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On the functor of Arakawa, Suzuki and Tsuchiya

Sergey Khoroshkin and Maxim Nazarov

Abstract.

Arakawa, Suzuki and Tsuchiya defined a correspondence between
certain modules of the trigonometric Cherednik algebra CN depending
on a parameter κ ∈ C , and certain modules of the affine Lie algebra

ŝlm of level κ − m . We give a detailed proof of this correspondence

by working with the affine Lie algebra ĝlm alongside of ŝlm . We also
relate this construction to a correspondence between certain modules
of the degenerate affine Hecke algebra HN and all modules of slm or
glm . The latter correspondence was constructed earlier by Cherednik.

Introduction

The principal purpose of this article is to give detailed proofs of the
basic properties of a certain functor introduced by Arakawa, Suzuki and
Tsuchiya in [1] and further studied by Suzuki in [12]. We will denote
this functor by AN where N can be any positive integer. In our setting
the functor AN gets applied to any module V of the affine Lie algebra

ŝlm such that for any given vector in V , there exists a degree i such

that the subspace t i slm[t] ⊂ ŝlm annihilates this vector. Here m is
another positive integer and t is a variable. In the present article the

Lie algebra ŝlm is regarded as a central extension of the current Lie
algebra slm [ t, t−1 ] by a one-dimensional vector space with a fixed basis
element, which will be denoted by C .

As a vector space, AN (V ) is the tensor product of V with N copies
of the vector space C

m[t, t−1 ] . The latter space can be regarded as a

module of ŝlm where the central element C acts as zero. Hence AN (V )

is also a module of ŝlm . It has been proved in [1] that the vector space
AN (V ) comes with an action of the trigonometric Cherednik algebra

Received December 4, 2015.
Revised April 21, 2016.
2010 Mathematics Subject Classification. 17B35.
Key words and phrases. Affine Lie algebras, Cherednik algebras.



276 S. Khoroshkin and M. Nazarov

[2, 3, 6]. We will denote this algebra by CN . The complex associative
algebra CN is generated by the symmetric group ring CSN , the ring of
Laurent polynomials in N variables x1 , . . . , xN and by another family
of commuting elements u1 , . . . , uN . The subalgebra of CN generated by
the first two rings is the crossed product SN �C[x1 , x

−1
1 , . . . , xN , x−1

N ]
where the group SN permutes the N variables. The subalgebra of CN

generated by SN and u1 , . . . , uN is the degenerate affine Hecke algebra
HN introduced by Drinfeld [4] and by Lusztig [8]. The other defining
relations in CN are (2.8),(2.9) and (2.10). In particular, the algebra CN

depends on a parameter κ ∈ C .
The action of the trigonometric Cherednik algebra CN and that of

the affine Lie algebra ŝlm on the vector space AN (V ) do not commute

in general. However, let us suppose that the element C ∈ ŝlm acts on
V as multiplication by the scalar κ −m . In other words, suppose that

the ŝlm -module V is of level κ−m . Then the action of CN on AN (V )

preserves the image of the action of the subalgebra t−1 slm [ t−1 ] ⊂ ŝlm .
Hence the quotient vector space of AN (V ) by the image inherits an
action of CN . This remarkable property of the functor AN was also
proved in [1]. We give a more detailed proof of this property of AN by
following an approach of [12]. At the same time we make Theorem 4.1
from [12] more precise.

We regard ŝlm as a subalgebra of the affine Lie algebra ĝlm . The
latter is a central extension of the current Lie algebra glm [ t, t−1 ] by the
one-dimensional vector space with the basis element C . By definition,

this one-dimensional space is contained in the subalgebra ŝlm ⊂ ĝlm . We

start with any ĝlm -module such that for any given vector of the module,

there is a degree i such that the subspace t i glm[t] ⊂ ĝlm annihilates
the vector. Following [12], we define an action of the algebra CN on the
tensor product of this module with N copies of Cm[t, t−1 ] . These N

tensor factors are regarded as ĝlm -modules. We prove that if the central

element C acts on the initial ĝlm -module as multiplication by κ − m ,
then the action of CN on the tensor product preserves the image of the

action of the subalgebra t−1 slm [ t−1 ] ⊂ ĝlm . By modifying the action of
CN , we get the above stated property of the functor AN , see Section 3.

The functor AN can be considered as the affine Lie algebra version
of another functor, introduced by Cherednik [3] and further studied in
[1]. We denote this functor by FN , and apply it to any module U of
the finite-dimensional Lie algebra slm . As a vector space, FN (U) is
just the tensor product of U with N copies of the vector space Cm. By
regarding the latter vector space as an slm -module, we obtain an action
of slm on FN (U) . There is also an action of the degenerate affine Hecke
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algebra HN on the vector space FN (U) , which commutes with the action
of slm . In particular, this construction was used by Suzuki [10] to prove
a conjecture of Rogawski [9] on the Jantzen filtration on the standard
HN -modules.

In the present article we establish a connection between the functors
AN and FN . For any slm -module U we consider the CN -module induced
from the HN -module FN (U) . Here HN is regarded as a subalgebra of

CN . We prove that for a certain ŝlm -module V , the induced CN -module
is equivalent to the quotient of AN (V ) by the image of the action of the

subalgebra t−1 slm [ t−1 ] ⊂ ŝlm . Namely V is the ŝlm -module of level
κ −m , parabolically induced from U as a module over the subalgebra

slm ⊂ ŝlm ; see Section 2 for details.
We also consider the action of the algebra HN on the tensor product

of any glm -module with N copies of Cm. By modifying this action and
regarding slm as a subalgebra of glm , we get the above mentioned action
of HN on the space FN (U) for any slm -module U . Working here with
glm -modules also allows us to give an analogue of Theorem 2.1 from [7],
where the role of HN was played by the Yangian of the Lie algebra gln
with any n . Namely, we consider the tensor product of N copies of Cm

with a parabolically induced module of glm . Our Theorem 1.3 describes
the action of HN on the quotient of the tensor product, taken relative to
the image of the action the nilpotent subalgebra of glm complementary
to the parabolic subalgebra which the given module of glm is induced
from. The above mentioned result of [7] can be derived from our present
Theorem 1.3 by using the Drinfeld functor [4].

The work of the first named author has been funded by the Russian
Academic Excellence Project ‘5-100’. He has been also supported by
the RFBR grant 17-01-00585, and by the University of York Research
Priming Fund. The second named author has been supported by the
EPSRC grant N023919.

We are grateful to Tomoyuki Arakawa and Takeshi Suzuki for very
helpful conversations. We dedicate this article to Masatoshi Noumi.
His works on the algebraic structures arising from the theory of special
functions have motivated our interest in the results presented here.

§1. Hecke algebras

1.1. We will begin with recalling a well known construction from
the representation theory of the degenerate affine Hecke algebra HN ,
which corresponds to the general linear group GLN over a local non-
Archimedean field. This algebra has been introduced by Drinfeld [4],
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see also the work of Lusztig [8]. By definition, the complex associative
algebra HN is generated by the symmetric group algebra CSN and by
the pairwise commuting elements u1 , . . . , uN with the cross relations for
any p = 1, . . . , N − 1 and q = 1, . . . , N

σp uq = uq σp for q �= p, p+ 1 ;(1.1)

σp up = up+1 σp − 1 .(1.2)

Here and in what follows σp ∈ SN denotes the transposition of numbers
p and p+ 1. More generally, σpq ∈ SN will denote the transposition of
the numbers p and q . The group algebra CSN can be then regarded as
a subalgebra in HN . Furhtermore, it follows from the defining relations
of HN that a homomorphism HN → CSN , identical on the subalgebra
CSN ⊂ HN , can be defined by the assignments

(1.3) up �→ σ1p + . . .+ σp−1,p for p = 1, . . . , N .

We will also use the elements of the algebra HN

(1.4) zp = up − σ1p − . . .− σp−1,p where p = 1, . . . , N .

Notice that zp �→ 0 under the homomorphism HN → CSN defined by
(1.3). For every permutation σ ∈ SN we have

(1.5) σ zp σ
−1 = zσ(p) .

It suffices to verify (1.5) when σ = σq and q = 1, . . . , N − 1. Then (1.5)
is equivalent to the relations (1.1),(1.2). The elements z1 , . . . , zN do not
commute, but satisfy the commutation relations

(1.6) [ zp , zq ] = σpq (zp − zq) .

Let us verify the equality in (1.6). Both sides of (1.6) are antisymmetric
in p and q , so it suffices to consider only the case when p < q . Then

[ zp , uq ] = [up − σ1p − . . .− σp−1,p , uq ] = 0.

Hence

[ zp , zq ] = [ zp , zq − uq ] = −[ zp , σ1q + . . .+ σq−1,q ]

= −[ zp , σpq ] = σpq (zp − zq)

where we used (1.5). Obviously, the algebra HN is generated by CSN

and by the elements z1 , . . . , zN . Together with relations in CSN , (1.5)
and (1.6) are defining relations for HN .
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The construction that we are now going to recall is due to Cherednik
[3, Example 2.1]. It was further developed by Arakawa, Suzuki and
Tsuchiya [1, Subsection 5.3]. Let U be any module over the complex
general linear Lie algebra glm . Let Eab ∈ glm with a, b = 1, . . . ,m be
the standard matrix units. We will also regard the matrix units Eab as
elements of the algebra End(Cm), this should not cause any confusion.
Let us consider the tensor product (Cm)⊗N ⊗ U of glm -modules. Here
each of the N tensor factors Cm is a copy of the natural glm-module. We
shall use the indices 1, . . . , N to label these N tensor factors. For any

index p = 1, . . . , N we will denote by E
(p)
ab the operator on the vector

space (Cm)⊗N acting as

(1.7) id⊗(p−1) ⊗ Eab ⊗ id⊗(N−p) .

Proposition 1.1. (i) By using the glm -module structure of U , an
action of the algebra HN on the vector space (Cm)⊗N ⊗ U is defined as
follows : the symmetric group SN ⊂ HN acts by permutations of the N
tensor factors C

m, and the element zp ∈ HN with p = 1, . . . , N acts as

(1.8)
m∑

a,b=1

E
(p)
ab ⊗ Eba .

(ii) This action of HN commutes with the (diagonal ) action of glm on
(Cm)⊗N ⊗ U .

To prove this proposition we only need to verify that the relations
(1.6) are satisfied by the operators (1.8) with p = 1, . . . , N instead of
the elements z1 , . . . , zN ∈ HN respectively. This verification is direct,
see [7, Section 1] for details. By using Proposition 1.1 we get a functor
EN : U �→ (Cm)⊗N ⊗ U from the category of all glm -modules to the
category of bimodules over glm and HN .

Now let slm ⊂ glm be the complex special linear Lie algebra. We will
also use a version of Proposition 1.1 for the vector space (Cm)⊗N ⊗ U
where U is a module not of glm but only of slm . Denote

I = E11 + . . .+ Emm

so that glm = slm ⊕ C I . Moreover

(1.9)
m∑

a,b=1

Eab ⊗ Eba ∈ 1

m
I ⊗ I + slm ⊗ slm .
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Therefore an action of

(1.10)
m∑

a,b=1

E
(p)
ab ⊗ Eba − 1

m
id⊗N ⊗ I

can be defined on the vector space (Cm)⊗N ⊗ U by using only the
slm -module structure of U . Because the element I ∈ glm is central,
the operators (1.10) with p = 1, . . . , N satisfy the same commutation
relations (1.6) as the operators (1.8) respectively instead of z1 , . . . , zN .

Corollary 1.2. (i) Using the slm -module structure of U , an action
of the algebra HN on the vector space (Cm)⊗N ⊗U is defined as follows :
the group SN ⊂ HN acts by permutations of the N tensor factors C

m,
and the element zp ∈ HN with p = 1, . . . , N acts as (1.10).
(ii) This action of HN commutes with the (diagonal ) action of slm on
(Cm)⊗N ⊗ U .

Hence we get a functor FN : U �→ (Cm)⊗N ⊗ U from the category
of all slm -modules to the category of bimodules over slm and HN . Our
main subject will be an analogue of this functor for the affine Lie algebra

ŝlm instead of slm . The role of the degenerate affine Hecke algebra HN

will be then played by the trigonometric Cherednik algebra CN .

1.2. For any f ∈ C an automorphism of the degenerate affine Hecke
algebra HN identical on the subalgebra CSN ⊂ HN can be defined by
mapping up �→ up+ f for all indices p = 1, . . . , N . Hence we can modify
the functor EN by pulling its defining action of HN back through this

automorphism. We will denote by E f
N the modified functor. Like the

EN = E 0
N , this is a functor U �→ (Cm)⊗N ⊗ U from the category of

all glm -modules to the category of bimodules over glm and HN . The
modified functor will be needed to state Theorem 1.3 below. We will
also let the parameter m of the target category of E f

N vary. This should
cause no confusion.

Let n be any positive integer. The decomposition Cm+n = Cm⊕Cn

determines an embedding of the direct sum glm ⊕ gln of Lie algebras to
glm+n . As a subalgebra of glm+n , the direct summand glm is spanned
by the matrix units Eab ∈ glm+n where a, b = 1, . . . ,m . The direct
summand gln is spanned by those Eab where a, b = m + 1, . . . ,m + n .
Let q be the Abelian subalgebra of glm+n spanned by the elements Eab

for all a = m+1, . . . ,m+n and b = 1, . . . ,m . Let p be the subalgebra of
glm+n spanned by those matrix units which do not belong to q , so that
we have glm+n = p ⊕ q . Then p is a maximal parabolic subalgebra of
the reductive Lie algebra glm+n . Note that glm ⊕ gln ⊂ p by definition.
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Now let V be any gln -module. Denote by U � V the glm+n-module
parabolically induced from the glm⊕gln -module U⊗V . To define U � V ,
one first extends the action of the Lie algebra glm ⊕ gln on U ⊗ V to p
so that any matrix unit in p complementary to glm ⊕ gln acts on U ⊗ V
as zero. By definition, U � V is the glm+n -module induced from the
p-module U ⊗ V . Theorem 1.3 will provide a description of the space
EN (U � V )q of coinvariants of EN (U � V ) relative to the action of the
subalgebra q ⊂ glm+n . This space is the quotient of the vector space
EN (U � V ) by the image of the action of q . Note that here the functor
EN is applied to a module of glm+n rather than of glm . This is clear
by the notation. Hence we have an action of HN on the vector space
EN (U � V )q . The subalgebra glm⊕gln ⊂ glm+l also acts on this vector
space, and the latter action commutes with that of the algebra HN .

For any K = 0, 1, . . . , N denote by SK,N−K the subgroup of the
symmetric group SN preserving the subset {1, . . . ,K} ⊂ {1, . . . , N}.
This subgroup is naturally isomorphic to the direct productSK×SN−K .
Further, the tensor product HK⊗HN−K can be naturally identified with
the subalgebra of HN generated by the subgroup SK,N−K ⊂ SN and by
all u1 , . . . , uN . Denote by HK,N−K this subalgebra. We have the usual

induction functor IndHN

HK,N−K
.

Theorem 1.3. The bimodule EN (U � V )q of glm⊕ gln and HN is
equivalent to

(1.11)
N⊕

K=0
IndHN

HK,N−K
EK(U)⊗ E −m

N−K(V ) .

Proof. For any K = 0, . . . , N the vector space of the corresponding
direct summand in (1.11) is the same as that of the induced SN -module

IndSN

SK,N−K
(Cm)⊗K ⊗ U ⊗ (Cn)⊗(N−K) ⊗ V .

By definition, the latter SN -module is a quotient of the vector space

(1.12) CSN ⊗ (Cm)⊗K ⊗ U ⊗ (Cn)⊗(N−K) ⊗ V

such that the right multiplication in the first tensor factor of (1.12) by
any element of the subgroup SK,N−K ⊂ SN has the same effect on the
quotient, as the corresponding permutation of the K tensor factors Cm

and of the N −K tensor factors Cn . The action of SN on the quotient
is then via the left multiplication in the first tensor factor of (1.12).

By letting the symmetric group SN permute all N tensor factors
Cm and Cn of (1.12), the direct sum over K = 0, . . . , N of the above
described quotients can be identified with

(1.13) (Cm+n)⊗N ⊗ U ⊗ V .
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Here we use the decomposition Cm+n = Cm ⊕ Cn and transpose the
tensor factor U of (1.12) with each of the next N−K tensor factors Cn .
Under this identification, the action of SN on the quotients becomes
the permutational action on the first N tensor factors of (1.13). To
avoid confusion, we will denote respectively by A and B the subspaces
of Cm+n corresponding to the first and the second summands in the
decomposition Cm+n = Cm ⊕ Cn .

Let us describe the action of the elements u1 , . . . , uN ∈ HN on
(1.13) coming from the identification of this vector space with that of
the bimodule (1.11). Under this identification, for any K the subspace

(1.14) A⊗K ⊗B ⊗(N−K) ⊗ U ⊗ V

of (1.13) is preserved by the action of u1 , . . . , uN . For p � K the element
up acts on the subspace (1.14) as

(1.15)

p∑
q=1

σpq ⊗ id⊗ id +
m∑

a,b=1

E
(p)
ab ⊗ Eba ⊗ id .

Here σpq is the permutation of the p th and q th tensor factors C
m+n

of (1.13) while E
(p)
ab is the operator on (Cm+n)⊗N acting as (1.7). For

p > K the element up acts on (1.14) as

(1.16)

p∑
q=K+1

σpq ⊗ id⊗ id +
m+n∑

a,b=m+1

E
(p)
ab ⊗ id⊗ Eb−m,a−m − m.

The union of the subspaces (1.14) for all K = 0, . . . , N is cyclic in (1.13)
under the action of the subalgebra CSN ⊂ HN . Hence the action of
HN on (1.13) is now uniquely determined.

On the other hand, the vector space of the glm+n -module U � V
can be identified with U(q)⊗U ⊗ V whereon the subalgebra q ⊂ glm+n

acts via left multiplication in the first tensor factor. Note that the Lie
algebra q is Abelian. Hence its universal enveloping algebra U(q) is a
free commutative algebra over C generated by the elements Eab where
a = m + 1, . . . ,m + n and b = 1, . . . ,m . The vector space of the
glm ⊕ gln -module U ⊗ V can be then identified with the subspace

(1.17) 1⊗ U ⊗ V ⊂ U(q)⊗ U ⊗ V .

By the definition of a parabolically induced module, the action of the
subalgebra p ⊂ glm+n preserves this subspace. The elements Eab ∈ p
with a, b = 1, . . . ,m and a, b = m+1, . . . ,m+n act on this subspace as
the operators id⊗ Eab ⊗ id and id⊗ id⊗ Ea−m,b−m respectively, while
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any element Eab ∈ p with a = 1, . . . ,m and b = m + 1, . . . ,m + n acts
as zero. All this determines the action of glm+n on U(q)⊗ U ⊗ V .

Let us mow consider the bimodule EN (U � V ) over glm+n and HN .
Its vector space is

(1.18) W = (Cm+n)⊗N ⊗ U(q)⊗ U ⊗ V .

The corresponding space of the q-coinvariants is isomorphic to (1.13).
Indeed, we can define a bijective linear mapping ι from (1.13) to the
quotient W/qW as follows. First we map (1.13) to the subspace

(Cm+n)⊗N ⊗ 1⊗ U ⊗ V ⊂ W

in the natural way, and then regard the image of the latter mapping
modulo qW . To prove the bijectivity of resulting mapping ι , consider
the ascending Z-filtration on the vector space

(Cm+n)⊗N = (A⊕B )⊗N

defined by the tensor degree in A . Note that the action of the subalgebra
q ⊂ glm+n preserves the filtration, and the corresponding graded action

of q is trivial. Hence this filtration on (Cm+n)⊗N induces an ascending
filtration on W such that the corresponding graded action of q is via left
multiplication in the tensor factor U(q) of (1.18). The bijectivity of our
ι now follows, because the algebra U(q) is free commutative.

The mapping ι defined above is glm⊕gln -equivariant, see the above
description of the action of p on the subspace (1.17). This ι is also
equivariant relative to the action of SN . But relative to the action
of SN on (1.13), the union of the subspaces (1.14) for K = 0, . . . , N is
cyclic. To complete the proof of Theorem 1.3 it now remains to check for
each p = 1, . . . , N the up -equivariance of the restriction of the mapping
ι to each of these subspaces.

The image of the subspace (1.14) under ι is the subspace

(1.19) A⊗K ⊗B⊗(N−K) ⊗ 1⊗ U ⊗ V ⊂ W

regarded modulo qW . The Eab ∈ glm+n and b = m + 1, . . . ,m + n
annihilate the subspace X ⊂ Cm+n . The elements Eba ∈ glm+n with
b = 1, . . . ,m and a = m + 1, . . . ,m + n annihilate the subspace (1.17).
Hence for p � K the element up ∈ HN acts on the subspace (1.19) as

p∑
q=1

σpq ⊗ id⊗ id⊗ id +

m∑
a,b=1

E
(p)
ab ⊗ id⊗ Eba ⊗ id .
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By comparing the last displayed sum with (1.15) we conclude that the
restriction of ι to the subspace (1.14) is up -equivariant for any p � K .

Now suppose that p > K . The Eab ∈ glm+n with b = 1, . . . ,m
annihilate the subspace B ⊂ Cm+n . Hence the element up ∈ HN acts
on the subspace (1.19) as

p∑
q=1

σpq ⊗ id⊗ id⊗ id +
m∑

a=1

m+n∑
b=m+1

E
(p)
ab ⊗ Eba ⊗ id⊗ id +(1.20)

m+n∑
a,b=m+1

E
(p)
ab ⊗ id⊗ id⊗ Eb−m,a−m .

The tensor factor Eba in the display (1.20) belongs to the subalgebra
q ⊂ glm+n . Hence modulo qW , the result of applying the first line of
the display (1.20) to elements of W is the same as the result of applying

(1.21)

p∑
q=1

σpq ⊗ id⊗ id⊗ id −
N∑
q=1

m∑
a=1

m+n∑
b=m+1

E
(q)
ba E

(p)
ab ⊗ id⊗ id⊗ id .

Here the tensor factors E
(q)
ba E

(p)
ab with q > K but with q �= p vanish on

the subspace

(1.22) A⊗K ⊗B ⊗(N−K) ⊂ (Cm+n)⊗N .

Any tensor factor E
(q)
ba E

(p)
ab in (1.21) with q � K acts on this subspace

as permutation σpq . The sum of the tensor factors

E
(p)
ba E

(p)
ab = E

(p)
bb

over a = 1, . . . ,m and b = m+1, . . . ,m+ n acts on the subspace (1.22)
as the scalar m . Therefore after cancellations, the sum (1.21) acts on
the subspace (1.19) as

(1.23)

p∑
q=K+1

σpq ⊗ id⊗ id⊗ id − m.

By comparing (1.16) with the sum of the second line in (1.20) and of
(1.23) we now conclude that the restriction of the mapping ι to the
subspace (1.14) is up -equivariant for p > K . �
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§2. Cherednik algebras

2.1. Let us first define the rational Cherednik algebra DN . This is
a complex associative algebra depending on a parameter κ ∈ C . It is
generated by the symmetric group algebra CSN together with two sets
of commuting elements x1 , . . . , xN and y1 , . . . , yN where like in (1.5)

(2.1) σ xp σ
−1 = xσ(p) and σ yp σ

−1 = yσ(p)

for every permutation σ ∈ SN . For any indices p and q , the elements
yp and xq do not commute with each other but satisfy the commutation
relations

[ yp , xq ] = −σpq for q �= p ;(2.2)

[ yp , xp ] = κ+
∑
r �=p

σpr .(2.3)

Multiplication in the algebra DN provides a bijective linear map

(2.4) C[x1 , . . . , xN ]⊗ CSN ⊗ C[y1 , . . . , yN ] → DN ;

see for instance [6, Theorem 1.3]. The bijectivity here also follows from
the next proposition, which has been a motivation for introducing the
algebra DN . For any p = 1, . . . , N consider the Dunkl operator acting
on the vector space C[x1 , . . . , xN ] as

(2.5) κ∂p +
∑
r �=p

1

xp − xr
(1− σpr) .

Here ∂p denotes the derivation in the polynomial ring C[x1 , . . . , xN ]
relative to the variable xp , and the symmetric group SN acts on this
ring by permutations of x1 , . . . , xN as usual.

Proposition 2.1. An action of the algebra DN on the vector space
C[x1 , . . . , xN ] can be defined as follows : the symmetric group SN ⊂ DN

acts by permutations of the N variables, the element xp ∈ DN acts via
mutiplication, and the element yp ∈ DN acts as the operator (2.5).

In particular the operators (2.5) with p = 1, . . . , N commute. This
fact is well known and goes back to the celebrated work of Dunkl [5].
Due to this fact the proof of Proposition 2.1 reduces to verifying the
second relation (2.1) and the relations (2.2),(2.3) for the operator (2.5)
instead of yp . That is straightforward and we omit the details.

Observe that the algebra DN contains a copy of the degenerate
affine Hecke algebra HN as a subalgebra. An injective homomorphism
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HN → DN identical on the symmetric group SN ⊂ HN can be defined
by mapping zp �→ xp yp for each index p = 1, . . . , N . To prove the
homomorphism property we need to verify the relations (1.5),(1.6) for
xp yp ∈ DN instead of zp ∈ HN . The first of the two relations to be
verified follows from (2.1). Further, for p �= q

[xp yp , xq yq ] = xp (xq yp − [xq , yp ] ) yq − xq yq xp yp

= xq xp yq yp − xp σpq yq − xq yq xp yp

= xq [xp , yq ] yp − xp σpq yq

= xq σpq yp − xp σpq yq = σpq (xp yp − xq yq )

as needed. Here we used only the relations (2.1),(2.2). The injectivity
of homomorphism HN → DN thus defined follows from the bijectivity
of the multiplication map (2.4).

Next we consider the trigonometric Cherednik algebra CN . It can
be defined as the ring of fractions of the algebra DN relative to the set
of denominators x1 , . . . , xN . By [6, Theorem 1.3] multiplication in the
algebra CN provides a bijective linear map

C[x1 , x
−1
1 , . . . , xN , x−1

N ]⊗ CSN ⊗ C[y1 , . . . , yN ] → CN .

The algebra CN can also be defined as the complex associative algebra
generated by the ring C[x1 , x

−1
1 , . . . , xN , x−1

N ] of Laurent polynomials
in x1 , . . . , xN and by the degenerate affine Hecke algebra HN subject to
the relations σ xp σ

−1 = xσ(p) for all σ ∈ SN and to the commutation
relations

[ zp , xq ] = −xp σpq for q �= p ;(2.6)

[ zp , xp ] = κxp +
∑
r �=p

xp σpr .(2.7)

To prove the equivalence of two definitions of CN we can use the above
constructed embedding HN → DN . Then we only need to verify the
relations (2.6) and (2.7) for the element xp yp ∈ DN instead of zp ∈ HN .
This verification is direct by the defining relations (2.2),(2.3) in DN . By
using both definitions of CN we obtain a corollary to Proposition 2.1.

Corollary 2.2. An action of the algebra CN on the vector space
C[x1 , x

−1
1 , . . . , xN , x−1

N ] can be defined as follows : the elements xp , x
−1
p

of CN act via mutiplication, the group SN ⊂ HN acts by permutations
of the N variables, and the element zp ∈ HN acts as the operator

κxp ∂p +
∑
r �=p

xp

xp − xr
(1− σpr) .
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Note that in the second definition of the algebra CN we can also
employ the pairwise commuting generators u1 , . . . , uN ∈ HN instead of
the non-commuting generators z1 , . . . , zN ; see the definition (1.4). Then
instead of the defining relations (2.6),(2.7) in CN we get

[up , xq ] = −xq σpq for q < p ;(2.8)

[up , xq ] = −xp σpq for q > p ;(2.9)

[up , xp ] = κxp +
∑
r<p

xr σpr +
∑
r>p

xp σpr .(2.10)

According to Corollary 2.2 the element up ∈ HN then acts on the vector

space C[x1 , x
−1
1 , . . . , xN , x−1

N ] as the operator

κxp ∂p +
∑
r �=p

xp

xp − xr
(1− σpr) +

∑
r<p

σpr .

Corollary 2.2 is obtained by extending the action of DN given by
Proposition 2.1 from the space C[x1 , . . . , xN ] to the space of Laurent
polynomials C[x1 , x

−1
1 , . . . , xN , x−1

N ] . On the latter space the element
yp ∈ DN still acts as the Dunkl operator (2.5). We will now describe a
generalization of Corollary 2.2, going back to the work of Cherednik [2].

2.2. Let us consider the affine Lie algebra ĝlm . By definition, this
is a central extension of the current Lie algebra glm [ t, t−1 ] by a one-
dimensional vector space with a fixed basis element which we denote by
C . Here t is a formal variable. Choose the basis of glm [ t, t−1 ] consisting
of the elements Ecd t

j where c, d = 1, . . . ,m while j ranges over Z. The
commutators in the Lie algebra glm [ t, t−1 ] are taken pointwise so that

[Eab t
i, Ecd t

j ] = (δbcEad − δda Ecb ) t
i+j

for the basis elements. In the Lie algebra ĝlm by definition we have

(2.11) [Eab t
i, Ecd t

j ] = (δbc Ead − δda Ecb ) t
i+j + i δi,−j δbc δda C.

Now let V be any module of the Lie algebra ĝlm where for any given

vector in V there is a degree i such that the subspace t i glm[t] ⊂ ĝlm
annihilates the vector. Note that here the meaning of the symbol V is
different from that in Section 1, where it was used to denote a module
of the finite-dimensional Lie algebra glm . Consider the vector space

(2.12) W = C[x1 , x
−1
1 , . . . , xN , x−1

N ]⊗ (Cm)⊗N ⊗ V .
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Due to our condition on V for any p = 1, . . . , N there is a well defined
linear operator on W

(2.13)
∞∑
i=0

m∑
a,b=1

x−i
p ⊗ E

(p)
ab ⊗ Eba t

i .

Here E
(p)
ab is the operator (1.7) acting on (Cm)⊗N . The symmetric

group SN acts on the tensor factor C[x1 , x
−1
1 , . . . , xN , x−1

N ] of W by
permutations of the N variables. There is another copy of SN acting on
the N tensor factors Cm of W by their permutations. Using these two
actions of SN for p = 1, . . . , N introduce the Cherednik operator on W

κxp ∂p ⊗ id⊗N ⊗ id +
∑
r �=p

xp

xp − xr
(1− σpr)⊗ σpr ⊗ id +(2.14)

∞∑
i=0

m∑
a,b=1

x−i
p ⊗ E

(p)
ab ⊗ Eba t

i .

The vector space

(2.15) C[x1 , x
−1
1 , . . . , xN , x−1

N ]⊗ (Cm)⊗N

can be naturally identified with the tensor product of N copies of the

space Cm[t, t−1 ] . The latter space can be regarded as a ĝlm -module
where the central element C acts as zero. By taking the tensor product
of N copies of this module with V we turn the vector space W to a

ĝlm -module. The element Ecd t
j of ĝlm acts on W as

(2.16)
N∑
q=1

x j
q ⊗ E

(q)
cd ⊗ id + id⊗ id⊗N ⊗ Ecd t

j .

We will also employ the affine Lie algebra ŝlm . This is a subalgebra

of ĝlm spanned by the subspace slm [ t, t−1 ] ⊂ glm [ t, t−1 ] and by the
central elements C . For any scalar � ∈ C , a module of the Lie algebra

ĝlm or ŝlm is said to be of level � if C acts on this module as that

scalar. In particular, the ĝlm -module Cm[t, t−1 ] used above was of
level zero. Note that by the defining relations (2.11), the subspaces

glm ⊂ glm [ t, t−1 ] and slm ⊂ slm [ t, t−1 ] are Lie subalgebras of ĝlm and

ŝlm respectively. Denote by q the subspace t−1 slm [ t−1 ] ⊂ slm [ t, t−1 ] .

This is a subalgebra of both ŝlm and ĝlm . Note that here the meaning
of the symbol q is different from that in Section 1, where it denoted
a certain subalgebra of glm . We can now state the main properties of
Cherednik operators on W due to [1, 12].
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Proposition 2.3. (i) By using the ĝlm -module structure on V , an
action of the algebra CN on the vector space (2.12) is defined as follows :
the elements xp , x

−1
p ∈ CN act via mutiplication in the tensor factor

C[x1 , x
−1
1 , . . . , xN , x−1

N ] of (2.12), the symmetric group SN ⊂ HN acts
by simultaneous permutations of the variables x1 , . . . , xN and of the N
tensor factors C

m, and the element zp ∈ HN acts as (2.14).

(ii) This action of CN commutes with that of the subalgebra glm ⊂ ĝlm .

(iii) If V has level κ−m then the action of CN preserves the subspace
qW ⊂ W .

In the next section we will give a detailed proof of this proposition.
By inspecting it we will also obtain a version of Proposition 2.3 for the

vector space (2.12) where the tensor factor V is a module not of ĝlm but

only of ŝlm . In the latter case, for any vector in V we still assume the

existence of a degree i such that the subspace t i slm[t] ⊂ ŝlm annihilates
the vector. Due to (1.9), an action of the sum

(2.17)
∞∑
i=0

x−i
p ⊗

( m∑
a,b=1

E
(p)
ab ⊗ Eba t

i − 1

m
id⊗N ⊗ I t i

)
can be then defined on the vector space (2.12) by using only the ŝlm -
module structure of V . Then for any p = 1, . . . , N we get a modification
of the Cherednik operator (2.14) on W ,

κxp ∂p ⊗ id⊗N ⊗ id +
∑
r �=p

xp

xp − xr
(1− σpr)⊗ σpr ⊗ id +(2.18)

∞∑
i=0

x−i
p ⊗

( m∑
a,b=1

E
(p)
ab ⊗ Eba t

i − 1

m
id⊗N ⊗ I t i

)
.

Here we use the sum (2.17) instead of the sum (2.13) used in (2.14).

Further, we can turn the vector space (2.12) into another ŝlm -module

by regarding (2.15) as ŝlm -module of level zero.

Corollary 2.4. (i) Using the ŝlm -module structure on V , an action
of CN on (2.12) can be defined as follows : the elements xp , x

−1
p ∈ CN

act via mutiplication in C[x1 , x
−1
1 , . . . , xN , x−1

N ] , the group SN ⊂ HN

acts by simultaneous permutations of the variablesx1 , . . . , xN and of the
N tensor factors C

m, and the element zp ∈ HN acts as (2.18).

(ii) This action of CN commutes with that of the subalgebra slm ⊂ ŝlm .

(iii) If V has level κ−m then the action of CN preserves the subspace
qW ⊂ W .
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2.3. By using Corollary 2.4(i) and the definition (2.12) we obtain a

functor AN : V �→ W from the category of all ŝlm -modules satisfying the
annihilation condition stated just before (2.17). Note that the resulting

actions of ŝlm and CN on W do not commute in general. However, this

will be our analogue for ŝlm of the functor FN introduced in the end of
Subsection 1.1. Let us now relate the two functors to each other.

For any given slm -module U and � ∈ C let V be the ŝlm -module

of level � parabolically induced from U . Note that the subspace of ŝlm
spanned by slm[t] and by the central element C is a Lie subalgebra.
Denote this subalgebra by p . To define V we first extend the action on
U from slm to p so that all the elements of t slm[t] act as zero, while C

acts as the scalar � . By definition, V is the ŝlm -module induced from

the p-module U . Since the element C is central in ŝlm , the module V
indeed has level � . It also satisfies the annihilation condition mentioned
in the previous paragraph.

Let us apply the functor AN to this particular V . Using the notation
q = t−1 slm [ t−1 ] from the previous subsection, we have a vector space

decomposition ŝlm = p ⊕ q . Note again that here the meaning of the
symbols p and q is different from that in Section 1 but similar. Consider
the space AN (V )q of coinvariants of AN (V ) relative to the action of

the subalgebra q ⊂ ŝlm . This space is the quotient of the vector space

AN (V ) by the image of the action of q . The subalgebra slm ⊂ ŝlm acts

on this quotient, because the adjoint action of this subalgebra on ŝlm
preserves q . If � = κ−m then due to Corollary 2.4(iii) the algebra CN

also acts on this quotient. Moreover, by Corollary 2.4(ii) the latter action
commutes with the action of slm . Thus the space of q-coinvariants
AN (V )q becomes a bimodule over slm and CN .

On the other hand, we can apply FN to the slm -module U as given
above. Hence we obtain a bimodule FN (U) of slm and of the degenerate
affine Hecke algebra HN , see Corollary 1.2(i,ii). Since HN is a subalgebra

of CN , we have the induction functor IndCN

HN
. If we apply it to any

bimodule over slm and HN , we will get a bimodule over slm and CN .

Theorem 2.5. Let � = κ−m . Then the bimodule AN (V )q of slm
and CN is equivalent to

(2.19) IndCN

HN
FN (U) .

Proof. By using the second definition of the algebra CN and the
definition of the functor FN , the vector space of the bimodule (2.19) can
be identified with the tensor product

(2.20) C[x1 , x
−1
1 , . . . , xN , x−1

N ]⊗ (Cm)⊗N ⊗ U .
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The subalgebra C[x1 , x
−1
1 , . . . , xN , x−1

N ] ⊂ CN acts on (2.20) via left
multiplication in the first tensor factor. The subalgebra HN ⊂ CN acts
on (2.20) preserving the subspace 1⊗(Cm)⊗N ⊗U . The action of HN on
this subspace is determined by naturally identifying it with (Cm)⊗N⊗U ,
see Corollary 1.2(i). All this defines the action of CN on (2.20). Note
that slm acts diagonally on the N tensor factors C

m and on the last
tensor factor U of (2.20).

On the other hand, the vector space of the ŝlm -module V can be

identified with U(q)⊗U whereon the Lie subalgebra q ⊂ ŝlm acts via left
multiplication in the first tensor factor. The vector space of the given
slm -module U gets identified with the subspace

(2.21) 1⊗ U ⊂ U(q)⊗ U .

Then by the definition of a parabolically induced module of level �, on

this subspace: any element of the subalgebra t slm[t] ⊂ ŝlm acts as zero,

the subalgebra slm ⊂ ŝlm acts via its defining action on U , the element

C of ŝlm acts as the the scalar �. All this determines the action of the
Lie algebra ŝlm on our V = U(q)⊗ U .

Now consider the module W = AN (V ) over ŝlm and CN . Using the
above identification,

(2.22) W = C[x1 , x
−1
1 , . . . , xN , x−1

N ]⊗ (Cm)⊗N ⊗ U(q)⊗ U

as a vector space. Its space of q-coinvariants is isomorphic to (2.20).
Indeed, we can define a bijective linear mapping ι from (2.20) to the
quotient space W/qW as follows. First we map (2.20) to the subspace

C[x1 , x
−1
1 , . . . , xN , x−1

N ]⊗ (Cm)⊗N ⊗ 1⊗ U ⊂ W

in the natural way, and then regard the image of the latter map modulo
qW . To prove the bijectivity of the resulting mapping ι , consider the
ascending Z-filtration on the space (2.15) defined by the total degree in

the variables x1 , . . . , xN . The action of the subalgebra q ⊂ ŝlm preserves
the filtration. Moreover, the corresponding graded action of q is trivial.
Hence this filtration on (2.15) induces an ascending filtration on W such
that the corresponding graded action of q is via left multiplication in
the tensor factor U(q) of (2.22). The bijectivity of the mapping ι now
follows from the Poincaré-Birkhoff-Witt theorem for the algebra U(q).

Since the subalgebra slm ⊂ ŝlm acts on the subspace (2.21) through
its defining action on U , the mapping ι is slm -equivariant. Further, the
subalgebra C[x1 , x

−1
1 , . . . , xN , x−1

N ] ⊂ CN acts on both (2.20) and W
via left multiplication in itself as their tensor factor. Hence the mapping
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ι is equivariant for this subalgebra. But relative to the action of this
subalgebra on the vector space (2.20), the subspace 1⊗ (Cm)⊗N ⊗ U is
cyclic. To complete the proof of Theorem 2.5 it now remains to check
the HN -equivariance of the restriction of the mapping ι to this subspace
of (2.20). Here HN is regarded as a subalgebra of CN .

The image of the subspace 1⊗ (Cm)⊗N ⊗U of (2.20) under ι is the
subspace

(2.23) 1⊗ (Cm)⊗N ⊗ 1⊗ U ⊂ W

regarded modulo qW . The action of the group SN ⊂ HN on both the
subspace of (2.20) and its image under ι is via permutations of the N
tensor factors Cm . This action of SN obviously commutes with ι . Now
consider the elements z1 , . . . , zN ∈ HN which together with SN generate
the algebra HN . According to Corollary 1.2(i) for any p = 1, . . . , N the
generator zp acts on the subspace 1⊗ (Cm)⊗N ⊗ U of (2.20) as

m∑
a,b=1

id⊗ E
(p)
ab ⊗ Eba − 1

m
id⊗ id⊗N ⊗ I .

On the other hand, according to Corollary 2.4(i) the generator zp
acts on W as (2.18). When applied to elements of the subspace (2.23),
all summands displayed in the first line of (2.18) vanish, because here
the derivation ∂p and the difference 1− σpr are applied to the constant

function 1 ∈ C[x1 , x
−1
1 , . . . , xN , x−1

N ] . The summands in the second
line of (2.18) corresponding to the indices i = 1, 2, . . . also vanish on the
subspace (2.23), because the last tensor factor of any of these summands

belongs to the subalgebra t slm[t] ⊂ ŝlm . The remaining summands of
(2.18) correspond to i = 0 . Their sum acts on the subspace (2.23) as

m∑
a,b=1

id⊗ E
(p)
ab ⊗ id⊗ Eba − 1

m
id⊗ id⊗N ⊗ id⊗ I .

Hence the restriction of ι to the subspace 1⊗ (Cm)⊗N ⊗ U of (2.20) is
zp -equivariant. �

§3. Proof of Proposition 2.3

3.1. To prove the part (i) of Proposition 2.3, we use the definition
of the algebra CN as the ring of fractions of the algebra DN relative to
the set of denominators x1 , . . . , xN . Let us denote by Xp the operator of
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multiplication by the variable xp in the first tensor factor of the vector
space (2.12). Further denote by Yp the operator acting on (2.12) as

κ∂p ⊗ id⊗N ⊗ id +
∑
r �=p

1

xp − xr
(1− σpr)⊗ σpr ⊗ id+

∞∑
i=0

m∑
a,b=1

x−i−1
p ⊗ E

(p)
ab ⊗ Eba t

i ,

so that the Cherednik operator (2.14) equals the composition Xp Yp . We
will show that a representation of the algebra DN on the vector space
(2.12) can be defined by mapping

(3.1) xp �→ Xp , yp �→ Yp and σ �→ σ ⊗ σ ⊗ id

for all p = 1, . . . , N and σ ∈ SN . We will use the defining relations
(2.1),(2.2),(2.3) of DN .

The definitions of the operators Xp and Yp immediately show that
the relations (2.1) are satisfied under the mapping (3.1). Moreover, due
to the latter fact it suffices to consider the relations (2.2),(2.3) only for
p = 1. In this case the commutator [Yp ,Xq ] for q > 1 equals∑
r>1

1

x1 − xr
[ 1− σ1r , xq ]⊗ σ1r ⊗ id =

1

x1 − xq
[−σ1q , xq ]⊗ σ1q ⊗ id

which in turn equals to −σ1q⊗σ1q⊗ id as required by the relation (2.2).
Further, in the case p = 1 the commutator [Yp ,Xp ] equals

κ+
∑
r>1

1

x1 − xr
[ 1− σ1r , x1 ]⊗ σ1r ⊗ id = κ+

∑
r>1

σ1r ⊗ σ1r ⊗ id

as required by the relation (2.3). To complete the proof of the part (i)
of Proposition 2.3, it now remains to check the pairwise commutativity
of the operators Y1 , . . . , YN .

Now extend the vector space (2.12) by replacing its first tensor factor
C[x1 , x

−1
1 , . . . , xN , x−1

N ] by the space of all the complex valued rational
functions in x1 , . . . , xN with the permutational action of SN . For any
p consider the following three operators on the extended vector space,

Dp = ∂p ⊗ id⊗N ⊗ id,

Rp =
∑
r �=p

1

xp − xr
σpr ⊗ σpr ⊗ id,
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Tp =
∑
r �=p

1

xp − xr
⊗ σpr ⊗ id +

∞∑
i=0

m∑
a,b=1

x−i−1
p ⊗ E

(p)
ab ⊗ Eba t

i .

Note that Yp is the restriction of the operator κDp − Rp + Tp to the
space (2.12). The operators D1 , . . . , DN clearly pairwise commute. The
next two lemmas show that the operators R1 , . . . , RN and T1 , . . . , TN

enjoy the same property.

Lemma 3.1. The operators R1 , . . . , RN pairwise commute.

Proof. It suffices to prove the commutativity of the operators Rp

and Rq only for p = 1 and q = 2. By definition, the commutator
[R1 , R2 ] is equal to the sum∑

r �=1
s�=2

[ 1

x1 − xr
σ1r ⊗ σ1r ⊗ id ,

1

x2 − xs
σ2s ⊗ σ2s ⊗ id

]
which is in turn equal to the sum over the indices r > 2 of[ 1

x1 − x2
σ12 ⊗ σ12 ⊗ id ,

1

x1 − xr
σ1r ⊗ σ1r ⊗ id

]
+[ 1

x1 − x2
σ12 ⊗ σ12 ⊗ id ,

1

x2 − xr
σ2r ⊗ σ2r ⊗ id

]
+[ 1

x1 − xr
σ1r ⊗ σ1r ⊗ id ,

1

x2 − xr
σ2r ⊗ σ2r ⊗ id

]
.

For any single index r > 2, the sum of the three commutators displayed
above is equal to zero. Indeed, because the action of the symmetric group
SN on the space of complex valued rational functions in x1 , . . . , xN by
permutations of the variables is faithful, it suffices to prove that the sum[ 1

x1 − x2
σ12 ,

1

x1 − xr
σ1r

]
+[ 1

x1 − x2
σ12 ,

1

x2 − xr
σ2r

]
+[ 1

x1 − xr
σ1r ,

1

x2 − xr
σ2r

]
is equal to zero. This can be easily verified by direct calculation. �

Lemma 3.2. The operators T1 , . . . , TN pairwise commute.
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Proof. It suffices to prove the commutativity of the operators Tp

and Tq only for p = 1 and q = 2. The commutator [T1 , T2 ] is equal to[ 1

x1 − x2
⊗ σ12 ⊗ id ,

∞∑
i=0

m∑
a,b=1

x−i−1
1 ⊗ E

(1)
ab ⊗ Eba t

i
]
+

[ 1

x1 − x2
⊗ σ12 ⊗ id ,

∞∑
j=0

m∑
c,d=1

x−j−1
2 ⊗ E

(2)
cd ⊗ Edc t

j
]
+

[ ∞∑
i=0

m∑
a,b=1

x−i−1
1 ⊗ E

(1)
ab ⊗ Eba t

i ,
∞∑
j=0

m∑
c,d=1

x−j−1
2 ⊗ E

(2)
cd ⊗ Edc t

j
]

plus the sum over the indices r > 2 of[ 1

x1 − x2
⊗ σ12 ⊗ id ,

1

x1 − xr
⊗ σ1r ⊗ id

]
+[ 1

x1 − x2
⊗ σ12 ⊗ id ,

1

x2 − xr
⊗ σ2r ⊗ id

]
+[ 1

x1 − xr
⊗ σ1r ⊗ id ,

1

x2 − xr
⊗ σ2r ⊗ id

]
.

Here we have omitted the zero commutators, see the beginning of the
proof of Lemma 3.1.

For any r > 2, the sum of the last three displayed commutators
equals zero. The sum of the three commutators in the previous display
also equals zero. Both equalities follow from the classical Yang-Baxter
equation for the rational function of two complex variables u and v

(3.2)
1

u− v

m∑
a,b=1

Eab ⊗ Eba

with values in glm ⊗ glm , see for instance [1, Section 3.2]. To derive
the first stated equality, we observe that the sum over a, b = 1, . . . ,m in
(3.2) acts on C

m ⊗C
m as the permutation of the two tensor factors. To

derive the second stated equality, we use the expansion

1

u− v
=

∞∑
i=0

u−i−1 v i

and also observe that for i, j � 0 the summand at the right hand side

of (2.11) involving the central element C ∈ ĝlm vanishes. �
Part (i) of Proposition 2.3 follows from the two lemmas above, and

from the next three.
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Lemma 3.3. For any p �= q we have [Dp , Rq ] + [Rp , Dq ] = 0.

Proof. It suffices to prove the stated equality only for p = 1 and
q = 2. By definition,

[D1 , R2 ] =
∑
r �=2

[
∂1 ⊗ id⊗N ⊗ id ,

1

x2 − xr
σ2r ⊗ σ2r ⊗ id

]
=

1

(x1 − x2 )2
σ12 ⊗ σ12 ⊗ id +

1

x1 − x2
σ12 (∂1 − ∂2 )⊗ σ12 ⊗ id .

The sum in the last displayed line is invariant under exchanging the
indices 1 and 2. Hence the commutator [D2 , R1 ] is equal to the same
sum. Therefore [D1 , R2 ] + [R1 , D2 ] = 0. �

Lemma 3.4. For any p �= q we have [Dp , Tq ] + [Tp , Dq ] = 0.

Proof. It suffices to prove the stated equality only for p = 1 and
q = 2. By omitting the zero commutators, we get

[D1 , T2 ] =
[
∂1 ,

1

x2 − x1

]
⊗ σ12 ⊗ id =

1

(x1 − x2 )2
⊗ σ12 ⊗ id

which is again invariant under exchanging the indices 1 and 2. Therefore
the commutator [D2 , T1 ] is the same as [D1 , T2 ]. Thus we get the
equality [D1 , T2 ] + [T1 , D2 ] = 0. �

Lemma 3.5. For any p �= q we have [Rp , Tq ] + [Tp , Rq ] = 0.

Proof. It suffices to prove the stated equality only for p = 1 and
q = 2. By omitting the zero commutators like we did in our proof of
Lemma 3.2, the commutator [R1 , T2 ] is equal to

(3.3)
[ 1

x1 − x2
σ12 ⊗ σ12 ⊗ id ,

∞∑
i=0

m∑
a,b=1

x−i−1
2 ⊗ E

(2)
ab ⊗ Eba t

i
]

plus the sum over the indices r > 2 of

−
[ 1

x1 − xr
σ1r ⊗ σ1r ⊗ id ,

1

x1 − x2
⊗ σ12 ⊗ id

]
+(3.4) [ 1

x1 − xr
σ1r ⊗ σ1r ⊗ id ,

1

x2 − xr
⊗ σ2r ⊗ id

]
+[ 1

x1 − x2
σ12 ⊗ σ12 ⊗ id ,

1

x2 − xr
⊗ σ2r ⊗ id

]
.

In particular, here we used the vanishing of the commutator[ 1

x1 − x2
σ12 ⊗ σ12 ⊗ id ,

1

x1 − x2
⊗ σ12 ⊗ id

]
.
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The commutator (3.3) is equal to the sum over i = 0, 1, . . . of

m∑
a,b=1

( x−i−1
1

x1 − x2
σ12⊗E

(1)
ab σ12⊗Eba t

i − x−i−1
2

x1 − x2
σ12⊗E

(2)
ab σ12⊗Eba t

i
)

which is invariant under exchanging the indices 1 and 2. For any r > 2,
the first commutator in the three lines (3.4) is equal to the negative of

1

(x1 − xr)(x2 − xr)
σ1r ⊗ σ1r σ12 ⊗ id +

1

(x1 − x2)(x1 − xr)
σ1r ⊗ σ12 σ1r ⊗ id ,

while the second commutator in (3.4) is equal to the negative of

1

(x1 − x2)(x1 − xr)
σ1r ⊗ σ1r σ2r ⊗ id +

1

(x1 − xr)(x2 − xr)
σ1r ⊗ σ2r σ1r ⊗ id .

Hence these two commutators cancel each other in (3.4) by the relations
σ1r σ12 = σ2r σ1r and σ12 σ1r = σ1r σ2r . The third commutator in (3.4)
is equal to the difference of the operators

1

(x1 − x2)(x1 − xr)
σ12 ⊗ σ12 σ2r ⊗ id

and
1

(x1 − x2)(x2 − xr)
σ12 ⊗ σ2r σ12 ⊗ id .

This difference is invariant under exchanging the indices 1 and 2 due
to the relations σ12 σ1r = σ2r σ12 and σ1r σ12 = σ12 σ2r . Therefore the
commutator [R2 , T1 ] is the same as [R1 , T2 ] . Thus we get the required
equality [R1 , T2 ] + [T1 , R2 ] = 0. �

Thus we have now proved the part (i) of Proposition 2.3. Moreover,
the above five lemmas imply that for any given ε ∈ C the operators
κDp + εRp + Tp with p = 1, . . . , N pairwise commute. However, the
choice ε = −1 is necessary for these operators to preserve the vector
space W . The defining relations (2.2),(2.3) of the algebra DN exhibit
this particular choice of ε .

By inspecting the arguments given in this subsection, we also get
the part (i) of Corollary 2.4. Indeed, if we replace the operator (2.14)
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by (2.18) then the definitions of Yp and Tp given in the beginning in this
subsection have to be modified by subtracting the sum

(3.5)
1

m

∞∑
i=0

x−i−1
p ⊗ id⊗N ⊗ I t i .

With these modifications, all other equalities stated in this subsection
remain valid. Note that in the modified arguments we still regard V as

a module over the Lie algebra ĝlm .

3.2. Let us now prove the parts (ii) and (iii) of Proposition 2.3.
For all indices c, d = 1, . . . ,m and each j ∈ Z the operator (2.16) on the
vector space (2.12) commutes with any simultaneous permutation of the
variables x1 , . . . , xN and of the N tensor factors Cm. The action of the

element C ∈ ĝlm on W also commutes with any such permutation. So

the actions of the Lie algebra ĝlm and of the symmetric group SN on
W mutually commute.

Any operator (2.16) commutes with the multiplications by x1 , . . . , xN

in the tensor factor C[x1 , x
−1
1 , . . . , xN , x−1

N ] of W . Further, in the case
j = 0 the operator (2.16) commutes separately with any permutation
of x1 , . . . , xN and with any permutation of the N tensor factors Cm.
Hence for j = 0 it commutes with the Cherednik operator (2.14) on W .
Here we also use the basic fact that the adjoint action of Ecd ∈ glm
annihilates the element

m∑
a,b=1

Eab ⊗ Eba ∈ glm ⊗ glm .

Thus we have proved the part (ii) of Proposition 2.3. Moreover, we
have proved that for all c, d = 1, . . . ,m and j ∈ Z the operator (2.16) on
W commutes with the action of the subalgebra of CN generated by SN

and C[x1 , x
−1
1 , . . . , xN , x−1

N ] . However, the operator (2.16) generally
does not commute with (2.14). In the notation of Subsection 3.1, the
latter operator for any p = 1, . . . , N can be written as the composition
Xp Yp . Since the operator (2.16) commutes with Xp , we shall consider
the commutator with Yp . Moreover, it suffices to consider the case p = 1
only, see the very beginning of the present subsection.

Let us extend the vector space W by again replacing its first tensor
factor C[x1 , x

−1
1 , . . . , xN , x−1

N ] by the space of all the complex valued
rational functions in x1 , . . . , xN as we did in Subsection 3.1. Then Y1

becomes the restriction of the operator κD1 −R1 + T1 to the space W .
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The commutator of the summand κD1 with the operator (2.16) equals

(3.6) κ j x j−1
1 ⊗ E

(1)
cd ⊗ id .

The R1 commutes with (2.16). The commutator of T1 with (2.16) equals

N∑
r=2

[ 1

x1 − xr
⊗ σ1r ⊗ id , x j

1 ⊗ E
(1)
cd ⊗ id + x j

r ⊗ E
(r)
cd ⊗ id

]
+(3.7)

∞∑
i=0

m∑
a,b=1

[
x−i−1
1 ⊗ E

(1)
ab ⊗ Eba t

i , x j
1 ⊗ E

(1)
cd ⊗ id + id⊗ id⊗N ⊗ Ecd t

j
]

where we have just omitted the zero commutators. Because the operator
σ1r on (Cm)⊗N can be written as the sum

m∑
a,b=1

E
(1)
ab E

(r)
ba ,

the sum in the first of the two displayed lines (3.7) equals

(3.8)
N∑
r=2

m∑
a=1

x j
r − x j

1

x1 − xr
⊗ (

E (1)
ca E

(r)
ad − E

(1)
ad E (r)

ca

)⊗ id .

By using the commutation relations (2.11) in ĝlm and the assumption

that the ĝlm -module V has level κ − m , the sum in the second of the
two displayed lines (3.7) equals

∞∑
i=0

m∑
a=1

(
x j−i−1
1 ⊗ E

(1)
ad ⊗ Eca t

i − x j−i−1
1 ⊗ E (1)

ca ⊗ Ead t
i

− x−i−1
1 ⊗ E

(1)
ad ⊗ Eca t

i+j + x−i−1
1 ⊗ E (1)

ca ⊗ Ead t
i+j

)
+

{
(m− κ) j x j−1

1 ⊗ E
(1)
cd ⊗ id if j < 0 ,

0 if j � 0 .

Now assume that j < 0, so that the element Ecd t
j belongs to the

subalgebra q ⊂ ĝlm . Then by adding the last displayed sum to the
operator (3.6) and making cancellations we get the sum

mj x j−1
1 ⊗ E

(1)
cd ⊗ id +(3.9)

−j−1∑
i=0

m∑
a=1

x−i−1
1 ⊗ (

E (1)
ca ⊗ Ead t

i+j − E
(1)
ad ⊗ Eca t

i+j
)
.
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Hence for j < 0 the commutator of the operator Y1 with (2.16) equals
the sum of (3.8) and (3.9). Both the operators (3.8) and (3.9) preserve
the space W , so its extension is no longer needed.

To finish the proof of part (iii) of Proposition 2.3, let us identify the
vector space W with that of the tensor product

(3.10) C
m[t, t−1 ]⊗N ⊗ V

of ĝlm -modules as we already did in Subsection 2.2. Denote by θ the

representation of the Lie algebra ĝlm on the space of (3.10), so that
θ(Ecd t

j ) is the operator (2.16) under the identification of the latter
space with W . For each r = 1, . . . , N denote by θr the representation

of ĝlm on the r th tensor factor C
m[t, t−1 ] of (3.10), so that under the

identification of (3.10) with W

θr (Ecd t
j ) = x j

r ⊗ E
(r)
cd ⊗ id .

Further denote by θN+1 the representation of ĝlm on the tensor factor
V of (3.10). Then

(3.11) θ = θ1 + . . .+ θN + θN+1 .

Let us now consider the following element of the tensor square of

the subalgebra t−1glm[ t−1 ] ⊂ ĝlm ,

J =

−j−1∑
i=0

m∑
a=1

(
Ead t

i+j ⊗ Eca t
−i−1 − Eca t

i+j ⊗ Ead t
−i−1

)
.

Note that this element is antisymmetric: it belongs to the exterior square
of t−1 glm[ t−1 ] . By rewriting the definition of this element as

J =

−j−1∑
i=0

(
Ecd t

i+j ⊗ (
Ecc t

−i−1 − Edd t
−i−1

)
+

∑
a �=c

Ead t
i+j ⊗ Eca t

−i−1 −
∑
a �=d

Eca t
i+j ⊗ Ead t

−i−1
)

we observe that J belongs to the tensor square of the subalgebra q ⊂ ŝlm
and thus to q ∧ q .

For any r = 1, . . . , N,N + 1 let ωr : q ⊗ q → EndW be the linear
map defined by setting ωr (P ⊗Q) = θr (P ) θ1 (Q) for all P ,Q ∈ q . Let

ω = ω1 + . . .+ ωN + ωN+1 .
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Then we have ω(P ⊗Q) = θ(P ) θ1(Q) due to (3.11). Let us apply the
maps ω1 , . . . , ωN , ωN+1 to the element J . In particular, we get

ω1 (J) = j x j−1
1 ⊗ (mE

(r)
cd − δcd id

⊗N )⊗ id .

For the indices r = 2, . . . , N we get

ωr (J) =

−j−1∑
i=0

m∑
a=1

x−i−1
1 x i+j

r

(
E (1)

ca E
(r)
ad − E

(1)
ad E (r)

ca

)
which coincides with the sum (3.8). Further,

ωN+1 (J) =

−j−1∑
i=0

m∑
a=1

x−i−1
1 ⊗ (

E (1)
ca ⊗ Ead t

i+j − E
(1)
ad ⊗ Eca t

i+j
)

which coincides with the sum (3.9) less its first summand. Hence for
j < 0 the commutator of the operator Y1 with (2.16) equals

δcd j x
j−1
1 ⊗ id⊗N ⊗ id + ω1(J) + . . .+ ωN (J) + ωN+1(J) =

δcd j x
j−1
1 ⊗ id⊗N ⊗ id + ω(J) .

By the linearity of the map (3.11) it follows that for any given P ∈ q , the
commutator [Y1 , θ(P ) ] belongs to the right ideal of the algebra EndW
generated by the image θ(Q) of a certain element Q ∈ q depending on
the element P . Hence the operator Y1 preserves the subspace qW ⊂ W .
Thus we complete the proof of the part (iii) of Proposition 2.3.

By inspecting the arguments given in this subsection, we also get the
parts (ii) and (iii) of Corollary 2.4. Indeed, if we modify the definitions
of Yp and Tp given in the beginning of Subsection 3 by subtracting (3.5),
then for p = 1 we will have to subtract from (3.7)

1

m

∞∑
i=0

[
x−i−1
1 ⊗ id⊗N ⊗ I t i , id⊗ id⊗N ⊗ Ecd t

j
]
.

By using the commutation relations (2.11) in ĝlm and the assumption

that the ĝlm -module V has level κ−m , in the case of j < 0 the above
displayed expression equals

1

m
δcd (m− κ) j x j−1

1 ⊗ id⊗N ⊗ id

which has to be then subtracted from (3.9). However, by linearity this
modification has no effect when considering the commutator [Y1 , θ(P ) ]
for any P ∈ q . Hence for the modified operator Y1 the [Y1 , θ(P ) ] still
belongs to the right ideal of EndW generated by θ(Q) for some Q ∈ q .
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