cannot factor out x.

The organization of this article is as follows:
Section 2 is a hopefully concise exposition on the very beginning of

the D-module theory; the central subject is holonomicD-modules. More
advanced topics such as D-modules with regular singularities are not
treated. The presentation is almost self-contained with some arguments
and examples supplied in the next section after armed with Gröbner
bases.

In Section 3, we introduce Gröbner bases over the ring of differential
operators. One point is that we can compute Gröbner bases with respect
to arbitrary monomial orders that are not necessarily well-orders, which
will be needed in the integration algorithm. We also describe first ap-
plications of Gröbner bases to D-module theory: computation of the
characteristic variety, and a proof of the equivalence of the two defini-
tions of holonomicity introduced in the previous section.

In Section 4, we briefly review the theory of distributions in the sense
of generalized functions from our viewpoint, with mention of the relation
with statistical distributions. Especially, we introduce some classes of
distributions which are adapted to our integration algorithm developed
in the following sections.

Section 5 is a review on the integration of D-modules both from
theoretical and algorithmic viewpoints; the material should be more or
less standard by now.

In the first subsection of Section 6, we give some examples of inte-
grals which correspond to random variables with respect to the multi-
variate standard normal distribution such as the example above. In a
somewhat technical subsection 6.2, we introduce an algorithm to com-
pute a holonomic system for the product of complex powers of polyno-
mials and a holonomic function. This enables us to compute, in 6.3,
a holonomic system for the integral of a holonomic function over the
domain defined by arbitrary polynomial inequalities. Finally in 6.4, we
treat the integral of a function with some auxiliary parameters which
satisfies a holonomic difference-differential system.

The author would like to express his deepest gratitude to the orga-
nizers of MSJ SI 2015, especially to Takayuki Hibi, for the invitation and
the encouragement. At the same time, the author is grateful to Akimichi
Takemura and Nobuki Takayama also for drawing his attention to statis-
tics; their influence is reflected in the appended last phrase of the title.
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§2. Basics of D-module theory

We review the theory of D-modules, more precisely, of modules over
the Weyl algebra, which was initiated by J. Bernstein [2], [3]. A stan-
dard reference is the first chapter of [4]. A D-module corresponds to a
system of linear (ordinary or partial) differential equations with poly-
nomial coefficients. The notion of holonomic modules, also called the
Bernstein class of modules, and its characterizations are most essential.
We remark that the notion of holonomic modules over the ring of dif-
ferential operators with complex analytic coefficients was independently
introduced by M. Sato, T. Kawai, and M. Kashiwara [31].

2.1. The ring of differential operators

Let K be an arbitrary field of characteristic zero. We denote by
K[x] := K[x1, . . . , xn] the ring of polynomials in indeterminates
x = (x1, . . . , xn) with coefficients in K. A derivation θ : K[x] → K[x] is
a K-linear map that satisfies

θ(fg) = θ(f)g + fθ(g) (∀f, g ∈ K[x]).

The set DerKK[x] of the derivations constitutes a K[x]-module. For
i = 1, . . . , n, define a derivation ∂i = ∂xi by the partial derivative

∂i : K[x] 
 f �−→ ∂f

∂xi
∈ K[x].

Then ∂1, . . . , ∂n are a K[x]-basis of DerKK[x]. In fact, if θ ∈ DerKK[x],
then it is easy to see that

θ = θ(x1)∂1 + · · ·+ θ(xn)∂n.

Let EndKK[x] be the K-algebra consisting of the K-linear endo-
morphisms of K[x]. The ring Dn is defined to be the K-subalgebra of
EndKK[x] that is generated by K[x] and DerKK[x], or equivalently, by
x1, . . . , xn and ∂1, . . . , ∂n. This ring Dn is called the ring of differential
operators in the variables x = (x1, . . . , xn) with polynomial coefficients,
or, more simply, the n-th Weyl algebra over K.

An element a = a(x) of K[x] is regarded as an element of Dn as the
multiplication operator f �→ af for f ∈ K[x]. With this identification,
Dn contains K[x] as a subring. The ring Dn is a non-commutative K-
algebra. In fact, for a ∈ K[x] regarded as an element of Dn, the product
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in Dn satisfies

∂ia = a∂i + ∂i(a) = a∂i +
∂a

∂xi
(i = 1, . . . , n).

For a multi-index α = (α1, . . . , αn) ∈ Nn with N = {0, 1, 2, . . . },
we use the notation xα = xα1

1 · · · xαn
n , ∂α = ∂α

x = ∂α1
1 · · · ∂αn

n , and
|α| = α1 + · · ·+ αn. Then an element P of Dn is uniquely written in a
finite sum

P = P (x, ∂) =
∑

α,β∈Nn

aα,βx
α∂β =

∑
β∈Nn

aβ(x)∂
β

with aα,β ∈ K and aβ(x) =
∑

α aα,βx
α, which is called the normal form

of P . In fact, aβ(x) are uniquely determined by the action of P on K[x]
as follows: First we have a(0,...,0)(x) = P1. Next, we have

a(1,0,...,0)(x) = Px1 − a(0,...,0)(x)x1,

and so on. Here we need the assumption that the characteristic of K is
zero.

Introducing commutative indeterminates ξ = (ξ1, . . . , ξn) which cor-
responds to ∂, we associate with this P a polynomial

P (x, ξ) :=
∑

α,β∈Nn

aα,βx
αξβ ∈ K[x, ξ] = K[x1, . . . , xn, ξ1, . . . , ξn]

and call it the total symbol of P . Note that P must be in the normal form
when ξ is substituted for ∂. By this correspondence, Dn is isomorphic
to K[x, ξ] as a K-vector space but not as a ring.

The product R = PQ in Dn can be effectively computed by using
the Leibniz formula

(2) R(x, ξ) =
∑
ν∈Nn

1

ν!

(
∂

∂ξ

)ν

P (x, ξ) ·
(

∂

∂x

)ν

Q(x, ξ)

in terms of total symbols, where we use the notation ν! = ν1! · · · νn! for
ν = (ν1, . . . , νn) ∈ Nn.

Example 2.1. Set n = 1 and write x = x1 and ∂ = ∂1. Consider
the product R := ∂mxm with a non-negative integer m. Since the total
symbols of ∂m and xm are ξm and xm respectively, the Leibniz formula
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(2) gives the total symbol R(x, ξ) as

R(x, ξ) =
∞∑
ν=0

1

ν!

(
∂

∂ξ

)ν

ξm ·
(

∂

∂x

)ν

xm

=
m∑

ν=0

1

ν!
{m(m− 1) · · · (m− ν + 1)}2 ξm−νxm−ν .

This implies

∂mxm =
m∑

ν=0

1

ν!
{m(m− 1) · · · (m− ν + 1)}2 xm−ν∂m−ν .

Exercise 1. Show that an element P =
∑

β∈N
aβ(x)∂

β of Dn with

aβ(x) ∈ K[x] defines the zero endomorphism of K[x] if and only if
aβ(x) = 0 for any β.

Exercise 2. Prove the Leibniz formula (2).

Exercise 3. Set n = 1 and x = x1, ∂ = ∂1. For a positive integer
m, prove the formulae

xm∂m = x∂(x∂−1) · · · (x∂−m+1), ∂mxm = ∂x(∂x+1) · · · (∂x+m−1).

2.2. The D-module formalism

Given P1, . . . , Pr ∈ Dn, let us consider a system of linear (partial or
ordinary) differential equations

(3) P1u = · · · = Pru = 0

for an unknown function u. Let I := DnP1+ · · ·+DnPr be the left ideal
of Dn generated by P1, . . . , Pr. Then (3) is equivalent to

Pu = 0 (∀P ∈ I).

Here we suppose that the unknown function u belongs to some ‘function
space’ F which is a left Dn-module.

For F to be a left Dn-module, it is necessary that any function
f belonging to F be infinitely differentiable and multiplication ah by
an arbitrary polynomial a ∈ K[x] make sense. Here are examples of
‘function spaces’:

Example 2.2. By the definition, K[x] has a natural structure of
left Dn-module since Dn is a subalgebra of EndKK[x]. So K[x] has two
structures: a subring of Dn and a left Dn-module. Hence for f ∈ K[x]
and P ∈ Dn, Pf has two meanings:
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• Pf as the product in Dn with f regarded as an element of the
subring K[x] of Dn.

• Pf as the action of P on the element f of the left Dn-module
K[x]. In other words, we regard f as a function subject to
derivations.

This might cause some confusion. In [29], the action of P on an element
f of a left Dn-module is conspicuously denoted P • f for distinction.
We shall denote, if needed, Pf = P (f) to clarify the action of P on f ,
and Pf = P · f to emphasize that it is the product in Dn, following the
traditional notation in D-module theory.

Example 2.3. The field K(x) = K(x1, . . . , xn) of rational functions
has a natural structure of left Dn-module. For a point a = (a1, . . . , an)
of the affine space Kn, the set K[x]a of regular functions at a, i.e., the
elements of K(x) whose denominators do not vanish at a, also has a nat-
ural structure of Dn-module. More generally, the localization K[x][S−1]
by a multiplicative subset S of K[x] is also a left Dn-module.

Example 2.4. Set K = C. Let C∞(U) be the set of the complex-
valued C∞ functions on an open set U of the n-dimensional real Euclid-
ean space Rn. Then each ∂i acts on C∞(U) as differentiation and xi as
multiplication. This makes C∞(U) a left Dn-module. Let C∞

0 (U) be
the set of C∞ functions on U with compact support. More precisely,
f ∈ C∞(U) belongs to C∞

0 (U) if and only if there is a compact subset
K of U such that f(x) = 0 for any x ∈ U \ K. Then C∞

0 (U) is a left
Dn-submodule of C∞(U).

Other examples of such F with K = C are the set O(Ω) of holomor-
phic functions on an open subset Ω of Cn, the set D′(U) of the Schwartz
distributions on an open subset U of Rn, and the set S′(Rn) of tempered
distributions, which shall be introduced later, as well as the set B(U) of
the hyperfunctions (of Mikio Sato) on an open subset U of Rn.

Now for a left ideal I of Dn, consider the residue module
M := Dn/I, which is a left Dn-module generated by the residue class 1
of 1 ∈ K[x] ⊂ Dn. Fix a left Dn-module F as your favorite function
space. A map ϕ : M → F is Dn-linear, or a Dn-homomorphism, if

ϕ(u+ v) = ϕ(u) + ϕ(v), ϕ(Pu) = Pϕ(u) (∀u, v ∈ M, ∀P ∈ Dn).

Let HomDn(M,F) be the set of the Dn-homomorphisms of M to F ,
which is a K-vector space. Since M is generated by 1 as left Dn-module,
ϕ ∈ HomDn(M,F) is uniquely determined by ϕ(1) ∈ F . On the other
hand, for ϕ to be well-defined, it is necessary and sufficient that ϕ(1) be
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annihilated by I, i.e., Pϕ(1) = 0 for any P ∈ I. In conclusion, we have
a K-isomorphism

HomDn(M,F) 
 ϕ
∼�−→ ϕ(1) ∈ {f ∈ F | Pf = 0 (∀P ∈ I)}.

For an element u of a left Dn-module F , we define the annihilator
of u in Dn to be the left ideal

AnnDnu = {P ∈ Dn | Pu = 0}.
Then we have

I = AnnDn1 = {P ∈ Dn | P1 = 0 ∈ M}
by the definition.

We started with a left ideal I of Dn generated by given P1, . . . , Pr ∈
Dn and considered a left Dn-module M = Dn/I. We can argue in the
reverse order: Let M be a finitely generated left Dn-module and let
u1, . . . , um ∈ M be generators of M , i.e., assume that for any u ∈ M ,
there exist P1, . . . , Pm ∈ Dn such that u = P1u1 + · · ·+ Pmum. Set

N := {(P1, . . . , Pm) ∈ (Dn)
m | P1u1 + · · ·+ Pmum = 0},

which is a left Dn-submodule of the free module (Dn)
m.

Since Dn is a left (and right) Noetherian ring (this can be proved
by using a Gröbner basis in Dn), N is also finitely generated over Dn.
Hence there exist

Qi = (Qi1, . . . , Qim) ∈ (Dn)
m (i = 1, . . . , r)

which generate N as left Dn-module. Then we have an exact sequence
of left Dn-modules

(4) (Dn)
r ψ−→ (Dn)

m ϕ−→ M −→ 0,

which is called a presentation of M . Here ϕ and ψ are homomorphisms
of left Dn-modules defined by, for Pi ∈ Dn,

ϕ((P1, . . . , Pm)) = P1u1 + · · ·+ Pmum,

ψ((P1, . . . , Pr)) =
(
P1 · · · Pr

)⎛⎜⎝Q11 · · · Q1m

...
...

Qr1 · · · Qrm

⎞
⎟⎠

and N = kerϕ = imψ holds.
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From (4) we get an exact sequence

0 −→ HomDn(M,F)
ϕ∗
−→ HomDn((Dn)

m,F)
ψ∗
−→ HomDn((Dn)

r,F).

Since HomDn((Dn)
m,F) is isomorphic to Fm, this yields

0 −→ HomDn(M,F)
ϕ∗
−→ Fm ψ∗

−→ Fr.

Regarding the elements of Fm as column vectors, we have, for
h ∈ HomDn(M,F) and f1, . . . , fm ∈ F ,

ϕ∗(h) =

⎛
⎜⎝h(u1)

...
h(um)

⎞
⎟⎠ , ψ∗

⎛
⎜⎝
⎛
⎜⎝ f1

...
fm

⎞
⎟⎠
⎞
⎟⎠ =

⎛
⎜⎝Q11 · · · Q1m

...
...

Qr1 · · · Qrm

⎞
⎟⎠

⎛
⎜⎝ f1

...
fm

⎞
⎟⎠ .

Hence we have an isomorphism

HomDn(M,F)

∼= Kerψ∗ =
{
t(f1, . . . , fm) ∈ Fm |

m∑
j=1

Qijfj = 0 (i = 1, . . . , r)
}

as K-vector space. Note that the generators u1, . . . , um of M also satisfy
the same equations

m∑
j=1

Qijuj = 0 (i = 1, . . . , r)

in M . In this way, we can regard a finitely generated left Dn-module M
as a system of linear differential equations for unknown functions in a
function space which correspond to generators of M .

Example 2.5. Let us consider K[x] as a left Dn-module. Since Dn

contains K[x] as a subring, K[x] is generated by 1 as a left Dn-module.
For P ∈ Dn, there exist Q1, . . . , Qn ∈ Dn and r(x) ∈ K[x] such that

P = Q1∂1 + · · ·+Qn∂n + r(x).

Then the action of P on 1 is P (1) = r(x), which vanishes if and only if
r(x) = 0. This implies K[x] ∼= Dn/(Dn∂1 + · · ·+Dn∂n) and a presenta-
tion of K[x] is given by

(Dn)
n ·t(∂1,...,∂n)−→ Dn

ϕ−→ K[x] −→ 0
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with ϕ(P ) = P (1). In the same way we can show

HomDn(K[x],F) ∼= {f ∈ F | ∂1f = · · · = ∂nf = 0} = K

for F = K[x],K(x),K[x]a, or for F = C∞(U) with an open connected
set U of Rn if K = C.

Exercise 4. Confirm the formulae above for ϕ∗ and ψ∗.

Exercise 5. Construct a C-isomorphism HomDn(C[x], C
∞(U)) ∼=

C for an open connected set U of Rn, where Dn is the n-th Weyl algebra
over C. What happens if U is not connected?

2.3. Weight vector and filtration

A weight vector w for Dn is an integer vector

w = (w1, . . . , wn;wn+1, · · · , w2n) ∈ Z2n

with the conditions wi + wn+i ≥ 0 for i = 1, . . . , n, which are necessary
in view of the commutation relation ∂ixi = xi∂i+1 in Dn. For a nonzero
differential operator P of the form P =

∑
α,β∈Nn aα,βx

α∂β , we define its
w-order to be

ordw(P ) = max{〈w, (α, β)〉 | aα,β �= 0}
with

〈w, (α, β)〉 := w1α1 + · · ·+ wnαn + wn+1β1 + · · ·+ w2nβn.

We set ordw(0) := −∞. A weight vector w induces the w-filtration

Fw
k (Dn) := {P ∈ Dn | ordw(P ) ≤ k} (k ∈ Z)

on the ring Dn. In general, for two K-subspaces V,W of Dn, we denote
by VW the K-subspace of Dn spanned by products PQ with P ∈ V and
Q ∈ W .

The w-filtration satisfies the properties:

Fw
k (Dn) ⊂ Fw

k+1(Dn),
⋃
k∈Z

Fw
k (Dn) = Dn,

1 ∈ Fw
0 (Dn), Fw

k (Dn)F
w
l (Dn) ⊂ Fw

k+l(Dn),
⋂
k∈Z

Fw
k (Dn) = {0}.

The w-graded ring associated with this filtration is defined to be

grw(Dn) :=
⊕
k∈Z

grwk (Dn), grwk (Dn) := Fw
k (Dn)/F

w
k−1(Dn).
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Let P be a nonzero element of Dn with m := ordw(P ). Then we
denote by σw(P ) the residue class of P in grwk (Dn) ⊂ grw(Dn). We set
σw(0) = 0. It is easy to see that σw(PQ) = σw(P )σw(Q) holds for any
P,Q ∈ Dn by using the Leibniz formula.

If wi + wn+i > 0, then the w-order of ∂ixi − xi∂i = 1 is zero while
that of xi∂i is positive. Hence σw(xi) and σw(∂i) commute in grw(Dn).
In this case, we denote σw(xi) and σw(∂i) simply by xi and ξi regarding
these as commutative indeterminates.

On the other hand, if wi + wn+i = 0, then we have

σw(∂i)σ
w(xi)− σw(xi)σ

w(∂i) = 1

in grw(Dn), the same commutation relation as that for xi and ∂i in Dn.
Hence we will denote σw(xi) and σw(∂i) by xi and ∂i for simplicity.

Lemma 2.6. Assume that wi ≥ 0 holds for i = 1, . . . , 2n, or else
|wi| ≤ 1 and wi + wn+i = 0 hold for i = 1, . . . , n. Then Fw

k (Dn) is a
finitely generated left (and right) Fw

0 (Dn)-module for each integer k.

Proof. First, suppose wi ≥ 0 for all i. Then for any positive integer
k, Fw

k (Dn) is generated over Fw
0 (Dn) by the finite set

{xα∂β | 〈w, (α, β)〉 = k, αi = 0 if wi = 0, βi = 0 if wn+i = 0}.
Now suppose |wi| ≤ 1 and wi + wn+i = 0 for i = 1, . . . , n. We

may assume wi ≥ 0 for 1 ≤ i ≤ n by exchanging xi and ∂i if necessary.
Each element of Dn is expressed as a linear combination of a finite set of
‘monomials’ of the form xα∂β . If 〈(w1, . . . , wn), α〉 > 〈(w1, . . . , wn), β〉,
then there exists γ ∈ Nn such that α− γ ∈ Nn and

〈(w1, . . . , wn), α− γ〉 = 〈(w1, . . . , wn), β〉.
Then the w-order of xα∂β = xγxα−γ∂β is 〈(w1, . . . , wn), γ〉 ≥ 0 and
xα−γ∂β belongs to Fw

0 (Dn). Hence Fw
k (Dn) is generated by a finite set

{xγ | 〈(w1, . . . , wn), γ〉 = k, γi = 0 if wi = 0}
over Fw

0 (Dn) if k > 0. Likewise, Fw
k (Dn) is generated by a finite set

{∂γ | 〈(wn+1, . . . , w2n), γ〉 = k, γi = 0 if wn+i = 0}
over Fw

0 (Dn) if k < 0 since Dn is spanned by ∂βxα. Q.E.D.

Lemma 2.7. Assume |wi| ≤ 1 for 1 ≤ i ≤ 2n. Then for integers
j, k one has Fw

j (Dn)F
w
k (Dn) = Fw

j+k(Dn) if j ≥ 0, k ≥ 0 or else j ≤ 0,
k ≤ 0.
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Proof. The statement is easily shown if each component of w is 1
or 0. We can argue componentwise. Assume wi = −1, and consequently

wn+i = 1. Suppose the w-order of xαi
i ∂βi

i is j + k with j, k ≥ 0. This
means βi − αi = j + k and consequently k ≤ βi. Then ∂k

i belongs to

Fk(Dn) and xαi
i ∂βi−k

i to Fj(Dn). The case j, k ≤ 0 is similar. Q.E.D.

Note that the lemma above does not hold in general without the
assumption on w. For example, if n = 1 and w = (1; 2), then ∂1 belongs
to F2(D) but does not belong to F1(D1)F1(D1).

The Rees algebra Rw(Dn) associated with the w-filtration is defined
by

Rw(Dn) :=
⊕
k∈Z

Fw
k (Dn)T

k ⊂ Dn[T ]

with an indeterminate T . We have isomorphisms

(5) Rw(Dn)/(T − 1)Rw(Dn) ∼= Dn, Rw(Dn)/TR
w(Dn) ∼= grw(Dn)

as K-algebra. Note that Dn, gr
w(Dn), and Rw(Dn) are left (and right)

Noetherian rings. This can be proved by using Gröbner bases which will
be introduced in the next section.

Let M be a left Dn-module. A family {Fk(M)}k∈Z of K-subspaces
Fk(M) of M is called a w-filtration on M if it satisfies

(1) Fk(M) ⊂ Fk+1(M) for all k ∈ Z,

(2)
⋃
k∈Z

Fk(M) = M ,

(3) Fw
j (Dn)Fk(M) ⊂ Fj+k(M) for all j, k ∈ Z.

For a w-filtration {Fk(M)}, let

gr(M) :=
⊕
k∈Z

grk(M), grk(M) := Fk(M)/Fk−1(M)

be the associated graded module, which is a left grw(Dn)-module.

Definition 2.8. A w-filtration {Fk(M)} of a left Dn-module M is
called good if there exist a finite number of elements ui ∈ Fki(M) and
ki ∈ Z (i = 1, . . . ,m) such that

Fk(M) = Fw
k−k1

(Dn)u1 + · · ·+ Fw
k−km

(Dn)um (∀k ∈ Z).

It follows from the definition that a left Dn-module M has a good
w-filtration if and only if M is finitely generated over Dn. The following
lemma is also an immediate consequence of the definition:
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Lemma 2.9. Let {Fk(M)} be a good w-filtration on a left Dn-
module M . Let N be a left Dn-submodule of M . Define a w-filtration
on M/N by

Fk(M/N) := Fk(M)/(Fk(M) ∩N) ⊂ M/N.

Then {Fk(M/N)} is a good w-filtration on M/N .

Lemma 2.10. Let {Fk(M)} and {F ′
k(M)} be w-filtrations on a left

Dn-module M . Assume that {Fk(M)} is good. Then there exists an
integer l such that Fk(M) ⊂ F ′

k+l(M) for any k ∈ Z.

Proof. There exist ui ∈ Fki(M) such that

Fk(M) = Fw
k−k1

(Dn)u1 + · · ·+ Fw
k−km

(Dn)um (∀k ∈ Z).

There exists an integer l such that each ui belongs to F ′
l (M). Then we

have

Fk(M) ⊂ Fw
k−k1

(Dn)F
′
l (M) + · · ·+ Fw

k−km
(Dn)F

′
l (M) ⊂ F ′

k−k0+l(M)

with k0 := min{k1, . . . , km}. Q.E.D.

Proposition 2.11. Let {Fk(M)} be a good w-filtration on a left
Dn-module M . Then

(1) The associated graded module gr(M) is finitely generated over
grw(Dn). In particular, each homogeneous component grk(M)
is a finitely generated grw0 (Dn)-module if w satisfies the as-
sumption of Lemma 2.6.

(2) If wi ≥ 0 for all i, then {Fk(M)} is bounded below ; i.e., there
exists k0 ∈ Z such that Fk(M) = {0} for any k ≤ k0.

Proof. (1) By the assumption, there exist u1, . . . , um ∈ M such
that

(6) Fk(M) = Fw
k−k1

(Dn)u1 + · · ·+ Fw
k−km

(Dn)um (∀k ∈ Z).

Hence for any u ∈ Fk(M) \ Fk−1(M), there exist Pi ∈ Fw
k−ki

(Dn) such
that

u = P1u1 + · · ·+ Pmum.

Let u be the residue class of u in grk(M) and ui be that of ui in grki
(M).

Set P i = σw(Pi) if ordw(Pi) = k − ki, and P i = 0 otherwise. Then we
have

u = P 1u1 + · · ·+ Pmum

in gr(M). Hence gr(M) is generated by ui (1 ≤ i ≤ m) over grw(Dn).
(2) We have Fk(M) = 0 for k < min{k1, . . . , km} in view of (6) and

F−1(Dn) = {0}. Q.E.D.
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Proposition 2.12. Regard L = (Dn)
m as a free left Dn-module.

Fixing integers l1, . . . , lm, set

Fk(L) := Fw
k−l1(Dn)e1 + · · ·+ Fw

k−lm(Dn)em (∀k ∈ Z)

with e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) ∈ Zm. Let N be a left
Dn-submodule of L and assume Pi = (Pi1, . . . , Pim) ∈ L (i = 1, . . . , q)
generate N and, at the same time, their residue classes P 1, . . . , Pm in
gr(L) generate the graded submodule gr(N) of gr(L), which is associated
with the induced filtration {Fk(L)∩N}. Suppose Pi ∈ Fki(L)\Fki−1(L).
Under these conditions,

Fk(L) ∩N = Fw
k−k1

(Dn)P1 + · · ·+ Fw
k−km

(Dn)Pm

holds for any k ∈ Z. In particular, {Fk(L) ∩ N} is a good w-filtration
on N . Moreover, if wi ≥ 0 for all i, the assumption that Pi generate N
is not necessary.

Proof. This is standard in the case wi ≥ 0 for all i, which will suffice
for the application in the next subsection. In fact, for any element P of
Fk(L) ∩N , there exist Q′

i ∈ Fw
k−ki

(Dn) such that

P −
q∑

i=1

Q′
iPi ∈ Fk−1(L) ∩N

by the assumption. Then we can conclude by induction on k since
Fk(L) = {0} for sufficiently small k. For the general case we need the
completion with respect to the filtration; see the proof of Theorem 10.6
in [27] for details. Q.E.D.

The following is an analogue of the Artin-Rees lemma in commuta-
tive algebra:

Proposition 2.13. Let M be a finitely generated left Dn-module
and {Fk(M)} be a good w-filtration on M . Let N be a left Dn-submodule
of M . Then the induced filtration {N ∩ Fk(M)} on N is good.

Proof. By the assumption, there exist u1, . . . , um ∈ M such that

Fk(M) = Fw
k−k1

(Dn)u1 + · · ·+ Fw
k−km

(Dn)um (∀k ∈ Z).

Set L = (Dn)
m and define a Dn-homomorphism ϕ : L → M by

ϕ(A1, . . . , Am) = A1u1 + · · ·+Amum (Ai ∈ Dn).

Define a w-filtration on L by

Fk(L) = {(A1, . . . , Am) ∈ L | Ai ∈ Fw
k−ki

(Dn) (1 ≤ i ≤ m)}.
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Then ϕ(Fk(L)) = Fk(M) holds for any k ∈ Z by the construction. Now
N ′ := ϕ−1(N) is a left Dn-submodule of L and finitely generated since
Dn is Noetherian. Hence Proposition 2.12 (or else Theorem 3.14) assures
the existence of Q1, . . . , Qp ∈ N ′ and l1 . . . , lp ∈ Z such that

Fk(L) ∩N ′ = Fw
k−l1(Dn)Q1 + · · ·+ Fw

k−lp(Dn)Qp (∀k ∈ Z).

Set L′ = (Dn)
p and define a Dn-homomorphism ψ : L′ → N ′ by

ψ(B1, . . . , Bp) = B1Q1 + · · ·+BpQp (B1, . . . , Bp ∈ Dn).

Define a w-filtration on L′ by

Fk(L
′) = {(B1, . . . , Bp) ∈ L′ | Bi ∈ Fw

k−li(Dn) (1 ≤ i ≤ p)}.
Then we have

(ϕ ◦ ψ)(Fk(L
′)) = ϕ(Fk(L) ∩N ′) = Fk(M) ∩N.

In fact, if u belongs to Fk(M)∩N , then there exists Q ∈ Fk(L) such that
u = ϕ(Q) and consequently Q belongs to Fk(L)∩N ′. Thus {Fk(M)∩N}
is a good w-filtration. Q.E.D.

Exercise 6. Let w ∈ Z2n be a weight vector for Dn and set

d = min{wi + wn+i | 1 ≤ i ≤ n}.
Suppose P ∈ Fw

k (Dn) and Q ∈ Fw
l (Dn) and show that the commutator

[P,Q] := PQ−QP belongs to Fw
k+l−d(Dn).

Exercise 7. Set n = 1, w = (−1; 1), and M = D1/I with the left
ideal I = D1(x

2
1∂1 − 1) of D1. Set

Fk(M) = Fw
k (D1)/(F

w
k (D1) ∩ I) (k ∈ Z).

(1) Show that {Fk(M)} is a good w-filtration on M .
(2) Show that Fk(M) = M for any k ∈ Z and that gr(M) = {0}.
Exercise 8. Set n = 1 and regard K[x] as a left D1-module. Define

Fk(K[x]) = {f ∈ K[x] | deg f ≤ 2k} for k ∈ Z. Then prove the following:

(1) {Fk(K[x])} is a (1; 1)-filtration on K[x].
(2) The associated graded module gr(K[x]) is not finitely generated

over gr(1;1)(D1).
(3) {Fk(K[x])} is not a good (1; 1)-filtration, but it is a good (2; 1)-

filtration.

Exercise 9. Prove the K-algebra isomorphisms (5).
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2.4. Holonomic D-module and characteristic variety

Following J. Bernstein [2], [3], let us define the notion of holonomic
system by using the weight vector (1;1) = (1, . . . , 1; 1, . . . , 1) ∈ Z2n.

Let M be a finitely generated left Dn-module and {Fk(M)} a good
(1;1)-filtration on M . Note that gr(1;1)(Dn) is isomorphic to the poly-
nomial ring K[x, ξ] as a graded ring in which indeterminates x1, . . . , xn,
ξ1, . . . , ξn are all of order one. By Proposition 2.11, gr(M) is a finitely
generated graded K[x, ξ]-module and each grk(M) is a finite dimensional

K-vector space. Moreover, gr(1;1)(Dn) is generated by gr
(1;1)
1 (Dn) as K-

algebra.
In this situation, it is well-known in commutative algebra (see e.g.,

[5], [8]) that there exist a (Hilbert) polynomial H(k) =
∑d

j=0 cjk
j ∈ Q[k]

and an integer k0 such that

H(k) =
∑
j≤k

dimK grj(M) = dimK Fk(M) (∀k ≥ k0)

and that d!cd is a positive integer.

Proposition 2.14. The leading term cdk
d of H(k) does not depend

on the choice of a good (1;1)-filtration {Fk(M)}. Hence it is an invari-
ant of a finitely generated left Dn-module M . The degree d of H(k) is
called the dimension of M and denoted dimM . The multiplicity of M
is defined to be the positive integer d!cd and denoted multM .

Proof. Let {Fk(M)} and {F ′
k(M)} be two good (1;1)-filtrations

on M . There exist polynomials H(k), G(k), and an integer k0 such that

dimK Fk(M) = H(k), dimK F ′
k(M) = G(x) (∀k ≥ k0).

On the other hand, by Lemma 2.10, there exists a non-negative integer
k1 such that

F ′
k−k1

(M) ⊂ Fk(M) ⊂ F ′
k+k1

(M) (∀k ∈ Z).

Hence we have G(k − k1) ≤ H(k) ≤ G(k + k1) for any k ≥ k0. This
implies that the leading terms of H(k) and of G(k) coincide. Q.E.D.

Example 2.15. Since

dimK F
(1;1)
k (Dn) =

(
2n+ k

2n

)
=

1

(2n)!
k2n + (lower degree terms in k),

the dimension of Dn as a left Dn module equals 2n, and the multiplicity
is one.
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Theorem 2.16 (Bernstein’s inequality). If M is a finitely generated
nonzero left Dn-module, then dimM is greater than or equal to n.

Proof. We follow the argument in §30 of [12], which is based on a
lemma by A. Joseph. Let {Fk(M)} be a good (1;1)-filtration on M . We
may assume F0(M) �= {0} and F−1(M) = {0} by shifting k if necessary.
Let us define a K-homomorphism

Ψk : F
(1;1)
k (Dn) 
 P �−→ Ψk(P ) ∈ HomK(Fk(M), F2k(M)),

where Ψk(P ) denotes the natural K-homomorphism P : Fk(M) →
F2k(M). Let us show that Ψk is injective by induction on k. First,

Ψ0 is injective since F
(1;1)
0 (Dn) = K. Now assume Ψj is injective if

j ≤ k − 1. Let P be a nonzero element of F
(1;1)
k (Dn). We may as-

sume P �∈ K since Ψk(P ) �= 0 otherwise. Then, we have [P, ∂i] �= 0 or
[P, xi] �= 0 with some i. In fact, [P, ∂i] = P∂i − ∂iP vanishes if and only
if P does not contain xi, and [P, xi] vanishes if and only if P does not
contain ∂i.

First assume [P, ∂i] �= 0. Since [P, ∂i] belongs to F
(1;1)
k−1 (Dn), there

exists an element u of Fk−1(M) such that [P, ∂i]u �= 0 by the induction
hypothesis. Hence either P∂iu �= 0 or Pu �= 0 holds. Since u and ∂iu
belong to Fk(M), this shows Ψk(P ) �= 0.

The case [P, xi] �= 0 can be treated similarly with ∂i replaced by xi

in the argument above. Thus we have proved that Ψk is injective for
k ≥ 0. From this we obtain

dimK F
(1;1)
k (Dn) ≤ dimK HomK(Fk(M), F2k(M))

= (dimK Fk(M))(dimK F2k(M)).

There exists a polynomial H(k) such that H(k) = dimK Fk(M) for suf-
ficiently large k. Thus we have

H(k)H(2k) ≥ dimK F
(1;1)
k (Dn) =

(
2n+ k

2n

)
(∀k � 0).

Comparing the degrees in k, we get 2 degH(k) ≥ 2n, consequently
dimM = degH(k) ≥ n. Q.E.D.

Definition 2.17. A finitely generated left Dn-module M is called
holonomic or a holonomic system if dimM ≤ n, that is if dimM = n or
else M = 0.

Example 2.18. Let us show that K[x] is a holonomic left Dn-
module. It is easy to see that

Fk(K[x]) = {f ∈ K[x] | deg f ≤ k} (k ∈ Z)
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constitute a (1;1)-filtration on K[x]. Moreover, it is a good filtration
since

Fk(K[x]) =
∑
|α|≤k

Kxα = F
(1;1)
k (Dn)1.

It follows that dimK[x] = n since

dimK Fk(K[x]) =

(
n+ k

n

)
=

1

n!
kn + (lower order terms in k).

Proposition 2.19. Let

0 −→ N
ϕ−→ M

ψ−→ L −→ 0

be an exact sequence of finitely generated left Dn-modules. Then

(1) M is holonomic if and only if both N and L are holonomic.
(2) If M is holonomic, then multM = multN + multL holds,

where we define the multiplicity of the zero module to be zero.

Proof. Let {Fk(M)} be a good (1;1)-filtration on M and set

Fk(N) := ϕ−1(Fk(M)), Fk(L) := ψ(Fk(M)).

Then {Fk(N)} is a good filtration on N by Proposition 2.13 and {Fk(L)}
is a good filtration on L by Lemma 2.9. Hence the assertions follow from

dimK Fk(M) = dimK Fk(N) + dimK Fk(L).

Q.E.D.

Let us recall another characterization of a holonomic system by using
the weight vector w = (0;1) = (0, . . . , 0; 1, . . . , 1). Let M be a finitely
generated left Dn-module and {Fk(M)} be a good (0;1)-filtration on
M . Then gr(M) is a finitely generated K[x, ξ]-module. Let us denote
by K the algebraic closure of K. In general, for a finitely generated

K[x, ξ]-module M ′, its support is the algebraic set of K
2n

defined by

SuppM ′ := {(a, b) ∈ K
n ×K

n | M ′
(a,b) := K[x, ξ](a,b) ⊗K[x,ξ] M

′ �= 0},

where K[x, ξ](a,b) denotes the localization of K[x, ξ] at (a, b), i.e., the
localization at the maximal ideal corresponding to the point (a, b).

Proposition 2.20. The support of gr(M) does not depend on the
choice of a good (0;1)-filtration {Fk(M)} on M .
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Proof. We follow the argument of Kashiwara [14]. Let {Fk(M)}
and {F ′

k(M)} be good (0;1)-filtrations on M and gr(M) and gr′(M) be
the associated graded modules respectively. Then by Lemma 2.10 we
may assume that there exists an integer k1 ≥ 0 such that

Fk−k1(M) ⊂ F ′
k(M) ⊂ Fk(M) (∀k ∈ Z)

by shifting the index of F ′
k(M) if necessary.

Let us argue by induction on k1. The case k1 = 0 is trivial. Suppose
k1 = 1 and consider the following two exact sequences

0 −→ F ′
k(M)/Fk−1(M) → Fk(M)/Fk−1(M) → Fk(M)/F ′

k(M) → 0,

0 → Fk−1(M)/F ′
k−1(M) → F ′

k(M)/F ′
k−1(M) → F ′

k(M)/Fk−1(M) → 0.

It follows that

Supp gr(M) = Supp
⊕
k∈Z

F ′
k(M)/Fk−1(M) ∪ Supp

⊕
k∈Z

Fk(M)/F ′
k(M),

Supp gr′(M) = Supp
⊕
k∈Z

F ′
k(M)/Fk−1(M)

∪ Supp
⊕
k∈Z

Fk−1(M)/F ′
k−1(M)

since K[x, ξ](a,b) is a flat module over K[x, ξ]. Hence Supp gr(M) and
Supp gr′(M) coincide.

Now suppose k1 ≥ 2 and set

F ′′
k (M) = Fk−1(M) + F ′

k(M) (k ∈ Z).

Let gr′′(M) be the graded K[x, ξ]-module associated with the good fil-
tration {F ′′

k (M)}. It follows from the definition

Fk−1(M) ⊂ F ′′
k (M) ⊂ Fk(M), F ′′

k−k1+1(M) ⊂ F ′
k(M) ⊂ F ′′

k (M)

for any k ∈ Z. By the induction hypothesis, we have

Supp gr(M) = Supp gr′′(M) = Supp gr′(M).

Q.E.D.

Definition 2.21. Let M be a finitely generated left Dn-module
and {Fk(M)} be a good (0;1)-filtration on M . Then the characteristic
variety Char(M) of M is defined to be the support Supp gr(M) of the
graded module gr(M) associated with {Fk(M)}.
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Since gr(M) is a graded K[x, ξ]-module with x1, . . . , xn of order zero,
and ξ1, . . . , ξn of order one, Char(M) is a homogeneous set with respect
to ξ; i.e, if (a, b) belongs to Char(M), then so does (a, cb) for any c ∈ K.

The following theorem is proved, e.g., in Chapter 3 of [4] by using a
homological method based on Auslander-Buchsbaum-Serre theorem (cf.
[5], [8]). We will give a more elementary proof in 3.4.

Theorem 2.22. Let M be a finitely generated left Dn-module. Then
the dimension dimM defined through the (1;1)-filtration coincides with
the Krull dimension (not as a graded module) of the K[x, ξ]-module
gr(M) associated with a good (0;1)-filtration on M .

Especially, M is holonomic if and only if the dimension of the char-
acteristic variety is n or else M = 0. More strongly, it is known that the
dimension of each irreducible component of the characteristic variety is
of dimension ≥ n. This fact was first proved by Sato-Kawai-Kashiwara
[31] in the analytic category, and by Gabber [9] in a purely algebraic
setting. See [33] for extension to general weight vectors.

Example 2.23. Let us regard K[x] as a left Dn-module. Then

Fk(K[x]) = F
(0;1)
k (Dn)1 (k ∈ Z)

constitute a good (0;1)-filtration on K[x]. It is easy to see that Fk(K[x])
= K[x] if k ≥ 0, and Fk(K[x]) = {0} if k ≤ −1. Hence the associated
graded module is

gr(K[x]) =
⊕
k∈Z

Fk(K[x])/Fk−1(K[x]) = K[x].

As a K[x, ξ]-module, K[x] is isomorphic to K[x, ξ]/〈ξ1, . . . , ξn〉, where
〈ξ1, . . . , ξn〉 denotes the ideal of K[x, ξ] generated by ξ1, . . . , ξn. Hence
we get

Char(M) = {(x, ξ) ∈ K
2n | ξ1 = · · · = ξn = 0}.

Exercise 10. Set M = Dn/Dn∂
m
1 with a positive integer m and

the coefficient field K = C.

(1) Give a presentation of the graded module gr(M) associated
with the good (1;1)-filtration

Fk(M) = F
(1;1)
k (Dn)/(F

(1;1)
k (Dn) ∩Dn∂

m
1 )

and compute dimM .



Algorithms for D-modules with applications to statistics 275

(2) Give a presentation of the graded module gr(M) associated
with the good (0;1)-filtration

Fk(M) = F
(0;1)
k (Dn)/(F

(0;1)
k (Dn) ∩Dn∂

m
1 )

and compute CharM .

§3. Gröbner bases in the ring of differential operators

In this section, we quickly review the theory of Gröbner bases over
the Weyl algebra. In D-module theory, one often needs a Gröbner basis
with respect to a monomial order which is not a well-ordering; for this
we need homogenization technique. A good reference is the first chapter
of [29]. See also [23], [27].

3.1. Definitions and basic properties

Recall that ξ = (ξ1, . . . , ξn) are the commutative variables corre-
sponding to derivations ∂i = ∂xi (i = 1, . . . , n). Let

M(x, ξ) = {xαξβ | α, β ∈ Nn}
be the set of the monomials in K[x, ξ]. A total order ≺ on M(x, ξ) is
called a monomial order for Dn if it satisfies

(1) u ≺ v ⇒ uw ≺ vw (∀u, v, w ∈ M(x, ξ)),
(2) 1 ≺ xiξi for any i = 1, . . . , n.

A monomial order ≺ is called a term order if

(3) 1 ≺ xαξβ for any (α, β) ∈ N2n \ {(0,0)}.
This is equivalent to the condition that the monomial order ≺ be a
well-ordering.

Now fix a monomial order ≺. For a nonzero element

P =
∑
α,β

aαβx
α∂β (aα,β ∈ K)

ofDn, its initial monomial in≺(P ) is defined to be the maximum nonzero
monomial

in≺(P ) = max≺{xαξβ | aαβ �= 0}
of P (x, ξ) with respect to ≺. Note that in≺(P ) belongs to K[x, ξ] instead
of Dn so that monomial ideals make sense.

By using the Leibniz formula and the conditions (1) and (2), we can
verify that in≺(PQ) = in≺(P )in≺(Q) = in≺(QP ) holds in K[x, ξ] for
nonzero P,Q ∈ Dn.
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Definition 3.1. Let I be a left ideal of Dn. A finite subset G of
I \ {0} is called a Gröbner basis of I with respect to a monomial order
≺ if

(1) G generates I as a left ideal;
(2) in≺(G) := {in≺(P ) | P ∈ G} generates the monomial ideal

in≺(I) in K[x, ξ] which is generated by the set {in≺(P ) | P ∈
I, P �= 0}.

First, let us recall

Lemma 3.2 (Dickson). Every monomial ideal (i.e., an ideal gener-
ated by monomials) of K[x, ξ] is finitely generated.

See e.g., 2.4 of [6] for the proof.

Proposition 3.3. For any left ideal I of Dn, and any monomial
order ≺, there exists a Gröbner basis G of I with respect to ≺. In
particular, Dn is left Noetherian.

Proof. Let G be a finite generating set of I. Since in≺(I) is a
monomial ideal of K[x, ξ], there exists a finite set G′ of I such that
{in≺(P ) | P ∈ G′} generates in≺(I) by Lemma 3.2. Then G ∪ G′ is a
Gröbner basis of I with respect to ≺. Q.E.D.

For a term order, we can compute a Gröbner basis of I by using
division and Buchberger’s criterion applied to Dn.

Now let w ∈ Z2n be a weight vector for Dn (see 2.3). A monomial
order ≺ on M(x, ξ) is adapted to w if

xαξβ ≺ xα′
ξβ

′ ⇒ 〈w, (α, β)〉 ≤ 〈w, (α′, β′)〉.
There exists a term order that is adapted to w if and only if wi ≥ 0 for
any i = 1, . . . , n.

For an arbitrary monomial order ≺ for Dn, define another monomial
order ≺w by

xαξβ ≺w xα′
ξβ

′ ⇔ 〈w, (α, β)〉 < 〈w, (α′, β′)〉
or (〈w, (α, β)〉 = 〈w, (α′, β′)〉 and xαξβ ≺ xα′

ξβ
′
).

Then ≺w is adapted to w.
Recall that the residue class in grwk (Dn) of P ∈ Fk(Dn) \ Fk−1(Dn)

is denoted by σw(P ) (it is denoted by inw(P ) in [29]). For a nonzero ele-
ment P of grw(Dn) and a monomial order ≺ for Dn, the initial monomial
in≺(P ) is defined as a monomial in K[x, ξ].

The following is an immediate consequence of the definitions.
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Lemma 3.4. If a monomial order ≺ for Dn is adapted to a weight
vector w for Dn, then one has in≺(σw(P )) = in≺(P ) for any nonzero
element P of Dn.

The following proposition enables us to look at w-filtrations of left
Dn-modules from a computational viewpoint. Note that the weight
vector w may have negative components and hence the monomial order
≺w may not be a term order.

Proposition 3.5. Let w be a weight vector for Dn, ≺ be a term
order, and I be a left ideal of Dn. Let G be a Gröbner basis of I with re-
spect to ≺w. Then grw(G) := {σw(P ) | P ∈ G} generates over grw(Dn)
the graded ideal

grw(I) :=
⊕
k∈Z

(I ∩ Fw
k (Dn))/(I ∩ Fw

k−1(Dn))

associated with the induced filtration {Fw
k (Dn) ∩ I} on I.

Proof. Set G = {P1, . . . , Pr}. We denote by 〈σw(G)〉 the left ideal
of grw(Dn) generated by σw(P1), . . . , σw(Pr). Let P be a nonzero
element of I. Let m be the w-order of P . We have only to show that
σw(P ) belongs to 〈σw(G)〉.

By the assumption, the monomial in≺(σw(P )) = in≺w(P ) belongs
to the monomial ideal 〈in≺w(G)〉 generated by in≺w(G). Hence there
exist Q1 ∈ Dn whose total symbol is a monomial, and i1 ∈ {1, . . . , r}
such that

in≺(σw(P )) = in≺w(Q1)in≺w(Pi1) = in≺w(Q1Pi1).

In particular, the w-order of R1 := P −Q1Pi1 is ≤ m. If ordw(R1) < m,
then σw(P ) = σw(Q1)σ

w(Pi1) belongs to 〈grw(G)〉 and we are done.
Assume ordw(R1) = m. Then we have

σw(R1) = σw(P )− σw(Q1)σ
w(Pi1), in≺w(R1) ≺ in≺w(P )

and R1 belongs to I. Since the order ≺w restricted to {(α, β) ∈ N2n |
〈w, (α, β)〉 = m} coincides with ≺, which is a well-order, this process
terminates and we obtain finite number of operators Q1, . . . , Ql and
i1, . . . , il ∈ {1, . . . , r} such that

Rl := P −
l∑

j=1

QjPij ∈ Fw
m−1(Dn), ordw(Qj) + ordw(Pij ) = m

for 1 ≤ j ≤ l. This implies σw(P ) =
∑l

j=1 σ
w(Qj)σ

w(Pij ) belongs to

〈σw(G)〉. Q.E.D.
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Definition 3.6. Let I be a left ideal of Dn. A finite subset G of
I \ {0} is called a w-involutive basis of I if the following two conditions
hold:

(1) G generates I over Dn.
(2) σw(G) := {σw(P ) | P ∈ G} generates grw(I) over grw(Dn).

Theorem 3.7. Let I be a left ideal of Dn and set M = Dn/I. Let
≺ be a term order for Dn and w a weight vector for Dn. Suppose that
G = {P1, . . . , Pm} is a Gröbner basis of I with respect to ≺w and set
ki = ordw(Pi). Then

(1) G is a w-involutive basis of I.
(2) Let ϕ(P ) be the residue class of P ∈ Dn in M and ψ : (Dn)

m →
Dn be the Dn-homomorphism defined by

ψ(A1, . . . , Am) = A1P1 + · · ·+AmPm (A1, . . . , Am ∈ Dn).

Then the exact sequence

(Dn)
m ψ−→ Dn

ϕ−→ M −→ 0

induces, for each k ∈ Z, the exact sequence

m⊕
i=1

Fw
k−ki

(Dn)
ψk−→ Fw

k (Dn)
ϕk−→ Fk(M) −→ 0

with Fk(M) = Fw
k (Dn)/(F

w
k (Dn) ∩ I).

Proof. (1) is an immediate consequence of Proposition 3.5.
(2) It follows from the definition that ϕk is surjective. Applying

Proposition 2.12 to I and G, we have

Fk(I) := Fw
k (Dn)∩I = Fw

k−k1
(Dn)P1+· · ·+Fw

k−km
(Dn)Pm (∀k ∈ Z).

This completes the proof since kerϕk = I ∩ Fw
k (Dn) = Fk(I). Q.E.D.

We can dispense with Proposition 2.12 if G is obtained by the ho-
mogenization introduced in the next subsection (see Theorem 3.14).

Exercise 11. Set I = Dn∂1 + · · · + Dn∂n and w be an arbitrary
weight vector for w. Show that G := {∂1, . . . , ∂n} is a w-involutive basis
of I.

Exercise 12. Set n = 2 and P1 = ∂1, P2 = ∂2
1 + ∂2. Let I be the

left ideal of D2 generated by P1 and P2. Let w = (w1, w2;w3, w4) be a
weight vector for D2. Show that {P1, P2} is a w-involutive basis of I if
and only if 2w3 < w4.
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3.2. Homogenization trick

For a monomial order ≺ in which 1 is not the smallest element,
the division algorithm cannot be performed directly. To bypass this
difficulty, we introduce the (1;1)-homogenized ring. First, recall the
Rees algebra

R(1;1)(Dn) =
⊕
k∈Z

F
(1;1)
k (Dn)T

k

of Dn with respect to the (1;1)-filtration.

Let D
(h)
n be the K-vector space with the basis {xα∂βhk | α, β ∈ Nn,

k ∈ N}, where h is a new indeterminate. Define a K-isomorphism

Ψ : R(1;1)(Dn) → D
(h)
n by

Ψ(xα∂βT k) = xα∂βhk−|α|−|β|.

Note that xα∂βT k ∈ R(1;1)(Dn) means |α|+ |β| ≤ k.

We can makeD
(h)
n a graded K-algebra by using the graded K-algebra

structure of R(1;1)(Dn) via Ψ. Let us call this D(h) the homogenized
Weyl algebra, which was introduced, in connection with Gröbner bases,
by Takayama and Assi-Castro-Granger [1] independently. In fact, D(h)

was implemented by Takayama in his computer algebra system Kan [34]
as early as 1994.

The image of F
(1;1)
k (Dn)T

k by Ψ consists of the elements of D
(h)
n

which are homogeneous of degree k in x, ∂, h. For an element P of Dn,
we set

P (h) := Ψ(PT k) with k := ord(1;1)P ,

which is called the ((1;1)-) homogenization of P . For example, since
∂ixjT

2 = (xi∂j + δij)T
2 holds in R(1;1)(Dn), we have

∂ixj = Ψ(∂ixjT
2) = Ψ(xi∂jT

2) + δijΨ(T 2) = xi∂j + δijh
2

in D
(h)
n . Conversely, the dehomogenization (substituting 1 for h) D

(h)
n 


P �→ P |h=1 ∈ Dn defines a ring homomorphism so that (P (h))|h=1 = P
holds for P ∈ Dn.

For elements P,Q of D
(h)
n , let P (x, ξ, h) and Q(x, ξ, h) be their total

symbols defined in a similar manner as in Dn. Then the total symbol of
R := PQ is given by

R(x, ξ, h) =
∑
ν∈Nn

h2ν

ν!

(
∂

∂ξ

)ν

P (x, ξ, h) ·
(

∂

∂x

)ν

Q(x, ξ, h).

Definition 3.8. An order ≺ on M(x, ξ, h) = {xαξβhj | α, β ∈ Nn,

j ∈ N} is called a monomial order for D
(h)
n if
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(1) u ≺ v ⇒ uw ≺ vw (∀u, v, w ∈ M(x, ξ, h))
(2) h2 ≺ xiξi for any i = 1, . . . , n.

A monomial order≺ is called a term order if 1 � xαξβhj for any α, β ∈ N

and j ∈ N.

Definition 3.9. Let P =
∑

α,β,j cα,β,jx
α∂βhj be a nonzero element

of D
(h)
n and ≺ a monomial order for D

(h)
n . Then the initial monomial

in≺(P ) of P is the monomial xα0ξβ0hj0 such that

(α0, β0, j0) = max≺{(α, β, j) ∈ N2n+1 | cα,β,j �= 0}.
The leading coefficient lc≺(P ) and the leading term lt≺(P ) are defined
to be cα0,β0,j0 and cα0,β0,j0x

α0∂β0hj0 respectively. Note that lt≺(P )

belongs to D
(h)
n while in≺(P ) belongs to K[x, ξ, h].

Definition 3.10. Let J be a left ideal of D
(h)
n . A finite subset G of

J \ {0} is called a Gröbner basis of J with respect to a monomial order
≺ if

(1) G generates J as a left ideal;
(2) in≺(G) := {in≺(P ) | P ∈ G} generates the monomial ideal

in≺(J) in K[x, ξ, h] which is generated by the set {in≺(P ) |
P ∈ J, P �= 0}.

Proposition 3.11 (division). Let G = {P1, . . . , Pm} be a finite set

of nonzero elements of D
(h)
n and ≺ be a term order for D

(h)
n . Then for

any P ∈ D
(h)
n , there exist Q1, . . . , Qm, R ∈ D

(h)
n such that

P = Q1P1 + · · ·+QmPm +R, in≺(QjPj) � in≺(P ) if Qj �= 0

and that in≺(R) is not divisible by in≺(Pj) for 1 ≤ j ≤ m. Moreover, if
G is a Gröbner basis of the left ideal J generated by G with respect to
≺, then R = 0 if and only if P belongs to J .

Proof. The existence of Qj and R can be proved by induction in the
well-order ≺, in the same way as in the polynomial ring. Suppose that G
is a Gröbner basis with respect to ≺ and that P belongs to J . If R �= 0,
then in≺(R) must be divisible by in≺(Pj) for some j since R belongs to
J . This contradicts the assumption. Hence we have R = 0. Q.E.D.

Definition 3.12. Let ≺ be a term order for D
(h)
n . For nonzero

P,Q ∈ D
(h)
n , write lt≺(P ) = axα∂βhj and lt≺(Q) = bxα′

∂β′
hk with

a, b ∈ K \ {0}. Set
(α′′, β′′, l) = (α, β, j) ∧ (α′, β′, k)

:= (min{α1, α
′
1}, . . . ,min{βn, β

′
n},min{j, k}).
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Then the S-pair of P and Q with respect to ≺ is an element of D
(h)
n

defined by

sp≺(P,Q) = bxα′−α′′
∂β′−β′′

hk−lP − axα−α′′
∂β−β′′

hj−lQ.

Theorem 3.13 (Buchberger’s criterion in D
(h)
n ). Let J be a left

ideal of D
(h)
n and ≺ be a term order for D

(h)
n . Let G = {P1, . . . , Pm}

be a finite subset of J \ {0} which generates J . Then the following two
conditions are equivalent:

(1) G is a Gröbner basis of J with respect to ≺.
(2) If sp≺(Pi, Pj) �= 0 for 1 ≤ i < j ≤ m, then there exist Qijk ∈

D
(h)
n such that

sp≺(Pi, Pj) = Qij1P1 + · · ·+QijmPm,

in≺(QijkPk) � in≺(sp≺(Pi, Pj)) if Qijk �= 0 (1 ≤ k ≤ m).

Proof. We see that (1) implies (2) by division. Assume (2) and let
P be a nonzero element of I. We have only to show that in≺(P ) belongs
to the monomial ideal 〈in≺(G)〉. Let us consider the expression of the
form

(7) P = Q1P1 + · · ·+QmPm (Q1, . . . , Qm ∈ D(h)
n ).

Since ≺ is a well-order, we may assume that this expression is minimal
in the sense that a := max{in≺(QiPi) | Qi �= 0} is minimum among
such expressions. Then in≺(P ) � a holds. If in≺(P ) = a, then we are
done since a belongs to 〈in≺(G)〉.

Suppose in≺(P ) ≺ a. Let A be the set of i ∈ {1, . . . ,m} such that
in≺(PiQi) = a. We may assume A = {1, . . . , l}. We may also assume
that the leading coefficients of Pi are all one. Set

ck = lc≺(Qk), Sk := c−1
k lt≺(Qk), Q′

k = Qk−lt≺(Qk) = Qk−ckSk

for 1 ≤ k ≤ l. Then we have

(8) P =
l∑

k=1

ckSkPk +
l∑

k=1

Q′
kPk +

m∑
k=l+1

QkPk

with the property that in≺(Q′
kPk) ≺ a if 1 ≤ k ≤ l and Q′

k �= 0, and
in≺(QkPk) ≺ a if l < k ≤ m and Qk �= 0. This implies that the initial

monomial of
∑l

k=1 ckSkPk is smaller than a in ≺. The first term can be
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rewritten as

(9)
l∑

k=1

ckSkPk

=
l−1∑
k=1

(c1 + · · ·+ ck)(SkPk − Sk+1Pk+1) + (c1 + · · ·+ cl)SlPl.

Let sp≺(Pi, Pj) be given by SjiPi − SijPj . There exist monomials uk

such that

in≺(Sk)in≺(Pk) = in≺(Sk+1)in≺(Pk+1) = ukLCM(in≺(Pk), in≺(Pk+1))

and

in≺(Sk) = ukSk+1,k(x, ξ, h), in≺(Sk+1) = ukSk,k+1(x, ξ, h)

for 1 ≤ k ≤ l − 1. Take Uk ∈ D
(h)
n whose total symbol is uk and set

Ak := Sk − UkSk+1,k, Bk := Sk+1 − UkSk,k+1.

Then we have

SkPk − Sk+1Pk+1 = Uk(Sk+1,kPk − Sk,k+1Pk+1) +AkPk −BkPk+1.

Combined with (9), this yields

l∑
k=1

ckSkPk =
l−1∑
k=1

(c1 + · · ·+ ck)Uksp≺(Pk, Pk+1) + (c1 + · · ·+ cl)SlPl

+
l−1∑
k=1

(c1 + · · ·+ ck)(AkPk −BkPk+1)

=
m∑
j=1

l−1∑
k=1

(c1 + · · ·+ ck)UkQk,k+1,jPj + (c1 + · · ·+ cl)SlPl

+
l−1∑
k=1

(c1 + · · ·+ ck)(AkPk −BkPk+1).

Here the initial monomials of UkQk,k+1,jPj , AkPk, and BkPk+1 are

smaller than a, as well as the initial monomial of
∑l

k=1 ckSkPk, while
the initial monomial of SlPl is a. It follows that c1 + · · · + cl = 0 and
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hence

l∑
k=1

ckSkPk =
m∑
j=1

l−1∑
k=1

(c1 + · · ·+ ck)UkQk,k+1,jPj

+
l−1∑
k=1

(c1 + · · ·+ ck)(AkPk −BkPk+1).

Substituting this for the first term of the right-hand side of (8) gives an
expression of P which contradicts the minimality of (7). Hence we must
have in≺(P ) = a. This completes the proof. Q.E.D.

This criterion assures that the Buchberger algorithm applies toD
(h)
n .

Note also that this criterion and the proof works in Dn if ≺ is a term
order for Dn.

Now let ≺ be an arbitrary monomial order for Dn. We define a
monomial order ≺h on M(x, ξ, h) by

xαξβhj ≺h xα′
ξβ

′
hk ⇔ |α|+ |β|+ j < |α′|+ |β′|+ k

or (|α|+ |β|+ j = |α′|+ |β′|+ k and xαξβ ≺ xα′
ξβ

′
).

Then ≺h is a term order forD
(h)
n . Hence the division and the Buchberger

algorithm works with ≺h inD
(h)
n . If P is a nonzero homogeneous element

of D
(h)
n , then in≺(P |h=1) = in≺h

(P )|h=1 holds.

Theorem 3.14. Let I be the left ideal of Dn generated by nonzero
elements P1, . . . , Pr of I, and ≺ be an arbitrary monomial order for Dn.

Let J be a left ideal of D
(h)
n generated by P

(h)
1 , . . . , P

(h)
r and {Q′

1, . . . , Q
′
m}

be a Gröbner basis of J with respect to ≺h, which can be computed by
Buchberger’s algorithm.

Set Qi := Q′
i|h=1. Then {Q1, . . . , Qm} is a Gröbner basis of I with

respect to ≺. Moreover, for any nonzero element P of I, there exist
U1, . . . , Um ∈ Dn such that

P = U1Q1 + · · ·+ UmQm, in≺(UiQi) � in≺(P ) if Ui �= 0.

In particular, if ≺ is adapted to w, then Q1, . . . , Qm are a w-involutive
basis of I; more precisely, one has

I ∩ Fw
k (Dn) = Fw

k−k1
(Dn)Q1 + · · ·+ Fw

k−km
(Dn)Qm (∀k ∈ Z)

with ki := ordw(Qi).



284 T. Oaku

Proof. Let P be a nonzero element of I. Then there exist A1, . . . ,
Ar ∈ Dn such that P = A1P1 + · · · + ArPr. Homogenizing the both
sides of this equation, we obtain

hlP (h) = hl1A
(h)
1 P

(h)
1 + · · ·+ hlmA(h)

m P (h)
m

with some l, l1, . . . , lm ∈ N. Hence hlP (h) belongs to J . Since Q′
1, . . . ,

Q′
m are a Gröbner basis of J , division algorithm in D

(h)
n produces an

expression

hlP (h) =
m∑
j=1

BjQ
′
j

with some homogeneous elements Bj of D
(h)
n such that in≺h

(BjQ
′
j) �h

in≺h
(hlP (h)) if Bj �= 0. Dehomogenization yields

(10) P =
m∑
j=1

Bj |h=1Qj , in≺(Bj |h=1Qj) � in≺(P ).

In particular, in≺(P ) is divisible by in≺(Qj) for some j. Hence Q1, . . . ,
Qm are a Gröbner basis of I with respect to ≺. The last statement of
the theorem also follows from (10) if ≺ is adapted to w. Q.E.D.

Example 3.15. Set n = 2, w = (0, 1; 0,−1), and P1 = x1 − x2
2,

P2 = 2x2∂1 + ∂2. Fix a term order ≺ for D2 which is adapted to
the weight vector (1, 1; 1, 1) such that x1ξ1 � x2ξ2. Let us compute
a Gröbner basis of I := D2P1 + D2P2 with respect to the monomial
order≺w. Homogenization gives

P
(h)
1 = x1h− x2

2, P
(h)
2 = 2x2∂1 + ∂2h

with the leading terms with respect to ≺wh, which is the term order for

D
(h)
2 defined by ≺w, being underlined. Their S-pair is

P ′
3 := sp≺w

(P
(h)
1 , P

(h)
2 ) = 2∂1P

(h)
1 + x2P

(h)
2 = 2x1∂1h+ x2∂2h+ 2h3.

By using the Buchberger criterion, we can check that P
(h)
1 , P

(h)
2 , P ′

3 are

a Gröbner basis of the left ideal J := D
(h)
2 P

(h)
1 +D

(h)
2 P

(h)
2 of D

(h)
2 with

respect to ≺wh. Hence P1, P2, and P3 := P ′
3|h=1 = 2x1∂1 +x2∂2 +2 are

a Gröbner basis of I with respect to ≺w.

The notion and the algorithm of Gröbner basis can be extended to

submodules of free modules over Dn or D
(h)
n of finite rank.

Exercise 13. In the example above, confirm that P
(h)
1 , P

(h)
2 , P ′

3

are a Gröbner basis of J with respect to ≺wh.
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3.3. Computation of the characteristic variety and the sin-
gular locus

Let I be a left ideal of Dn and consider the left Dn-module
M = Dn/I. As was seen in 2.4, the most fundamental invariants of
M are the dimension and the characteristic variety. Now let us deduce
a more concrete description of the characteristic variety. Let P be a
nonzero differential operator written in the form

P = P (x, ∂) =
∑

α,β∈Nn

aα,βx
α∂β (aα,β ∈ K)

and set m := ord(0;1)(P ). Then the principal symbol of P is the poly-
nomial defined by

σ(P )(x, ξ) =
∑

|β|=m

∑
α

aα,βx
αξβ .

It can be identified with the residue class of P in gr(0;1)(Dn) ∼= K[x, ξ].
Note that σ(P )(x, ξ) is homogeneous with respect to ξ.

In general, let w be a weight vector for Dn satisfying wi ≥ 0 for
i = 1, . . . , 2n, and wi +wn+i > 0 for i = 1, . . . , n. Let ≺ be an arbitrary
term order for Dn. Then the Buchberger algorithm applied to I with
the term order ≺w yields a Gröbner basis G = {P1, . . . , Pm} of I with
respect to ≺w. Proposition 3.5 assures that G is a w-involutive basis of
I; that is, σw(G) generates the graded ideal grw(I) associated with the
filtration {Fw

k (Dn) ∩ I} on I.
Let grw(M) be the graded module associated with the good w-

filtration Fw
k (M) := Fw

k (Dn)/(F
w
k (Dn)∩ I). Then there exists a graded

exact sequence

0 −→ grw(I) −→ grw(Dn) −→ grw(M) −→ 0.

Note that grw(Dn) can be regarded as K[x, ξ] by the assumption on w.
Hence one has an isomorphism

grw(M) ∼= K[x, ξ]/grw(I) ∼= K[x, ξ]/(K[x, ξ]σw(P1)+· · ·+K[x, ξ]σw(Pm))

as K[x, ξ]-module. In particular, setting w = (0;1), we obtain

Char(M) = {(x, ξ) ∈ K
2n | σ(P1)(x, ξ) = · · · = σ(Pm)(x, ξ) = 0}.

Let π : K
2n 
 (x, ξ) �→ x ∈ K

n
be the projection. Then the singular

locus of M is defined by

Sing(M) := π(Char(M) \ (Kn × {0})).
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It is an algebraic set of K
n
since gr(M) is homogeneous with respect to

ξ. In particular, if M is holonomic, then Sing(M) is an algebraic set of
codimension ≥ 1, or an empty set, since Char(M) is homogeneous with
respect to ξ.

The set Char(M) \ ({0} × K
n
) can be regarded as the subset of

K
n × Pn−1(K), where Pn−1(K) is the (n − 1)-dimensional projective

space over K. Thus the problem of finding Sing(M) from Char(M) is
completely solved by what is called the projective elimination theory, as
is described in Chapter 8 of [6] in detail with a complete proof.

Proposition 3.16. Assume that K is an algebraically closed field
of characteristic zero and set M = Dn/I with a left ideal I of Dn. Let
f1(x, ξ), . . . , fm(x, ξ) be polynomials homogeneous in ξ which generate
gr(0;1)(I). Let Ji be the ideal of K[x, ξ] generated by f1, . . . , fm with
the variable ξi replaced by 1. Set Ii = Ji ∩ K[x]. Then Sing(M) is the
algebraic subset of Kn defined as the zeros of the ideal I1 ∩ · · · ∩ In.

Thus we can compute Sing(M) from Char(M) by using appropriate
Gröbner bases in K[x, ξ]; this fact was pointed out in [21], where it is
also noticed that the characteristic variety as is defined here coincides
with the analytic definition using the differential operators with analytic
coefficients. Even if M is generated by more than one elements over Dn,
we can compute Char(M) by using a Gröbner basis for a submodule of
the free module (see [21] for details).

Example 3.17. Let

P = am(x)∂m+am−1(x)∂
m−1+· · ·+a0(x) (ai(x) ∈ K[x], am(x) �= 0)

be a linear ordinary differential operator of order m ≥ 1 with x = x1

and ∂ = ∂1. Set M = D1/D1P . Then we have

Char(M) = {(x, ξ) ∈ K
2 | σ(P )(x, ξ) = am(x)ξm = 0}

= {(x, ξ) ∈ K
2 | am(x) = 0} ∪ {(x, 0) | x ∈ K}.

Hence M is holonomic and Sing(M) = {x ∈ K | am(x) = 0}, a point of
which is called a singular point of P .

Example 3.18. Let f be an arbitrary nonzero polynomial of
x = (x1, . . . , xn). For each i = 1, . . . , n, ∂if = f∂i + fi annihilates
the rational function 1/f , with fi := ∂f/∂xi. Set M = Dn/I with

I := Dn∂1f + · · ·+Dn∂nf.

This is a ‘naive’ D-module for the rational function 1/f .
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For example, set n = 2 and f(x) = x3
1 − x2

2 which has a cusp
singularity at the origin. We can check that ∂1f and ∂2f are a (0;1)-
involutive basis of I. This gives

Char(M) = {(x, ξ) ∈ K
4 | ξ1f(x1, x2) = ξ2f(x1, x2) = 0}

= {(x, ξ) | x3
1 − x2

2} ∪ {(x, ξ) | ξ = 0},
Sing(M) = {(x1, x2) | x3

1 − x2
2 = 0}.

Hence the dimension of Char(M) is 3, consequently M is not holo-
nomic. In fact, I is much smaller than AnnD2(1/f), which is generated
by 3x2

1∂2 +2x2∂1 and 2x1∂1 +3x2∂2 +6. There is an algorithm to com-
pute AnnDn(1/f) for an arbitrary polynomial f and Dn/AnnDn(1/f) is
always holonomic (see [22], [29]).

Exercise 14. In the example above with n = 2 and f = x3
1 − x2

2

(1) Verify that ∂1f and ∂2f are a (0;1)-involutive basis of the ideal
I which they generate.

(2) Verify that P1 := 3x2
1∂2 + 2x2∂1 and P2 := 2x1∂1 + 3x2∂2 + 6

annihilate 1/f .
(3) Find a (0;1)-involutive basis of J := D2P1 +D2P2 and verify

that D2/J is holonomic.
(4) Find the singular locus of D2/J .

Exercise 15. Find the characteristic variety and the singular locus
of the left Dn-module M = Dn/(Dnx1 + · · ·+Dnxn).

Exercise 16. Let K = C and let f(x) ∈ C[x] = C[x1, . . . , xn].
Consider a C∞ function ef(x) on Rn. Set fi = ∂i(f) and M := Dn/I
with

I := Dn(∂1 − f1) + · · ·+Dn(∂n − fn).

(1) Show that I = AnnDne
f(x) := {P ∈ Dn | Pef(x) = 0}.

(2) Show that HomDn(M,C∞(Rn)) ∼= Cef(x).
(3) Find the characteristic variety and the singular locus of M .

3.4. Equivalence of two definitions of holonomicity

The purpose of this subsection is to prove Theorem 2.22 by using
only basic tools in commutative algebra and Gröbner basis.

Definition 3.19 ([17]). A map ϕ from N to {t ∈ R | t ≥ 0} is said
to be of polynomial growth if there exists ν ∈ R such that ϕ(n) ≤ nν for
n � 0. Then we define the degree of ϕ by

degϕ = inf{ν | ϕ(n) ≤ nν for n � 0}.
We set degϕ = ∞ if ϕ is not of polynomial growth.
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Definition 3.20 ([5]). A function ϕ : Z → R is called a quasi-
polynomial (of period r) if there exist a positive integer r and polyno-
mials Hi (i = 0, 1, . . . , r − 1) such that

ϕ(jr + i) = Hi(jr + i) (∀j ∈ Z, 0 ≤ ∀i ≤ r − 1).

Then one has degϕ = max0≤i≤r−1 degHi.

Let w be a weight vector such that wi > 0 for 1 ≤ i ≤ 2n. In this
case we call w positive and denote it by w > 0.

Proposition 3.21 ([33], Theorem 5.2). Let w ∈ N2n be a positive
weight vector for Dn. Let {Fk(M)} be a good w-filtration on a left Dn-
module M . Then the degree of the function

ϕ(k) = dimK Fk(M)

of k ≥ 0 does not depend either on w or on the choice of a good w-
filtration {Fk(M)}.

Proof. For a fixed w, the fact that degϕ does not depend on the
choice of a good w-filtration can be proved by using Lemma 2.10.

Let u1, . . . , um be a set of generators of M . Define a good w-
filtration and a good (1;1)-filtration on M by

Fw
k (M) := Fw

k (Dn)u1 + · · ·+ Fw
k (Dn)um,

F
(1;1)
k (M) := F

(1;1)
k (Dn)u1 + · · ·+ F

(1;1)
k (Dn)um

respectively and grw(M) and gr(1;1)(M) be associated graded modules.

Set ψ(k) = dimK F
(1;1)
k (M). Then there exists a polynomial G such

that ψ(k) = G(k) for all k � 0. On the other hand, since there exists
P (T ) ∈ Z[T, T−1] such that

∑
k∈Z

dimK grwk (M)T k =
P (T )∏n

i=1(1− Twi)(1− Twn+i)
,

there exists a quasi-polynomial H of some period r such that ϕ(k) =
H(k) for all k � 0 (see e.g., Proposition 4.4.1 and Theorem 4.4.3 of [5]).
Let d be an integer not smaller than max{wi | 1 ≤ i ≤ 2n}. Then the
inclusion

Fw
k (Dn) ⊂ F

(1;1)
k (Dn) ⊂ Fw

dk(Dn) (∀k ≥ 0)

yields

Fw
k (M) ⊂ F

(1;1)
k (M) ⊂ Fw

dk(M) (∀k ≥ 0),
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and hence
ϕ(k) ≤ ψ(k) ≤ ϕ(dk).

This implies degϕ = degψ. Q.E.D.

Proposition 3.22. Let w ∈ N2n be a positive weight vector and
M ′ = ⊕jM

′
j be a finitely generated graded module over K[x, ξ] in which

xi is of order wi and ξi is of order wn+i. Then the degree of the function

ϕ(k) =
∑
j≤k

dimK M ′
j

coincides with the Krull dimension of M ′ as a (not graded) K[x, ξ]-
module.

Proof. Let u′
1, . . . , u

′
m be w-homogeneous generators of M ′ with

u′
i ∈ M ′

ki
. Then we have

M ′
k = K[x, ξ]wk−k1

u′
1 + · · ·+K[x, ξ]wk−km

u′
m,

K[x, ξ]wk :=
∑

〈w,(α,β)〉=k

Kxαξβ .

Forgetting the w-graded structure of M ′, set

Fk(M
′) = F

(1;1)
k−k1

(K[x, ξ])u′
1 + · · ·+ F

(1;1)
k−km

(K[x, ξ])u′
m,

F
(1;1)
k (K[x, ξ]) :=

∑
|α|+|β|≤k

Kxαξβ .

Let gr(M ′) = ⊕kFk(M
′)/Fk−1(M

′) be the associated graded module.
It is well-known in commutative algebra (e.g., Corollary 13.6 of [8]) that
the Krull dimension of M ′ coincides with the degree of the function
ψ(k) := dimK Fk(M

′), which equals a polynomial for k � 0. (One can
dispense with the Krull dimension by adopting the degree of ψ(k) as the
definition of the dimension as in Chapter 9 of [6].) On the other hand,
we can show that ϕ(k) is a quasi-polynomial for k � 0 and its degree
coincides with that of ψ by the same argument over K[x, ξ] instead of
Dn as the proof of Proposition 3.21. Q.E.D.

Now let us prove Theorem 2.22. If M is generated by u1, . . . , um,
then it is easy to see that

dimM = max
1≤i≤m

dimDnui, Char(M) =
⋃

1≤i≤m

Char(Dnui)

hold. Hence we may assume that M is generated by a single element,
and consequently that M = Dn/I with a left ideal I of Dn.
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Let ≺ be a term order for Dn adapted to the weight vector (1;1).
Let G = {P1, . . . , Pm} be a Gröbner basis of I with respect to the term
order ≺(0;1). There exist Qijk ∈ Dn such that

sp≺(0;1)
(Pi, Pj) =

m∑
k=1

QijkPk,

in≺(0;1)
(QijkPk) �(0;1) in≺(0;1)

(sp≺(0;1)
(Pi, Pj)) if Qijk �= 0.

Set w = (1, . . . , 1; d, . . . , d) = (d − 1)(0;1) + (1;1). If we take d large
enough, then the initial monomials of Pi and Qijk with respect to ≺(0;1)

stay unchanged with ≺(0;1) replaced by ≺w since ≺ is adapted to (1;1).
Hence G is also a Gröbner basis of I with respect to ≺w in view of the
Buchberger criterion in Dn.

Let gr(0;1)(M) and grw(M) be the graded modules associated with
filtrations

F
(0;1)
k (M) = F

(0;1)
k (Dn)/(F

(0;1)
k (Dn) ∩ I),

Fw
k (M) = Fw

k (Dn)/(F
w
k (Dn) ∩ I) (k ∈ Z)

respectively. Then from the argument above and Proposition 3.5 we
have

gr(0;1)(M) = K[x, ξ]/〈σ(0;1)(G)〉, grw(M) = K[x, ξ]/〈σw(G)〉
and

in≺(σ(0;1)(Pi)) = in≺(0;1)
(Pi) = in≺w(Pi) = in≺(σw(Pi)) (1 ≤ i ≤ m).

Since the Hilbert polynomial of K[x, ξ]/〈σw(G)〉 coincides with that of
K[x, ξ]/〈in≺(σw(G))〉 (see Chapter 9 of [6]), it follows that gr(0;1)(M)
and grw(M) have the same Krull dimension. Set

F
(1;1)
k (M) = F

(1;1)
k (Dn)/(F

(1;1)
k (Dn) ∩ I).

By Propositions 3.21 and 3.22, the Krull dimension of grw(M) is

deg
(∑
j≤k

dimK grwj (M)
)
= deg dimK Fw

k (M) = deg dimK F
(1;1)
k (M),

where deg denotes the degree as a function of k. It is also equal to
dimM by the definition. This completes the proof of Theorem 2.22.
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§4. Distributions as generalized functions

We briefly review the theory of distributions (generalized functions)
introduced by L. Schwartz [32]. See also [10] for plenty of interesting
examples. The main purpose here is to introduce some classes of distri-
butions which adapt nicely to the integration algorithm based on differ-
entiation under the integral sign. The terminology coined by Schwartz
has an origin in probability theory. So we also consider probability and
cumulative distribution functions associated with the multivariate nor-
mal distribution or the gamma distribution as integrals of generalized
functions.

4.1. Definitions and basic properties

Definition 4.1. Let C∞
0 (U) be the set of the complex-valued C∞

functions on an open set U of Rn with compact support. Here the
support of a C∞ function f on U is defined to be the closure in U of
the set {x ∈ U | f(x) �= 0} and denoted by suppu. A distribution u on
U is a linear mapping

u : C∞
0 (U) 
 ϕ �−→ 〈u, ϕ〉 ∈ C

such that limj→∞〈u, ϕj〉 = 0 holds for a sequence {ϕj} of C∞
0 (U) if

there is a compact set K ⊂ U such that suppϕj ⊂ K for any j and

lim
j→∞

sup
x∈U

|∂αϕj(x)| = 0 for any α ∈ Nn,

where x = (x1, . . . , xn) and ∂α = ∂α1
1 · · · ∂αn

n with ∂j = ∂/∂xj . If this
is the case, we say that {ϕj} converges to 0 in C∞

0 (U), which makes
C∞

0 (U) a topological vector space that is also denoted by D(U). The
set of the distributions on U is denoted by D′(U).

A Lebesgue measurable function u(x) defined on an open set U of
Rn is called locally integrable on U if it is integrable on any compact
subset of U . We can regard a locally integrable function u(x) on U as a
distribution on U through the pairing

〈u, ϕ〉 =
∫
U

u(x)ϕ(x) dx (∀ϕ ∈ C∞
0 (U)).

Identifying two locally integrable functions which are equal to each other
almost everywhere in U (i.e., outside a set of measure 0), we can regard
the set L1

loc(U) of the locally integrable functions on U as a subspace of
D′(U).
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Let u be a distribution on U . The derivative ∂ku of u with respect
to xk is defined by

〈∂ku, ϕ〉 = −〈u, ∂kϕ〉 for any ϕ ∈ C∞
0 (U).

For a C∞ function a on U , the product au is defined by

〈au, ϕ〉 = 〈u, aϕ〉 for any ϕ ∈ C∞
0 (U).

In particular, by these actions of the derivations and the polynomial
multiplications, D′(U) has a natural structure of left Dn-module.

Example 4.2. Set n = 1. The Heaviside function Y (x) is the
measurable function on R such that Y (x) = 1 for x > 0 and Y (x) = 0
for x < 0. The Dirac delta function δ(x) is a distribution on R defined
by

〈δ(x), ϕ〉 = ϕ(0) (∀ϕ ∈ C∞
0 (R)).

The derivative Y ′(x) of Y (x) as a distribution coincides with δ(x) since

〈Y ′(x), ϕ(x)〉 = −〈Y (x), ϕ′(x)〉 = −
∫ ∞

0

ϕ′(x) dx = ϕ(0) = 〈δ(x), ϕ〉

holds for any ϕ ∈ C∞
0 (R). The derivative δ′(x) of δ(x) is defined by

〈δ′(x), ϕ(x)〉 = −〈δ(x), ϕ′(x)〉 = −ϕ′(0).

In the same way, the k-th derivative δ(k)(x) ∈ D′(R) is defined by

〈δ(k)(x), ϕ(x)〉 = (−1)k〈δ(x), ϕ(k)(x)〉 = (−1)kϕ(k)(0).

Example 4.3. The n-dimensional delta function δ(x) is the distri-
bution defined by 〈δ(x), ϕ〉 = ϕ(0) for any ϕ ∈ C∞

0 (Rn).

Let u ∈ D′(U) with an open set U of Rn. Let V be an open subset
of U . Then there exists a natural inclusion C∞

0 (V ) ⊂ C∞
0 (U). The

restriction v := u|V of u to V is defined by

〈v, ϕ〉 = 〈u, ϕ〉 (∀ϕ ∈ C∞
0 (V )).

Then U �−→ D′(U), where U are open sets of Rn, constitutes a sheaf
on Rn. For u ∈ D′(U), the support suppu is defined to be the small-
est closed set Z in U such that u|U\Z = 0, i.e., 〈u, ϕ〉 = 0 for any
ϕ ∈ C∞

0 (U \Z). For example, with x = x1 we have supp δ(x) = {0} and
suppY (x) = {x ∈ R | x ≥ 0}.

The set of the distributions on U whose supports are compact sets of
U is denoted by E ′(U). (E ′(U) means the dual space of E(U) = C∞(U).)
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Let u belong to E ′(U) and K := suppu be its support. Then for an
arbitrary ϕ ∈ C∞(U), the pairing

〈u, ϕ(x)〉 = 〈u, χ(x)ϕ(x)〉
is well-defined with a cut-off function χ ∈ C∞

0 (U) such that χ(x) = 1 on
an open set V ⊂ U such that K ⊂ V . This pairing does not depend on
the choice of χ. In fact, assume χ̃ ∈ C∞

0 (U) satisfies the same condition.
Then since

supp (χ− χ̃) ∩ suppu = ∅,
〈u, χϕ〉 = 〈u, χ̃ϕ〉 holds for any ϕ ∈ C∞(U).

Definition 4.4. A C∞ function ϕ on Rn is called a rapidly de-
creasing function if |Pϕ| is bounded on Rn for any differential operator
P ∈ Dn. The set of the rapidly decreasing functions on Rn is denoted
by S(Rn); it contains C∞

0 (Rn) as a subspace.

Definition 4.5. A tempered distribution u on Rn is a C-linear map-
ping

u : S(Rn) 
 ϕ �−→ 〈u, ϕ〉 ∈ C

such that limj→∞〈u, ϕj〉 = 0 holds for any sequence {ϕj} of S(Rn) which
satisfies the condition

lim
j→∞

sup
x∈Rn

|Pϕj(x)| = 0 for any P ∈ Dn.

The sequence {ϕj} with this condition is said to converge to 0 in S(Rn),
which makes S(Rn) a topological vector space. The set of the tempered
distributions on Rn is denoted by S ′(Rn), which can be regarded as a
subspace of D′(Rn) since C∞

0 (Rn) is dense in S(Rn). Moreover, E ′(Rn)
is a subspace of S ′(Rn). Any P ∈ Dn defines a continuous linear endo-
morphism of S(Rn) and of S ′(Rn). Hence S ′(Rn) is a left Dn-submodule
of D′(Rn).

Let f(x) = f(x1, . . . , xn) be a complex-valued locally integrable
function on Rn of polynomial growth; i.e., assume that there exists a
constant C > 0 and a non-negative integer m such that

|f(x)| ≤ C(1 + |x|2)m = C(1 + x2
1 + · · ·+ x2

n)
m (∀x ∈ Rn).

Then f(x) defines a tempered distribution through the pairing

〈f, ϕ〉 =
∫
Rn

f(x)ϕ(x) dx (∀ϕ ∈ S(Rn)).
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Example 4.6. Let f1, . . . , fp be polynomials in x = (x1, . . . , xn)
with real coefficients. Let λ1, . . . , λp be complex numbers such that
Re λj ≥ 0 (j = 1, . . . , p). Set

((f1)
λ1
+ · · · (fp)λp

+ )(x)

=

{
f1(x)

λ1 · · · fp(x)λp if f1(x) > 0, . . . , fp(x) > 0
0 otherwise

,

where we use the convention that tλ = exp(λ log t) with real log t for

t > 0 and λ ∈ C. Then it is easy to see that (f1)
λ1
+ · · · (fp)λp

+ is lo-
cally integrable and of polynomial growth, thus can be regarded as
a tempered distribution. In particular, (f1)

0
+ · · · (fp)0+ coincides with

Y (f1) · · ·Y (fp).

Theorem 4.7 (Sato-Kawai-Kashiwara). Let M be a finitely gener-
ated left Dn-module. For a point a of Rn, let us denote by D′

a the stalk
of the sheaf D′ at a, which is the inductive limit D′

a = lim−→ D′(U) where

U are open neighborhoods of a.

(1) If M is holonomic, then HomDn(M,D′
a) is a finite dimensional

vector space over C for any a ∈ Rn.
(2) Let U be an open set of Rn. Then any distribution solution

of M is real analytic on U ′ := U \ Sing(M); i.e., the natural
C-linear map

HomDn(M,A(U ′)) −→ HomDn(M,D′(U ′))

is an isomorphism, where A(U ′) denotes the set of complex-
valued real analytic functions on U ′.

In fact, this theorem holds in a weaker assumption that M is an
analytic D-module and with D′(U) being replaced by the set B(U) of
hyperfunctions. Under this weaker assumption, the statement (1) is due
to Kashiwara (see Theorem 5.1.7 of [14] for a more refined formulation).
The statement (2) was first noticed by M. Sato with the introduction of
the theory of microfunctions developed together with Kawai and Kashi-
wara ([31]).

Example 4.8. We have HomDn(C[x],D′(Rn)) ∼= C. In fact, C[x] =
Dn/(Dn∂1 + · · · +Dn∂n) and we can prove that if u ∈ D′(Rn) satisfies
∂1u = · · · = ∂nu = 0, then u is a constant function (see Exercise 19).
Since Sing(C[x]) = ∅, u is real analytic on Rn.
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Example 4.9. Set M := Dn/(Dnx1 + · · · + Dnxn) with K = C.
Then HomDn(M,D′(Rn)) is one dimensional and spanned by the n-
dimensional delta function δ(x). Since Sing(M) = {0}, u is real analytic
(zero in fact) on Rn \ {0}.

Exercise 17. Let u be a distribution on Rn satisfying x1u = · · · =
xnu = 0.

(1) Show that the support of u is contained in {0} and hence u
belongs to E ′(Rn).

(2) Prove that u is a constant multiple of the n-dimensional delta
function δ(x). Use the fact that for ϕ ∈ C∞(Rn), there exist
ϕi ∈ C∞(Rn) (i = 1, . . . , n) such that

ϕ(x) = ϕ(0) + x1ϕ1(x) + · · ·+ xnϕn(x).

Exercise 18. Set n = 1 and write x = x1, ∂ = ∂1. Define a C-linear
map u : S(R) −→ C by

〈u, ϕ〉 = lim
ε→+0

∫ ∞

ε

ϕ(x)− ϕ(−x)

x
dx (ϕ ∈ S(R)).

(1) Show that u belongs to S ′(R).
(2) Show that xu = 1, and hence ∂xu = 0 holds.

4.2. Product of distributions

The product of two distributions cannot be defined in general. There
are some cases where the product is well-defined:

(1) Let U be an open set of Rn and V an open set of Rm. For
u1 ∈ D′(U) and u2 ∈ D′(V ), their tensor product u1 ⊗ u2, which is also
denoted by u1(x)u2(y) with x = (x1, . . . , xn) and y = (y1, . . . , ym), is
defined as the unique distribution on U × V such that

〈u1 ⊗ u2, ϕ1(x)ϕ2(y)〉 = 〈u1, ϕ1〉〈u2, ϕ2〉
holds for any ϕ1 ∈ C∞

0 (U) and ϕ2 ∈ C∞
0 (V ). Then

〈u1 ⊗ u2, ϕ(x, y)〉 = 〈u1, 〈u2, ϕ(x, y)〉y〉
holds for ϕ(x, y) ∈ C∞

0 (U × V ), where 〈〉y denotes the pairing of D′(V )
and C∞

0 (V ) with x fixed. See Chapter 4 of [32] for details. If u1 ∈ S ′(Rn)
and u2 ∈ S ′(Rm), then u1 ⊗ u2 belongs to S ′(Rn+m).

(2) Let U be an open set of Rn. For u1 ∈ C∞(U) and u2 ∈ D′(U),
the product u = u1u2 is well-defined as an element of D′(U) and the
Leibniz rule ∂i(u1u2) = (∂iu1)u2 + u1(∂1u2) holds for i = 1, . . . , n. In
fact, the pairing

〈u1u2, ϕ〉 = 〈u2, u1ϕ〉
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is well-defined for ϕ ∈ C∞
0 (U), and we have

〈∂i(u1u2), ϕ〉 = −〈u1u2, ∂iϕ〉 = −〈u2, u1∂iϕ〉
= −〈u2, ∂i(u1ϕ)− (∂iu1)ϕ〉
= 〈∂iu2, u1ϕ〉+ 〈u2, (∂iu1)ϕ〉
= 〈u1(∂iu2) + (∂iu1)u2, ϕ〉.

(3) Let u1 belong to S(Rn) and u2 to S ′(Rn). Then u1u2 is well-
defined as an element of S ′(Rn) and the Leibniz rule holds.

(4) Let u1 and u2 be measurable functions on U . Let p, q be positive
real numbers or infinity such that 1/p+1/q = 1. If u1 is locally Lp and
u2 is locally Lq (i.e., |u1|p and |u2|q are locally integrable if p, q > 1;
the measure of the set {x ∈ U | |u1(x)| > a} is zero for some a ∈ R

in case p = ∞), then the product u = u1u2 is well-defined as a locally
integrable function. But the Leibniz rule does not make sense; in fact,
the product (∂1u1)u2 cannot be defined in general.

However, for example in one variable x = x1, the product δ(x)2 or
Y (x)δ(x) cannot be defined as distributions. If u(x) is locally integrable,
then Y (x)u(x) is also a locally integrable function. But δ(x)u(x) cannot
be defined in general. In particular, the Leibniz rule

∂x(Y (x)u(x)) = Y (x)u′(x) + δ(x)u(x)

does not make sense in general because the products on the right-hand
side cannot be defined unless u is C∞ while the left-hand side is well-
defined as distribution.

Proposition 4.10. Let f(x) be a real-valued C∞ function on an
open subset U of Rn. If u(t) belongs to D′(R) and v(x) belongs to D′(U),
then u(t− f(x))v(x) is well-defined as an element of D′(R×U) and the
Leibniz formulae

∂

∂t
(u(t− f(x))v(x)) = u′(t− f(x))v(x),

∂

∂xi
(u(t− f(x))v(x)) = u(t− f(x))

∂

∂xi
v(x)− ∂f

∂xi
u′(t− f(x))v(x)

hold for i = 1, . . . , n with u′(t) being the derivative of u(t). Moreover, if
f(x) is a polynomial, u(t) belongs to S ′(R) and v(x) belongs to S ′(Rn),
then u(t− f(x))v(x) belongs to S ′(Rn+1).

Proof. For ϕ(t, x) ∈ C∞
0 (R× U), set

〈u(t− f(x))v(x), ϕ(t, x)〉 = 〈u(t)v(x), ϕ(t+ f(x), x)〉.
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Since ϕ(t + f(x), x) belongs to C∞
0 (R × U), this defines an element of

D′(R× U). For ϕ ∈ C∞
0 (R× U), we have〈

∂

∂t
(u(t− f(x))v(x)), ϕ(t, x)

〉
= −

〈
u(t− f(x))v(x),

∂ϕ

∂t
(t, x)

〉

= −
〈
u(t)v(x),

∂ϕ

∂t
(t+ f(x), x)

〉
= 〈u′(t)v(x), ϕ(t+ f(x), x)〉 = 〈u′(t− f(x))v(x), ϕ(t, x)〉

and〈
∂

∂xi
(u(t− f(x))v(x)), ϕ(t, x)

〉
= −

〈
u(t− f(x))v(x),

∂ϕ

∂xi
(t, x)

〉

= −
〈
u(t)v(x),

∂ϕ

∂xi
(t+ f(x), x)

〉

= −
〈
u(t)v(x),

∂

∂xi
ϕ(t+ f(x), x)− ∂f

∂xi

∂ϕ

∂t
(t+ f(x), x)

〉

= 〈u(t)∂xiv(x), ϕ(t+ f(x), x)〉 −
〈
u′(t)

∂f

∂xi
v(x), ϕ(t+ f(x), x)

〉

= 〈u(t− f(x))∂xiv(x), ϕ(t, x)〉 −
〈
u′(t− f(x))

∂f

∂xi
v(x), ϕ(t, x)

〉
.

If ϕ(t, x) belongs to S(Rn+1) and f(x) is a polynomial, then ϕ(t+f(x), x)
also belongs to S(Rn+1), as is seen by the inequality t2 ≤ 2((t+f(x))2+
f(x)2). This implies the last assertion. Q.E.D.

Example 4.11. Let f(x) be a polynomial in x = (x1, . . . , xn) with
real coefficients and v(x) be an element of S ′(Rn). Then Y (t−f(x))v(x)
and δ(k)(t− f(x))v(x) with a non-negative integer k are well-defined as
elements of S ′(Rn+1) and we have

∂

∂t
(Y (t− f(x))v(x)) = δ(t− f(x))v(x),

∂

∂t
(δ(k)(t− f(x))v(x)) = δ(k+1)(t− f(x))v(x).

Exercise 19. Let u be a distribution on Rn satisfying ∂1u = 0.

(1) Show that 〈u, ϕ〉 = 0 if ϕ ∈ C∞
0 (Rn) satisfies∫ ∞

−∞
ϕ(t, x2, . . . , xn) dt = 0.

(2) Show that there exists a distribution v on Rn−1 such that
u = 1⊗ v.
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4.3. Integrals of distributions

Let us consider distributions in variables (x, y) with x = (x1, . . . , xn)
and y = (y1, . . . , yd). We regard x as the integration variables and y
as parameters. Let � : Rn+d 
 (x, y) �→ y ∈ Rd be the projection.
Let U be an open set of Rd and let u be a distribution defined on
�−1(U) = Rn × U .

We would like to define the integral∫
Rn

u(x, y) dx =

∫
Rn

u(x, y) dx1 · · · dxn

along the fibers of � (i.e., with respect to x) as a distribution on U .
However, we need some ‘tameness’ of u with respect to x for this in-
tegral to be well-defined. Let us introduce the following two sufficient
conditions:

(1) Let u be a distribution on �−1(U) such that � : suppu → Rd is
proper, i.e., for any compact set K of U , �−1(K) ∩ suppu is compact.

y

x

�−1(U)

supp u

U

Fig. 1. An example of the support of u ∈ E ′D′(Rx × U)

Let us denote by E ′D′(Rn × U) the set of such distributions, which
constitutes a left Dn+d-submodule of D′(Rn × U). The integral of u ∈
E ′D′(Rn × U) with respect to x is defined by〈∫

Rn

u(x, y) dx, ϕ(y)

〉
= 〈u(x, y), 1(x)ϕ(y)〉 (∀ϕ(y) ∈ C∞

0 (U)),

where 1(x) denotes the constant function with value 1. This integral
belongs to D′(U). More precisely, the pairing above is defined as follows:

Choose χ(x, y) ∈ C∞(�−1(U)) such that χ(x, y) = 1 on an open
set W of �−1(U) which contains suppu and that � : suppχ → U is
proper, by using a partition of unity. Then we define

〈u(x, y), 1(x)ϕ(y)〉 := 〈u(x, y), χ(x, y)ϕ(y)〉.



Algorithms for D-modules with applications to statistics 299

The right-hand side does not depend on such χ(x, y) since supp (1−χ)∩
suppu = ∅.

(2) Let SS ′(Rn × Rd) be the subspace of S ′(Rn+d) consisting of
distributions of the form
(11)

u(x, y) =
m∑
j=1

uj(x)vj(x, y) (m ∈ N, uj ∈ S(Rn), vj ∈ S ′(Rn+d)).

We also denote SS ′(Rn
x×Rd

y) to clarify the variables. Then SS ′(Rn×Rd)

is a leftDn+d-submodule of S ′(Rn+d). The integral of u(x, y) is naturally
defined as an element of S′(Rd) by the pairing〈∫

Rn

u(x, y) dx, ϕ(y)

〉
=

m∑
j=1

〈vj(x, y), uj(x)ϕ(y)〉 (∀ϕ ∈ S(Rd)).

This integral does not depend on the choice of expression (11). In fact,
assume u(x, y) = 0 in (11) and take χ(x) ∈ C∞

0 (Rn) such that χ(x) = 1
if |x| ≤ 1. Then for an arbitrary constant r > 0, we have an equality

0 =

〈
m∑
j=1

uj(x)vj(x, y), χ
(x
r

)
ϕ(y)

〉
=

m∑
j=1

〈
vj(x, y), χ

(x
r

)
uj(x)ϕ(y)

〉

for any ϕ ∈ S(Rd). Since χ(x/r)uj(x)ϕ(y) converges to uj(x)ϕ(y) in
S(Rn+d) as r → ∞, we get

m∑
j=1

〈vj(x, y), uj(x)ϕ(y)〉 = 0.

Proposition 4.12 (differentiation under the integral sign). Let
u(x, y) belong to E ′D′(Rn × U) with an open subset U of Rd, or else
to SS ′(Rn × Rd). Then

P (y, ∂y)

∫
Rn

u(x, y) dx =

∫
Rn

P (y, ∂y)u(x, y) dx

holds for any P = P (y, ∂y) ∈ Dd.
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Proof. Let u(x, y) =
∑m

j=1 uj(x)vj(x, y) with uj ∈ S(Rn) and vj ∈
S ′(Rn+d). Then for any ϕ ∈ S(Rd), we have〈

∂yi

∫
Rn

u(x, y) dx, ϕ(y)

〉
= −

〈∫
Rn

u(x, y) dx, ∂yiϕ(y)

〉

= −
m∑
j=1

〈vj(x, y), uj(x)∂yiϕ(y)〉 = −
m∑
j=1

〈vj(x, y), ∂yi(uj(x)ϕ(y))〉

=
m∑
j=1

〈∂yivj(x, y), uj(x)ϕ(y)〉 =
〈∫

Rn

∂yiu(x, y) dx, ϕ(y)

〉

and 〈
yi

∫
Rn

u(x, y) dx, ϕ(y)

〉
=

m∑
j=1

〈vj(x, y), yiuj(x)ϕ(y)〉

=
m∑
j=1

〈yivj(x, y), uj(x)ϕ(y)〉 =
〈∫

Rn

yiu(x, y) dx, ϕ(y)

〉
.

The case u ∈ E ′D′(Rn×U) can be proved in the same manner. Q.E.D.

Example 4.13. Let δ(t) be the univariate delta function. We have∫
R
δ(t) dt = 1 since ∫

R

δ(t) = 〈δ(t), 1(t)〉 = 1.

More generally, let f(t, x) = f(t, x1, . . . , xn) be a C∞ function on R×U
with an open set U of Rn. Since supp f(t, x)δ(t) ⊂ {(t, x) | t = 0},
f(t, x)δ(t) belongs to E ′D′(R × U). Note that f(t, x)δ(t) = f(0, x)δ(t)
holds since there exists g ∈ C∞(R × U) such that f(t, x) − f(0, x) =
tg(t, x). Hence we get∫

R

f(t, x)δ(t) dt =

∫
R

f(0, x)δ(t) dt = f(0, x)

∫
R

δ(t) dt = f(0, x).

Example 4.14. Set x = (x1, . . . , xn) and let a be an arbitrary posi-
tive constant. Let f(x) be a real polynomial in x. Then exp(−a|x|2)Y (t−
f(x)) belongs to SS ′(Rn

x × Rt). Hence the integral

F (t) =

∫
Rn

exp(−a|x|2)Y (t− f(x)) dx

is well-defined as an element of S ′(Rt). Up to a constant multiple,
F (t) is the cumulative distribution function of f(x) with x being the
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random vector with an n-dimensional normal (Gaussian) distribution.
By Proposition 4.12 the derivative F ′(t) is given by the integral

F ′(t) =
∫
Rn

exp(−a|x|2)δ(t− f(x)) dx

as an element of S ′(R).

Example 4.15. Let f(x) be a real polynomial in x = (x1, . . . , xn),
and a1, . . . , an, b1, . . . , bn be positive real numbers. Let us consider the
integral

F (t) =

∫
Rn

e−b1x1−···−bnxnY (t− f(x))(x1)
a1−1
+ · · · (xn)

an−1
+ dx,

which can be regarded, up to a constant multiple depending on ai, bi, as
the cumulative distribution function of f(x) with x being the random
vector with a multi-dimensional gamma distribution. Let χ(t) be a C∞

function on R such that χ(t) = 1 for t ≥ −1 and χ(t) = 0 for t ≤ −2.
Then we have

t−1−2

χ(t)

Fig. 2. The graph of χ(t) in Example 4.15

e−b1x1−···−bnxn(x1)
a1−1
+ · · · (xn)

an−1
+

= e−b1x1−···−bnxnχ(x1) · · ·χ(xn)(x1)
a1−1
+ · · · (xn)

an−1
+

and e−b1x1−···−bnxnχ(x1) · · ·χ(xn) belongs to S(Rn
x). Hence the inte-

grand belongs to SS ′(Rn
x ×Rt) and consequently F (t) is well-defined as

an element of S ′(R). Its derivative is given by

F ′(t) =
∫
Rn

e−b1x1−···−bnxnδ(t− f(x))(x1)
a1−1
+ · · · (xn)

an−1
+ dx.

Example 4.16. Set x = (x1, . . . , xn) and let a1, . . . , an, b1, . . . , bn
be positive real numbers. For a real polynomial f(x), set

F (t)

=

∫
Rn

(x1)
a1−1
+ · · · (xn)

an−1
+ (1−x1)

b1−1
+ · · · (1−xn)

bn−1
+ Y (t−f(x)) dx.
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The integrand is integrable and belongs to E ′D′(Rn
x ×Rt) since its sup-

port is contained in the n-cube [0, 1] × · · · × [0, 1]. Hence F (t) and its
derivatives are well-defined as elements of D′(R). (In fact, F (t) belongs
to S ′(R) since the integrand belongs also to SS ′(Rn

x × Rt) multiplied
by a suitable cut-off function.) Up to a constant multiple, F (t) is the
cumulative distribution function of f(x) with x regarded as the random
vector with a multivariate beta distribution.

The following proposition will play a crucial role in the integration
algorithm for holonomic distributions, which will be introduced in the
following sections.

Proposition 4.17. Let u(x, y) belong to E ′D′(Rn×U) with an open
subset U of Rd, or else to SS ′(Rn × Rd). Then one has∫

Rn

∂xiu(x, y) dx = 0 (i = 1, . . . , n).

Proof. First, let us assume that u(x, y) belongs to E ′D′(Rn × U).
Let χ(x, y) be an element of C∞(Rn ×U) which takes the value 1 on an
open subset of Rn × U containing suppu such that the projection map
suppχ → U is proper. Then we have, by the definition of the integral,〈∫

Rn

∂xiu(x, y) dx, ϕ(y)

〉
= 〈∂xiu(x, y), χ(x, y)ϕ(y)〉
= −〈u(x, y), ∂xiχ(x, y)ϕ(y)〉 = 0

for any ϕ ∈ C∞
0 (U) since ∂xiχ(x, y) vanishes on an open set containing

suppu.
Next, let us assume that u(x, y) belongs to SS ′(Rn × Rd). We

may assume, without loss of generality, that u(x, y) = v(x)w(x, y) with
v ∈ S(Rn) and w ∈ S ′(Rn+d). Then it follows from the definition of the
integral that〈∫

Rn

∂xi(v(x)w(x, y)) dx, ϕ(y)

〉

=

〈∫
Rn

(∂xiv(x))w(x, y) dx, ϕ(y)

〉
+

〈∫
Rn

v(x)(∂xiw(x, y)) dx, ϕ(y)

〉
= 〈w(x, y), ∂xiv(x)ϕ(y)〉+ 〈∂xiw(x, y), v(x)ϕ(y)〉
= 〈w(x, y), ∂xiv(x)ϕ(y)〉 − 〈w(x, y), ∂xi(v(x)ϕ(y))〉 = 0

holds for any ϕ ∈ S(Rn). Q.E.D.
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4.4. Holonomic distributions

We assume K = C. A distribution u(x) ∈ D(U), with an open
set U of Rn, is called holonomic if there exist a finite set of differential
operators P1, . . . , Pm which annihilate u, i.e., Piu = 0 holds in D′(U) for
i = 1, . . . ,m such that the left Dn-module Dn/(DnP1 + · · ·+DnPm) is
holonomic. In other words, u(x) is holonomic if and only if Dn/AnnDnu
is a holonomic Dn-module, where

AnnDnu = {P ∈ Dn | Pu = 0}
is the annihilator (ideal) of u.

For example, the univariate delta function δ(x) and the Heaviside
function Y (x) are holonomic since xδ(x) = x∂xY (x) = 0.

Proposition 4.18. If elements u and v of D′(U) are holonomic,
then C1u + C2v and Pu are also holonomic for any C1, C2 ∈ C and
P ∈ Dn.

Proof. Set I = AnnDnu and J = AnnDnv. Then Dn/I and Dn/J
are holonomic. Since the annihilator of C1u+C2v contains I∩J , we have
only to show that Dn/(I ∩J) is holonomic. The left Dn-homomorphism
of Dn to (Dn)

2 which sends Q ∈ Dn to (Q,−Q) induces an injective
homomorphism

Dn/(I ∩ J) −→ (Dn/I)⊕ (Dn/J).

This implies that Dn/(I ∩ J) is holonomic since (Dn/I) ⊕ (Dn/J) is
holonomic.

The left ideal I : P = {Q ∈ Dn | QP ∈ I} coincides with AnnDnPu.
The left Dn-endomorphism of Dn which sends Q ∈ Dn to QP induces
an injective homomorphism Dn/(I : P ) → Dn/I. Hence Dn/(I : P ) is
holonomic. Q.E.D.

Definition 4.19. Let f(x) be a real polynomial in x = (x1, . . . , xn).
Set ∂x = (∂1, . . . , ∂n) with ∂i = ∂/∂xi. Let t be a single variable and
set ∂t = ∂/∂t. For P = P (x, ∂x) ∈ Dn, define τ(P, f) ∈ Dn+1 by

τ(P, f) = P (x, ∂1 + f1∂t, . . . , ∂n + fn∂t)

with fi = ∂f/∂xi. This substitution is well-defined since x1, . . . , xn and
∂1 + f1∂t, . . . , ∂n + fn∂t satisfy the same commutation relations as x1,
. . . , xn and ∂1, . . . , ∂n.

Proposition 4.20. Let f(x) be a real polynomial in x = (x1, . . . , xn)
and suppose that v ∈ D′(U) with an open set U of Rn is holonomic. Then
Y (t − f(x))v(x) is holonomic. More concretely, let I be a left ideal of
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Dn which is contained in AnnDnv such that Dn/I is holonomic. Let J
be the left ideal of Dn+1 which is generated by {τ(P, f) | P ∈ I}. Then
left ideals

J0 := J +Dn+1(t− f(x))∂t, J1 := J +Dn+1(t− f(x))

of Dn+1 annihilate Y (t− f(x))v(x) and δ(t− f(x))v(x) respectively and
both Dn+1/J0 and Dn+1/J1 are holonomic.

Proof. We have

(∂i + fi∂t)(Y (t− f(x))v(x)) = Y (t− f(x))∂iv(x),

(∂i + fi∂t)(δ(t− f(x))v(x)) = δ(t− f(x))∂iv(x)

for i = 1, . . . , n by Proposition 4.10. Hence

τ(P, f)(Y (t− f(x))v(x)) = Y (t− f(x))Pv(x),

τ(P, f)(δ(t− f(x))v(x)) = δ(t− f(x))Pv(x)

hold for any P ∈ Dn. It follows that J0 and J1 annihilate Y (t−f(x))v(x)
and δ(t− f(x))v(x) respectively.

Let us show that Dn+1/J0 is holonomic. Since Dn/I is holonomic,
its characteristic variety Char(Dn/I) is an n-dimensional algebraic set
of C2n. By the definition, we have

Char(Dn+1/J0)

⊂
{
(x, t, ξ, τ) ∈ C2(n+1) | σ(P )(x, ξ1 + f1τ, . . . , ξn + fnτ) = 0

(∀P ∈ I), (t− f(x))τ = 0
}

=
{
(x, t, ξ, τ) | (x, ξ1 + f1τ, . . . , ξn + fnτ) ∈ Char(Dn/I), t = f(x)

}
∪
{
(x, t, ξ, τ) | (x, ξ1, . . . , ξn) ∈ Char(Dn/I), τ = 0

}
.

Since the last two sets are in one-to-one correspondence with the set
Char(Dn/I) × C, the dimension of Char(Dn+1/J) is n + 1, which im-
plies that Dn+1/J0 is a holonomic module. Similarly, Dn+1/J1 is also
holonomic. Q.E.D.

Example 4.21. Let f(x) be a real polynomial in x = (x1, . . . , xn)
and a1, . . . , an be positive real numbers. Set

u(x, t) = exp(−a1x
2
1 − · · · − anx

2
n)δ(t− f(x)).

Then u = u(x, t) satisfies a holonomic system

(t− f(x))u = (∂1 + f1∂t + 2a1x1)u = · · · = (∂n + fn∂t + 2anxn)u = 0.
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Lemma 4.22. Let a be a positive real number. Then the univariate
locally integrable function ta−1

+ in t satisfies (t∂t − a+ 1)ta−1
+ in S ′(R).

Proof. Let ϕ(t) belong to S(R). Then we have

〈t∂tta−1
+ , ϕ(t)〉 = −〈ta−1

+ , ∂t(tϕ(t))〉 = −〈ta−1
+ , ϕ(t)〉 − 〈ta−1

+ , tϕ′(t)〉

= −
∫ ∞

0

ta−1ϕ(t) dt−
∫ ∞

0

taϕ′(t) dt

= −
∫ ∞

0

ta−1ϕ(t) dt+ a

∫ ∞

0

ta−1ϕ(t) dt

= 〈(a− 1)ta−1
+ , ϕ(t)〉

by integration by parts. Q.E.D.

Example 4.23. Let f(x) be a real polynomial in x = (x1, . . . , xn)
and a1, . . . , an, b1, . . . , bn be positive real numbers. Set

u(x, t) = exp(−b1x1 − · · · − bnxn)δ(t− f(x))(x1)
a1−1
+ · · · (xn)

an−1
+ .

Then u = u(x, t) satisfies a holonomic system

(t− f(x))u = (xi(∂i + fi∂t + bi)− ai + 1)u = 0 (i = 1, . . . , n).

Exercise 20. Set n = 1, x = x1, ∂ = ∂1 and M := D1/D1x∂.
Show that HomD1(M,D′(R)) is two dimensional and spanned by Y (x)
and Y (−x).

Exercise 21. Let λ1, . . . , λn be complex numbers such that
Re λi > −1 for i = 1, . . . , n. Set f(x) = (x1)

λ1
+ · · · (xn)

λn
+ .

(1) Show that f(x) is locally integrable on Rn and belongs to
S ′(Rn).

(2) Show that f(x) satisfies linear differential equations

(x1∂1 − λ1)f(x) = · · · = (xn∂n − λn)f(x) = 0.

(3) Find the characteristic variety and the singular locus of the left
Dn-module

M := Dn/(Dn(x1∂1 − λ1) + · · ·+Dn(xn∂n − λn)).

4.5. Distributions with smooth parameters

Let Ω be an open set of Rp. Introducing parameters a = (a1, . . . , ap),
let us define the space ES(Ω×Rn) of rapidly decreasing functions with
smooth parameters as the set of ϕ(a, x) ∈ C∞(Ω× Rn

x) such that

sup
K×Rn

|xα∂β
x∂

γ
aϕ(a, x)| < ∞
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for any α, β ∈ Nn, γ ∈ Np, and any compact subset K of Ω. It is easy
to see that ES(Ω × Rn) is a left Dp+n-submodule of C∞(Ω × Rn). For

example, e−ax2

belongs to ES(Ω× R) with Ω = {a ∈ R | a > 0}.
Let ESS ′(Ω × Rn × Rd) be the set of u ∈ D′(Ω × Rn

x × Rd
y) which

can be written as

u(a, x, y) =
m∑
j=1

uj(a, x)vj(x, y)

with uj ∈ ES(Ω×Rn), vj ∈ S ′(Rn×Rd), and m ∈ N. Then the integral∫
Rn u(a, x, y) dx of u with respect to x is defined by〈∫

Rn

u(a, x, y) dx, ϕ(a, y)

〉
=

m∑
j=1

∫
Ω

〈vj(x, y), uj(a, x)ϕ(a, y)〉(x,y) da

as an element of D′(Ω×Rd) for ϕ ∈ C∞
0 (Ω×Rd), where 〈, 〉(x,y) denotes

the pairing of D′(Rn
x ×Rd

y) and C∞
0 (Rn

x ×Rd
y) with a fixed, which is C∞

with respect to a. The well-definedness of the integal can be proved by
using a suitable cut-off function in the same way as in the case without

parameters. For example, e−ax2

δ(y−x3) belongs to ESS ′(Ω×Rx×Ry)
with Ω = {a ∈ R | a > 0}.

We can also consider the case d = 0, which we denote ESS ′(Ω×Rn).

For example, eax−x3

Y (x) = eax−x3

χ(x)Y (x) belongs to ESS ′(Ra ×Rx),
where χ(x) is the same cut-off function as in Example 4.15. If u(a, x)
belongs to ESS ′(Ω× Rn), then

∫
Rn u(a, x) dx belongs to C∞(Ω).

Proposition 4.24. Let Ω be an open set of Rp
a and let u belong to

ESS ′(Ω× Rn
x × Rd

y).

(1) P
∫
Rn u(a, x, y) dx =

∫
Rn Pu(a, x, y) dx holds for any differen-

tial operator P ∈ Dp+d in the variables (a, y).
(2)

∫
Rn ∂xiu(a, x, y) dx = 0 holds for any i = 1, . . . , n.

The proof is similar to the case without parameters.

Example 4.25. Set x = (x1, . . . , xn) and let a > 0 and b =
(b1, . . . , bn) ∈ Rn. Let f(x) be a real polynomial in x and set

u(x, t, a, b) =
( a

π

)n
2

exp(−a(x− b)2)Y (t− f(x))

with (x− b)2 =
∑n

j=1(xj − bj)
2. Then u(x, t, a, b) belongs to ESS ′(Ω×

Rn
x × Rt) with Ω = {(a, b) ∈ R × Rn | a > 0}. Moreover, u(x, t, a, b)
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satisfies a holonomic system in the whole variables (x, t, a, b). Hence the
integral

F (t, a, b) =

∫
Rn

u(x, t, a, b) dx

is well-defined and holonomic as an element of D′(Rt × Ω).

Example 4.26. Set x = (x1, . . . , xn) and let aij (1 ≤ i, j ≤ n) and
bj (1 ≤ j ≤ n) be real parameters such that aij = aji. Set A = (aij)
and b = (b1, . . . , bn). Let f(x) be a real polynomial in x. Then

u(x, t, A, b) = exp

⎛
⎝ n∑

i,j=1

aijxixj +
n∑

i=1

bixi

⎞
⎠Y (t− f(x))

belongs to ESS ′(Ω×Rn
x ×Rt), where Ω is the set of (A, b) with b ∈ Rn

and a negative definite n by n symmetric matrix A = (aij), i.e.,

(−1)k det

⎛
⎜⎝a11 · · · a1k

...
...

ak1 · · · akk

⎞
⎟⎠ > 0 (1 ≤ k ≤ n).

The integral

F (t, A, b) =

∫
Rn

u(x, t, A, b) dx

is well-defined and holonomic as an element of D′(Rt×Ω) since the inte-
grand u(x, t, A, b) satisfies a holonomic system including the parameters.

§5. D-module theoretic integration algorithm

We first recall the notion of integration of D-modules, which is
purely algebraic. The most crucial fact is that the integration preserves
holonomicity. Then we recall an algorithm for precisely computing the
D-module theoretic integration, which was first introduced in [26] and
[27]. See also Chapter 5 of [29].

5.1. Integration as an operation on D-modules

Set x = (x1, . . . , xn) and y = (y1, . . . , yd). In this section we set
X = Kn+d and Y = Kd to simplify the notation. Let � : X 
 (x, y) �−→
y ∈ Y be the projection. We denote by DX = Dn+d the ring of dif-
ferential operators in the variables (x, y), and by DY = Dd the ring of
differential operators in the variables y.

The module

DY←X := DX/(∂x1DX + · · ·+ ∂xnDX)
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has a structure of (DY , DX)-bimodule. The integral of a left DX -module
M along the fibers of �, or the direct image by � is defined to be

�∗M := DY←X ⊗DX M = M/(∂x1M + · · ·+ ∂xnM).

This is a left DY -module since any element of DY commutes with ∂xj .
For an element u of M , let [u] be its residue class in �∗M . If M is
generated by u1, . . . , ur over DX , then �∗M is generated by the set
{xα[uj ] | 1 ≤ j ≤ r, α ∈ Nn} over DY .

Now assume K = C and let ϕ be a DX -homomorphism from M to
E ′D′(Rn × U) with an open set U ⊂ Rd, or else to SS ′(Rn × Rd). Let
us define a C-linear map ϕ′ from M to D′(U) or to S ′(Rd) by

ϕ′(u) =
∫
Rn

ϕ(u) dx (∀u ∈ M),

which is DY -linear by Proposition 4.12. Moreover, Proposition 4.17
implies

∂x1M + · · ·+ ∂xnM ⊂ Kerϕ′.

Hence ϕ′ induces a DY -homomorphism

�∗(ϕ) : �∗M −→ D′(U) or �∗(ϕ) : �∗M −→ S ′(Rd).

The generators xα[uj ] of �∗M with 1 ≤ j ≤ r and α ∈ Nn are sent by
�∗(ϕ) to

�∗(ϕ)(xα[uj ]) =

∫
Rn

xαϕ(uj) dx.

In conclusion, we have defined C-linear maps

�∗ : HomDX (M, E ′D′(Rn × U)) −→ HomDY (�∗M,D′(U)),

�∗ : HomDX (M,SS ′(Rn × Rd)) −→ HomDY (�∗M,S ′(Rd)).

Theorem 5.1 (Bernstein, Kashiwara). If M is a holonomic DX-
module, then �∗M is a holonomic DY -module.

Proof. We follow the argument in Chapter 1 of [4]. By induction
on n, we have only to prove the holonomicity of �∗M in case n = 1.
We may assume M �= 0. First assume ∂x1 : M → M is injective. Let
{Fk(M)} be a good (1;1)-filtration on M . There exists a polynomial
H(k) of degree d+ 1 such that dimK Fk(M) = H(k) for any k � 0. Set

Fk(�∗M) := Fk(M)/(Fk(M) ∩ ∂x1M) (k ∈ Z).
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Since Fk(M)∩∂x1M contains ∂x1Fk−1(M) and ∂x1 : M → M is injective,
we have

dimK Fk(�∗M) = dimK Fk(M)− dimK(Fk(M) ∩ ∂x1M)

≤ dimK Fk(M)− dimK Fk−1(M) = H(k)−H(k − 1)

for sufficiently large k.
Let N be a finitely generated nonzero left DY -submodule of �∗M .

Then Fk(N) := Fk(�∗M)∩N constitute a (1,1)-filtration on N . There
exists a good (1,1)-filtration {F ′

k(N)} on N since it is finitely generated.
Let H ′(k) be the associated Hilbert polynomial. Then by Lemma 2.10
there exists k0 ∈ N such that

H ′(k) = dimK F ′
k(N) ≤ dimK Fk+k0(N) ≤ H(k + k0)−H(k + k0 − 1)

holds if k is sufficiently large. Let cdk
d be the leading term of H(k) −

H(k − 1). Then the inequality above implies that N is holonomic with
multN ≤ d!cd. Hence we are done if �∗M is finitely generated over DY .

Otherwise, there exist finitely generated nonzero DY -submodules
Nj (j ∈ N) of �∗M such that Nj � Nj+1. This implies that Nj are
holonomic and multNj < multNj+1 holds in view of Proposition 2.19.
This contradicts the inequality multNj ≤ d!cd. Thus �∗M must be
finitely generated over DY and hence holonomic.

In general case, set

N = {u ∈ M | ∂ν
x1
u = 0 for some ν ∈ N}.

Then N is a left DX -module since ∂ν
x1
u = 0 implies

∂ν+1
x1

(x1u) = x1∂
ν+1
x1

u+ (ν + 1)∂ν
x1
u = 0.

Let us show that ∂x1 : N → N is surjective. Suppose u ∈ N satisfies
∂x1u = 0. Then we have ∂x1x1u = u. Hence u belongs to ∂x1M . Now
assume that for any v ∈ N , v belongs to ∂x1M if ∂ν

x1
v = 0. Suppose

u ∈ N satisfies ∂ν+1
x1

u = 0. Then we have

∂ν
x1
(∂x1x1u− (ν + 1)u) = x1∂

ν+1
x1

u = 0.

By the induction hypothesis, there exists v ∈ N such that

∂x1x1u− (ν + 1)u = ∂x1v.

This implies that u belongs to ∂x1N .
From the exact sequence

0 −→ N −→ M −→ M/N −→ 0,
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we get an exact sequence

�∗N −→ �∗M −→ �∗(M/N) −→ 0

of left DY -modules. Here �∗N = 0 holds since N = ∂x1N . Hence �∗M
is isomorphic to�∗(M/N), which is holonomic since ∂x1 : M/N → M/N
is injective. Q.E.D.

In particular, if a holonomic DX -module M is generated by a single
element u, then �∗M is generated by a finite number of residue classes
xα[u] with α ∈ Nn. In general, let M be a left DX -module generated by
u. Setting I = AnnDXu, we have an isomorphism

�∗M ∼= DX/(∂x1DX + · · ·+ ∂xnDX + I).

From a computational viewpoint, we are mainly interested in the sub-
module DY [u] of �∗M . The isomorphism above induces

DY [u] ∼= DY /(DY ∩ (∂x1DX + · · ·+ ∂xnDX + I)).

The map �∗ and the inclusion DY [u] → π∗M induces C-linear maps

�∗ : HomDX (M, E ′D′(Rn × U)) −→ HomDY (DY [u],D′(U)),

�∗ : HomDX (M,SS ′(Rn × Rd)) −→ HomDY (DY [u],S ′(Rd)).

This means that for a solution in E ′D′(Rn × U) or in SS ′(Rn × Rd) of
a system M of differential equations, its integral with respect to x is a
solution of DY [u].

Example 5.2. The integral of the holonomic Dn+d-module K[x, y]
along the fibers of the projection � : Kn+d 
 (x, y) �→ y ∈ Kd is {0} as
a Dd-module because ∂xj : K[x, y] → K[x, y] is surjective for 1 ≤ j ≤ n.

Example 5.3. Set

M = Dn+d/(Dn+dx1 + · · ·+Dn+dxn +Dn+dy1 + · · ·+Dn+dyd)

and � : Kn+d 
 (x, y) �→ y ∈ Kd be the projection. Then there exists a
natural isomorphism

�∗M ∼= Dd/(Ddy1 + · · ·+Ddyd).

In fact, by the definition we can write �∗M = Dn+d/N with

N := Dn+dx1 + · · ·+Dn+dxn +Dn+dy1 + · · ·+Dn+dyd

+ ∂x1Dn+d + · · ·+ ∂xnDn+d.



Algorithms for D-modules with applications to statistics 311

The ring extension Dd → Dn+d induces a homomorphism

ϕ : Dd/(Ddy1 + · · ·+Ddyd) −→ Dn+d/N

of left Dd-modules. Every element of Dd/(Ddy1+ · · ·+Ddyd) is uniquely
written as a linear combination of the residue classes [∂γ

y ] with γ ∈ Nd.
It follows that ϕ is injective. Every element of Dn+d is uniquely written
as a linear combination of ∂α

x x
β∂γ

y y
δ with α, β ∈ Nn and γ, δ ∈ Nd.

It belongs to N unless α = β = 0 and δ = 0. This implies that ϕ is
surjective.

Exercise 22. Set n = d = 1 and write x = x1, ∂x = ∂x1 , y = y1,
∂y = ∂y1 . Compute the integral of

M := D2/(D2∂y +D2x
2)

along the fibers of the projection � : K2 
 (x, y) �→ y ∈ K. Note
that �∗M is generated by [1] and [x]. Deduce a presentation of the
submodule D1[u] of �∗M .

Exercise 23. Let (a, x, y) = (a1, . . . , ap, x1, . . . , xn, y1, . . . , yd) ∈
Ω × Rn × Rd with an open set Ω of Rp. Let Dp+n+d and Dp+d be the
ring of differential operators in the variables (a, x, y) and that in the
variables (a, y) respectively. Let � : Cp+n+d 
 (a, x, y) �→ (a, y) ∈ Cp+d

be the projection. Let M be a finitely generated left Dp+n+d-module.
Construct a C-linear map

�∗ : HomDp+n+d
(M, ESS ′(Ω×Rn×Rd)) → HomDp+d

(�∗M, D′(Ω×Rd))

in terms of the integration.

5.2. An algorithm for integration

In what follows, we assume that a left module M over DX = Dn+d

is generated by a single element u for the sake of simplicity; it is easy
to extend the following arguments so as to work in the case where M
is generated by several elements and as well to yield the torsion groups
associated with the integration, which are nothing but the relative de
Rham cohomology groups of M along the fibers of � (see [26]).

Now let us fix the weight vector

w := (1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
d

;−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
d

) ∈ Z2(n+d)

for Dn+d and set

θ := −(∂x1x1 + · · ·+ ∂xnxn) = −x1∂x1 − · · · − xn∂xn − n.
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That is, we define the weights of xi and of ∂xi to be 1 and−1 respectively,
and the weights of yj and ∂yj to be 0. In fact, we could work with a
more general weight vector

w = (w1, . . . , wn, 0, . . . , 0;−w1, . . . ,−wn, 0, . . . , 0)

with positive integers w1, . . . , wn as in Chapter 5 of [29] by modifying
the following arguments accordingly. Set

Fk(M) := Fw
k (DX)u, grk(M) := Fk(M)/Fk−1(M) (k ∈ Z).

Then {Fk(M)} is a good w-filtration on M .

Theorem 5.4. If M is a holonomic DX-module, then there exists
a nonzero polynomial b(s) ∈ K[s] in s such that b(θ)gr0(M) = 0. Such
b(s) of minimum degree is called the b-function of M with respect to
the weight vector w and the filtration {Fk(M)}, or the b-function for
integration along the fibers of �. Moreover, b(θ + k)grk(M) = 0 holds
for any k ∈ Z.

Proof. The graded module gr(M) =
⊕

k∈Z
grk(M) is also a holo-

nomic module over grw(Dn+d) ∼= Dn+d by Theorem 2.2.1 of [29]. From
(θ + 1)xj = xjθ and (θ − 1)∂xj = ∂xjθ it follows that (θ + k)P = Pθ
holds if P is homogeneous of order k with respect to w. Hence the
sum of θ + k : grk(M) → grk(M) for each k ∈ Z defines an endomor-
phism of the left grw(Dn+d)-module gr(M). There exists the minimal
polynomial b(s) ∈ K[s] of this endomorphism since the space of the en-
domorphisms of a holonomic D-module is finite dimensional as was first
shown by Kashiwara. A direct statement of this fact is found e.g., as
Theorem 4.45 of [15]; this also follows from Theorem 6.6 in Chapter 1
of [4] combined with Lemma 7.14 and Theorem 7.15 in Chapter 2 of
[4]. Q.E.D.

Note that a non-holonomic Dn+d-module can have a b-function in
the above sense. The following arguments only rely on the existence of
the b-function hence applies also to such non-holonomic modules.

Let us begin with an algorithm for computing the intersection of
a left ideal I of Dn+d with the subring Dd[x1∂x1 , . . . , xn∂xn ] by using
multi-homogenization (Proposition 4.3 of [27]). Let us set θj = xj∂xj

for 1 ≤ j ≤ n.

Algorithm 5.5. Input: A set G0 of generators of a left ideal I of
Dn+d.
Output: A set G of generators of the left ideal I ∩Dd[θ1, . . . , θn] of
Dd[θ1, . . . , θn].
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(1) Introducing new variables uj , vj for j = 1, . . . , n, let h(P ) ∈
Dn+d[u] be the multi-homogenization of P ∈ Dn+d; i.e., for
each j = 1, . . . , n, h(P ) is homogeneous with respect to the
weight in which xj and uj are of order −1, ∂xj is of order 1,
while xi, ∂xi for i �= j and yi, ∂yi for all i are of order zero.

(2) Let J be the left ideal of Dn+d[u, v] generated by the set

{h(P ) | P ∈ G0} ∪ {1− ujvj | j = 1, . . . , n}.
(3) Compute a set G1 of generators of the ideal J ∩Dn+d by elim-

inating u, v via an appropriate Gröbner basis.
(4) Since each element P of G1 is multi-homogeneous and free of

u, v, there exist unique ν1, . . . , νn ∈ Z and Q(θ1, . . . , θn) ∈
Dd[θ1, . . . , θn] such that

S1,ν1 · · ·Sn,νnP = Q(θ1, . . . , θn),

where we set Sj,νj = ∂
νj
xj if νj ≥ 0 and Sj,νj = x

−νj

j otherwise.

Let G be the set of such Q(θ1, . . . , θn) for each P ∈ G1.

See the proof of Proposition 4.3 of [27] for the correctness of this
algorithm. The following algorithm was also presented in [27] (Algorithm
4.6):

Algorithm 5.6 (b(s) with respect to w). Input: I := AnnDn+d
u.

Output: The b-function b(s) of M = Dn+du with respect to w if it
exists. ‘None’ if it does not.

(1) Compute a Gröbner basis G = {P1, . . . , Pr} of I with respect
to a monomial order which is adapted to the weight vector w
defined above.

(2) Set σw(G) = {σw(P1), . . . , σ
w(Pr)} and let grw(I) be the left

ideal of Dn+d generated by σw(G).
(3) Compute a set of generators of grw(I) ∩Dd[θ1, . . . , θn] by Al-

gorithm 5.5.
(4) Compute the intersection

grw(I) ∩K[θ1, . . . , θn] = (grw(I) ∩Dd[θ1, . . . , θn]) ∩K[θ1, . . . , θn]

by using a Gröbner basis.
(5) Setting θ = −θ1 − · · · − θn − n, compute

B := grw(I) ∩K[θ1, . . . , θn] ∩K[θ]

by using a Gröbner basis. If B �= {0}, let b(θ) be a generator
of B. If B = {0}, then there exists no b-function of M with
respect to w.
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If M is holonomic, or more generally if we know that there exists
a (nonzero) b-function in advance, then we can employ more efficient
algorithm by Noro [19] which calculates b(s) directly as the minimal
polynomial of θ with modular computation; this algorithm is available as
a function named ‘generic bfct’ in a computer algebra system Risa/Asir
[20].

Proposition 5.7. Suppose that a left DX-module M = DXu =
DX/I has a b-function b(s) with respect to the weight vector w as above
and the good w-filtration Fk(M) := Fw

k (DX)u. Let k1 be the largest
integer root, if any, of b(s). Let k1 be an arbitrary integer if b(s) has no
integral root. Then the exact sequence

Mn (∂x1 ,...,∂xn )−→ M −→ �∗M −→ 0

induces an exact sequence

Fk1+1(M)n
(∂x1 ,...,∂xn )−→ Fk1(M) −→ �∗M −→ 0.

To prove this proposition we need a lemma on the Koszul complex.
In general, let L = ⊕k∈ZLk be a graded module over grw(DX) = Dn+d

with Lk being the homogeneous part of order k. For any integer k, let
us define the Koszul complex K•(L[k], ∂x1 , . . . , ∂xn) to be the complex

0 −→ Lk+n ⊗Z ∧0Zn δn−→ Lk+n−1 ⊗Z ∧1Zn δn−1−→ · · · δ1−→ Lk ⊗Z ∧nZn.

Here ∧lZ is the free Z-module spanned by ei1 ∧ · · · ∧ eil with the unit
vectors e1, . . . , en of Zn satisfying ei∧ej+ej∧ei = 0. The homomorphism
δl is defined by

δl(v ⊗ ei1 ∧ · · · ∧ eil) =
n∑

j=1

(∂xjv)ej ∧ ei1 ∧ · · · ∧ eil .

For example, we have Lk ⊗Z ∧nZn = Lke1 ∧ · · · ∧ en ∼= Lk,

Lk+1 ⊗Z ∧n−1Zn =
n⊕

j=1

Lk+1eĵ
∼= (Lk+1)

n,

Lk+2 ⊗Z ∧n−2Zn =
⊕

1≤i<j≤n

Lk+2eîĵ
∼= (Lk+1)

n(n−1)/2

with

eĵ := e1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en,

eîĵ := e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en,
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and

δ1

⎛
⎝ n∑

j=1

vjeĵ

⎞
⎠ =

n∑
j=1

(−1)j−1(∂xjvj)e1 ∧ · · · ∧ en,

δ2

⎛
⎝ ∑

1≤i<j≤n

vijeîĵ

⎞
⎠ =

n∑
i=1

⎛
⎝i−1∑

j=1

(−1)j−1∂xjvji +
n∑

j=i+1

(−1)j∂xjvij

⎞
⎠ eî.

Lemma 5.8. Assume that there exists a nonzero polynomial b(s) ∈
K[s] such that b(θ + j)Lj = 0 for any j ∈ Z. If b(k) �= 0 holds for an
integer k, then the Koszul complex K•(L[k], ∂x1 , . . . , ∂xn) is exact.

Proof. We argue by induction on n. First let us prove the lemma
for n = 1; i.e., that the homomorphism

δ1 : Lk+1 ⊗Z ∧0Z 
 v �−→ (∂x1v)e1 ∈ Lk ⊗Z ∧1Z

is an isomorphism. Let v be an element of Lk. Then b(θ+k)v = 0 holds.
There exists a polynomial c(θ) ∈ K[θ] such that b(θ+ k)− b(k) = θc(θ).
This implies

b(k)v = −θc(θ)v = ∂x1x1c(−∂x1x1)v.

It follows that δ1 is surjective. Next suppose v ∈ Lk+1 satisfies ∂x1v = 0
in Lk. Then we get

0 = b(θ + k + 1)v = b(−x1∂x1 + k)v = b(k)v,

and consequently v = 0 since b(k) �= 0.
Now suppose n ≥ 2 and that the lemma has been proved with n re-

placed by n−1. The Koszul complex K•(L[k], ∂x1 , . . . , ∂xn) is isomorphic
to the total complex associated with the double complex

(12) · · · �� Lk+2 ⊗Z ∧n−2Zn−1
δ′1 ��

∂xn

��

Lk+1 ⊗Z ∧n−1Zn−1 ��

∂xn

��

0

· · · �� Lk+1 ⊗Z ∧n−2Zn−1
δ′1 �� Lk ⊗Z ∧n−1Zn−1 �� 0

where the two horizontal sequences are K•(L[k+1], ∂x1 , . . . , ∂xn−1) and
K•(L[k], ∂x1 , . . . , ∂xn−1) respectively. In fact, there is an isomorphism(

Lk+l ⊗Z ∧n−lZn−1
) ⊕ (

Lk+l ⊗Z ∧n−l−1Zn−1
) ∼= Lk+l ⊗Z ∧n−lZn
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for 0 ≤ l ≤ n (with the convention ∧jZn = 0 if j < 0 or j > n) defined
by the one-to-one correspondence( ∑

1≤i1<···<in−l≤n−1

vi1...in−l
ei1 ∧ · · · ∧ ein−l

,

∑
1≤i1<···<in−l−1≤n−1

vi1...in−l−1
ei1 ∧ · · · ∧ ein−l−1

)
←→

∑
1≤i1<···<in−l≤n−1

vi1...in−l
ei1 ∧ · · · ∧ ein−l

+
∑

1≤i1<···<in−l−1≤n−1

vi1...in−l−1
ei1 ∧ · · · ∧ ein−l−1

∧ en,

in which the homomorphism ∂xn is given by

∂xn

( ∑
1≤i1<···<in−l≤n−1

vi1...in−l
ei1 ∧ · · · ∧ ein−l

)
=

∑
1≤i1<···<in−l≤n−1

∂xnvi1...in−l
ei1 ∧ · · · ∧ ein−l

∧ en.

Hence the homomorphism(
Lk+l ⊗Z ∧n−lZn−1

) ⊕ (
Lk+l ⊗Z ∧n−l−1Zn−1

)
−→ (

Lk+l−1 ⊗Z ∧n−l+1Zn−1
) ⊕ (

Lk+l−1 ⊗Z ∧n−lZn−1
)

defined by
(
δ′l ⊕ (−1)n−l∂xn

)⊕ δ′l+1 corresponds to δl.
Let L′

j and L′′
j be the kernel and the cokernel of ∂xn : Lj+1 → Lj

respectively and set L′ := ⊕j∈ZL
′
j and L′′ := ⊕j∈ZL

′′
j , which are graded

Dn+d−1-modules. For any v ∈ L′
j we have

b(−∂x1x1 − · · · − ∂xn−1xn−1 + j)v

= b(−∂x1x1 − · · · − ∂xn−1xn−1 − xn∂xn + j)v = b(θ + j + 1)v = 0

by the assumption on L since L′
j is a subset of Lj+1.

Now let v be an element of Lj and v be its residue class in L′′
j . Then

we have b(θ + j)v = 0 and

b(−∂x1x1 − · · · − ∂xn−1xn−1 + j)v − b(θ + j)v ∈ ∂xnLj+1.

This implies

b(−∂x1x1 − · · · − ∂xn−1xn−1 + j)v = 0.
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Hence K•(L′[k], ∂x1 , . . . , ∂xn−1) and K•(L′′[k], ∂x1 , . . . , ∂xn−1) are both
exact by the induction hypothesis if b(k) �= 0.

We have an exact sequence

0 → K•(L′[k], ∂x1 , . . . , ∂xn−1) → K•(L[k + 1], ∂x1 , . . . , ∂xn−1)

∂xn−→ K•(L[k], ∂x1 , . . . , ∂xn−1) → K•(L′′[k], ∂x1 , . . . , ∂xn−1) → 0

of chain maps. Here the central chain map defined by ∂xn is a quasi-
isomorphism, i.e., induces isomorphisms of the homology groups since
the leftmost and the rightmost complexes are exact. This implies that
the total complex associated with the double complex (12) is exact,
which can be verified by diagram chasing. Summing up, we have shown
that K•(L[k], ∂x1 , . . . , ∂xn) is exact. Q.E.D.

Now let us prove Proposition 5.7. First let us show that Fk1(M) →
�∗M is surjective. Let v be an element of Fk(M) with k > k1. Applying
Lemma 5.8 to gr(M), we get v1, . . . , vn ∈ Fk+1(M) such that

v − ∂x1v1 − · · · − ∂xnvn ∈ Fk−1(M)

since b(k) �= 0. By induction, we see that there exist v′1, . . . , v
′
n ∈

Fk+1(M) such that

v − ∂x1v
′
1 − · · · − ∂xnv

′
n ∈ Fk1(M).

Thus Fk1(M) → �∗M is surjective.
Next, suppose the residue class [v] in�∗(M) of v ∈ Fk1(M) vanishes.

Then there exist v1, . . . , vn ∈ Fk+1(M) with some k such that
v = ∂x1v1 + · · ·+ ∂xnvn. Assume k > k1. Let vj be the residue class of
vj in grk+1(M). Then we have ∂x1v1 + · · · + ∂xnvn = 0 in grk(M). By
Lemma 5.8, there exist vij ∈ Fk+2(M) such that their residue classes
vij in grk+2(M) satisfy

vi =
n∑

j=1

(−1)i+j−1∂xjvij , vij + vji = 0.

Hence v′i := vi −
∑n

j=1(−1)i+j−1∂xjvij belongs to Fk(M) and we get a
new expression

v =
n∑

i=1

∂xi

⎛
⎝v′i +

n∑
j=1

(−1)i+j−1∂xjvij

⎞
⎠ =

n∑
i=1

∂xiv
′
i.



318 T. Oaku

Proceeding inductively, we can show that v belongs to ∂x1Fk1+1(M) +
· · ·+ ∂xnFk1+1(M). This completes the proof of Proposition 5.7.

Now let

(DX)r
ψ−→ DX

ϕ−→ M −→ 0

be a presentation of M with

ϕ(P ) = Pu (∀P ∈ DX),

ψ((Q1, . . . , Qr)) = Q1P1 + · · ·+QrPr (∀Q1, . . . , Qr ∈ DX).

Here we assume that P1, . . . , Pr are a w-involutive basis of I = AnnDXu
with ordw(Pi) = mi. This implies that the sequence

⊕r
i=1Fk−mi(DX)

ψ−→ Fk(DX)
ϕ−→ Fk(M) −→ 0

is exact for any k ∈ Z. Set Fk[m]((DY←X)r) := ⊕r
i=1Fk−mi(DY←X)

with m = (m1, . . . ,mr), and so on, where {Fk(DY←X)} denotes the
filtration induced by {Fw

k (DX)}. Then ψ induces homomorphisms

ψ : (DY←X)r −→ DY←X , ψ : Fk[m]((DY←X)r) −→ Fk(DY←X).

Let k1 be an integer as in Proposition 5.7. Then we have a commu-
tative diagram

Fk1+1[m]((DX)r)n
(ψ,...,ψ)��

��

Fk1+1(DX)n
(ϕ,...,ϕ)��

(∂x1 ,...,∂xn )

��

Fk1+1(M)n ��

(∂x1 ,...,∂xn )

��

0

Fk1 [m]((DX)r)
ψ ��

��

Fk1(DX)
ϕ ��

��

Fk1(M) ��

��

0

Fk1 [m]((DY←X)r)

��

ψ �� Fk1(DY←X) ��

��

�∗M ��

��

0

0 0 0

where the upper leftmost homomorphisms send⎛
⎜⎝Q11 · · · Q1r

...
...

Qn1 · · · Qnr

⎞
⎟⎠ ∈ Fk1+1[m]((DX)r)n
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to ⎛
⎜⎝Q11 · · · Q1r

...
...

Qn1 · · · Qnr

⎞
⎟⎠

⎛
⎜⎝P1

...
Pr

⎞
⎟⎠ ∈ Fk1+1(DX)n,

(
∂x1 · · · ∂xn

)⎛⎜⎝Q11 · · · Q1r

...
...

Qn1 · · · Qnr

⎞
⎟⎠ ∈ Fk1 [m]((DX)r)

respectively. In the commutative diagram, the three vertical sequences
and the two horizontal sequences except the one at the bottom are exact
in view of Proposition 5.7. This implies that the horizontal sequence at
the bottom is also exact; i.e.,

�∗M = coker (ψ : Fk1 [m]((DY←X)r) −→ Fk1(DY←X)).

Note that

Fk1(DY←X) =
⊕

|α|≤k1

xαDY , Fk1 [m]((DY←X)r) =
r⊕

i=1

⊕
|α|≤k1−mi

xαDY

as leftDY -modules. Hence ψ is a homomorphism of free leftDY -modules
of finite rank so that cokerψ can be explicitly computed by linear algebra
overDY . This gives the relations among the generators {xα[u] | |α| ≤ k1}
of �∗M . In particular, we get

Proposition 5.9. One has �∗M = 0 if b(k) �= 0 for any non-
negative integer k.

By elimination, we obtain AnnDY [u] so that DY [u] ∼= DY /AnnDY [u]
is a left DY -submodule of �∗M . It is easy to see by the construction
that

AnnDY [u] = DY ∩ (∂x1DX + · · ·+ ∂xnDX +AnnDXu)

holds; the right-hand side is called the integration ideal of I = AnnDY u.
Summing up we have obtained

Algorithm 5.10 (integration ideal). Input: A set G0 of
generators of I := AnnDXu.
Output: A set G of generators of the integration ideal AnnDY [u] of I.

(1) Compute a Gröbner basis G1 = {P1, . . . , Pr} of I with respect
to a monomial order which is adapted to the weight vector w.
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(2) Using G1, compute the b-function b(s) of M = DX/I with
respect to w by steps (2)–(5) of Algorithm 5.6.

(3) If b(s) has no non-negative integer root, then [u] = 0; quit.
Otherwise let k1 be the largest integral root of b(s).

(4) Set m = (m1, . . . ,mr) with mj = ordw(Pj).
(5) Express the homomorphism

(DY )
l1 ∼= Fk1 [m]((DY ←X)r)

ψ−→ Fk1(DY←X) ∼= (DY )
l0

of free DY -modules, which is induced by t(P1, . . . , Pr), as an
l1 × l0 matrix A = (Aij) with

l1 =
r∑

i=1

(
n+ k1 −mi

n

)
, l0 =

(
n+ k1

n

)
, Aij ∈ DY .

(6) Compute a set G2 of generators of the submodule

DY e1 ∩
{

l1∑
i=1

Qi(Ai1, . . . , Ail0) | Qi ∈ DY

}

of Dl0
Y with e1 = (1, 0, . . . , 0) ∈ Zl0 , which corresponds to

1 ∈ Fk1(DY←X), by a Gröbner basis with respect to what
is called a ‘position-over-term’ order. Let G be the set of the
first elements of G2.

For practical computation of integration, computer algebra systems
such as Risa/Asir [20], Macaulay2 [11], and Singular [7] are available.
An implementation of the D-module theoretic integration algorithm was
first supplied with Kan/sm1 [34] (see [26]). We make use of a Risa/Asir
library ‘nk restriction.rr’ by Hiromasa Nakayama for computing various
examples in the next section. One can also use a Macaulay2 package
‘Dmodules’ by Anton Leykin and Harrison Tsai, or a Singular library
‘dmodapp lib’ by Viktor Levandovskyy and Daniel Andres.

Example 5.11. Set x = x1, ∂x = ∂x1 and so on with n = d = 1 and
w = (1, 0, ;−1, 0). Let I be the left ideal of D2 generated by P1 = y−x2,
P2 = 2x∂y + ∂x and set M = D2/I. We denote by u the residue class
of 1 in M . It is easy to see that P1 and P2 annihilate δ(y − x2), which
belongs to E ′D′(Rx × Ry).

From Example 3.15, P1, P2, and P3 = 2y∂y + x∂x + 2 are a w-
involutive basis of I. The b-function b(s) of M = D/I with respect to w
divides s(s− 1) since σw(P1) = −x2 and hence ∂2

xx
2 = ∂xx(∂xx+1) an-

nihilates gr0(M) = F0(M)/F−1(M) with Fk(M) := Fw
k (D2)/(F

w
k (D2)∩
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I). Let � : X = C2 
 (x, y) �→ x ∈ C = Y be the projection. Since the
w-orders of P1, P2, P3 are 2, 1, 0 respectively, we have an exact sequence

F−1(DY←X)⊕ F0(DY←X)⊕ F1(DY←X)
ψ→ F1(DY←X) → �∗M → 0,

where ψ is induced by t(P1, P2, P3). With F−1(DY←X) = {0} omitted,
ψ is explicitly given by

ψ((Q1, Q2 +Q3x)) = [Q1P2 + (Q2 +Q3x)P3]

= [Q1(2x∂y + ∂x) + (Q2 +Q3x)(2y∂y + ∂xx+ 1)]

= [Q2(2y∂y + 1) + 2(Q1∂y +Q3y∂y)x]

for Q1, Q2, Q3 ∈ DY = D1, where the bracket denotes the residue class
in DY←X . Hence the homomorphism ψ is represented by the matrix

A =

⎛
⎝ 0 2∂y
2y∂y + 1 0

0 2y∂y

⎞
⎠ .

Thus �∗M is isomorphic to the direct sum

�∗M = D1[u]⊕D1[xu] ∼= D1/D1(2y∂y + 1) ⊕ D1/D1∂y.

This implies that f0(y) :=
∫∞
−∞ δ(y − x2) dx and f1(y) :=

∫∞
−∞ xδ(y −

x2) dx satisfies
(2y∂y + 1)f0(y) = ∂yf1(y) = 0.

Noticing f0(y) = f1(y) = 0 for y < 0, we get f0(y) = Cy
−1/2
+ and

f1(y) = 0 (naturally!) with a constant C. We can use the formula

δ(1− x2) = δ((x− 1)(x+ 1)) =
1

2
δ(x− 1) +

1

2
δ(x+ 1)

to obtain C = f0(1) = 1. We conclude that the distribution f0(y)

coincides with the locally integrable function y
−1/2
+ on whole R because

the differential equation (2y∂y +1)f(y) = 0 has no distribution solution
f(y) whose support is {0}. See Proposition 6.1 in the next subsection.

Exercise 24. Find a differential equation for

g0(y) :=

∫ ∞

−∞
Y (y − x2) dx

by using the integration algorithm and determine g0(y) as a distribution
on R explicitly.
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Exercise 25. For a positive integer n, find a differential equation
for v(y) =

∫∞
−∞ δ(y − xn) dx and determine v(y) explicitly.

Exercise 26. Set u(x, t) = etx−x3

Y (x), which belongs to the space
ESS ′(Rt × Rx) introduced in 4.5.

(1) Find a holonomic system for u(x, t); confirm that it is holo-
nomic.

(2) Find a holonomic system, i.e., a linear ordinary differential
equation for

v(t) :=

∫ ∞

0

etx−x3

dx =

∫ ∞

−∞
etx−x3

Y (x) dx.

§6. Integration of holonomic distributions

We first apply the integration algorithm in 5.2 and classes of dis-
tributions introduced in 4.3 to the integral of a holonomic distribution
over the whole space. For integrals over domains defined by arbitrary
polynomial inequalities, we need more sophisticated method in order to
compute a holonomic system for the product of Heaviside functions and
the given integrand, which will be introduced in 6.2 with correctness
proofs. This method also provides us with an integration algorithm for
functions satisfying difference-differential holonomic systems, which will
be explained in 6.4. Algorithms in this section complement the ones
introduced in [24] with more detailed arguments.

6.1. Integrals of holonomic distributions over the whole
space

We assume K = C. Let u(x, y) = u(x1, . . . , xn, y1, . . . , yd) be a
distribution in E ′D′(Rn ×U) with an open set U of Rd, or in SS ′(Rn ×
Rd). Suppose that u(x, y) is holonomic and that we have a left ideal I
of Dn+d which annihilates u(x, y) such that Dn+d/I is holonomic. Then
the integral �∗M = M/(∂x1M + · · · + ∂xnM) of M gives a holonomic
system of linear differential equations for

v(y) :=

∫
Rd

u(x, y) dx,

which belongs to D′(U) or to S ′(Rd), as was explained so far.
Let us first consider the standard normal distribution whose density

function is given by (2π)−n/2 exp(−|x|2/2). Let f(x) be an arbitrary
real polynomial in x = (x1, . . . , xn). Then the cumulative function

F (t) = (2π)−
n
2

∫
Rn

exp
(
−1

2
|x|2

)
Y (t− f(x)) dx
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of the random variable f(x) is well-defined as an element of S ′(R) since
the integrand belongs to SS ′(Rn

x×Rt). It is also a continuous function if
f(x) is non-constant. The density function F ′(t) is given by the integral

F ′(t) = (2π)−
n
2

∫
Rn

exp
(
−1

2
|x|2

)
δ(t− f(x)) dx

as an element of S ′(R).
Since the integrands of F (t) and of F ′(t) are holonomic by Propo-

sition 4.20 and belong to SS ′(Rn
x × Rt), we obtain linear ordinary dif-

ferential equations which F (t) and F ′(t) satisfy as elements of S ′(R) by
the integration algorithm.

The characteristic function of v(t) := F ′(t) is the tempered distri-
bution v̂ on R defined by

〈v̂, ϕ〉 = 〈v, ϕ̂〉, ϕ̂(τ) :=

∫ ∞

−∞
eiτtϕ(t) dt

for ϕ ∈ S(R) with i =
√−1. Let us show that v̂(τ) is given by

v̂(τ) = (2π)−
n
2

∫
Rn

exp
(
iτf(x)− 1

2
|x|2

)
dx.

Set ψ(x) = (2π)−n/2 exp
(
−1

2
|x|2

)
. (Indeed ψ can be an arbitrary ele-

ment of S(Rn).) Then by the definition of the integral of an element of
SS ′(Rn

x × Rt) and Proposition 4.10, we get, for any χ ∈ S(R),

〈v̂, χ〉 =
〈∫

Rn

ψ(x)δ(t− f(x)) dx, χ̂

〉
= 〈δ(t− f(x)), ψ(x)χ̂(t)〉

= 〈1(x)δ(t), ψ(x)χ̂(t+ f(x))〉 =
∫
Rn

ψ(x)χ̂(f(x)) dx

=

∫
Rn

ψ(x)

(∫ ∞

−∞
eitf(x)χ(t) dt

)
dx

=

∫ ∞

−∞

(∫
Rn

ψ(x)eitf(x) dx

)
χ(t) dt.

This means the identity above. Moreover, v̂(τ) belongs also to C∞(R)

since exp
(
iτf(x)− 1

2
|x|2

)
belongs to ES(Rτ × Rn

x).

If v(t) satisfies a differential equation Pv = 0 with P = P (t, ∂t) =∑m
j=0 aj(t)∂

m−j
t , then v̂ satisfies P̂ v̂ = 0, where

P̂ = P (−i∂τ ,−iτ) =
m∑
j=0

aj(−i∂τ )(−iτ)m−j .
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Now let

(13) P = a0(t)∂
m
t + a1(t)∂

m−1
t + · · ·+ am(t)

be a linear ordinary differential operator with analytic functions aj(x)
defined on a neighborhood of t0 ∈ R. In general, for an analytic function
f(t) near t0, the order ordt0f(t) of f(t) at t0 is defined to be the smallest
non-negative integer k such that f (k)(t0) �= 0. The point t0 is called a
regular singular point of P if ordt0aj(t) ≥ ordt0a0(t)−j for j = 1, . . . ,m.
Set k = ordt0a0(t). With P being multiplied by a power of t or of ∂t on
the left, we may assume k = m. Then the indicial polynomial of P at a
regular singular point t0 is defined to be

b(s) :=
m∑
j=0

cjs(s− 1) · · · (s−m+ j + 1), cj := lim
t→t0

aj(t)

(t− t0)m−j
.

This is nothing but the b-function with respect to the weight vector
(−1; 1). The roots of b(s) = 0 are called the characteristic exponents of
P at t0.

The following well-known facts often provide us with information on
the behavior of the distribution solutions near a singular point:

Proposition 6.1. Let t0 ∈ R be a regular singular point of an
ordinary differential operator (13).

(1) If P has no negative integer as a characteristic exponent, then
P has no distribution (or even hyperfunction) solution whose
support is {t0} on a neighborhood of t0.

(2) If the real part of each characteristic exponent of P at t0 is
greater than −1, then any distribution (or even hyperfunction)
solution of the differential equation Pu = 0 coincides with a
Lebesgue integrable function on a neighborhood of t0.

The simplest proof of this proposition would be to consider a dis-
tribution as a hyperfunction, which is defined as the boundary value of
a complex analytic function to the real line (see [30]), and employ the
theory of ordinary differential equations with regular singularities in the
complex domain.

As a first example, let us deduce the density function of the χ2

distribution in statistics.

Example 6.2 (χ2 distribution). Set

u(x, t) = (2π)−
n
2 exp

(
−1

2
|x|2

)
δ(t− |x|2), v(t) =

∫
Rn

u(x, t) dx
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with |x|2 = x2
1 + · · · + x2

n. Then u(x, t) belongs to SS ′(Rn
x × Rt) and

thus v(t) is well-defined as a tempered distribution on R. Note that v(t)
is the density function of the χ2 distribution. By Example 4.21, u(x, t)
satisfies a holonomic system

(t− |x|2)u = (∂i + 2xi∂t + xi)u = 0 (i = 1, . . . , n).

Since

n∑
i=1

xi(∂i + 2xi∂t + xi) + (1 + 2∂t)(t− |x|2)

=

n∑
i=1

xi∂i + 2|x|2∂t + |x|2 + (1 + 2∂t)(t− |x|2)

=
n∑

i=1

xi∂i + 2∂tt+ t =
n∑

i=1

∂ixi + 2t∂t + t− n+ 2,

we know that v(t) satisfies

(2t∂t + t− n+ 2)v(t) = 0.

This differential equation has 0 as a regular singular point with the
characteristic exponent n/2 − 1, which is greater than −1. Hence v(t)
is integrable on R. Solving this equation by quadrature and noting that
v(t) = 0 for t < 0, we conclude that

v(t) = Ce−t/2t
n/2−1
+

with some constant C, which can be determined by

C =

(∫ ∞

0

e−t/2tn/2−1 dt

)−1

=
1

2n/2Γ
(n
2

) .
The characteristic function v̂(τ) =

∫∞
−∞ eiτtv(t) dt satisfies

((2τ + i)∂τ + n)v̂(τ) = 0.

Together with v̂(0) = 1, this implies

v̂(τ) = (1− 2iτ)−n/2.

The following example was proposed by A. Takemura (see [18]):
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Example 6.3 (sum of cubes of standard normal random variables).
Set

v(t) = (2π)−
n
2

∫
Rn

exp
(
−|x|2

2

)
δ(t− x3

1 − · · · − x3
n) dx.

If n = 2, v(t) satisfies the ordinary differential equation Pv(t) = 0 with

P = 729t3∂t
6 + 6561t2∂t

5 + 12555t∂t
4

+ (81t2 + 3240)∂t
3 + 243t∂t

2 + 60∂t + 2t.

The origin is a regular singular point of P with the indicial polynomial
b(s) = s(s− 1)2(s− 2)(3s+ 1)(3s− 7) up to a constant multiple.

x1

x2

t = 4

t = −4

Fig. 3. Curves x3
1 + x3

2 = t with t = −4,−1,−1/8, 0, 1/8, 1, 4

If n = 3, v(t) satisfies the ordinary differential equation Pv(t) = 0
with

P = 6561t4∂t
9 + 118098t3∂t

8 + 607257t2∂t
7 + (1458t3 + 944055t)∂t

6

+ (13122t2 + 280665)∂t
5 + 25920t∂t

4 + (99t2 + 8100)∂t
3 + 297t∂t

2

+ 90∂t + 2t.

Its indicial polynomial at 0 is

b(s) = s2(s− 1)(s− 2)(s− 3)(s− 4)2(3s− 4)(3s− 8)

up to a constant multiple. Hence in both cases, v(t) is Lebesgue in-
tegrable on R and real analytic on R \ {0}. In [18] it is proved that
v(t) satisfies a linear differential equation of order 3n with a regular
singularity at the origin.

Example 6.4. Let us consider

v(t) = (2π)−
n
2

∫
Rn

exp
(
−|x|2

2

)
δ(t− x4

1 − x4
2 − · · · − x4

n) dx.
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If n = 2, then v(t) is annihilated by

128t3∂t
4 + 768t2∂t

3 + (−24t2 + 864t)∂t
2 + (−48t+ 96)∂t + t− 6,

which has a regular singularity at 0 with the indicial polynomial b(s) =
s2(2s−1)(2s+1) up to a constant multiple. If n = 3, v(t) is annihilated
by

2048t4∂t
6 + 24576t3∂t

5 + (−768t3 + 77568t2)∂t
4

+ (−4608t2 + 64512t)∂t
3 + (88t2 − 5328t+ 7560)∂t

2

+ (176t− 720)∂t − 3t+ 27,

which has a regular singular point at 0 with the indicial polynomial

b(s) = s(s− 1)(4s+ 1)(4s− 1)(4s− 3)(4s− 5)

up to a constant multiple.

Example 6.5. Let us consider

v(t) = (2π)−
n
2

∫
Rn

exp
(
−|x|2

2

)
δ(t− x1x2 · · · xn) dx.

If n = 2, then v(t) is annihilated by t∂t
2 + ∂t − t, which has 0 as a

regular singular point with the indicial polynomial b(s) = s2. If n = 3,
then v(t) is annihilated by t2∂t

3+3t∂t
2+∂t+ t, which has 0 as a regular

singular point with the indicial polynomial b(s) = s3. If n = 4, then
v(t) is annihilated by t3∂t

4 + 6t2∂t
3 + 7t∂t

2 + ∂t − t with the indicial
polynomial b(s) = s4 at 0.

Example 6.6. Introducing parameters a = (a1, a2), let us consider
the density function

v(t, a) = (2π)−1

∫
R2

exp
(
−1

2
(x2

1 + x2
2)
)
δ(t− (x1 + a1)(x2 + a2)) dx1dx2.

The integrand belongs to SS ′(R2
x × (Rt ×R2

a)), hence v(t, a) to S ′(Rt ×
R2

a). Integrating the holonomic module over D5 for the integrand shows
that v(t, a) satisfies a holonomic system Pjv(t, a) = 0 (1 ≤ j ≤ 6) with

P1 = −4t∂a1 + ∂3
a2

+ 4a2∂
2
a2

+ (4a2
2 + 4)∂a2 + 4a2,

P2 = (∂a2 + 2a2)∂a1 + 2a1∂a2 − 4t+ 4a2a1,

P3 = 2t∂t + ∂2
a2

+ 2a2∂a2 + 2, P4 = (∂a1 + 2a1)∂t + 2∂a2 ,

P5 = (∂a2 + 2a2)t∂t + 2∂a1 , P6 = ∂2
a1

+ 2a1∂a1 − ∂2
a2

− 2a2∂a2 .
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The characteristic variety of M := D3/(D3P1 + · · ·+D3P6) is

{(t, a1, a2; τ, ξ1, ξ2) ∈ C6 | ξ22 = ξ1ξ2 = τξ2 = ξ21 = τξ1 = tτ2 = 0}
= {t = ξ1 = ξ2 = 0} ∪ {τ = ξ1 = ξ2 = 0}.

The singular locus ofM is {t = 0}. By elimination we obtain an operator

P = t∂4
t + 3∂3

t + (−2t− a1a2)∂
2
t + (a21 + a22 − 3)∂t + t− a1a2

in t with parameters a1, a2 which annihilates v(t, a). The indicial poly-
nomial of P at t = 0 is s2(s− 1)(s− 2). The Fourier transform gives us
a differential equation(

(τ2 + 1)2
d

dτ
+ τ3 + ia1a2τ

2 + (a21 + a22 + 1)τ − ia1a2

)
v̂(τ) = 0

for the characteristic function v̂(τ). By quadrature we obtain

v̂(τ) =
1√

τ2 + 1
exp

(2ia1a2τ + a21 + a22
2(τ2 + 1)

− 1

2
(a21 + a22)

)
.

Exercise 27. Compute a differential equation for

v(t) =

∫
R3

exp
(
−x2

1 + x2
2 + x2

3

2

)
δ(t− x2

1 + x2
2 + x2

3) dx1dx2dx3

and one for its characteristic function v̂(τ). Give an explicit formula for
v̂(τ).

Exercise 28. Set u(x, t, a, b) = etxxa−1
+ (1−x)b−1

+ with positive real
parameters a, b. We regard it as an element of E ′D′(Rx×Rt) with a and
b fixed. Deduce a linear differential equation (in t) for

v(t, a, b) :=

∫ 1

0

etxxa−1(1− x)b−1 dx =

∫ ∞

−∞
u(x, t, a, b) dx

regarding a, b as parameters.

6.2. Powers of polynomials times a holonomic function

Let us begin with the simplest example: For a complex number λ
with non-negative real part, the distribution xλ

+ on R satisfies a holo-

nomic system (x∂x − λ)xλ
+ = 0. In particular, we have x∂xY (x) = 0.

This amounts to introducing the differential equation (x∂x − s)xs = 0
for a formal function xs, which corresponds to xλ

+, and specializing the
parameter s to λ. We cannot regard x0 = 1 because x0 does not corre-
spond to the constant function 1 but to Y (x) = x0

+.
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Now let f1(x), . . . , fp(x) be non-constant real polynomials in the
variables x = (x1, . . . , xn). Let v(x) be a holonomic locally integrable
function on U . Then

ṽ(x) = (f1)
λ1
+ · · · (fp)λp

+ v(x)

is also locally integrable on U for complex numbers λ1, . . . , λp with non-
negative real parts. Especially, we have ṽ(x) = Y (f1) · · · Y (fp)v(x) if
λj = 0 (j = 1, . . . , p). Our purpose is to compute a holonomic system
for ṽ(x).

Our strategy is as follows: First we work in a purely algebraic
setting and consider the D-module generated by the tensor product

u ⊗ fλ1
1 · · · fλp

p ; we show that this D-module is holonomic and intro-
duce an algorithm to compute its structure. Then we ‘realize’ these
arguments and apply to the corresponding distribution ṽ(x), which lives
in the ‘real world’.

Let K be a field of characteristic zero and f1, . . . , fp ∈ K[x] =
K[x1, . . . , xn] be non-constant polynomials. Let us consider a ‘function’
fs1
1 · · · fsp

p with indeterminates (as parameters) s = (s1, . . . , sp). More
precisely, set

L := K[x, (f1 · · · fp)−1, s]fs1
1 · · · fsp

p ,

which is regarded as a free K[x, (f1 · · · fp)−1, s]-module generated by the
‘symbol’ fs1

1 · · · fsp
p . Then L is a left Dn[s]-module with the natural

derivations

∂xi(f
s1
1 · · · fsp

p ) =

p∑
j=1

sj
∂fj
∂xi

f−1
j fs1

1 · · · fsp
p (i = 1, . . . , n).

In what follows we denote fs = fs1
1 · · · fsp

p for the sake of simplicity
when there is no fear of confusion.

Let M = Dnu = M/I be a holonomic left Dn-module generated
by an element u ∈ M with the left ideal I = AnnDnu. Let us consider
the tensor product M ⊗K[x] L as K[x]-module, which has also a natural
structure of left Dn[s]-module induced by the derivations

∂xi(u
′ ⊗ v) = (∂xiu

′)⊗ v + u′ ⊗ (∂xiv) (u′ ∈ M, v ∈ L, i = 1, . . . , n).

Our aim is to compute the annihilator (in Dn[s]) of u⊗ fs ∈ M ⊗K[x] L.
For this purpose, define shift (difference) operators Ej by

Ej : L 
 a(x, s1, . . . , sp)f
s �−→ a(x, s1, . . . , sj + 1, . . . , sp)fjf

s ∈ L
for j = 1, . . . , p, which are bijective with the inverse shifts E−1

j : L → L.
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Let Dn〈s,E,E−1〉 be the Dn-algebra generated by s = (s1, . . . , sp),

E = (E1, . . . , Ep), and E−1 = (E−1
1 , . . . , E−1

p ). We introduce new vari-
ables t = (t1, . . . , tp) and the associated derivations ∂t = (∂t1 , . . . , ∂tp).
Let Dn+p be the ring of differential operators with respect to the vari-
ables (x, t) = (x1, . . . , xn, t1, . . . , tp).

Let μ : Dn+p → Dn〈s,E,E−1〉 be the Dn-algebra homomorphism
(Mellin transform) of Dn defined by

μ(tj) = Ej , μ(∂tj ) = −sjE
−1
j .

This homomorphism is well-defined since

μ(∂tj tj − tj∂tj ) = μ(∂tj )μ(tj)− μ(tj)μ(∂tj )

= −sjE
−1
j Ej − Esj (−si)E

−1
j = 1.

It can be extended to an isomorphism

μ : Dn+p[(t1 · · · tp)−1]
∼−→ Dn〈s,E,E−1〉

such that μ(t−1
j ) = E−1

j . Hence we can regard Dn+p as a subring of

E〈s,E,E−1〉 through μ. With this identification, we have

tj = Ej , ∂tj = −sjE
−1
j , sj = −∂tj tj = −tj∂tj − 1.

Thus we have inclusions

Dn[s] ⊂ Dn〈s,E〉 ⊂ Dn+p ⊂ Dn〈s,E,E−1〉 = Dn+p[(t1 · · · tp)−1]

of rings. Note that M ⊗K[x] L has a structure of left Dn〈s,E,E−1〉-
module with s and E acting only on L.

Lemma 6.7. The submodule Dn+pf
s of L is a free K[x]-module

generated by ∂ν
t f

s with ν ∈ Np.

Proof. Let J be the left ideal of Dn+p generated by

Pi := ∂xi +

p∑
j=1

∂fj
∂xi

∂tj (i = 1, . . . , n), tj − fj (j = 1, . . . , p).

It is easy to see that J annihilates fs. In order to show that J coincides
with AnnDn+pf

s, let ≺ be a lexicographic term order for Dn+p such that
∂tj ≺ ∂xi , xj ≺ ∂xi , and xi ≺ tj for 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then by
division with respect to ≺, every element P of Dn+p is written in the
form

P =
n∑

i=1

UiPi +

p∑
j=1

Vj(tj − fj) +
∑
ν∈Np

rν(x)∂
ν
t
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with Ui, Vj ∈ Dn+p and rν(x) ∈ K[x]. This implies

Pfs =
∑
ν∈Np

rν(x)∂
ν
t f

s =
∑
ν∈Np

(−1)|ν|[s]νrν(x)fs−ν

with

[s]ν = [s1]ν1 · · · [sp]νp

= s1(s1 − 1) · · · (s1 − ν1 + 1) · · · sp(sp − 1) · · · (sp − νp + 1).

Hence Pfs = 0 holds if and only if rν(x) = 0 for each ν since L is a free
K[s]-module. This also implies that an element of Dn+pf

s is uniquely
written in the form

∑
ν∈Np rν(x)∂

ν
t f

s with rν(x) ∈ K[x]. This completes
the proof. Q.E.D.

Our primary purpose in the following algebraic arguments is to com-
pute the Dn[s]-submodule Dn[s](u⊗fs) of M⊗K[x]L. With this purpose
in mind, we consider the following modules:

• The Dn+p-submodule N := Dn+p(u⊗ fs) of M ⊗K[x] L,
• The Dn[s]-submodule Ns := Dn[s](u⊗ fs) of N ,
• The Dn+p-submodule N ′ := Dn+p(u⊗fs) of M ⊗K[x]Dn+pf

s,
• The Dn[s]-submodule N ′

s := Dn[s](u⊗ fs) of N ′.
We will see that N ′ coincides withM⊗K[x]Dn+pf

s in fact. The inclusion
Dn+pf

s ⊂ L induces a natural homomorphism

ι : M ⊗K[x] Dn+pf
s −→ M ⊗K[x] L

such that ι(N ′) = N and ι(N ′
s) = Ns. Let us first determine the struc-

ture of N ′.

Algorithm 6.8 (N ′ = M ⊗K[x] Dn+pf
s). Input: A set G0 of

generators of I with M = Dn/I and non-constant polynomials
f1, . . . , fp ∈ K[x].

For P = P (x, ∂x1 , . . . , ∂xn) ∈ G0, set

τ(P, f1, . . . , fp) := P

⎛
⎝x, ∂x1 +

p∑
j=1

∂fj
∂x1

∂tj , . . . , ∂xn +

p∑
j=1

∂fj
∂xn

∂tj

⎞
⎠

following [35]. This substitution is well-defined in the ring Dn+p since
the operators which are substituted for ∂x1 , . . . , ∂xn commute with one
another.

Output: G := {τ(P, f1, . . . , fp) | P ∈ G0} ∪ {tj − fj(x) | j = 1, . . . , p}
generates J := AnnDn+p(u⊗ fs) and M ⊗K[x] Dn+pf

s = N ′ = Dn+p/J
is holonomic.
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Proof. In view of the equality⎛
⎝∂xi +

p∑
j=1

∂fj
∂xi

∂tj

⎞
⎠ (u⊗ fs)

= (∂xiu)⊗ fs + u⊗
⎛
⎝∂xi +

p∑
j=1

∂fj
∂xi

∂tj

⎞
⎠ fs

= (∂xiu)⊗ fs + u⊗
⎛
⎝∂xi +

p∑
j=1

(−sj)f
−1
j

∂fj
∂xi

⎞
⎠ fs = (∂xiu)⊗ fs

in M ⊗K[x] L, we have, for any P ∈ Dn and j = 1, . . . , p,

τ(P, f1, . . . , fp)(u⊗fs) = (Pu)⊗fs, (tj−fj)(u⊗fs) = u⊗(tj−fj)f
s.

Hence J annihilates u ⊗ fs in M ⊗K[x] L. These relations also imply
that M ⊗K[x] Dn+pf

s is generated by u⊗ fs over Dn+p since Dn+pf
s is

generated by ∂ν
t f

s (ν ∈ Np) over K[x].
Conversely, suppose that P ∈ Dn+p annihilates u ⊗ fs. We can

rewrite P in the form

P =
∑

α∈Nn,ν∈Np

pα,ν(x)∂
ν
t

(
∂x1 +

p∑
j=1

∂fj
∂x1

∂tj

)α1

· · ·
(
∂xn +

p∑
j=1

∂fj
∂xn

∂tj

)αn

+

p∑
j=1

Qj · (tj − fj(x))

with pα,ν(x) ∈ K[x] and Qj ∈ Dn+p. Setting Pν :=
∑

α∈Nn pα,ν(x)∂
α
x ,

we get

0 = P (u⊗ fs) =
∑
ν∈Np

∂ν
t τ(Pν , f1, . . . , fp)(u⊗ fs) =

∑
ν∈Np

Pνu⊗ ∂ν
t f

s.

It follows in view of Lemma 6.7 that each Pν belongs to I. Hence we
have

P =
∑
ν∈Np

∂ν
t τ(Pν , f1, . . . , fp) +

p∑
j=1

Qj · (tj − fj(x)) ∈ J.
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Finally, let us show that Dn+p/J is holonomic. Since Dn/I is holo-
nomic, its characteristic variety Char(Dn/I) is an n-dimensional alge-

braic set of K
2n
. By the definition, we have

Char(Dn+p/J)

⊂
{
(x, t, ξ, τ) ∈ K

2(n+p) | σ(P )
(
x, ξ1 +

p∑
j=1

∂fj
∂x1

τj , . . .
)
= 0 (∀P ∈ I),

tj = fj(x) (1 ≤ j ≤ p)
}

=
{
(x, t, ξ, τ) ∈ K

2(n+p) |
(
x, ξ1 +

p∑
j=1

∂fj
∂x1

τj , . . .
)
∈ Char(Dn/I),

tj = fj(x) (1 ≤ j ≤ p)
}
.

Since the set on the last line is in one-to-one correspondence with the
set Char(Dn/I) × K

p
, the dimension of Char(Dn+p/J) is n + p, which

implies that Dn+p/J is a holonomic module. This proves the correctness
of the algorithm. Q.E.D.

Now that we have a set of generators of J = AnnDn+p(u ⊗ fs), we
can compute AnnDn[s](u ⊗ fs) = J ∩ Dn[s] by using Algorithm 5.5.
Thus we get an explicit presentation of the Dn[s]-submodule N ′

s =
Dn[s](u⊗fs) ofM⊗K[x]Dn+pf

s. Finally let us specialize the parameters
s = (s1, . . . , sn) to λ = (λ1, . . . , λp) ∈ Kp. Set

N ′(λ) = N ′
s/((s1 − λ1)N

′
s + · · ·+ (sp − λp)N

′
s),

N(λ) = Ns/((s1 − λ1)Ns + · · ·+ (sp − λp)Ns),

which are left Dn-modules.

Proposition 6.9. Set f = f1 · · · fp. The homomorphism

ι : N ′ = M ⊗K[x] Dn+pf
s1
1 · · · fsp

p −→ M ⊗K[x] L
is injective if and only if M is f -saturated, or f -torsion free, i.e., f :
M → M is injective. In particular, ι induces isomorphisms N ′ ∼= N and
N ′

s
∼= Ns if M is f -saturated

Proof. By Lemma 6.7, an arbitrary element w of M ⊗K[x] Dn+pf
s

is uniquely written in a finite sum

w =
∑
ν∈Np

uν ⊗ ∂ν
t f

s1
1 · · · fsp

p
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with uν ∈ M . Then we have

ι(w) =
∑
ν∈Np

(−1)|ν|[s]νuν ⊗ fs1−ν1
1 · · · fsp−νp

p .

Since L is isomorphic to K[x, s, f−1] with f = f1 · · · fp as a K[x, s]-
module, M⊗K[x]L is isomorphic to the localization M [s, f−1] of M [s] :=
M ⊗K K[s] with respect to f as a K[x, s]-module. Hence ι(w) vanishes
if and only if ∑

ν∈Np

(−1)|ν|[s]νf−ν1 · · · f−νpuν

vanishes in M [s, f−1]. This amounts to the condition uν = 0 in M [f−1]
for all ν. Finally, uν vanishes inM [f−1] if and only if fmνuν = 0 holds in
M with a non-negative integer mν . This implies the assertion. Q.E.D.

The following theorem was proved in case p = 1 by Kashiwara [13]
in the analytic setting.

Theorem 6.10. For any λ ∈ Kp, N(λ) is a holonomic Dn-module.

Proof. First, let us show that N ′(λ) is holonomic if either no com-
ponent of λ belongs to N or M is f -saturated with f = f1 · · · fp.

We may assume M �= {0}. Set Fk(N
′) = F

(1;1)
k (Dn+p)(u ⊗ fs) for

k ∈ Z. Since N ′ is holonomic, there exists a polynomial H0(k) of degree
n+ p such that

dimK Fk(N
′) = H0(k) (∀k � 0).

We define a filtration Fk(Dn[s]) on the ring Dn[s] by

Fk(Dn[s]) =
{ ∑
α,β,γ

aα,β,γx
α∂β

x s
γ | |α|+ |β|+ 2|γ| ≤ k

}
.

Then Fk(N
′
s) := Fk(Dn[s])(u ⊗ fs) defines a good filtration on N ′

s as
a filtered module over the filtered ring Dn[s]. The associated graded
module gr(N ′

s) is a graded module over the graded ring K[x, ξ, s] in
which xi, ξi are of order one, and sj are of order two. Hence (see e.g.,
[5], [8], [12]) there exists Q(T ) ∈ Z[T, T−1] such that

∞∑
k=−∞

dimK grk(N
′
s)T

k =
∞∑

k=−∞
(dimK Fk(N

′
s)− dimK Fk−1(N

′
s))T

k

=
Q(T )

(1− T )2n(1− T 2)p
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holds as a formal Laurent series in an indeterminate T . It follows that
there exists a polynomial H1(k) ∈ Q[k] such that

dimK F2k(N
′
s) = H1(k) (∀k � 0).

The degree of H1(k) is at most n+ p since Fk(N
′
s) ⊂ Fk(N

′).
Now, let us consider the Dn[s]-endomorphism of N ′

s defined by sp−
λp = −∂tptp − λp. Let v be an element of N ′

s such that (sp − λp)v = 0.
As an element of N ′, v is written uniquely in the form

v =
∑
ν∈Np

vν ⊗ ∂ν
t f

s

with vν ∈ M . Then (sp − λp)v = 0 is equivalent to

(14) (νp − λp)vν − fpvν−ep = 0 (∀ν = (ν1, . . . , νp) ∈ Np)

with ep = (0, . . . , 0, 1) ∈ Np since

sp∂
j
tp = −∂tptp∂

j
tp = −∂j+1

tp tp + j∂j
tp , tpf

s = fpf
s.

First let us assume that λp �= 0, 1, 2, . . . . Then from (14) we deduce
vν = 0 for any ν ∈ Np by induction on νp. Hence sp − λp : N ′

s → N ′
s is

injective.
Next, assume that λp ∈ N and that M is f -saturated. There exists d

such that vν = 0 if νp ≥ d. Then from (14), it follows that f jv(ν′,d−j) = 0

for all 0 ≤ j ≤ d and ν′ ∈ Np−1 by induction on j. Hence we have vν = 0
for all ν ∈ Np if M is f -saturated.

Hereafter we suppose that sp−λp defines an injective endomorphism
of N ′

s. Then we have an exact sequence

0 −→ N ′
s

sp−λp−→ N ′
s −→ N ′

s/(sp − λp)N
′
s −→ 0

of left Dn[s
′]-modules with s′ = (s1, . . . , sp−1). Let us regard N ′′ :=

N ′/(sp−λp)N
′ as a filtered module over the filtered ringDn[s1, . . . , sp−1]

and define a good filtration on N ′′ by

Fk(N
′′) = Fk(N

′
s)/(Fk(N

′
s) ∩ (sp − λp)N

′
s).

Since (sp − λp)F2k−2(N
′
s) is contained in F2k(N

′
s)∩ (sp − λp)N

′
s, we

have

dimK F2k(N
′′) = dimK F2k(N

′
s)− dimK(F2k(N

′
s) ∩ (sp − λp)N

′
s)

≤ dimK F2k(N
′
s)− dimK F2k−2(N

′
s) = H1(k)−H1(k − 1)
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for sufficiently large k. Note that H1(k)−H1(k − 1) is a polynomial of
degree at most n+p−1. Proceeding inductively, we obtain a polynomial
Hp(k) of degree at most n such that

dimK F2pk(N
′(λ)) = Hp(k) (∀k � 0)

with a good (1;1)-filtration

Fk(N
′(λ)) := Fk(N

′
s)/(Fk(N

′
s) ∩ ((s1 − λ1)N

′
s + · · ·+ (sp − λp)N

′
s))

on N ′(λ). On the other hand, there exists a polynomial G(k) such that

dimK Fk(N
′(λ)) = G(k) (∀k � 0).

Hence Hp(k) = G(2pk) holds for sufficiently large k. This implies

dimN ′(λ) = degG(k) = degHp(k) ≤ n.

Thus N ′(λ) is a holonomic Dn-module under the assumption above.
Finally, let us show N(λ) is holonomic. The localization M [f−1] has

a natural structure of left Dn-module and is holonomic as such ([13],
[4]; see also Theorem 2.14 in [25] for a constructive proof). Moreover,
M [f−1] is f -saturated by the definition. Let ρ : M 
 Pu �→ Pu ⊗ 1 ∈
M [f−1] be the canonical homomorphism. Then by Proposition 6.9, the
canonical homomorphism

ι : ρ(M)⊗K[x] Dn+pf
s −→ ρ(M)⊗K[x] L

is injective. Hence the submodule Ñs := Dn[s](ρ(u)⊗fs) of ρ(M)⊗K[x]L
is isomorphic to the submodule Ñ ′

s := Dn[s](ρ(u) ⊗ fs) of ρ(M) ⊗K[x]

Dn+pf
s. On the other hand, ρ induces an isomorphism M ⊗K[x] L →

ρ(M)⊗K[x] L by the definition. This induces an isomorphism Ns
∼= Ñs.

Summing up, we obtain an isomorphism

N(λ) ∼= Ñ ′(λ) := Ñ ′
s/((s1 − λ1)Ñ

′
s + · · ·+ (sp − λp)Ñ

′
s).

The module of the right-hand side is holonomic by the argument above.
This completes the proof. Q.E.D.

Note that if K is algebraically closed then Theorem 6.10 holds under
a weaker assumption thatM be holonomic on {x ∈ Kn | f1(x) · · · fp(x) �=
0} since it implies that M [f−1] is a holonomic Dn-module ([13]; see also
Theorem 3.14 of [25] for an elementary proof). We do not know if N ′(λ),
which can be computed directly, is always holonomic; the proof of Theo-
rem 4 in [24] is insufficient. In general, N(λ) is stronger and more suited
to our application below than N ′(λ). Summing up we have obtained
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Algorithm 6.11 (N(λ)). Input: A set G0 of generators of I with
M = Dn/I = Dnu, non-constant polynomials f1, . . . , fp ∈ K[x], and
λ ∈ Kp.
Output: N(λ) = Dn/J .

(1) Compute the Dn-submodule ρ(M) = Dnρ(u) of the localiza-
tionM [(f1 · · · fp)−1] with ρ(u) = u⊗1 by using the localization
algorithm of [25], which is a modification of the one in [28].

(2) Compute a set G1 of generators of the annihilator of ρ(u)⊗ fs

in ρ(M)⊗K[x] Dn+pf
s by Algorithm 6.8.

(3) Compute generators P1(s), . . . , Pr(s) of the annihilator

AnnDn[s](ρ(u)⊗ fs) = Dn[s] ∩AnnDn+p(ρ(u)⊗ fs)

by using G1 and Algorithm 5.5.
(4) Let J be the left ideal of Dn generated by P1(λ), . . . , Pr(λ).

In practice, we can skip step (1) and proceed to steps (2),(3),(4)
with ρ(M) replaced by M . This gives us N ′(λ) which might be weaker
than N(λ).

Now let us return to the ‘real world’. Assume that f1, . . . , fp ∈ R[x]
and let v(x) be a locally integrable holonomic function on an open set
U of Rn. Then

ṽ(x, λ) := v(x)(f1)
λ1
+ · · · (fp)λp

+

is well-defined as a locally integrable function on U if the real parts of
λ1, . . . , λp are non-negative. More precisely, ṽ(x, λ) belongs to the space
O(Cp

+,D′(U)) of D′(U)-valued holomorphic functions on

C
p
+ = {λ = (λ1, . . . , λp) ∈ Cp | Re λj > 0 (1 ≤ j ≤ p)},

that is, 〈ṽ(x, λ), ϕ(x)〉 is a holomorphic function of λ = (λ1, . . . , λp) on
C

p
+ for any ϕ ∈ C∞

0 (U). Moreover, 〈ṽ(x, λ), ϕ(x)〉 is continuous on the

closure C
p
+.

Let I be a left ideal of Dn which annihilates v(x) such that
M := Dn/I is holonomic. Set M = Dn/I = Dnu with u = 1 and
L = K[x, (f1 · · · fp)−1, s]fs with K = C. In order to apply the algebraic
arguments so far to ṽ(x, λ), we need the following fact:

Theorem 6.12. Suppose that P (s) ∈ Dn[s] annihilates u ⊗ fs in
M ⊗C[x] L and that the real parts of the components of λ ∈ Cp are
non-negative. Then P (λ)ṽ(x, λ) vanishes as a distribution on U . Hence
ṽ(x, λ) is a solution of the holonomic system N(λ).

Before proving this theorem, let us begin with



338 T. Oaku

Lemma 6.13. Suppose that P (s) ∈ Dn[s] annihilates u ⊗ fs in
M ⊗C[x] L. Then P (λ)ṽ(x, λ) vanishes as a distribution on Uf := {x ∈
U | f(x) �= 0} with f = f1 · · · fp for any λ ∈ C

p
+.

Proof. We denote fλ
+ = (f1)

λ1
+ · · · (fp)λp

+ . The C-bilinear homomor-
phism

Φ : M × L 
 (Pu, a(x, s, f−1)fs)

�−→ a(x, λ, f−1)fλ
+Pv(x) ∈ O(Cp

+,D′(Uf ))

with P ∈ Dn, a ∈ C[x, s, t] is well-defined since f1, . . . , fp do not vanish
on Uf . Moreover, Φ is C[x]-balanced in the sense that

Φ(c(x)Pu, a(x, s, f−1)) = Φ(Pu, c(x)a(x, s, f−1)) (∀c(x) ∈ C[x]).

Hence Φ induces a C[x]-homomorphism

Ψ : M ⊗C[x] L −→ O(Cp
+,D′(Uf ))

such that

Ψ((Pu)⊗ a(x, s, f−1)fs) = Φ(Pu, a(x, s, f−1)fs) = a(x, λ, f−1)fλ
+Pv

because of the universality of the tensor product. It is easy to see that

Ψ((Pu)⊗ sja(x, s, f
−1)fs) = λjΨ((Pu)⊗ a(x, s, f−1)fs) (1 ≤ j ≤ p),

and

Ψ(∂i((Pu)⊗ a(x, s, f−1)fs)) = Ψ((∂iPu)⊗ a(x, s, f−1)fs)

+ Ψ((Pu)⊗ (∂ia(x, s, f
−1))fs))

+ Ψ
(
(Pu)⊗

p∑
j=1

sjf
−1
j

∂fj
∂xi

a(x, s, f−1)fs
)

= a(x, λ, f−1)fλ
+∂iPv(x) + ∂ia(x, λ, f

−1)fλ
+Pv(x)

+

p∑
j=1

λjf
−1
j

∂fj
∂xi

a(x, λ, f−1)fλ
+Pv(x)

= ∂i
(
a(x, λ, f−1)fλ

+Pv(x)
)

(1 ≤ i ≤ n)

hold as distributions on Uf since fλ
+ is real analytic in x there. This

implies that

Ψ(P (s)(u⊗ fs)) = P (λ)Ψ(u⊗ fs) = P (λ)(fλ
+v(x))
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holds for any P (s) ∈ Dn[s]. Hence the right-hand side vanishes as an
element of O(Cp

+,D′(Uf )) if P (s)(u⊗ fs) = 0 in M ⊗C[x] L. Q.E.D.

Next we generalize a lemma by Kashiwara and Kawai [16], which
corresponds to the case p = 1:

Proposition 6.14. Let U be an open set of Rn and let f1, . . . , fp
be real-valued real analytic functions on U such that {x ∈ U | f1(x) >
0, . . . , fp(x) > 0} is not empty. Let v(x) be a locally integrable func-
tion on U . Set f = f1 · · · fp and Uf = {x ∈ U | f(x) �= 0}. Let
s1, . . . , sp be indeterminates and λ1, . . . , λp be complex variables. As-
sume that P (s1, . . . , sp) ∈ Dn[s1, . . . , sp] satisfies

P (λ1, . . . , λp)((f1)
λ1
+ · · · (fp)λp

+ v) = 0 in D′(Uf )

if Re λj (j = 1, . . . , p) are sufficiently large. Then one has

P (λ1, . . . , λp)((f1)
λ1
+ · · · (fp)λp

+ v) = 0 in D′(U)

for any λj ∈ C with Re λj ≥ 0 (j = 1, . . . , p).

Proof. We argue by induction on p. First let us set p = 1 and
recall the proof of Lemma 2.9 in [16]. We denote s = s1, f = f1, and
λ = λ1. Let ϕ be an element of C∞

0 (U). Then its support K = suppϕ
is a compact subset of U . Let χ(t) be a C∞ function of a variable t such
that χ(t) = 1 for |t| ≤ 1/2 and χ(t) = 0 for |t| ≥ 1. Let τ be a real

number with 0 < τ < 1. Since the support of
(
1− χ

(
f
τ

))
ϕ is contained

in Uf , we have by the assumption that

〈
P (λ)(fλ

+v), ϕ
〉
=

〈
P (λ)(fλ

+v), χ
(f
τ

)
ϕ

〉

=

∫
K

tP (λ)
(
χ
(f
τ

)
ϕ
)
(fλ

+v) dx,

where tP (λ) denotes the adjoint operator of P (λ). Let m be the order
of P (s) and d be the degree of P (s) in s. Then there exists a constant
C > 0 such that

sup
x∈K

∣∣∣∣tP (λ)
(
χ
(f(x)

τ

)
ϕ(x)

)∣∣∣∣ ≤ C(1 + |λ|)dτ−m (0 < ∀τ < 1).
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Assume Re λ > m and 0 < τ < 1. Then we have∣∣∣∣
∫
K

tP (λ)
(
χ
(f
τ

)
ϕ
)
(fλ

+v) dx

∣∣∣∣
≤ C(1 + |λ|)dτ−m

∫
{x∈K|0≤f(x)≤τ}

|fλ
+v(x)| dx

≤ C(1 + |λ|)dτ−m+Re λ

∫
K

|v(x)| dx.

This implies〈
P (λ)(fλ

+v), ϕ
〉
= lim

τ→+0

∫
K

tP (λ)
(
χ
(f
τ

)
v
)
(fλ

+v) dx = 0.

By the uniqueness of analytic continuation with respect to λ, we know
that P (λ)(fλ

+v) = 0 in D′(U) if Re λ ≥ 0.
Now suppose that the assertion of the proposition is proved with p

replaced by p − 1. We use the notation s = (s1, . . . , sp) and
λ = (λ1, . . . , λp). Set

V = {x ∈ U | f1(x) = · · · = fp(x) = 0}.
With the assumption of the proposition, we have

P (λ)((f1)
λ1
+ · · · (fp)λp

+ v) = 0

on U \ V if Re λj ≥ 0 for j = 1, . . . , p. In fact, for a point x0 of

U \ V , we may assume fp(x0) > 0. Then replacing v by f
λp
p v and U

by a neighborhood Ux0 of x0, we conclude that P (λ)((f1)
λ1
+ · · · (fp)λp

+ v)
vanishes as an element of D′(Ux0) if Re λj ≥ 0 (1 ≤ j ≤ p) by the
induction hypothesis.

Since the support of
(
1 − χ

(
f1
τ

) · · ·χ( fp
τ

))
ϕ is contained in U \ V ,

we have 〈
P (λ)((f1)

λ1
+ · · · (fp)λp

+ v), ϕ
〉

=

〈
P (λ)(f1)

λ1
+ · · · (fp)λp

+ v), χ
(f1
τ

) · · ·χ(fp
τ

)
ϕ

〉

=

∫
U

tP (λ)
(
χ
(f1
τ

) · · ·χ(fp
τ

)
ϕ
)
(f1)

λ1
+ · · · (fp)λp

+ v dx.

Let m be the order of P (s) and d be the total degree of P (s) in s. Then
there exists a constant C > 0 such that

sup
x∈K

∣∣∣∣tP (λ)
(
χ
(f1(x)

τ

) · · ·χ(fp(x)
τ

)
ϕ(x)

)∣∣∣∣ ≤ C(1+ |λ1|+ · · ·+ |λp|)dτ−m
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holds if 0 < ∀τ < 1. Set K(τ) := {x ∈ K | 0 ≤ fj(x) ≤ τ (j = 1, . . . , p)}
with K = suppϕ. Then we have∣∣∣〈P (λ)((f1)

λ1
+ · · · (fp)λp

+ v), ϕ
〉∣∣∣

≤ C(1 + |λ1|+ · · ·+ |λp|)dτ−m

∫
K(τ)

|(f1)λ1
+ · · · (fp)λp

+ v(x)| dx

≤ C(1 + |λ1|+ · · ·+ |λp|)dτRe λ1+···+Re λp−m

∫
K

|v(x)| dx

if 0 < ∀τ < 1. This implies that
〈
P (λ)((f1)

λ1
+ · · · (fp)λp

+ u), ϕ
〉
vanishes

if Re λj ≥ 0 (1 ≤ j ≤ p) and Re λ1 + · · · + Re λp > m, and hence only
if Re λj ≥ 0 (1 ≤ j ≤ p) by the uniqueness of analytic continuation.

Q.E.D.

Proof of Theorem 6.12: The first statement follows from Lemma
6.13 and Proposition 6.14. Let us fix λ0 = (λ0

1, . . . , λ
0
p) ∈ C

p
+. Suppose

P ∈ Dn annihilates the residue class (u⊗ fs)|s=λ0 in N(λ0) of u⊗ fs ∈
M ⊗K[x] L. Then there exist P (s), Qj(s) ∈ Dn[s] such that

P = P (s)+ (s1−λ0
1)Q1(s)+ · · ·+(sp−λ0

p)Qp(s), P (s)(u⊗ fs) = 0.

It follows from the first statement that

P ṽ(x, λ) = (λ1 − λ0
1)Q1(λ)ṽ(x, λ) + · · ·+ (λp − λ0

p)Qp(λ)ṽ(x, λ)

for λ ∈ C
p
+, and hence P ṽ(x, λ0) = 0. This implies that there exists

a Dn-linear map from N(λ0) to D′(U) which sends (u ⊗ fs)|s=λ0 to
ṽ(x, λ0). This completes the proof of Theorem 6.12.

6.3. Integrals over the domain defined by polynomial in-
equalities

We assume K = C. As in 4.3, set x = (x1, . . . , xn) and y =
(y1, . . . , yd). Assume that f1, . . . , fp are real polynomials in (x, y) and
let v(x, y) be a holonomic locally integrable function on an open set
of Rn+d and let λ1, . . . , λp be complex numbers with non-negative real
parts. We assume that

ṽ(x, y) := v(x, y)(f1)
λ1
+ · · · (fp)λp

+

belongs to E ′D′(Rn
x ×U) with an open set U of Rd

y, or to SS ′(Rn
x ×Rd

y).
Let I be a left ideal of Dn+d which annihilates v(x, y) such that
M := Dn+d/I is holonomic. Set M = M/I = Dn+du with u = 1 and
L = C[x, y, (f1 · · · fp)−1, s]fs. Then Algorithm 6.11 yields a holonomic
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system for ṽ(x, y) by virtue of Theorem 6.12. Thus by the integration
algorithm, we get a holonomic system for

w(y) :=

∫
Rn

v(x, y)(f1)
λ1
+ · · · (fp)λp

+ dx.

In particular, setting λ1 = · · · = λp = 0, we obtain a holonomic system
for

w(x) =

∫
D(y)

v(x, y) dx =

∫
Rn

v(x, y)Y (f1(x, y)) · · ·Y (fp(x, y)) dx

with
D(y) = {x ∈ Rn | fj(x, y) ≥ 0 (1 ≤ j ≤ p)}.

As examples, let us consider truncated multi-dimensional normal
distributions: Let f1, . . . , fp be real polynomials in x = (x1, . . . , xn) and
set

D = {x ∈ Rn | fj(x) ≥ 0 (1 ≤ j ≤ p)}.

Then exp
(
−|x|2

2

)
Y (f1) . . . Y (fp) is, up to a constant multiple, the prob-

ability density function of the standard normal distribution truncated
by D. Let f(x) be a real polynomial, which we regard as a random vari-
able. Then the cumulative and the density functions of f(x) are given
by

F (t) =

∫
D

exp
(
−|x|2

2

)
Y (t− f(x)) dx

=

∫
Rn

exp
(
−|x|2

2

)
Y (t− f(x))Y (f1(x)) · · ·Y (fp(x)) dx

and

F ′(t) =
∫
Rn

exp
(
−|x|2

2

)
δ(t− f(x))Y (f1(x)) · · ·Y (fp(x)) dx

respectively up to constant multiples. The integrands belong to the
space SS ′(Rn

x × Rt).

Example 6.15. Setting f(x) = |x|2 and

D = {x = (x1, . . . , xn) ∈ Rn | xi ≥ 0 (1 ≤ i ≤ n), x1 + · · ·+ xn ≤ 1},
let us consider the density function

v(t) =

∫
Rn

exp
(
−|x|2

2

)
δ(t− |x|2)Y (x1) · · · Y (xn)Y (1− x1 − · · · − xn) dx
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(up to a constant multiple) of the random variable |x|2. If n = 2, then
v(t) satisfies a differential equation

{4t(t−1)(2t−1)∂t
2+4(−2t3+6t2−5t+1)∂t+2t3−9t2+9t−2}v(t) = 0.

Its indicial polynomials at 0, 1, and 1/2 are s2, s(s − 1), and s(2s − 1)
respectively. It can be verified that 1 is an apparent singular point e.g.,
by an algorithm described in Chapter 1 of [23]. Hence v(t) belongs to
L1(R) and real analytic on R \ {0, 1/2}.

If n = 3, v(t) is annihilated by

8t(t− 1)(2t− 1)(3t− 1)∂t
3 + (−72t4 + 276t3 − 308t2 + 116t− 12)∂t

2

+ (36t4 − 210t3 + 308t2 − 162t+ 28)∂t − 6t4 + 47t3 − 83t2 + 53t− 11.

Its indicial polynomials at 0, 1, 1/2, 1/3 are s(s−1)(2s−1), s(s−1)(s−2),
s(s − 1)(2s − 3), s(s − 1)2 respectively up to constant multiples. The
point 1 is an apparent singular point.

Example 6.16. Set n = 2 and

v(t) =

∫
R2

exp
(
−|x|2

2

)
δ(t− x1 − x2)Y (1− x2

1 − x2
2) dx.

Then v(t) is annihilated by two operators

P1 = 2t(t2 − 2)∂t
2 + (−t4 + 2t2 + 4)∂t − t3,

P2 = 4(t2 − 2)∂t
3 + 12t∂t

2 + (−t4 − 8t2 + 12)∂t − t3 − 6t,

neither of which is a multiple of the other. The singular locus of the
D1-module D1/(D1P1 +D1P2) is {t | t2 − 2 = 0} = {√2,−√

2}.
Example 6.17. Set n = 2, D = {x = (x1, x2) | x3

1 − x2
2 ≥ 0} and

consider

v(t) =

∫
R2

exp
(
−|x|2

2

)
δ(t− f(x))Y (x3

1 − x2
2) dx1dx2

for a real polynomial f(x). If f(x) = x1, then v(t) is annihilated by

2t∂t
2 + (−3t3 − 4t2 − 1)∂t + 3t4 + 2t3 − t;

Its indicial polynomial at 0 is s(2s− 3).
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If f(x) = x2
1 + x2

2, then v(t) is annihilated by

16t3(27t− 4)∂t
4 + (−864t4 + 3368t3 − 320t2)∂t

3

+ (648t4 − 4956t3 + 5724t2 − 268t)∂t
2

+ (−216t4 + 2462t3 − 5484t2 + 1654t− 12)∂t

+ 27t4 − 409t3 + 1351t2 − 760t+ 6.

The indicial polynomials at 0 and 27/4 are s2(4s−1)(4s−3) and s(s−1)
(s − 2)(s − 3) respectively up to constant multiples. The point 27/4 is
an apparent singular point.

Example 6.18. Set

v(t) =
1

2π

∫
R2

exp
(
−x2

1 + x2
2

2

)
δ(t− x1x2) dx1dx2.

This is the density function of the random variable x1x2 with the stan-
dard normal distribution (x1, x2) and satisfies (t∂2

t + ∂t − t)v(t) = 0.
Consider the density function

w(t) =

∫
Rn

δ(t− x2
1 − x2

2)v(x1)v(x2) dx1dx2

of x2
1 + x2

2, where (x1, x2) is the random vector with the probability
density function v(x1)v(x2). The integrand belongs to E ′D′(R2

x ×Rt), a
holonomic system for which can be computed by using Algorithm 6.11.
The integration algorithm gives

(8t3∂t
4 + 48t2∂t

3 − (6t2 − 56t)∂t
2 − (12t− 8)∂t + t− 2)w(t) = 0.

The indicial equation at 0 is s4.

6.4. Integrals with auxiliary difference parameters

Let us take as an example the integral

v(t; a, b) =
1

B(a, b)

∫ ∞

−∞
δ(t− x+ x2)xa−1

+ (1− x)b−1
+ dx

for positive real numbers a, b. The integrand is holonomic in x and t,
but not in (x, t, a, b) if we regard a, b as variables. Let us apply the
algorithm of the preceding sections: first,

u(x, t; a, b) :=
1

B(a, b)
δ(t− x+ x2)xa−1

+ (1− x)b−1
+
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is annihilated by two operators

(15) t−x+x2, (−x2+x)∂x+(2x3−3x2+x)∂t+(a+ b−2)x−a+1.

Since the initial part of t − x + x2 with respect to the weight vector
(1, 0;−1, 0) for (x, t, ∂x, ∂t) is x2 and ∂2

xx
2 = ∂xx(∂xx + 1), we know

that the b-function b(s) with respect to this weight vector divides, in fact
equals, s(s − 1), which does not depend on a, b. Hence the integration
algorithm can be safely applied although the integrand is not holonomic
in the variables (x, t, a, b) and produces a differential equation

(16) (t2(1− 4t)∂t
2 + ((4a+ 4b− 18)t2 + (−a− b+ 3)t)∂t

+ (−a2 + (−2b+ 7)a− b2 + 7b− 12)t+ (b− 1)a− b+ 1)v(t; a, b) = 0.

It has regular singularities at t = 0 and t = 1/4. The characteristic
exponents at 0 are a − 1 and b − 1; those at 1/4 are 0 and −1/2. Note
that v(t; a, b) vanishes if t < 0 or t > 1/4 and its explicit formula for
0 < t < 1/4 can be obtained directly. The computation above assures
us that v(t; a, b) satisfies (16) on the whole R as a distribution in t.

In what follows we treat the case where the integrand has some
auxiliary parameters with respect to which the integrand satisfies differ-
ence equations. In general, let Dn be the ring of differential operators
defined over K = C. As in 6.2 define the Dn-algebra homomorphism
μ : Dn+p → Dn〈a,Ea, E

−1
a 〉 by

μ(tj) = Eaj , μ(∂tj ) = −ajE
−1
aj

(1 ≤ j ≤ p),

where Eaj denotes the shift operator aj �→ aj +1. Conversely, we define
a Dn-algebra homomorhphism μ̂ : Dn〈a,Ea〉 → Dn+p by

μ̂(aj) = −∂tj tj , μ̂(Eaj ) = tj (1 ≤ j ≤ p).

Then μ◦μ̂ coincides with the inclusion mapDn〈a,Ea〉 ⊂ Dn〈a,Ea, E
−1
a 〉.

Definition 6.19. A left ideal I of Dn〈a,Ea〉 is called a holonomic
Dn〈a,Ea〉-ideal if
J := μ−1(Dn〈a,Ea, E

−1
a 〉I) = {P ∈ Dn+p | μ(P ) ∈ Dn〈a,Ea, E

−1
a 〉I}

is a holonomic ideal of Dn+p, i.e., Dn+p/J is a holonomic Dn+p-module.

Definition 6.20. A subset Ω of Cp is said to be shift-invariant if
a ∈ Ω implies that a + (1, 0, . . . , 0), . . . , a + (0, . . . , 0, 1) also belong to
Ω.
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Definition 6.21. Let Ω be a shift-invariant subset of Cp. We define
a pair of classes (Fn,d(Ω),F0,d(Ω)) as one which satisfies the following
properties:

(1) Any element u = u(x, y, a) of Fn,d(Ω) is a map from Ω to
D′(Rn

x ×Rd
y); any element v = v(y, a) of F0,d(Ω) is a map from

Ω to D′(Rd
y).

(2) Fn,d(Ω) is a left Dn+d〈a,Ea〉-module and F0,d(Ω) is a left
Dd〈a,Ea〉-module.

(3) Let u = u(x, y, a) be an arbitrary element of Fn,d(Ω). Then the
integral

∫
Rn u(x, y, a) dx is well-defined and belongs to F0,d(Ω).

Moreover,

P

∫
Rn

u(x, y, a) dx =

∫
Rn

Pu(x, y, a) dx,

∫
Rn

∂xiu(x, y, a) dx = 0

hold for any u ∈ Fn,d(Ω), P ∈ Dd〈a,Ea〉, and i = 1, . . . , n.
(4) Eaj : F0,d(Ω) → F0,d(Ω) defines an injective C-linear map for

each j = 1, . . . , p.

As the first examle, let Ω be a shift-invariant open subset of Cp and
define the space O(Ω,S ′(Rd)) to be the set of S ′(Rd)-valued holomorphic
functions:

O(Ω,S ′(Rd))

= {u : Ω → S ′(Rd) | 〈u(y, a), ϕ(y)〉y ∈ O(Ω) (∀ϕ ∈ S(Rd))}.

Let O(Ω,SS ′(Rn × Rd)) be the set of functions from Ω to S ′(Rn × Rd)
of the form

u(x, y, a) =
m∑
j=1

uj(x)vj(x, y, a)

with m ∈ N, uj ∈ S(Rn), vj ∈ O(Ω,S ′(Rn+d)). Then the integral of
u(x, y, a) with respect to x is defined by〈∫

Rn

u(x, y, a) dx, ϕ(y)

〉
=

m∑
j=1

〈vj(x, y, a), uj(x)ϕ(y)〉(x,y)

for any ϕ ∈ S(Rd), which is well-defined as an element of O(Ω,S ′(Rd))
independent of the expression of u(x, y, a) above. Thus the pair

Fn,d(Ω) = O(Ω,SS ′(Rn × Rd)), F0,d(Ω) = O(Ω,S ′(Rd))

satisfies the conditions of Definition 6.21.
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The second example is the pair

Fn,d(Ω) = {u : Ω → SS ′(Rn × Rd)}, F0,d(Ω) = {u : Ω → S ′(Rd)}
with a subset Ω of Cp such that a ∈ Ω implies (a1, . . . , aj±1, . . . , ap) ∈ Ω
for j = 1, . . . , p.

Algorithm 6.22 (difference-differential equations for an integral).
Input: A set G0 of generators of a holonomic ideal I of Dn+d〈a,Ea〉
which annihilates u(x, y, a) ∈ Fn,d(Ω) with a shift-invariant subset Ω of
Cp.
Output: A set G of generators of a holonomic ideal of Dd〈a,Ea〉 which
annihilates v(y, a) =

∫
Rn u(x, y, a) dx.

(1) Let J be the left ideal of Dn+d+p generated by μ̂(G0).

(2) Compute J̃ := {P ∈ Dn+d+p | tνP ∈ J (∃ν ∈ Np)} as the
annihilator of 1⊗ 1 in the localization

(Dn+d+p/J)[(t1 · · · tp)−1] = (Dn+d+p/J)⊗K[x,y,t] K[x, y, t, (t1 · · · tp)−1],

where 1 is the residue class of 1 in Dn+d+p/J , by using the
localization algorithm of [25].

(3) Compute a set G1 of generators of the integration ideal

N := Dd+p ∩ (∂x1Dn+d+p + · · ·+ ∂xnDn+d+p + J̃)

of J̃ by Algorithm 5.10.
(4) Let P be an element of G1. Then there exists a (componen-

twise) minimal ν = (ν1, . . . , νp) ∈ Zp such that Q := Eν
aμ(P )

belongs to Dd〈a,Ea〉. (Set νj = 0 if μ(P ) does not con-
tain Eaj .) Let us denote this Q by nm(μ(P )). Set G :=
{nm(μ(P )) | P ∈ G1}.

Proof. First, let us prove that Dn+d+p/J̃ is holonomic. It suffices

to show that J̃ contains μ−1(Dn+d〈a,Ea, E
−1
a 〉I), which is a holonomic

ideal by the assumption. Let P be an element of this set. Then there
exist Q ∈ I and ν ∈ Np such that

μ(tνP ) = Eν
aμ(P ) = Q = μ(μ̂(Q)).

Hence tνP = μ̂(Q) belongs to J . This implies P ∈ J̃ .
Next let us prove that each element P of G annihilates v(y, a). By

the definition of G, there exist Qi ∈ Dn+d+p, R ∈ J̃ and ν ∈ Np such
that

(17) Eν
aP =

n∑
i=1

∂xiμ(Qi) + μ(R).
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Taking the components of ν large enough, we may also assume that
μ(Qi) belong to Dd〈a,Ea〉 and μ(R) belongs to I so that μ(Qi)u ∈
Fn,d(Ω) and μ(R)u = 0. Thus (17) implies

Eν
aPv(y, a) =

∫
Rn

Eν
aPu(x, y, a) dx =

n∑
i=1

∫
Rn

∂xiμ(Qi)u(x, y, a) dx = 0

by (2) and (3) of Definition 6.21, and hence Pv = 0 by (4).

Finally, let us show the ideal Ĩ of Dd〈a,Ea〉 generated by G is holo-
nomic. Theorem 5.1 assures that Dd+p/N is holonomic. Hence it suffices

to show that μ−1(Dd〈a,Ea, E
−1
a 〉Ĩ) contains N , which is easy to see by

the definition of Ĩ. This completes the correctness proof of the algo-
rithm. Q.E.D.

In practice we can skip step (2) if J of step (1) is already holonomic.

Example 6.23. Let us come back to the example given at the
beginning of this subsection. First note that the integrand

u(x, t; a, b) =
1

B(a, b)
δ(t− x+ x2)xa−1

+ (1− x)b−1
+ ,

which belongs to O(Ω, E ′D′(Rx × Rt)) with Ω = {(a, b) ∈ C2 | Re a >
0, Re b > 0}, satisfies difference equations

(aEa − (a+ b)x)u(x, t; a, b) = 0, (bEb − (a+ b)(1− x))u(x, t; a, b) = 0

with the shift operators Ea : a �→ a + 1 and Eb : b �→ b + 1, in addition
to (15). With these inputs, Algorithm 6.22 returns a set of generators
of a holonomic ideal of D1〈a, b, Ea, Eb〉 which annihilates v(t; a, b) =∫∞
−∞ u(x, t; a, b) dx. For example, v(t; a, b) is annihilated by

(4EbEat
2 − EbEat)∂t + {(b(−2Eb + 1) + 2Eb + 1)Ea

+ a(−Eb + 1) + b(2E2
b − 2Eb + 1) + 2E2

b − Eb}t.
Computing the intersection with the subring D1[a, b], we get (16) again.
If only differential equations in t is needed, we could have ignored the
factor, i.e, the reciprocal of B(a, b) at first.

Finally, let us consider the multivariate gamma distribution with
the density function

un(x; a) = u(x1, . . . , xn; a1, . . . , an)

:=
1

Γ(a1) · · ·Γ(an) (x1)
a1−1
+ · · · (xn)

an−1
+ e−x1−···−xn
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with x = (x1, . . . , xn) and a = (a1, . . . , an). It is annihilated by

xi∂xi + xi − ai + 1, aiEai − xi (1 ≤ i ≤ n)

which generate a holonomic Dn〈a,Ea〉-ideal. Hence Algorithm 6.22 pro-
duces a holonomic ideal of D1〈a,Ea〉 which annihilates the density func-
tion

v(t; a) :=

∫
Rn

δ(t− f(x))un(x; a) dx

for an arbitrary real polynomial f(x) as a random variable. Here we can
regard the integrand as an element of O(Ω,SS ′(Rn

x × Rt)) with

Ω = {a ∈ Cn | Re aj > 0 (1 ≤ j ≤ n)}.
Example 6.24. Set

v(t; a1, a2) :=

∫
R2

δ(t− x1x2)u2(x; a1, a2) dx1dx2.

By Algorithm 6.22 we know that it is annihilated by the differential
operator

t2∂t
2 + (−a1 − a2 + 3)t∂t − t+ a1a2 − a1 − a2 + 1

whose indicial polynomial at 0 is (s− a1 + 1)(s− a2 + 1), as well as by
difference-differential operators

t∂t + a1(Ea1 − 1) + 1, t∂t + a2(Ea2 − 1) + 1.

These three operators generate a holonomic ideal of D1〈a1, a2, Ea1 , Ea2〉.
Example 6.25. Set

v(t; a1, a2) :=

∫
R2

δ(t− x2
1 − x2

2)u1(x; a1, a2) dx1dx2.
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It is annihilated by the differential operator

P = 32t4∂t
6 + (−64a1 − 64a2 + 480)t3∂t

5

+ {−32t3 + (48a21 + (96a2 − 624)a1 + 48a22 − 624a2 + 2040)t2}∂t4
+ {(40a1 + 40a2 − 256)t2 + (−16a31 + (−48a2 + 264)a21

+ (−48a22 + 528a2 − 1448)a1 − 16a32 + 264a22 − 1448a2 + 2640)t}∂t3
+ {10t2 + (−16a21 + (−32a2 + 172)a1 − 16a22 + 172a2 − 456)t

+ 2a41 + (8a2 − 36)a31 + (12a22 − 108a2 + 238)a21

+ (8a32 − 108a22 + 476a2 − 684)a1

+ 2a42 − 36a32 + 238a22 − 684a2 + 720}∂t2
+ {(−6a1 − 6a2 + 30)t+ 2a31 + (6a2 − 26)a21

+ (6a22 − 52a2 + 108)a1 + 2a32 − 26a22 + 108a2 − 144}∂t
− t+ a21 − 5a1 + a22 − 5a2 + 10.

The indicial polynomial of P at 0 is

b(s) = s(s−1)(2s−a1−a2)(2s−a1−a2−1)(2s−a1−a2+1)(2s−a1−a2+2)

up to a constant multiple.
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ometric Differential Equations”, Springer-Verlag, Berlin, 2000, viii+254
pp., ISBN: 3-540-66065-8.

[30] Sato, M., Theory of hyperfunctions, I, J. Fac. Sci. Univ. Tokyo, Sect. I 8
(1959), 139–193.

[31] Sato, M., Kawai, T., Kashiwara M., Microfunctions and pseudo-differential
equations, Lecture Notes in Math. Vol. 287, Springer, Berlin, pp. 265–529,
1973.
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