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Abstract.

The question whether there exists an integral solution to the sys-
tem of linear equations with non-negativity constraints, Ax = b, x ≥ 0,
where A ∈ Z

m×n and b ∈ Z
m, finds its applications in many areas such

as operations research, number theory, combinatorics, and statistics.
In order to solve this problem, we have to understand the semigroup
generated by the columns of the matrix A and the structure of the
“holes” which are the difference between the semigroup and its satu-
ration. In this paper, we discuss the implementation of an algorithm
by Hemmecke, Takemura, and Yoshida that computes the set of holes
of a semigroup and we discuss applications to problems in combina-
torics. Moreover, we compute the set of holes for the common diagonal
effect model and we show that the nth linear ordering polytope has the
integer-decomposition property for n ≤ 7. The software is available at
http://ehrhart.math.fu-berlin.de/People/fkohl/HASE/.

§1. Introduction

Consider the system of linear equations and inequalities

(1) Ax = b, x ≥ 0,

where A ∈ Z
m×n and b ∈ Z

m. Suppose that the solution set over the
real numbers {x ∈ R

n : Ax = b, x ≥ 0} is not empty.

Problem 1.1. Decide whether there exists an integral solution to
the system (1) or not.

Problem 1.1 is called the integer feasibility problem. To decide
whether a system of equations is feasible is the first step in integer pro-
gramming, where the goal is to find an “optimal” solution. Therefore,
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problem 1.1 can be solved computationally using a linear programming
system that can handle integer constraints, such as lp solve [6]. How-
ever, this computational approach does not work if one wants to study a
family of integer feasibility problems at the same time. Here, we consider
the following problem:

Problem 1.2. For fixed A ∈ Z
m×n, decide for which b ∈ Z

m there
exists an integral solution to the system (1).

Problems 1.1 and 1.2 are of fundamental importance in many areas
such as operations research, number theory, combinatorics, and statistics
(see [18] and references within). For instance, the Frobenius problem is a
simple-sounding yet wide-open integer feasibility problem, see e.g. [13]
for an overview. For coprime integers a1, a2,. . . , an > 0, the Frobenius
problem asks to find the biggest positive integer that cannot be expressed
as a non-negative linear combination of the ai’s with integral coefficients.
Even for n = 4, this is an active area of research.

Feasibility can be described in terms of the semigroup

(2) Q = Q(A) = {a1x1 + · · ·+ anxn | x1, . . . , xn ∈ Z≥0}
generated by the column vectors a1, . . . ,an of A. Here, Z≥0 denotes
the set of non-negative integers, i.e., Z≥0 := {0, 1, 2, . . . }. Moreover, we
need the cone

K = K(A) = {a1x1 + · · ·+ anxn | x1, . . . , xn ∈ R≥0}
generated by the columns of A, where R≥0 := [0,∞). Throughout this
paper, we assume that all cones are pointed, i.e., that they do not contain
lines: if v ∈ K \ {0}, then −v /∈ K. Finally, we need the lattice

L = L(A) = {a1x1 + · · ·+ anxn | x1, . . . , xn ∈ Z}
generated by the columns of A. In this paper, we assume L(A) = Z

n.
By definition, an integral solution to the system (1) exists if and

only if b ∈ Q. In general, it is difficult to check whether a given vector
belongs to Q. However, it is much easier to check whether a given
vector belongs to L or to K: To check whether b ∈ L is a problem of
linear algebra (over the integers), and to check whether b ∈ K one can
compute the inequality description of K and check whether b satisfies
all linear inequalities. Admittedly, computing the inequalities can be a
difficult problem in itself, but usually it is still easier than the integer
feasibility problem. Therefore, it makes sense to compare Q to the larger
semigroup Qsat = K ∩ L, which is called the saturation of Q. Clearly,
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Q ⊂ Qsat, and we call Q saturated (or normal) if Q = Qsat. We define
the set of holes H of the semigroup Q to be H := Qsat \Q.

If b ∈ H ⊂ Qsat, then the system

Ax = b,x ≥ 0,

has a solution x ∈ R
n over the reals, but no solution x ∈ Z

n
≥0 over the

integers.
In general, the set H may be infinite, but it is possible to write H

as a finite union of finitely generated (affine) monoids. The first step is
to compute the fundamental holes, where we say that a hole h ∈ H is
fundamental if there is no other hole h′ ∈ H such that h − h′ ∈ Q. In
contrast to H, the set F ⊆ H of fundamental holes is always finite, as
it is contained in the bounded set

P :=
{∑n

i=1
λiai | 0 ≤ λ1, . . . , λn < 1

}
,

as shown in [18]. A finite algorithm to compute F is due to [10].
Once F is known, it is necessary to compute an explicit representa-

tion of the holes in f + Q. Hemmecke et. al. [10] showed how the set
of holes in f +Q can be expressed as a finite union of finitely generated
monoids using ideas from commutative algebra. Together with an algo-
rithm to compute the fundamental holes, this gives a finite algorithm to
compute an explicit representation of H, even for an infinite set H.

As shown by [2, 18], computing the set of holes is polynomial in time
in the input size of A if we fix the number of variables m and n (see
the definition of input size in [3]). Once we compute Q for a particular
matrix A, we do not have to compute it again as it does not depend
on b.

In this paper, we have implemented the algorithm introduced in
[10] and we have applied our software to problems in combinatorics and
statistics. We named the software HASE (Holes in Affine SEmigroups).
It is available at http://ehrhart.math.fu-berlin.de/People/fkohl/
HASE/. The homepage also contains the input files that are needed to
reproduce the examples that are discussed in this paper.

This paper is organized as follows: In Section 2, we outline the algo-
rithm. The performance of the algorithm and possible ways to speed up
the process are described in Section 3. In Section 4, we compute the set
of holes for the common diagonal effect model [17]. In Section 5, we show
some computational experiments concerning the integer-decomposition
property of polytopes and concerning a lifting algorithm for Markov
bases, see [15]. We end with a discussion and open problems.
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§2. Computing holes

In this section, we briefly describe our software and the implemen-
tation. The two main steps of the algorithm of [10] are:

(1) Compute the set F of fundamental holes.
(2) For each of the finitely many f ∈ F , compute an explicit rep-

resentation of the holes in f +Q.

Our software outsources step 1 to Normaliz, see [7]. Normaliz is a
computer program that computes the saturation (or Normalization) of
an affine semigroup. Usually, the saturation is output in the form of a
matrix A′ such that the saturation Qsat(A) = Q(A′) equals the semi-
group generated by the columns of A′. Starting with version 3.0, Nor-
maliz can also compute a second representation of Qsat(A) by giving a
minimal set F ′ of “generators of Qsat(A) as a Q(A)-module.” Formally,
this says that

Qsat(A) =
⋃
f∈F ′

(f +Q(A)).

It is not difficult to see that 0 ∈ F ′ (since Q ⊆ Qsat) and that F := F ′ \
{0} is the set of fundamental holes of Q(A). For details how Normaliz
computes the set F ′, we refer to the documentation of Normaliz. As
an illustration, Section 4 contains a description of the (fundamental and
non-fundamental) holes of the common diagonal effect models.

It remains to determine the holes in f + Q for every fundamental
hole f ∈ F . Every non-hole belongs to (f+Q)∩Q and if z ∈ (f+Q)∩Q,
then also z+Aλ ∈ (f +Q) ∩Q for any λ ∈ Z

n
≥0. Consider the ideal

(3) IA,f :=
〈
xλ | λ ∈ Z

n
≥0, f +Aλ ∈ (f +Q) ∩Q

〉
,

where xλ :=
∏n

i=1 x
λi
i is the monomial with exponent vector λ. Then,

f + Aλ is not a hole if and only if xλ ∈ IA,f . So we need to find a
description of the monomials not in IA,f . These monomials are called
the standard monomials. There are algorithms for finding the standard
monomials, once a generating set for the ideal IA,f is known. A gener-
ating set of the ideal IA,f is described by the following lemma:

Lemma 2.1 ([10], Lemma 4.1). Let M be the set of ≤-minimal
solutions (λ,μ) ∈ Z

2n
≥0 to f + Aλ = Aμ, where the partial order ≤ is

given by coordinatewise comparison. Then

IA,f =
〈
xλ | ∃μ ∈ Z

n
≥0 such that (λ,μ) ∈ M

〉
.

Therefore, we have to find minimal integral solutions to the above
system of linear equations for every fundamental hole f . For this task,
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we can again use Normaliz, or we can use the zsolve command of 4ti2,
see [1]. Usually, zsolve runs faster, so it is the default choice of HASE.

Once we have a generating set for IA,f , we can use a computer
algebra software to find the standard monomials. In general, the set
of standard monomials of a polynomial ideal can be infinite, but it
has a finite representation in terms of standard pairs. HASE relies on
Macaulay2 [8], which has the command standardPairs. A standard
pair is a pair that consists of a monomial xλ and a set xμ1 , . . . ,xμr of
monomials. Such a pair corresponds to the set of holes

f +A(λ+
∑r

i=1 ciμi), ci ∈ Z≥0,

and the set of all such standard pairs gives all holes in f +Q.

§3. Performance of the algorithm

As shown by [2, 18], computing the set of holes H for the semigroup
Q is polynomial in time in the input size of A if we fix the number of
variables m and n (see the definition of the input size in [3]). Still, com-
puting H is a difficult problem, and our algorithm may fail to terminate
due to limited memory or time even for reasonably-sized examples.

In the examples we computed, we experienced the following prob-
lems:

• Normaliz may fail to compute the set F of fundamental holes.
• For one of the fundamental holes f ∈ F , zsolve or Normaliz
may fail to find the ≤-minimal solutions to f +Aλ = Aμ.

• For one of the fundamental holes f ∈ F , Macaulay2 may fail
to compute the standard pairs.

In this list, a failure means that either we ran out of memory or we ran
out of time.

If Normaliz fails, there is not much we can do. We really need
the fundamental holes, and if computing the fundamental holes over-
strains our computational resources at hand, it is very probable that the
problem is just too difficult. The only thing we could do is to ask the
developpers of Normaliz, who are always up for a challenge, for advice.

If one of the later steps fails, there is much more that we could
do. The translation of computing the holes of the form f + Q for a
fundamental hole f into a problem of commutative algebra is not very
direct, and there may be some room for improvements. We discuss one
trick that we implemented in Section 3.1 below.

There may be fourth problem: Namely, the set F may be extremely
large. Thus, even if Normaliz computes F within reasonable time and
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if zsolve and Macaulay2 find the hole monoids reasonably fast for each
single hole, the total running time may be unacceptable. However, at
least in this case it is relatively easy to obtain a good estimate for the
total running time that would be needed, since in this case the cardi-
nality of F is known, and the running times of zsolve and Macaulay2
per fundamental hole can be estimated by their performance on the first
few holes.

If F is very large, a natural remedy is to look for symmetries of the
problem. However, currently symmetries are not implemented in HASE.

3.1. Speeding up zsolve

Let f ∈ F be a fundamental hole. As explained in Section 2, we want
to solve the linear system f + Aλ = Aμ. This system can be simplified
considerably if certain non-holes are known in advance. The simplest
case is to look at the vectors f + ai, where ai is a column of A.

Suppose that f + ai is not a hole. Then f + ai = Aμ0 for some μ0.
Thus, f + ai +Aλ = A(μ0 +λ). This shows that if f + ai is not a hole,
then f +ai+Q contains no other holes. This implies that every minimal
solution to f + Aλ = Aμ has λi = 0. Let A′ be the matrix A with the
ith column ai dropped. Then, instead of solving f +Aλ = Aμ, we may
just as well solve f + A′λ′ = Aμ. Observe that this leads to a linear
system with one variable fewer. If we can identify many columns ai that
we can drop, we can speed up the computation of the holes in f +Q.

This idea is implemented in HASE and can be activated using the
option --trick. With this option, HASE does the following instead of
solving f +Aλ = Aμ:

(1) For each column ai of A, check whether f + ai is a hole.
(2) Let A′ be the matrix with columns those ai for which f + ai is

a hole.
(3) Compute the minimal solutions to f+A′λ′ = Aμ (using either

zsolve or Normaliz).
(4) Use Macaulay2 to compute the standard pairs of the ideal

IA′,f .

Step 1 is an integer feasibility problem. HASE uses the open source
(mixed-integer) linear programming system lp solve [6] to solve this
problem. Usually, this is a relatively quick step (and if it is not, it is
again an indication that our original problem is too difficult).

In the last step, observe that the trick also leads to a smaller ideal
IA′,f or, more precisely, an ideal in a smaller ambient ring (IA,f and IA′,f
will in fact have the same generators). This, however, should not lead
to a big speed-up, since the command standardPairs in Macaulay2
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will usually realize when variables do not appear in the generating set
of an ideal.

§4. Common diagonal effect models

In this section, we consider the common diagonal effect models
(CDEM) introduced by [9]. The results were obtained by computing
small examples using HASE to build a conjecture.

Let A ∈ Z
(2d+1)×d2

be the matrix that computes the row sums,
column sums, and also the diagonal sum of a d× d table. For instance,
if d = 3, we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The cone K generated by the columns of A lies in the hyperplane

(4)
d∑

i=1

zi =
2d∑

i=d+1

zi,

since this linear equality is satisfied by all columns of A. Our goal is
to describe the Hilbert basis of the saturation Qsat of the semigroup Q
generated by the columns of A. First, we define a set F that will later
turn out to be the set of fundamental holes of Q.

Definition 4.1. Let aij be the ((i− 1)d+ j)th column of A, and let

hkl :=
1

2
(all + alk + akl + akk) .

Finally, let F := {hkl : k, l ∈ [d], k < l}, where [d] := {1, 2, . . . , d}.
There are

(
d
2

)
choices for l and k. Since every choice yields a different

vector, we get |F| = (
d
2

)
. The next lemma shows that F consists of holes.

Lemma 4.2. F ⊂ K ∩ Z
2d+1, and F ⊆ Qsat \Q.

Proof. aij has a 1 in the jth coordinate and in the (d+ i)th coordi-
nate. Moreover, if i = j, then there is a 1 in the (2d + 1)th coordinate.
So every vector of the form 2hkl = all + alk + akl + akk has a 2 in the
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lth, kth, (d+ l)th, (d+k)th and in the (2d+1)st coordinate, and all other
coordinates are 0. Thus, F ⊂ K ∩ Z

2d+1 = Qsat.
It remains to show that F ∩ Q = ∅. So suppose we have an non-

negative integral linear combination of the aij ’s that lies in F . To get
a 1 in the lth coordinate, we need a generator ail and to get a 1 in the
kth coordinate we need a generator ai′k. Since there has to be a 1 in the
(d+ l)th and (d+k)th coordinate, we see that i, i′ ∈ {l, k}. Note that we
cannot use a different generator to obtain a 1 in these coordinates, since
otherwise we would get another 1 in the first d coordinates. If there are
more than 2 generators, then either there is an entry bigger than 1 or
there are at least five 1′s in the first 2d coordinates.

If i = i′, then without loss of generality our linear combination is
all + alk, which has a 2 in the (d+ l)th coordinate. If i �= i′, then either
we have akl + alk, which has a 0 in the last entry, or we have all + akk
which has a 2 in the last entry. Hence, we have F ∩Q = ∅. To see that
all elements in F are indeed fundamental holes, one checks that each
vector of the form hkl − aij is not in Qsat. Q.E.D.

We have now identified a set of fundamental holes. [18, proof of Propo-
sition 3.1] have shown that the set of fundamental holes is contained
in

P :=

⎧⎨
⎩

∑
i,j∈[d]

λijaij | 0 ≤ λij < 1 for i, j ∈ [d]

⎫⎬
⎭ .

To identify the fundamental holes, we can focus on P . Moreover, this
proposition also implies that the (minimal) Hilbert basis is contained
in the closure of P . The next theorem describes the (minimal) Hilbert
basis for Qsat.

Theorem 4.3. The minimal Hilbert basis for Qsat is given by

H := {aij}i,j∈[d] ∪ F .

Proof. Let z = (z1, z2, . . . , z2d+1) ∈ P ∩ Z
2d+1 \ {0}. Let

S := z1 + z2 + · · ·+ zd = zd+1 + zd+2 + · · ·+ z2d. For every i, j ∈ [d], we

have zi =
∑d

j′=1 λij′ and zd+j ≥ λij . This implies

S − zd+i =
∑

j∈[d]\{i}
zd+j ≥

⎡
⎢⎢⎢

∑
j∈[d]\{i}

λij

⎤
⎥⎥⎥

z lattice point
= zi,

and hence

(5) zi + zd+i ≤ S.
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We show that every non-negative integer vector z that satisfies (5) is
a non-negative integer combination of H. To do this, we show that if
z �= 0, then there is an element a ∈ H such that z−a is non-negative and
satisfies (5). Observe that subtracting a from z decreases the right-hand-
side S, so we need to make sure that the left-hand-side also decreases
for those i ∈ [d] for which (5) holds with equality.

First, suppose that z2d+1 > 0.
If there are two indices l and k where equality holds in (5), then

zk + zd+k = S ≥ zk + zl and zl + zd+l = S ≥ zd+k + zd+l.

It follows that zd+k = zl and zd+l = zk. Thus, zl and zk are the only
nonzero entries among the first d coordinates. It is easy to check that
in this case, z− 1

2 (all+alk +akl +akk) is non-negative and satisfies (5).
If there is only one index i for which equality holds in (5), we can

check that z− aii again is non-negative and satisfies (5). If there is no i
for which equality holds, we pick i such that the pair of indices (i, d+ i)
with zi, zd+i �= 0 contains the biggest entry and subtract aii. Then
z− aii is non-negative and satisfies (5).

It remains to discuss the case z2d+1 = 0. To express z as a non-
negative linear integral combination of a′ijs where i �= j, we translate
the problem to a matching problem. We have two labeled multi-sets⋃

i:zi>0

⋃zi
r=1{i} and

⋃
j:zd+j>0

⋃zd+j

s=1 {j}, both of cardinality S. Writing

z as a non-negative integer combination of the aij corresponds to a
matching between the two sets. The matching has to be proper in the
sense that we only match elements i, j with i �= j. For example, if
z = (2, 0, 2, 2, 0, 2, 0), the two multi-sets are both equal to {1, 1, 3, 3}. In
this example, there is (up to symmetry) only one proper matching that
matches 1 to 3 and 3 to 1, corresponding to the identity z = a1,3+a3,1+
a1,3 + a3,1.

It remains to show that there always exist such a proper matching.
This can either be seen directly by induction or by appealing to Hall’s
marriage theorem, noting that (5) always ensures that the marriage
condition is satisfied.

This finishes the proof H is a Hilbert basis. It is straightforward to
check that H is indeed minimal. Q.E.D.

Knowing the Hilbert basis for Qsat, we can completely describe the set
of fundamental holes.

Corollary 4.4. F is the set of fundamental holes of Q.
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Proof. We have already seen that every element in F is a funda-
mental hole. It only remains to show that there are no other fundamen-
tal holes. Any fundamental hole is a non-negative integer combination
of the Hilbert basis H. Clearly, this combination cannot involve the
columns aij (otherwise the combination would not be fundamental).
Thus, it suffices to show that the sum of two holes in H is not a hole.
This follows from the identity hij +hkl = akk + all + aij + aji. Q.E.D.

We have now seen that there are exactly
(
d
2

)
fundamental holes.

However, this semigroup has infinitely many holes:

Theorem 4.5. The set of holes in the set hkl + Q is the union of
the two monoids

(6a) hkl + Z≥0akk + Z≥0akl + Z≥0alk + Z≥0all

and

(6b) hkl +
∑d

i=1
Z≥0aii.

Proof. Fix k, l ∈ [d], k < l. If i �= j and i /∈ {k, l}, then
hkl + aij = akk + ail + alj

assuming that j �= l. If j = l, then we get

hkl + aij = all + akl + aik.

Thus, if i �= j and i /∈ {k, l}, then hkl + aij is not a hole. Similarly, if
j /∈ {k, l}, then hkl + aij is not a hole. Thus, if hkl +

∑s
r=1 airjr is a

hole, then either ir = jr or {ir, jr} = {k, l} for each r. We claim that
either ir = jr for all r, or {ir, jr} = {k, l} for all r. This implies that
each hole is as in the statement of the theorem. The claim follows from
the computation

hkl + aii + akl = akk + all + ail + aki,

which is valid whenever i /∈ {k, l} and k �= l.
It remains to see that every integer vector in (6) is indeed a hole.

Let h be of the form (6a), and suppose that h =
∑

ij λijaij with λij ≥ 0.

Then λij �= 0 only for {i, j} ⊆ {k, l}, because hi = 0 or hj = 0 for i, j /∈
{k, l}. The matrix A restricted to the columns aij with {i, j} ⊆ {k, l}
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equals ⎛
⎜⎜⎜⎜⎝
1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1

⎞
⎟⎟⎟⎟⎠

up to rows with only zeros. Since this matrix has rank four, the represen-
tation of h as a linear combination is unique. However, by assumption,
h has a representation of the form h = hkl+ . . . in which the coefficients
are not integers (but half integers). Thus, h is a hole.

Finally, let h be of the form (6b). Suppose that h =
∑

ij λijaij with

λij ∈ Z≥0, and let S =
∑d

i=1 hi =
∑

ij λij . Note that h2d+1 = S − 1.
Therefore, h is the sum of S − 1 “diagonal” columns aii and one “off-
diagonal” column aij . This is not possible, since, by assumption, the
column sums and the row sums are the same. Q.E.D.

Remark 4.6. Note the following two properties of the hole monoids :

(1) The two monoids corresponding to a single hole hkl are not
disjoint.

(2) The hole monoids corresponding to two different fundamental
holes hkl, hk′l′ are not disjoint : For example,

h12 + a33 = h23 + a11.

§5. Computational experiments

Semigroups play an important role in combinatorics, in discrete
geometry, and in combinatorial commutative algebra. The interplay
between these areas is nicely exemplified by the theory of lattice
polytopes. One can associate a semigroup to every lattice polytope. The
Hilbert function of the corresponding graded semigroup ring turns out
to be the Ehrhart function of the lattice polytope, see [12, Section 12.1]
for more details about this connection and see [5] for a nice introduction
to Ehrhart theory.

It is of particular interest to determine whether this semigroup
has holes. For example, if the semigroup has holes, then there is no
unimodular triangulation. Therefore, the algebraic structure is closely
related to geometric properties. In Section 5.1, we briefly define what a
(lattice) polytope is and how to construct the corresponding semigroup,
and we present a computational result regarding the linear ordering
polytope.

Holes of semigroups also play a role when computing Markov bases,
as was recently shown by [15]. We give a brief example in Section 5.2.
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5.1. The Integer-Decomposition Property and Linear
Order Polytopes

A polytope P ⊂ R
d is the convex hull of finitely many vectors v1,

v2, . . . , vn ∈ R
d, and we write

P = conv (v1,v2, . . . ,vn) ,

where conv (v1,v2, . . . ,vn) =
{∑

i λivi | λi ≥ 0,
∑

j λj = 1
}
.

The inclusion-minimal subset V ⊂ {v1,v2, . . . ,vn} such that P =
conv(V ) is called the vertex set of P and an element of V is called a
vertex. We say P is a lattice polytope if V ⊂ Z

d, i.e., all coordinates of the
vertices are integral. The dimension of a polytope P is the dimension
of its affine span, i.e., the dimension of the smallest affine subspace
containing P . A d-dimensional polytope is sometimes called a d-polytope.

A lattice d-polytope P ∈ R
d has the integer-decomposition property

(IDP) if for every integer k > 0 and every integer point z ∈ kP ∩ Z
d,

there exist x1,x2, . . . ,xk ∈ P ∩ Z
d with

(7) z = x1 + x2 + · · ·+ xk.

Such a polytope is also called integrally closed by other authors.
We can also express the integer-decomposition property in the

language of semigroups. Let (P, 1) := {(x, 1) | x ∈ P} ⊂ R
d+1 be the

polytope embedded in R
d+1 at height 1. Moreover, let KP := R≥0(P, 1)

denote the (pointed) cone generated by the points in (P, 1) and let

QP :=
{
z | z = k1x1 + · · ·+ knxn, where ki ∈ Z≥0, xi ∈ (P, 1) ∩ Z

d+1
}

be the semigroup generated by the integer points in (P, 1). Then P has
the IDP if and only if the semigroup QP is saturated. This means that
we can check if a polytope has the integer-decomposition property by
showing that the semigroup does not have any holes.

In a computational experiment, we examined whether the 7th linear
ordering polytope has the integer decomposition property. Sturmfels and
Welker already showed that for n ≤ 6, the nth linear ordering polytope
satisfies the IDP, see [16, Theorem 6.1].

For any permutation π of n elements, we define

vij(π) =

{
1 if π(i) > π(j)

0 otherwise,

where 1 ≤ i < j ≤ n. We follow the definition of [11, Section 3.3]
and define the nth linear ordering polytope Pn as the convex hull of
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the n! vectors v(π) := (vij(π))1≤i<l≤n ∈ R
(n2). Note that the vertices

are the only integer points of Pn. A python program that generates
the matrix can be downloaded from the HASE homepage. After a bit
more than a month of computation time on a linux machine with 16
Intel processors (Intel(R) Xeon(R) CPU E5-2687W v2 at 3.40GHz), the
program confirmed that P7 also has the IDP.

Theorem 5.1. The nth linear ordering polytope has the integer-
decomposition property for n ≤ 7.

The question whether or not Pn satisfies the IDP for all n ∈ Z≥1 is
still open.

5.2. Lifting Markov bases and Gröbner bases

Recently, Rauh and Sullivant [15] have proposed a new iterative
algorithm to compute Markov bases and Gröbner bases of toric ideals in
which a key step is to understand the holes of an associated semigroup.
We do not explain this theory here, but we summarize two examples
that arose in this context and that can now be reproduced using HASE.

The first example is from the computation of the Markov basis of
the binary complete bipartite graph K3,N , as computed by [14]. The
associated semigroup has two fundamental holes. Each fundamental
hole has one associated monoid, generated by eight generators. The
input file K31codz.mat for HASE can be downloaded from the HASE
homepage. Within a few seconds, HASE produces the following output:

Normaliz found 2 fundamental ho l e s .

Standard pa i r s o f [ 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 ] :

1 : {x1 , x2 , x4 , x7 , x9 , x10 , x12 , x15}
Standard pa i r s o f [ 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 ] :

1 : {x0 , x3 , x5 , x6 , x8 , x11 , x13 , x14}
The same method can be used to compute a Markov basis for the

binary 3 × 3-grid. In this case, one needs to understand the holes of a
larger semigroup. Again, the input file 3x3codz.mat can be downloaded
from the HASE homepage.

This problem turns out to be much more difficult for HASE, and
in fact, after waiting 24 hours for HASE to finish we became impatient
and aborted the program, even when the option --trick was activated.

Surprisingly, it turns out that the set of holes itself can be computed
with some extra information: While the semigroup has 32 fundamental
holes, there are only three symmetry classes. The time that HASE
spends on a single hole varies greatly, even within a symmetry class. So
all that is needed to finish the computation is to find representatives of
the three symmetry classes such that the hole monoid computations run
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through relatively quickly. The current version of HASE cannot be used
to run the algorithm on a subset of the fundamental holes (but it is not
difficult to do this manually by looking at HASE’s source code). This
shows once again how important it is to take symmetry into account.

§6. Discussion and open problems

There are many open problems concerning semigroups and holes
of semigroups. In this section, we just want to briefly mention a non-
respresentative selection of open problems.

As mentioned in the beginning, the Frobenius problem is still open
if there are more than two generators. There are several computational
results, see e.g. [4]. It might be possible to use the structure of the holes,
i.e. which hole is based on which fundamental hole, to say something
about the Frobenius number. Alternatively, one could use a slightly
modified version of HASE to compute the Frobenius number explicitly.

As briefly discussed in Section 5.1, holes in semigroups coming from
lattice polytopes are of particular interest as they reflect geometric prop-
erties. Therefore, another application of HASE is to describe the semi-
group coming from a user specified lattice polytope.
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