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Nicolette Meshkat, Zvi Rosen and Seth Sullivant

Abstract.

We present algebraic techniques to analyze state space models in
the areas of structural identifiability, observability, and indistinguisha-
bility. While the emphasis is on surveying existing algebraic tools for
studying ODE systems, we also present a variety of new results. In par-
ticular: on structural identifiability, we present a method using linear
algebra to find identifiable functions of the parameters of a model for
unidentifiable models. On observability, we present techniques using
Gröbner bases and algebraic matroids to test algebraic observability of
state space models. On indistinguishability, we present a sufficient con-
dition for distinguishability using computational algebra and demon-
strate testing indistinguishability.
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§1. Introduction

Consider a dynamic systems model in the following state space form:

(1) x′(t) = f(x(t), p, u(t)) y(t) = g(x(t), p)

Here x(t) is the state variable vector, u(t) is the input vector (or control
vector), y(t) is the output vector, and p is a parameter vector (p1, ..., pn)
composed of unknown real parameters p1, ..., pn. In this modeling frame-
work the only observed quantities are the input and output trajectories,
u(t) and y(t) (or more realistically, the trajectories observed at some
finite number of time points t1, t2, . . .), together with the underlying
modeling structure (that is, the functions f and g). State space mod-
els are widely used throughout the applied sciences, including the areas
of control [27, 53, 59, 68], systems biology [22], economics and finance
[35, 77], and probability and statistics [11, 40].

A simple example of a state space model is a linear compartment
model.

Example 1.1. Consider the following ODE:
(
x′
1

x′
2

)
=

(−(a01 + a21) a12
a21 −(a02 + a12)

)(
x1

x2

)
+

(
u1

0

)
y1 = x1.

This model is called the linear 2-compartment model and will be refer-
enced in later sections. Here (x1(t), x2(t)) is the state variable vector,
u1(t) is the input (or control), y1(t) is the output, and (a01, a02, a12, a21)
is the unknown parameter vector.

Although the analysis of the behavior and use of state space models
falls under the dynamical systems research area umbrella, tools from
algebra can be used to analyze these models when the functions f and
g are rational functions. Algebraic methods typically focus on deter-
mining which key features the models satisfy a priori before the models
are used to analyze data. The point of the present paper is to give an
overview of these algebraic techniques to show how they can be applied
to analyze state space models. We focus on three main problems where
algebraic techniques can be helpful: determining structural identifiabil-
ity, observability, and indistinguishability of the models. We provide an
overview of techniques for these problems coming from computational
algebra and we also introduce some new results coming from matroid
theory.
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§2. State Space Models

In this section, we provide a more detailed introduction to state
space models, and the basic theoretical problems of identifiability, ob-
servability, and indistinguishability that we will address in this paper.
We also provide a detailed introduction to the linear compartment mod-
els that will be an important set of examples that we use to illustrate
the theory.

Consider a general state space model

(2) x′(t) = f(x(t), p, u(t)) y(t) = g(x(t), p)

as in the introduction, with x(t) ∈ RN , y(t) ∈ RM , u(t) ∈ RR and
p ∈ Rn.

The state space model (2) is called identifiable if the unknown pa-
rameter vector p can be recovered from observation of the input and
output alone. The model is observable if the trajectories of the state
space variables x(t) can be recovered from observation of the input and
output alone. Two state space models are indistinguishable if for any
choice of parameters in the first model, there is a choice of parameters in
the second model that will yield the same dynamics in both models, and
vice versa. Before getting into the technical details of these definitions
for state space models, we introduce some key examples of state space
models that we will use to illustrate the main concepts throughout the
paper.

Example 2.1 (SIR Model). A commonly used model in epidemi-
ology is the Susceptible-Infected-Recovered model (SIR model) ([8], [9],
[10], [47], [63]) which has the following form:

S′ = μN − βS
I

N
− μS

I ′ = βS
I

N
− (μ+ γ)I

R′ = γI − μR

y = kI

The interpretation of the state variables is that S(t) is the number of
susceptible individuals at time t, I(t) is the number of infected individ-
uals at time t, and R(t) is the number of recovered individuals at time t.
The unknown parameters are the birth/death rate μ, the transmission
parameter β, the recovery rate γ, the total population N , and the pro-
portion of the infected population measured k. In this model, we assume
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that we only observe the trajectory y(t), an (unknown) proportion of the
infected population. Note that this simple model has no input/control.

Identifiability and observability analysis in this model are concerned
with determining which unmeasured quantities can be determined from
only the observed output trajectory y. Identifiability specifically con-
cerns the unobserved parameters μ, β, γ,N , and k, whereas observability
specifically is concerned with the unobserved state variables S, I, and
R.

A commonly used family of state space models are the linear com-
partment models. We outline these models here. Let G = (V,E) be
a directed graph with vertex set V and set of directed edges E. Each
vertex i ∈ V corresponds to a compartment in our model and each edge
j → i corresponds to a direct flow of material from the jth compart-
ment to the ith compartment. Let In,Out, Leak ⊆ V be three sets of
compartments: the set of input compartments, output compartments,
and leak compartments respectively. To each edge j → i we associate an
independent parameter aij , the rate of flow from compartment j to com-
partment i. To each leak node i ∈ Leak, we associate an independent
parameter a0i, the rate of flow from compartment i leaving the system.

To such a graph G and set of leaks Leak we associate the matrix
A(G) in the following way:

A(G)ij =

⎧⎪⎪⎨
⎪⎪⎩

−a0i −
∑

k:i→k∈E aki if i = j and i ∈ Leak
−∑

k:i→k∈E aki if i = j and i /∈ Leak
aij if j → i is an edge of G
0 otherwise

For brevity, we will often use A to denote A(G). Then we construct a sys-
tem of linear ODEs with inputs and outputs associated to the quadruple
(G, In,Out, Leak) as follows:

(3) x′(t) = Ax(t) + u(t) yi(t) = xi(t) for i ∈ Out

where ui(t) ≡ 0 for i /∈ In. The coordinate functions xi(t) are the state
variables, the functions yi(t) are the output variables, and the nonzero
functions ui(t) are the inputs. The resulting model is called a linear
compartment model.

We use the following convention for drawing linear compartment
models [22]. Numbered vertices represent compartments, outgoing ar-
rows from the compartments represent leaks, an edge with a circle com-
ing out of a compartment represents an output, and an arrowhead point-
ing into a compartment represents an input.
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Fig. 1. A 2-compartment model with In = {1}, Out = {1},
and Leak = {1, 2}.

Example 2.2. For the compartment model in Figure 1, the ODE
system has the form given in Example 1.1. Since this model has a leak
in every compartment, the diagonal entries of A(G) are algebraically
independent of the other entries. In this situation, we can re-write the
diagonal entries of the matrix A as a11 = −(a01+a21) and a22 = −(a02+
a12). Thus we have the following ODE system:

(
x′
1

x′
2

)
=

(
a11 a12
a21 a22

)(
x1

x2

)
+

(
u1

0

)
y1 = x1.

§3. Differential Algebra Approach To Identifiability

In this paper we focus on the structural versions of identifiability,
observability, and indistinguishability (that is, structural identifiability,
structural observability, structural indistinguishability). That means
we study when these properties hold assuming that we are able to ob-
serve trajectories perfectly. Practical versions of these problems concern
how noise affects the ability to, e.g., infer parameters of the models.
Structural answers are important because the structural version of the
condition is necessary to insure that the practical version holds. On
the other hand, practical versions of these problems depend on the spe-
cific data dependent context in which the data might be observed, and
might further depend on the particular underlying unknown parameter
choices. We will drop “structural” throughout the paper since this will
be implicit in the majority of our discussion.

To make the definitions of identifiability, observability, and indistin-
guishability precise we will use tools from differential algebra. In this
approach, we must form the input-output equations associated to our
model by performing differential elimination. We carry out operations
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in the differential ring

Q(p)[x, y, u, x′, y′, u′, . . .]

with the derivation d
dt with respect to time such that the parameters p

are constants with respect to the derivation, and d
dtx = x′, etc. Differ-

ential algebra was developed by Ritt [60] and Kolchin [41] and has its
most well-known applications to the study of the algebraic solution to
systems of differential equations [64].

The goal of this differential elimination process for state space mod-
els is to eliminate the state variables x(t) and their derivatives, so that
the resulting equations are purely in terms of the input variables, output
variables, and the parameters. The equations that result from applying
the differential elimination process are called the input-output equations.
We obtain input-output equations in the following form:

∑
i

ci(p)ψi(u, y) = 0

where ci(p) are rational functions in the parameter vector p and ψi(u, y)
are differential monomials in u(t) and y(t). Let c = (c1(p), ..., cm(p))
denote the vector of coefficients of the input-output equations, which
are rational functions in the parameter vector p. This coefficient vector
induces a map c : Rn → Rm called the coefficient map, that plays an
important role in the study of identifiability and indistinguishability.

For general state space models of the form (2) we can also use ordi-
nary Gröbner basis calculations to determine the input-output equation.

Proposition 3.1. Consider a state space model of the form (2)
where f and g are polynomial functions and where there are N state-
space variables, M = 1 output variable, and R input variables. Let P be
the ideal

〈x′ − f(x, p, u), . . . , x(N) − dN−1

dtN−1
f(x, p, u),

y − g(x, p), . . . , y(N) − dN

dtN
g(x, p)〉

⊆ Q(p)[x, y, u, x′, y′, u′, . . . , x(N−1), y(N−1), u(N−1), x(N), y(N)].

Then P ∩ Q(p)[y, u, y′, u′, . . . , y(N−1), u(N−1), y(N)] is not the zero ideal
and hence contains an input-output equation.

Although Proposition 3.1 is known in the literature [28, 37], we
include a proof because it will illustrate some useful ideas that we will
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use in other new results later on. Note that although this is stated for
a single output, one can apply Proposition 3.1 one output at a time to
find input-output equations for each output separately and hence obtain
Proposition 3.2.

Proof. Note that P is a prime ideal, since, with a carefully chosen
lexicographic term order, it has as its initial ideal

〈x′, . . . , x(N), y, . . . , y(N)〉
which is a prime ideal. Since P is prime, we can consider the algebraic
matroid associated to this ideal. To say that P ∩ Q(p)[y, u, y′, u′, . . . ,
y(N−1), u(N−1), y(N)] is not the zero ideal is equivalent to saying that
the set {y, u, y′, u′, . . . , y(N−1), u(N−1), y(N)} is a dependent set in the
associated algebraic matroid. The initial ideal also shows that this ideal
is a complete intersection, so it is has codimension N2+N+1 (since this
is the number of equations involved). The total number of variables in
our polynomial ring is N(N+1)+N+1+RN , whereN(N+1) counts the
x, x′, . . . variables, N + 1 counts the y, y′, . . . variables, and RN counts
the u, u′, . . . variables. Thus P has dimension N +RN . Since the total
number of variables in the set {y, u, y′, u′, . . . , y(N−1), u(N−1), y(N)} is
N + 1+RN , these variables must be dependent, i.e. there must exist a
relation. Q.E.D.

For multiple outputs, one can again take derivatives up to order
N and show that there must exist an input-output equation for each
output:

Proposition 3.2. Consider a state space model of the form (2)
where f and g are polynomial functions and where there are N state-
space variables, M output variables, and R input variables. Let P be the
ideal

〈x′ − f(x, p, u), . . . , x(N) − dN−1

dtN−1
f(x, p, u),

y − g(x, p), . . . , y(N) − dN

dtN
g(x, p)〉

⊆ Q(p)[x, y, u, x′, y′, u′, . . . , x(N−1), y(N−1), u(N−1), x(N), y(N)].

Then P ∩Q(p)[yi, u, y
′
i, u

′, . . . , y(N−1)
i , u(N−1), y

(N)
i ] is not the zero ideal

and hence contains an input-output equation for each yi.

Proof. We follow the proof of Proposition 3.1. The number of equa-
tions involved is N2 +M(N + 1). The total number of variables in our
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polynomial ring is N(N +1)+M(N +1)+RN . Here N(N +1) counts
the x, x′, . . . variables, M(N +1) counts the y, y′, . . . variables, and RN
counts the u, u′, . . . variables. Thus P has dimension N +RN . For each

yi, the total number of variables in the set {yi, u, y′i, u′, . . . , y(N−1)
i , u(N−1),

y
(N)
i } is N+1+RN . Thus these variables must be dependent, i.e. there
must exist a relation for each yi. Q.E.D.

Note that one could also work with smaller ideals than P with only
up to k ≤ N derivatives, as in [48]. In some instances this might produce
an input-output equation, but the dimension guarantee that ensures the
existence of an input-output equation only occurs when k = N .

Example 3.3. Consider the SIR model from Example 2.1. The
ideal P in this example is:

〈S′ − μS − βS
I

N
+ μN, S′′ − μS′ − βS

I ′

N
− βS′ I

N
,

S′′′ − μS′′ − βS
I ′′

N
− 2βS′ I

′

N
− βS′′ I

N
,

I ′ − (μ+ γ)I + βS
I

N
, I ′′ − (μ+ γ)I ′ + βS′ I

N
− βS

I ′

N
,

I ′′′ − (μ+ γ)I ′′ + βS′′ I
N

− 2βS′ I
′

N
− βS

I ′′

N
,

R′ − μR+ γI, R′′ − μR′ + γI ′, R′′′ − μR′′ + γI ′′,

y − kI, y′ − kI ′, y′′ − kI ′′, y′′′ − kI ′′′〉.
This model has no input, so in this case we get a single output

equation in the output variable y and the parameters μ, β, γ,N, and k.
The output equation is:

(−βkNμ+ kNμ2 + kNμγ)y2 + (βμ+ βγ)y3

+ kNμyy′ + βy2y′ − kNy′2 + kNyy′′ = 0.

This differential equation has 6 differential monomials y2, y3, yy′,
y2y′, y′2, yy′′, so the coefficient vector c gives a function from R5 to R6,
given by

c : R5 → R6, (μ, β, γ,N, k) 
→
(−βkNμ+ kNμ2 + kNμγ, βμ+ βγ, kNμ, β,−kN, kN).

The dynamics of the input and output will only depend on the
input-output equation up to a nonzero constant multiple. Hence, the
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coefficient map is only truly well-defined up to scalar multiplication.
There are two natural ways to deal with this issue. The most appealing
for an algebraist is to treat the coefficient map as a map into projective
space: c : Rn → RPm−1. The second approach is to force the equation
to have a fixed form that will avoid this issue, by forcing the equation
to be monic by dividing through by one of the coefficients. We will take
the second approach in this paper. In the output equation in Example
3.3, one possible normalization yields the coefficient map

c : R5 → R6, (μ, β, γ,N, k) 
→ (−βμ+μ2+μγ,
βμ+ βγ

kN
, μ,

β

kN
,−1, 1).

In the standard differential algebra approach to identifiability, we
assume that the coefficients ci(p) of the input-output equations can be
recovered uniquely from the input-output data, and thus are assumed to
be known quantities. This is a reasonable assumption when the input u
is a general enough function and the parameters are generic: in this case
the dynamics will yield a unique differential equation. The identifiability
question is then: can the parameters of the model be recovered from the
coefficients of the input-output equations?

Definition 3.4. Let c = (c1(p), ..., cm(p)) denote the vector of co-
efficients of the input-output equations, which are rational functions in
the parameter vector p, which we assume to be normalized so that the
input-output equations are monic. We consider c as a function from
some natural open biologically relevant parameter space Θ ⊆ Rn.

• The model is globally identifiable if c : Θ → Rm is a one-to-one
function.

• The model is generically globally identifiable if there is a dense
open subset Θ′ ⊆ Θ such that c : Θ′ → Rm is one-to-one.

• The model is locally identifiable if around any point p ∈ Θ
there is an open neighborhood Up ⊆ Θ such that c : Up → Rm

is a one-to-one function.
• The model is generically locally identifiable if there is a dense

open subset Θ′ ⊆ Θ such that for all p ∈ Θ′ there is an open
neighborhood Up ⊆ Θ′ such that c : Up → Rm is a one-to-one
function.

• The model is unidentifiable if there is a p ∈ Θ such that
c−1(c(p)) is infinite.

• The model is generically unidentifiable if there is a dense subset
Θ′ ⊆ Θ such that for all p ∈ Θ′, c−1(c(p)) is infinite.
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As can be seen, there are many different variations on the notions
of identifiability. Because of problems that might arise on sets of mea-
sure zero that can ruin the strongest form of global identifiability, one
usually needs to add the generic conditions to get meaningful results.
In this paper, we will consider state space models (2) where f and g
are polynomial (or rational) functions. This ensures, via the differen-
tial elimination procedure, that the coefficient function c(p) is a rational
function of the parameters. For linear compartment models this can
always be taken to be a polynomial function.

In this paper, we will also focus almost exclusively on generic local
identifiability and generic nonidentifiability and will use the following
result to determine which of these conditions the model satisfies.

Proposition 3.5. The model is generically locally identifiable if
and only if the rank of the Jacobian of c is equal to n when evaluated
at a generic point. Conversely, if the rank of the Jacobian of c is less
than n for all choices of the parameters then the model is generically
unidentifiable.

Proof. Since the coefficients in c are all polynomial or rational func-
tions of the parameters, the model is generically locally identifiable if and
only if the image of c has dimension equal to the number of parameters,
i.e. n. The dimension of the image of a map is equal to the evaluation
of the Jacobian at a generic point. Q.E.D.

Example 3.6. SIR Model From Example 3.3, we have the follow-
ing coefficient map:

c : R5 → R6, (μ, β, γ,N, k) 
→ (−βμ+μ2+μγ,
βμ+ βγ

kN
, μ,

β

kN
,−1, 1).

The Jacobian with respect to the parameter ordering (k,N, μ, γ, β) is:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −β + 2μ+ γ μ μ
−(μ+γ)β

k2N
−(μ+γ)β

kN2
β
kN

β
kN

(μ+γ)
kN

0 0 1 0 0
−β
k2N

−β
kN2 0 0 1

kN
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the rank of the Jacobian at a generic point is 4, not n = 5, the
model is generically unidentifiable.
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3.1. Input-output equations for linear models

There have been several methods proposed to find the input-output
equations of nonlinear ODE models [3, 5, 25, 26, 43, 48, 54], but for
linear models the problem is much simpler. We use Cramer’s rule in the
following theorem, whose proof can be found in [50]:

Theorem 3.7. Let ∂ be the differential operator d/dt and let Aji

be the submatrix of ∂I −A obtained by deleting the jth row and the ith
column of ∂I −A. Then the input-output equations are of the form:

det(∂I −A)

gi
yi =

∑
j∈In

(−1)i+j det(Aji)

gi
uj

where gi is the greatest common divisor of det(∂I − A), det(Aji) such
that j ∈ In for a given i ∈ Out.

Example 3.8. Linear Compartment Model. For the linear
2-compartment model from Example 2.2, we obtain the following input-
output equation:

y′′1 − (a11 + a22)y
′
1 + (a11a22 − a12a21)y1 = u′

1 − a22u1.

Thus we have the following coefficient map:

c : R4 → R5, (a11, a22, a12, a21) 
→ (1,−a11−a22, a11a22−a12a21, 1,−a22).

We then obtain the Jacobian with respect to the parameter ordering
(a11, a22, a12, a21): ⎛

⎜⎜⎜⎜⎝

0 0 0 0
−1 −1 0 0
a22 a11 −a21 −a12
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎟⎟⎠ .

Since the rank of the Jacobian at a generic point is 3, not n = 4, the
model is generically unidentifiable.

§4. Identifiable functions

One issue that arises in identifiability analysis of state space models
is figuring out what to do with a model that is generically unidentifi-
able. In some circumstances, the natural approach is to develop a new
model that has fewer parameters that is identifiable. In other circum-
stances, the given model is forced upon us by the biology, and we cannot
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change it. When working with such a generically unidentifiable model,
we would still like to determine what functions of the parameters can be
determined from given input and output data.

Definition 4.1. Let c : Θ → Rm be the coefficient map, and let
f : Θ → R be another function. We say the function f is

• identifiable from c if for all p, p′ ∈ Θ, c(p) = c(p′) implies
f(p) = f(p′);

• generically identifiable from c if there is an open dense subset
U ⊆ Θ such that f is identifiable from c on U ;

• rationally identifiable from c if there is a rational function φ
such that φ ◦ c(p) = f(p) on a dense open subset U ⊆ Θ;

• locally identifiable from c if there is an open dense subset U ⊆ Θ
such that for all p ∈ U , there is an open neighborhood Up such
that f is identifiable from c on Up;

• non-identifiable from c if there exists p, p′ ∈ Θ such that c(p) =
c(p′) but f(p) �= f(p′); and

• generically non-identifiable from c if there is a subset U ⊆ Θ
of nonzero measure such that for all p ∈ U the set {f(p′) : p′ ∈
U and c(p) = c(p′)} is infinite.

Example 4.2. From the linear 2-compartment model in Exam-
ple 3.8, let p = (a11, a22, a12, a21) and let c1(p) = −a11 − a22, c2(p) =
a11a22 − a12a21, c3(p) = −a22. Then the functions a11, a22, a12a21 are
rationally identifiable since

a11 = −c1 + c3, a22 = −c3 a12a21 = −c2 − (−c1 + c3)c3.

Because we work with polynomial and rational maps c and f in
this work, the majority of these conditions can be phrased in algebraic
language, and checked using computer algebra.

Proposition 4.3.

(1) The function f(p) is rationally identifiable from c(p) = (c1(p), ...,
cm(p)) if and only if R(f(p), c1(p), ..., cm(p)) = R(c1(p), ...,
cm(p)) as field extensions.

(2) The function f(p) is locally identifiable from c(p) if and only if f(p)
is algebraic over R(c1(p), ..., cm(p)).

(3) The function f(p) is generically non-identifiable from c(p) if and
only if f(p) is transcendental over R(c1(p), ..., cm(p)).

To explain how to use Proposition 4.3 to check the various identifia-
bility conditions we need to introduce some terminology. Associated to
a set S ⊆ Rm we have the vanishing ideal I(S) ⊆ R[z1, . . . , zm] defined
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by
I(S) = 〈g ∈ R[z1, . . . , zm] : g(s) = 0 for all s ∈ S〉.

When S = im(c) for c a rational map, the vanishing ideal can be com-
puted using Gröbner bases and elimination [16]. Associated to the pair
of coefficient map c and function f that we want to test identifiability
of, we have the augmented map c̃ : Rn → Rm+1, p 
→ (f(p), c(p)), and
the augmented vanishing ideal I(im(c̃)) ⊆ R[z0, z1, . . . , zm].

Proposition 4.4. [30, Proposition 3] Suppose that g(z0, z) ∈ I(im(c̃))
is a polynomial such that z0 appears in g and that we may write g(z0, z) =∑d

i=0 gi(z)z
i
0 so that gd(z) is not in I(im(c)).

(1) If g is linear, g = g1(z)z0−g0(z) then f is rationally identifiable

from c by the formula f = g0(c)
g1(c)

. If in addition g1(z) �= 0 for

all z ∈ im(c) then f is globally identifiable.
(2) If g has higher degree d > 1 in z0, then f is locally identifiable,

and there are generically at most d possible values for f(p′)
among all p′ with c(p) = c(p′).

(3) If no such polynomial g exists then f is generically non-
identifiable from c.

For local identifiability of a function, it is also possible to check using
a Jacobian calculation, a result that follows easily from Proposition 3.5.

Proposition 4.5. Let c : Rn → Rm be the coefficient map. A
function f : Rn → R is locally identifiable from c if ∇f is in the span
of the rows of the Jacobian J(c). Equivalently, consider the augmented
map c̃ : Rn → Rm+1. Then f is locally identifiable from c if and only if
the dimension of the image of c̃ equals the dimension of the image of c.

§5. Finding identifiable functions

The previous section showed how to check, given the coefficient func-
tion c and another function of the parameters f , whether f is identifiable
from c (under various variations on the definition of identifiability). In
some circumstances, there are natural functions to check for their iden-
tifiability (e.g. the individual underlying parameters, or certain specific
functions with biological interpretations). However, when these fail to
be identifiable, one would like tools to discover new functions that are
identifiable in a given state space model. In practice the goal is to
find a simple set of functions that generates the field R(c1(p), ..., cm(p))
(for globally identifiable functions), or a set of functions f1, . . . , fk that
are algebraic over R(c1(p), ..., cm(p)) and such that R(c1(p), ..., cm(p)) ⊆
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R(f1(p), ..., fk(p)) (for locally identifiable functions). The notion “sim-
ple” is intentionally left vague; typically, we mean functions of low degree
that involve few parameters. While there is no general purpose method
guaranteed to solve these problems, there are some useful heuristic ap-
proaches that seem to work well in practice. We highlight some of these
methods in the present section.

One approach to find identifiable functions is to use Gröbner bases.
Specifically, one can find a Gröbner basis of the ideal 〈c1(p)−c1(p

∗), c2(p)
− c2(p

∗), ..., cm(p)− cm(p∗)〉 ⊆ R(p∗)[p]. We state the main result from
[49].

Proposition 5.1. [49, Theorem 1] If f(p) − f(p∗) is an element
of a Gröbner basis of 〈c1(p)− c1(p

∗), c2(p)− c2(p
∗), ..., cm(p)− cm(p∗)〉

for some elimination ordering of the parameter vector p, then f(p) is
globally identifiable. If instead f(p)− f(p∗) is a factor of an element in
the Gröbner basis of 〈c1(p) − c1(p

∗), c2(p) − c2(p
∗), ..., cm(p) − cm(p∗)〉

for some elimination ordering of the parameter vector p, then f(p) is
locally identifiable.

In practice, the Gröbner basis computations can be performed by
picking a random point p∗ and computing a Gröbner basis in the ring
R[p]. This certifies identifiability with high probability. The elimination
ordering is used since elements in the Gröbner basis at the end of the
order are likely to be sparse.

The main issue with the Gröbner basis approach to finding identifi-
able functions is that it is unclear a priori how many Gröbner bases one
needs to find in order to generate a full set of algebraically independent
identifiable functions. Since Gröbner basis computations can become
computationally expensive, we provide another approach to find iden-
tifiable functions in this paper, using linear algebra with the Jacobian
matrix J(c). Specifically, we describe a sort of converse of Proposition
4.5, which allows us to take appropriate elements in the row span of J(c)
and deduce that they came from an identifiable function. We first prove
a result in the homogeneous case and then extend to arbitrary coefficient
maps via homogenization.

Theorem 5.2. Let ci be a homogeneous function of degree di, corre-
sponding to a coefficient of the input-output equations. Let v = f1(c)∇c1
+f2(c)∇c2+ ...+fm(c)∇cm be a vector in the span of J(c) over the field
R(c1(p), ..., cm(p)) (that is, each fi ∈ R(c1(p), ..., cm(p))). Then the dot
product v · p is a rationally identifiable function. If each fi is locally
identifiable then v · p is locally identifiable.

To prove Theorem 5.2 we make use of the Euler homogeneous func-
tion theorem.
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Proposition 5.3 (Euler’s Homogeneous Function Theorem). Let f

be a homogeneous function of degree d. Then f =
1

d

∑
i

pi
∂f

∂pi
.

Proof of Theorem 5.2. Let f = (f1, . . . , fm) be the row vector of
the f ′

is. The function v · p has the form

v · p = fJ(c)p.

The rows of J(c) are the gradients of the ci’s. Since these functions are
homogeneous, we have that J(c)p = (d1c1(p), . . . , dmcm(p))T by Euler’s
homogeneous function theorem. But then

v · p = fJ(c)p = f(d1c1(p), . . . , dmcm(p))T =
m∑
i=1

fi(p)dici(p)

which expresses v · p as a polynomial function in elements of R(c1(p),
..., cm(p)), so v ·p is rationally identifiable. If each fi were locally identi-
fiable, v · p would belong to an algebraic extension of R(c1(p), ..., cm(p))
and hence be locally identifiable. Q.E.D.

Theorem 5.2 must be used in conjunction with Gaussian elimination
and Proposition 4.4 or 4.5. Indeed, our strategy in implementations is to
attempt Gaussian elimination cancellations starting with the Jacobian
matrix J(c). At each step when we want to perform an elementary oper-
ation, we use Proposition 4.4 or 4.5 to check whether the corresponding
multiplier is rationally identifiable or locally identifiable. An approach
based completely on linear algebra would only make use of Proposition
4.5 in which case we only deduce local identifiability.

Example 5.4. Let c be the map p 
→ (c1(p), c2(p), c3(p)) from the
linear 2-compartment model in Example 4.2. Then the Jacobian J(c) is
given by ⎛

⎝−1 −1 0 0
a22 a11 −a21 −a12
0 −1 0 0

⎞
⎠ .

Then applying Gaussian elimination over R(c1(p), c2(p), c3(p)), we ob-
tain: ⎛

⎝−1 0 0 0
0 −1 0 0
0 0 −a21 −a12

⎞
⎠ .

This implies that −a11,−a22 and −2a12a21 are all locally identifiable.
Thus, a11, a22 and a12a21 are locally identifiable.



186 N. Meshkat, Z. Rosen and S. Sullivant

Remark. Note that in Example 4.2, we obtained that the functions
a11, a22 and a12a21 are rationally identifiable, whereas in Example 5.4,
we only obtained that the functions a11, a22 and a12a21 are locally iden-
tifiable. This is the cost of not using a Gröbner basis.

Remark. The identifiable functions obtained using linear algebra on
the Jacobian matrix depend heavily on the specific column ordering of
the Jacobian matrix chosen. Thus, for a given column ordering (cor-
responding to a given parameter ordering), we may not generate the
“simplest” locally identifiable functions. We do, however, always gener-
ate identifiable functions, as opposed to the Gröbner basis approach, in
which there is no guarantee of generating elements/factors of elements
of the form f(p)− f(p∗) for a given elimination ordering p.

Example 5.5. From the SIR Model in Example 3.3, we can form
the following coefficient map, ignoring constant coefficients:

c(k,N, μ, γ, β) = (−βμ+ μ2 + μγ,
(μ+ γ)β

kN
, μ,

β

kN
)

thus we obtain the following Jacobian with respect to the parameter
ordering (k,N, μ, γ, β):

⎛
⎜⎜⎝

0 0 −β + 2μ+ γ μ μ
−(μ+γ)β

k2N
−(μ+γ)β

kN2
β
kN

β
kN

(μ+γ)
kN

0 0 1 0 0
−β
k2N

−β
kN2 0 0 1

kN

⎞
⎟⎟⎠

from this we get the row-reduced Jacobian:
⎛
⎜⎜⎝
N k 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎠ .

Thus, dotting each row vector with p and dividing each polynomial by
their respective degrees, we find that kN, μ, γ, β are locally identifiable.

When the coefficient functions ci(p) are not homogeneous functions,
we can homogenize the functions by some variable z and add z to the
list c of identifiable functions. This results in a similar identifiability
result.

Theorem 5.6. Let c̃i be the homogenization of the coefficient func-
tion ci and suppose it has degree di. Let v = f1(c̃, z)∇c̃1 + f2(c̃, z)∇c̃2 +
· · ·+fm(c̃, z)∇c̃m be a vector in the span of J(c̃, z) over the field R(c̃1(p, z),
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. . . , c̃m(p, z), z). Then the dot product v · (p, z)|z=1 is a rationally identi-
fiable function. If f1, . . . , fm are locally identifiable given c then
v · (p, z)|z=1 is locally identifiable.

Proof. Clearly v ·(p, z) is rationally identifiable over the field
R(c̃1(p, z), ..., c̃m(p, z), z) by Theorem 5.2. We need to show that setting
z = 1 preserves identifiability. Since f(p, z) = v · (p, z) is algebraic over
the field R(c̃1(p, z), ..., c̃m(p, z), z), then clearly f(p, z)|z=1 is algebraic
over the field R(c̃1(p, z)|z=1, ..., c̃m(p, z)|z=1, z|z=1). Since c̃i(p, z)|z=1

is precisely ci(p), then f(p, z)|z=1 is in the field R(c1(p), ..., cm(p)). If
f1, . . . , fm are algebraic over R(c̃1(p, z), ..., c̃m(p, z), z) then v · (p, z)|z=1

is algebraic over R(c1(p), ..., cm(p)). Q.E.D.

Example 5.7. Let c be the map (p1, p2, p3) 
→ (p21, p
2
1 + p1p3 +

p1p
2
2p3). Then the homogenized map c̃ is the map (p1, p2, p3, z) 
→

(p21, p
2
1z

2 + p1p3z
2 + p1p

2
2p3). Then the Jacobian J(c̃, z) is given by⎛

⎝ 2p1 0 0 0
2p1z

2 + p3z
2 + p22p3 2p1p2p3 p1z

2 + p1p
2
2 2p21z + 2p1p3z

0 0 0 1

⎞
⎠ .

Then applying Gaussian elimination over R(c̃1(p, z), c̃2(p, z), z), we ob-
tain: ⎛

⎝1 0 0 0
0 2p2p3 z2 + p22 2(p1 + p3)z
0 0 0 1

⎞
⎠ .

Thus, dotting each row vector with (p, z), we obtain p1, 3p
2
2p3 +2p1z

2 +
3p3z

2, and z are locally identifiable. Dividing by the degree and setting
z = 1, we obtain that p1 and p22p3 + 2p1/3 + p3 are locally identifiable.

§6. Observability

In this section we explore how algebraic and combinatorial tools can
be used to determine whether or not the state variables are observable.
Roughly speaking, the state variable xi is observable if it can be re-
covered from observation of the input and output alone. We will use
algebraic language to make this precise and explain how Gröbner bases
and matroids can be used to check this condition.

Definition 6.1. Consider a state space model of form (2).

• The state variable xi is generically observable given the input
and output trajectories and generic parameter value p if there
is a unique trajectory for xi compatible with the given input-
output trajectory.
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• The state variable xi is rationally observable given input and
output trajectories and generic parameter value p if there is
a rational function F such that the trajectory xi(t) satisfies
xi(t) = F (y, y′, . . . , u, u′, . . . , p).

• The state variable xi is generically locally observable if given a
generic parameter vector, there is an open neighborhood Uxi

of the trajectory xi(t) such that there is no other trajectory
x̃i(t) ⊆ Uxi that is compatible with input-output data.

• The state variable xi is generically unobservable if given the
input and output trajectories and a generic parameter value
p there are infinitely many trajectories for xi compatible with
the given input-output trajectory.

As usual, when f and g are polynomial functions, we can give equiv-
alent definitions to many of these conditions, and algebraic methods for
checking them.

The following proposition gives algebraic conditions for observabil-
ity. More details on the differential algebra involved can be found in [31].

Proposition 6.2. Consider a state space model of form (2). Let
Π be the differential ideal generated the polynomials x′ − f(x, p, u), y −
g(x, p). Let h ∈ Π∩Q(p)[xi, y, y

′, . . . , u, u′, . . .] be a polynomial and write

this as h =
∑k

j=0 hjx
j
i where each hj ∈ Q(p)[y, y′, . . . , u, u′, . . .], k ≥ 1,

and hk /∈ Π. Then

• If k = 1, then xi is rationally observable.
• If k > 1, then xi is locally observable.
• If there is no polynomial h ∈ Π ∩ Q(p)[xi, y, y

′, . . . , u, u′, . . .]
satisfying the three conditions then xi is generically unobserv-
able.

As with computations for finding the input-output equations, one
does not need to explicitly use the differential algebra to check the condi-
tions of Proposition 6.2, and it is possible to do this directly via Gröbner
bases and properties of the Jacobian matrix.

Proposition 6.3. Consider a state space model of the form (2)
where f and g are polynomial functions and where there are N state-
space variables, M = 1 output variable, and R input variables. Let P be
the ideal

〈x′ − f(x, p, u), . . . , x(N−1) − dN−2

dtN−2
f(x, p, u),

y − g(x, p), . . . , y(N−1) − dN−1

dtN−1
g(x, p)〉

⊆ Q(p)[x, y, u, x′, y′, u′, . . . , x(N−2), y(N−2), u(N−2), x(N−1), y(N−1)].
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Consider an elimination ordering < on

Q(p)[x, y, u, x′, y′, u′, . . . , x(N−2), y(N−2), u(N−2), x(N−1), y(N−1)]

with three blocks of variables

{x, x′, . . . , x(N−1)} \ {xi} > {xi}
> {y, u, y′, u′, . . . , y(N−2), u(N−2), y(N−1)}.

Then a Gröbner basis for P with respect to < will contain a polynomial
of the type indicated in Proposition 6.2 if it exists. Otherwise no such
polynomial exists.

The proof of Proposition 6.3 is a combination of the ideas of Propo-
sitions 3.1 and 4.4.

Proof. First we need to show that we can find such a polynomial,
if it exists, only looking up to derivatives of order N − 1. This fol-
lows a similar argument as the proof of Proposition 3.1 by dimension
counting. The codimension of P is N(N − 1) + N , the total number
of variables in our polynomial ring is N2 +N + R(N − 1), and thus P
has dimension N + R(N − 1). Since the total number of variables in
the set {xi, y, u, y

′, u′, . . . , y(N−2), u(N−2), y(N−1)} is 1 +N +R(N − 1),
these variables must be dependent, i.e. there must exist a relation. If all
the relations that exist do not involve xi in a nontrivial way, there will
not exist such relations if we add more derivatives. Indeed, adding one
more set of derivatives then there must exist an input-output equation
involving the variable y(N) and lower order terms in y, by the proof of
Proposition 3.1. Hence these could be used to eliminate any appear-
ance of y(N) or higher in any putative constraint involving xi. Since
the only equation in our system that involves y(N) was the equation

y(N) − dN

dtN g(x, p), this means we need not have added it to our system
since it cannot be eliminated by interacting with other equations. How-
ever, without this equation, there is only a single appearance of x(N),
so there is no way to eliminate those variables that involves using those
equations, and hence we are reduced to our system just up to order
N − 1.

Now we will show that the Gröbner basis computation produces the
desired equation. Suppose there is an equation h of the desired type in
the ideal P . If the Gröbner basis of P did not contain a polynomial of
the desired type, then the Gröbner basis of P does not contain a poly-
nomial in the variables {xi, y, u, y

′, u′, . . . , y(N−2), u(N−2), y(N−1)} that
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involves the variable xi. Then reducing h by the Gröbner basis can-
not produce the zero polynomial, contradicting that we had a Gröbner
basis. Q.E.D.

Proposition 6.3 can be generalized to situations where there is more
than one output variable. Indeed, from Proposition 3.2, we can obtain
input-output equations for each yi. Following a similar dimension count-
ing argument, we obtain that P has dimensionN+R(N−1) and the total
number of variables in the set {xi, y, u, y

′, u′, . . . , y(N−2), u(N−2), y(N−1)}
is 1+MN+R(N−1), thus these variables must be dependent, i.e. there
must exist a relation. In this case, one might be able to get away with
looking at derivatives of lower orders in some of the variables (i.e. not
all the way to N − 1) however this will depend on the structure of the
underlying system. Making this precise depends on terminology from
differential algebra that we would like to avoid. See [31] for details. One
typical corollary is the following.

Corollary 6.4. Consider a state space model of the form (2) where
f and g are polynomial functions and where there are N state-space
variables, M = 1 output variable, and R input variables. If the input-
output equation has order N , then all the state space variables are locally
observable.

Proof. The proof of Proposition 6.3 shows that after adding the
N−1 derivatives, there must exist a relation among the set {xi, y, u, y

′, u′,
. . ., y(N−2), u(N−2), y(N−1)}. However, this could not be just among the
set of variables {y, u, y′, u′, . . . , y(N−2), u(N−2), y(N−1)} since this would
be an input-output equation of order < N . Q.E.D.

Example 6.5. From Example 2.2, let our model be of the form:
(
x′
1

x′
2

)
=

(
a11 a12
a21 a22

)(
x1

x2

)
+

(
u1

0

)
, y = x1.

Taking derivatives, we have the system of equations:

〈a11x1 + a12x2 + u1 − x′
1, a21x1 + a22x2 − x′

2, x1 − y, x′
1 − y′〉.

These are polynomials in the polynomial ring R(p)[x1, x2, x
′
1, x

′
2, u1, y, y

′].
Using the elimination order specified to calculate a Gröbner basis,

we see that a11y1+a12x2+u1−y′ and x1−y are two polynomials of the
desired form. Thus the model is rationally observable. Alternatively,
the input-output equation for this model is of differential order 2, which
equals the number of state variables, so the model is locally observable
by Corollary 6.4.
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The main problem with this definition of observability is that it ap-
pears to require explicit computation of the desired polynomials. How-
ever, instead of applying a Gröbner basis to find the desired polynomials,
we can examine the algebraic matroid associated to this system.

The algebraic matroid is equivalent to the linear matroid of differen-
tials, for which computations are much simpler. Because the definition
of observability distinguishes between a variable and its derivatives, we
also treat them separately in our discussion. The ground set of the
matroid for an observability computation is

E =

⎧⎪⎨
⎪⎩

xi, x
′
i, x

′′
i , . . . , x

(N−1)
i ; ∀i = 1, . . . , N

yj , y
′
j , . . . , y

(N−1)
j ; ∀j = 1, . . . ,M

uk, u
′
k, . . . , u

(N−2)
k ; ∀k = 1, . . . , R

⎫⎪⎬
⎪⎭

We can treat the system of ODEs as an ideal of algebraic relations
among a set of indeterminates. We use these relations to define the asso-
ciated Jacobian matrix. This matrix has N2+MN+R(N−1) columns,
one for each “variable” in the ground set, and (N − 1)N + (N − 1)M
rows, one for each relation. The entries in the matrix are polynomials
in R[x, x′, . . .,x(N−1), y, y′,. . ., y(N−1), u, u′, . . . , u(N−2)]. The final step
is Gaussian elimination in the Jacobian matrix. Unlike the strategy in
Section 5, any rational function is permitted here.

Example 6.6. We approach observability of Example 2.2 using the
algebraic matroid. The resulting matroid has rank three, with 23 bases
and 14 circuits. We can sort this list to find the circuits including x1

and x2 while excluding x′
1 and x′

2; we find the following circuits:

{x1, y1}, {x2, u1, y1, y
′
1}, and {x1, x2, u1, y

′
1}.

The third circuit contains both variables, so is not useful for proving
observability; but the first two circuits constitute a proof of observability.

Example 6.7. From the SIR Model in Example 2.1, let our ODE
system be of the form:

S′ = μN − βS
I

N
− μS

I ′ = βS
I

N
− (μ+ γ)I

R′ = γI − μR

y = kI.
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Taking derivatives, we have the system of equations:

〈S′ + μS + βS
I

N
− μN, S′′ + μS′ + βS

I ′

N
+ βS′ I

N
,

I ′ + (μ+ γ)I − βS
I

N
, I ′′ + (μ+ γ)I ′ − βS′ I

N
− βS

I ′

N
,

R′ + μR− γI, R′′ + μR′ − γI ′, y − kI, y′ − kI ′, y′′ − kI ′′〉.
These are polynomials in the polynomial ring

R(p)[S, I,R, S′, I ′, R′, S′′, I ′′, R′′, y, y′, y′′].

Using the elimination order specified to calculate a Gröbner basis, we
find that there are no polynomials in y, y′, y′′ and R only, so the model is
generically unobservable. More precisely, we find the polynomial −kR′−
kμR+ γy, but no polynomial involving y, y′, y′′ and R only.

We use a similar strategy to compute the matroid for the SIR Model.
The ground set of the algebraic matroid for the observability computa-
tion is

E =
{

S, S′, S′′, I, I ′, I ′′, R,R′, R′′, y, y′, y′′
}

The matroid has rank three, with 123 bases and 146 circuits. We can
sort this list to find the circuits including S, I, and R while excluding
their derivatives; we find the following circuits for each variable:

{S, y, y′} {S, y, y′′} {S, y′, y′′}
{I, y} {I, y′, y′′}

Any relation in the first row proves that S is observable; similarly, any
relation in the second row proves that I is observable. No relation from R
exists; an elimination of the original ideal proves that R has no relations
that do not also involve its derivatives.

In the linear matroid of differentials this is made more pronounced.
In Macaulay2 [34], the command kernel(transpose(jacobian(I)))

yields a matrix whose row vectors correspond to variables. The vec-
tors corresponding to R,R′, and R′′ are nonzero in a coordinate where
all other variables are zero. Therefore, any relation including one of
{R,R′, R′′} must include at least two.

§7. Indistinguishability

Recall two state space models are indistinguishable if for any choice
of parameters in the first model, there is a choice of parameters in the
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second model that will yield the same dynamics in both models, and
vice versa. There have been several definitions and approaches to solve
this problem in the literature [32, 55, 73, 78]. Here we approach the
problem by looking at the input-output equations of the models and
using computational algebra to check indistinguishability.

To start with, to be indistinguishable, two models must have the
same input and output variables. Since indistinguishable models give the
same dynamics, the structures of their input-output equations should be
the same. In the case that there is one output variable in both models,
there is a single input-output equation. To say the input-output equa-
tions have the same structure means that exactly the same differential
monomials appear in both input-output equations.

Remark. When there are multiple outputs, there will be multi-
ple input-output equations. To make a unique choice, one should fix
a specific monomial order on the polynomial ring Q(p)[y, u, y′, u′, . . .,
y(N−1), u(N−1), y(N)] and compare the differential monomials appearing
in the reduced Gröbner bases of the corresponding ideals.

Supposing that the two models have the same structures as de-
scribed above, we can let c(p) and c′(p′) denote the corresponding co-
efficient maps of the two models, respectively. Here c : Θ → Rm and
c′ : Θ′ → Rm, and the components are ordered so that the components
correspond to each other as coming from the same differential monomial.
Note that the dimensions of the parameter spaces Θ and Θ′ might be
different. We further assume that both coefficient maps are monic on
the same coefficient. Indistinguishability is characterized in terms of the
coefficient maps c and c′.

Definition 7.1. Suppose that Model 1 and Model 2 have the same
input-output structure. Let c : Θ → Rm and c′ : Θ

′ → Rm be the
coefficient maps for Model 1 and Model 2, respectively. We say that:

• Model 1 and Model 2 are indistinguishable if for all p′ ∈ Θ′,
there exists at least one p ∈ Θ such that c(p) = c′(p′), and vice
versa;

• Model 1 and Model 2 are generically indistinguishable if, for
almost all p′ ∈ Θ′, there exists at least one p ∈ Θ such that
c(p) = c′(p′), and vice versa;

• Model 1 and Model 2 are generically distinguishable if they are
not generically indistinguishable.

Remark. The definition of indistinguishability is equivalent to saying
that c(Θ) = c′(Θ′). The definition of generic indistinguishability is
equivalent to saying that the symmetric difference of c(Θ)�c′(Θ′) is
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a set of measure zero. The definition of generic distinguishability is
equivalent to the existence of an open subset U ⊆ Θ such that for all
p ∈ U , there is no p′ ∈ Θ′ such that c(p) = c′(p′) or the symmetric
condition for Θ′.

A simple observation on distinguishability is that indistinguishable
models must have the same vanishing ideal on the image of the parametri-
zation. This is usually easy to check in small to medium sized exam-
ples. Once the same vanishing ideal has been established, an approach
for checking indistinguishability is to construct the equation system
c(p) = c′(p′) and attempt to “solve” for one set of parameters in terms
of the other, and vice versa, using Gröbner basis calculations. Once this
has been done, one must check the resulting solutions to determine if
they satisfy the necessary inequality constraints of the parameter spaces
Θ and Θ′. We note that identifiable models with coefficient maps satis-
fying the same algebraic dependence relationships can always be solved
for one set of parameters in terms of the other, and vice versa, but the
parameter constraints must still be checked for indistinguishability to
hold.

Example 7.2. Consider the following two models, each of which
has three parameters:⎛

⎝x′
1

x′
2

x′
3

⎞
⎠ =

⎛
⎝−a01 − a21 0 0

a21 −a32 0
0 a32 0

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠+

⎛
⎝u1

u2

0

⎞
⎠ y1 = x3

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ =

⎛
⎝−b21 0 0

b21 −b02 − b32 0
0 b32 0

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠+

⎛
⎝u1

u2

0

⎞
⎠ y1 = x3.

The input-output equations for the models are:

y′′′1 + (a32 + a01 + a21)y
′′
1 + (a01a32 + a21a32)y

′
1 =

a21a32u1 + a32u
′
2 + (a01a32 + a21a32)u2,

y′′′1 + (b21 + b02 + b32)y
′′
1 + (b21b02 + b21b32)y

′
1 =

b21b32u1 + b32u
′
2 + (b32b21)u2,

respectively. The corresponding coefficient maps are

c(a01, a21, a32) =

(a32 + a01 + a21, a01a32 + a21a32, a21a32, a32, a01a32 + a21a32),

c′(b02, b21, b32) = (b21 + b02 + b32, b21b02 + b21b32, b21b32, b32, b32b21).
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The vanishing ideal for model 1 in the polynomial ring Q[c1, c2, c3,
c4, c5] is:

〈c2 − c5, c1c4 − c24 − c5〉
whereas the vanishing ideal for model 2 is

〈c3 − c5, c2c
2
4 − c1c4c5 + c25〉.

Since the two vanishing ideals are not equal, the models are generically
distinguishable.

Example 7.3. Consider the following variation on the previous
example, where we have simply moved an input from compartment 2 to
compartment 3.

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ =

⎛
⎝−a01 − a21 0 0

a21 −a32 0
0 a32 0

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠+

⎛
⎝u1

0
u3

⎞
⎠ y1 = x3

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ =

⎛
⎝−b21 0 0

b21 −b02 − b32 0
0 b32 0

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠+

⎛
⎝u1

0
u3

⎞
⎠ y1 = x3.

The input-output equations for these models are:

y′′′1 + (a32 + a01 + a21)y
′′
1 + (a01a32 + a21a32)y

′
1 =

a21a32u1 + u′′
3 + (a01 + a21 + a32)u

′
3 + (a01a32 + a21a32)u3

y′′′1 + (b21 + b02 + b32)y
′′
1 + (b21b02 + b21b32)y

′
1 =

b21b32u1 + u′′
3 + (b02 + b32 + b21)u

′
3 + (b02b21 + b32b21)u3,

respectively. In both cases, the vanishing ideal of the model coefficients
is the ideal

〈c2 − c5, c1 − c4〉,
which suggests that the two models might be indistinguishable. A sim-
ple Jacobian calculation shows that the models are locally identifiable,
and hence we can attempt to solve the system c(p) = c′(p′) to test for
indistinguishability. Solving the system of equations:

a32 + a01 + a21 = b21 + b02 + b32

a01a32 + a21a32 = b21b02 + b21b32

a21a32 = b21b32
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we obtain the solutions:

{a21 = b32, a01 = b02, a32 = b21}
{a21 = (b21b32)/(b02 + b32), a01 = (b02b21)/(b02 + b32), a32 = b02 + b32}
Likewise, one can obtain the solutions:

{b21 = a32, b02 = a01, b32 = a21}
{b32 = (a21a32)/(a01 + a21), b02 = (a01a32)/(a01 + a21), b21 = a01 + a21}
The parameter spaces for these models have all parameters positive.
It is easy to see that for any choice of parameters in the first model,
there is a choice of parameters in the second model that gives the same
input-output equation, and vice versa. Thus these models are indistin-
guishable. Note that there are two solutions because the models are
locally but not globally identifiable.

Example 7.4. Now consider the following variation of the previous
models, where we have added an extra leak parameter to each model
and removed the inputs:

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ =

⎛
⎝−a01 − a21 0 0

a21 −a32 0
0 a32 −a03

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠ y1 = x3

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ =

⎛
⎝−b21 0 0

b21 −b02 − b32 0
0 b32 −b03

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠ y1 = x3.

The input-output equations for these models is:

y′′′1 + (a01 + a21 + a32 + a03)y
′′
1 + (a01a32 + a21a32 + a32a03+

a01a03 + a21a03)y
′
1 + (a01a03a32 + a03a21a32)y1 = 0,

y′′′1 + (b21 + b02 + b32 + b03)y
′′
1 + (b21b02 + b21b32 + b02b03+

b03b21 + b03b32)y
′
1 + (b02b03b21 + b03b21b32)y1 = 0,

In both cases, the vanishing ideal of the model coefficients is the zero
ideal which suggests that the two models might be indistinguishable.
These models are clearly unidentifiable since there are 3 coefficients in
4 unknown parameters. Solving the system c(p) = c′(p′), we get the
following 6 solutions:
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{a03 = b03, a21 = −a01 + b02 + b32, a32 = b21}
{a03 = b03, a21 = −a01 + b21, a32 = b02 + b32}
{a03 = b21, a21 = −a01 + b02 + b32, a32 = b03}
{a03 = b21, a21 = −a01 + b03, a32 = b02 + b32}
{a03 = b02 + b32, a21 = −a01 + b21, a32 = b03}
{a03 = b02 + b32, a21 = −a01 + b03, a32 = b21}

when solving for {a01, a21, a32, a03}. A similar result follows when solv-
ing for {b21, b02, b32, b03}. Thus the models are indistinguishable.

Remark. Note that the vanishing ideals being equal is only a nec-
essary condition for indistinguishability but not in general sufficient.
For example, suppose that we restrict to the parameter space consist-
ing of positive parameters and consider the coefficient maps c(p1, p2) =
(p1, p1+p2) and c′(p′1, p

′
2) = (p′1+p′2, p

′
2). The images in both cases have

zero vanishing ideal. However, the models are distinguishable since the
image of the first coefficient map is {(c1, c2) ∈ R2 : c2 > c1 > 0} whereas
the image of the second coefficient map is {(c1, c2) ∈ R2 : c1 > c2 > 0}.

Remark. Some authors also consider a one-sided notion of indistin-
guishability. In this definition, Model 1 is indistinguishable from Model
2 if every for every choice of parameters in Model 1, there is a choice of
parameters in Model 2 that can produce the same dynamics. So Model
2 is a more expressive class of models. It is more difficult to check for
this type of indistinguishability because it need not be the case that the
input-output equations have the same structure, and so we cannot sim-
ply check that the image of the coefficient map of Model 1 is contained
in the image of the coefficient map of Model 1. As a simple example, if
Model 1 has input-output equation y′+a1y = 0, and Model 2 has input-
output equation y′′+ b1y

′+ b2y = 0, clearly Model 1 is indistinguishable
from Model 2, but this is not detectable by comparing the image of the
coefficient maps.

§8. Further Reading

We have demonstrated some techniques to test identifiability, ob-
servability, and indistinguishability using a differential algebraic ap-
proach. There are several other approaches to investigate these con-
cepts, so we outline a few of these other methods now for the interested
reader.
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For linear models, the global identifiability problem can be solved
with the transfer function approach [6] and the similarity transformation
approach [69, 72]. For nonlinear models, the differential algebra method
has been a powerful technique to test for identifiability [43, 51, 61]. The
main advantage of the differential algebra method is that global identifia-
bility can be determined. On the other hand, there are many approaches
to test local identifiability, including the Taylor series method [54], the
generating series method [71] (with implementations involving identi-
fiability tableaus [4] and exact arithmetic rank [39]), a method based
on the implicit function theorem [74, 75], a test for reaction networks
[17, 18], and a profile likelihood approach [56]. There are special cases
where global identifiability can be determined using a nonlinear varia-
tion of the similarity transformation approach [12, 19, 67] and the direct
test [20, 21]. These approaches for global and local identifiability are
outlined in greater detail and tested on several models in [15] and [57].

For linear models, the concept of observability can be tested using a
linear algebra test [38]. These conditions can be translated to conditions
on the graph of the linear compartmental models [32, 76]. For nonlinear
models, observability can be tested with differential algebra [31, 45].
Alternatively, the nonlinear problem has been approached analytically
in [36]. To test local algebraic observability, one can use a probabilistic
seminumerical method that solves the problem in polynomial time [62].

For linear models, the indistinguishability problem has been ana-
lyzed using geometrical rules [32] and a linear algebra test [78]. For
nonlinear models, indistinguishability was introduced in [65]. The prob-
lem has been extensively studied for certain classes of nonlinear com-
partmental models in [13, 14, 33, 70] and more generally in [24].

This paper is concerned with state space models, but identifiability
and related concepts are also explored heavily in other contexts. Bel-
trametti and Robbiano [7] consider the ideal 〈c1(p) − c1(p

∗), c2(p) −
c2(p

∗), ..., cm(p) − cm(p∗)〉 for detecting identifiability in the context of
the Hough transform. Other areas include study of identifiability of
graphical models [2, 23, 29, 30, 66] and identifability of phylogenetic
models [1, 44, 46, 58].

§9. Appendix: Algebraic Matroids

We review the basics of general matroid theory here and especially
main results on algebraic matroids.

Definition 9.1. Let E be a finite set and let I be a collection of
subsets of E satisfying the following three conditions:
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(1) ∅ ∈ I
(2) If X ∈ I and Y ⊆ X then Y ∈ I, and
(3) If X,Y ∈ I with |X| < |Y | then there exists y ∈ Y \ X such

that X ∪ {y} ∈ I.
The pair (E, I) is called a matroid and the elements of I are called
independent sets.

A special instance of matroids are sets E of vectors in a vector
space where the set I consists of all linearly independent subsets of E.
A matroid that arises in this way is called a representable or a linear
matroid. Various other terminology from linear algebra is also applied
in matroid theory. A maximal cardinality subset of I is called a basis.
The subsets of E that are not in I are called dependent sets. A minimal
dependent set is called a circuit. Oxley’s text [52] is a standard reference
for background on matroids.

The most important type of matroid for us will be the algebraic
matroids whose properties we review here.

Proposition 9.2. [52, Thm 6.7.1] Suppose K is an extension field
of a field F and E is a finite subset of K. Then the collection I of subsets
of E that are algebraically independent over F is the set of independent
sets of a matroid on E. The resulting matroid is called an algebraic
matroid.

Example 9.3. Let E = {a11, a22, a12, a21} and F = R(c1(p), c2(p),
c3(p)), where c1(p) = −a11 − a22, c2(p) = a11a22 − a12a21, c3(p) = −a22
from the linear 2-compartment model in Example 4.2. Then
I = {∅, {a12} , {a21}} and C = {{a11} , {a22} , {a12, a21}}.

In our problem, we have the mapping p 
→ (c1(p), c2(p), c3(p)) and
the variety V of interest is the pre-image of a point ĉ = (ĉ1, ĉ2, ĉ3) under
the map c. Note that the map c has a trivial vanishing ideal; the image
of this map is the full R3. The point ĉ can therefore be taken to be a
generic point of R3 by setting {ĉ1, ĉ2, ĉ3} to be algebraically independent
over R. This means that the only algebraic constraints on the p-variables
come from the equations {c(p) = ĉ}.

Our associated ideal is P = 〈c1(p)− ĉ1, c2(p)− ĉ2, c3(p)− ĉ3〉, which
contains polynomials in R(ĉ)[p] = R(ĉ1, ĉ2, ĉ3)[a11, a22, a12, a21]. The
ideal P is prime, as confirmed by a Gröbner basis computation at a
randomly chosen point; therefore, computation of the algebraic matroid
modulo P is well-defined.

Proposition 9.4. [52, Prop 6.7.11] If a matroid M is algebraic
over a field F of characteristic zero, then M is linearly representable
over F(T ) for some finite set T of transcendentals over F.



200 N. Meshkat, Z. Rosen and S. Sullivant

The following proposition follows from [42, Proposition 2.14] to-
gether with the observation that the tangent space of a variety is the
kernel of its Jacobian matrix:

Proposition 9.5. Let P = 〈f1, ..., fm〉 be a prime ideal contained
in F[x1, ..., xn]. Define the Jacobian matrix J(P ) as:

(
∂fi
∂xj

: 1 ≤ i ≤ m, 1 ≤ j ≤ n

)
.

This matrix, when considered as a matroid with columns as the
ground set and linear independence over Frac(F[x]/P ) defining indepen-
dent set I represents the dual matroid to M(P ). The transpose of the
matrix spanning the kernel gives the matroid M(P ).

Example 9.6. Let c be the map p 
→ (c1(p), c2(p), c3(p)) from the
linear 2-compartment model in Example 4.2. Then the Jacobian J(c) is
given by ⎛

⎝−1 −1 0 0
a22 a11 −a21 −a12
0 −1 0 0

⎞
⎠

A basis for the kernel of this matrix is given by (0, 0, a12,−a21)
T . Here,

linear independence is taken over Frac(R(ĉ)[p]/P ) ∼= R(ĉ)(a12, a21). Thus,
a vector matroid is given by:

(
0 0 a12 −a21

)
where the ground set E = {1, 2, 3, 4} and a set of circuits is given by
C = {{1} , {2} , {3, 4}}. This implies that a11 and a22 are each algebraic
over R(ĉ), which implies that a11 and a22 are each locally identifiable.
This also implies that {a12, a21} is algebraically dependent over R(ĉ).
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