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Abstract.

We propose a unified approach to transformation and summation
formulas for multiple basic hypergeometric series of type A on the basis
of balanced duality transformations. We study two classes of transfor-
mations, one between an n-ple sum and an m-ple sum, and the other
between two n-ple sums. Though the latter are not simple special cases
of the former, we can still derive them from the former in a systematic
way. Our derivation utilizes the fact that some multiple basic hyperge-
ometric series have hidden symmetry which originates from the relation
to basic hypergeometric series in one variable. We also give remarks
on the related summation formulas.

§1. Introduction

In this paper we propose a unified approach to transformation and
summation formulas for multiple basic hypergeometric series of type A
on the basis of duality transformations that relate n-ple sums and m-
ple sums. This work can be considered as an extension of our previous
works [10] and [15].

In a series of papers [18, 20, 22, 24], S.C. Milne and his collaborators
developed the theory of SU(n) (or An−1) basic hypergeometric series,
and proposed various transformation and summation formulas for them,
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using a rational function identity which is called as Milne’s fundamen-
tal lemma (see final section of [20]) and multiple generalizations of the
Bailey lemma (see the exposition [23] and the references therein).

On the other hand, we derived in [10] a multiple generalization of
the Euler transformation for the basic hypergeometric series 2φ1, from
a kernel identity of Cauchy type for Macdonald’s q-difference operators.
Interpreting the multiple Euler transformation as a generating series, we
further obtained several types of multiple hypergeometric summations
and transformations [11, 12], as well as some multiple elliptic hypergeo-
metric transformations [15].

The balanced duality transformation formula (2.9), generalizing the

10W9 transformation (2.10), is one of the most important results of [10],
from which various multiple basic hypergeometric transformations be-
tween n-ple sums and m-ple sums are obtained by limiting procedures
(degenerations). In this paper we propose an approach to understanding
a variety of multiple basic hypergeometric transformations and summa-
tions of A type, on the basis of the balanced duality transformation
(2.9).

We remark that there exist a number of multiple basic hypergeomet-
ric identities between two n-ple sums that cannot be obtained simply by
putting m = n in the balanced duality transformations and their de-
generations. There is, however, a method to obtain such identities by
the balanced duality transformations: first transform the n-ple sum to
a single sum by a balanced duality transformation, utilize the symme-
try in the single sum, and then go back to the n-ple sum [9, 15]. The
main purpose of this paper is to give a systematic derivation of multiple
basic hypergeometric identities of type A, taking full advantage of this
method.

The contents of this paper are as follows. In the next section, after
recalling some definitions and notations, we present the balanced duality
transformation (2.9) for multiple hypergeometric series of type A.

In Section 3, by certain limiting procedures we derive from (2.9)
various useful transformations for multiple basic hypergeometric series
that relate n-ple sums and m-ple sums. They include most of the results
in [10] and two new transformations generalizing 8W7 transformations.
An interesting feature of the results in this section is the equivalence of
four transformations (2.9), (3.2), (3.6) and (3.14). This equivalence is
explained in Subsection 3.3.

In Section 4, we employ the method mentioned above to obtain
several multiple basic hypergeometric transformations of type A between
n-ple sums which generalize Watson, Sears and nonterminating 8W7
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transformations. Some of them are new; others are known ([24], [9]) but
the derivation here seems to be simpler.

In Section 5, we give remarks on summation formulas which are
obtained as special cases of the transformations studied in Section 3.
We also give a new proof of the basic analogue of the Minton–Karlsson
summation due to Gasper [6].

§2. Preliminaries: Φ series and W series

In this section, we introduce two types of An−1 multiple basic hy-
pergeometric series, Φn

m,r series and Wn,m series. We also recall from

[10] a transformation between Wn,m+2 and Wm,n+2 series, called the
balanced duality transformation (2.9) (Proposition 2.1). This identity
can be regarded as the master identity for various transformations we
are going to investigate in this paper. Throughout this paper, we fix
once for all a complex number q such that 0 < |q| < 1. We denote by
N = {0, 1, 2, . . .} the set of all nonnegative integers.

2.1. Φn
m,r series and Wn,m series

Recall that the basic hypergeometric series r+1φr and the very well-
poised basic hypergeometric series r+3Wr+2 are defined by

r+1φr

[
a0, {ai}r
{ci}r ; q, u

]
(2.1)

:= r+1φr

[
a0, a1, . . . , ar
c1, . . . , cr

; q, u

]
=

∑
k∈N

(a0, a1, . . . , ar)k
(q, c1, . . . , cr)k

uk

and

r+3Wr+2

[
s; {ai}r; q, u

]
(2.2)

:= r+3φr+2

[
s, q

√
s,−q

√
s, {ai}r√

s, −√
s, {sq/ai}r; q, u

]

=
∑
k∈N

1− sq2k

1− s

(s, a1, . . . , ar)k
(q, sq/a1, . . . , sq/ar)k

uk,
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where

(a)∞ := (a; q)∞ =
∏
n∈N

(1− aqn),

(a)k := (a; q)k =
(a)∞
(aqk)∞

for k ∈ C,

(a1, a2, . . . , an)k := (a1)k(a2)k · · · (an)k.
In these formulas, the symbol {ai}r stands for the sequence a1, . . . , ar
with i regarded as the running index. (For the standard notations of
basic hypergeometric series, we refer the reader to Gasper–Rahman [7].)
We generalize these basic hypergeometric series r+1φr and r+3W2 to
An−1 multiple basic hypergeometric series as follows. We define the
Φn

m,n series for n,m, r ∈ N by

Φn
m,r

(
{ai}n
{xi}n

∣∣∣∣∣ {bk}m
{dk}m

∣∣∣∣∣ {cs}r
{es}r

∣∣∣∣∣ q, u
)

(2.3)

:=
∑
γ∈Nn

u|γ| Δ(xqγ)

Δ(x)

∏
1≤i,j≤n

(ajxi/xj)γi

(qxi/xj)γi

×
⎛
⎝ ∏

1≤k≤m

∏
1≤i≤n

(bkxi)γi

(dkxi)γi

⎞
⎠

⎛
⎝ ∏

1≤s≤r

(cs)|γ|
(es)|γ|

⎞
⎠ ,

and the Wn,m series for n,m ∈ N by

Wn,m

( {ai}n
{xi}n

∣∣∣ s; {uk}m; {vk}m; q, z

)
(2.4)

:=
∑
γ∈Nn

z|γ|
∏

1≤i<j≤n

Δ(xqγ)

Δ(x)

∏
1≤i≤n

1− sq|γ|+γixi

1− sxi

×
∏

1≤j≤n

⎡
⎣ (sxj)|γ|
((sq/aj)xj)|γ|

∏
1≤i≤n

(ajxi/xj)γi

(qxi/xj)γi

⎤
⎦

×
∏

1≤k≤m

⎡
⎣ (vk)|γ|
(sq/uk)|γ|

∏
1≤i≤n

(ukxi)γi

((sq/vk)xi)γi

⎤
⎦ ,

where γ = (γ1, · · · , γn) ∈ N
n, |γ| = γ1 + · · ·+ γn, and

Δ(x) =
∏

1≤i<j≤n

(xi − xj) and Δ(xqγ) =
∏

1≤i<j≤n

(xiq
γi − xjq

γj ).
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We remark that, when n = 1 and x1 = 1, the Φ1
m,r series reduces to

m+r+1φm+r as

Φ1
m,r

(
a

1

∣∣∣∣∣ {bk}m
{dk}m

∣∣∣∣∣ {cs}r
{es}r

∣∣∣∣∣ q, u
)

(2.5)

= m+r+1φm+r

[
a, {bk}m, {cs}r
{dk}m, {es}r ; q, u

]
,

and the W 1,m series to 2m+4W2m+3 as

W 1,m

(
a

1

∣∣∣ s; {uk}m; {vk}m; q, z

)
(2.6)

= 2m+4W2m+3

[
s; a, {uk}r, {vk}r; q, z

]
,

respectively. When n = 0, both Φ0
m,r and W 0,m are understood as the

constant 1.

Remark 2.1. The very well-poised multiple series Wn,m was intro-
duced in our previous work [15]. It can also be regarded as a special case

of the [H](n) series introduced by S.C. Milne [20, Definition 1.10].

The following variants Wn,m
l (l ∈ Z) of Wn,m = Wn,m

0 will also play
auxiliary roles in this paper:

Wn,m
l

( {ai}n
{xi}n

∣∣∣ s; {uk}m−l; {vk}m+l; q, z

)
(2.7)

:=
∑
γ∈Nn

xlγ1

1 · · · xlγn
n q−le2(γ) z|γ|

Δ(xqγ)

Δ(x)

∏
1≤i≤n

1− sq|γ|+γixi

1− sxi

×
∏

1≤j≤n

⎡
⎣ (sxj)|γ|
((sq/aj)xj)|γ|

∏
1≤i≤n

(ajxi/xj)γi

(qxi/xj)γi

⎤
⎦

×
∏

1≤k≤m−l

∏
1≤i≤n

(ukxi)γi

(sq/uk)|γ|

∏
1≤k≤m+l

(vk)|γ|∏
1≤i≤n

((sq/vk)xi)γi

,

where e2(γ) =
∑

1≤i<j≤n

γiγj denotes the elementary symmetric function

of degree 2. We remark that these Wn,m
l series are obtained formally

from the Wn,m+|l| series through a limiting procedure.
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2.2. Balanced duality transformation for W series

The following proposition provides the key identity of this paper,
from which all the transformations in the next section will be derived.

Proposition 2.1. ([10], Corollary 6.3) Under the balancing con-
dition

(2.8) am+2qm+1+N = BCdefmg, N ∈ N,

where B = b1 · · · bn and C = c1 · · · cm, the following identity holds :

Wn,m+2

( {bi}n
{xi}n

∣∣∣ a; {ckyk}m, d, e; {fy−1
k }m, g, q−N ; q, q

)
(2.9)

=
(μdf/a, μef/a)N
(aq/d, aq/e)N

∏
1≤k≤m

((μckf/a)yk, fy
−1
k )N

(μqyk, (aq/ck)y
−1
k )N

×
∏

1≤i≤n

(aqxi, (μbif/a)x
−1
i )N

((aq/bi)xi, (μf/a)x
−1
i )N

× Wm,n+2

( {aq/ckf}m
{yk}m

∣∣∣μ; {(aq/bif)xi}n, aq/df, aq/ef ;

{(μf/a)x−1
i }n, g, q−N ; q, q

)
,

where μ = am+2qm+1/BCdefm+1 = q−Ng/f .

When m = n = 1 and x1 = y1 = 1, the balanced duality transfor-
mation (2.9) reduces to the following terminating balanced 10W9 trans-
formation:

10W9

[
a; b, c, d, e, f, μfqN , q−N ; q, q

]
(2.10)

=
(μbf/a, μcf/a, μdf/a, μef/a, aq, f)N
(aq/b, aq/c, aq/d, aq/e, μq, μf/a)N

× 10W9

[
μ; aq/bf, aq/cf, aq/df, aq/ef, μf/a, μfqN , q−N ; q, q

]
,

where μ = a3q2/bcdef2 ([7, Exercise 2.19]). We also remark that, in
[15], a direct proof of Proposition 2.1 is given on the basis of the Cauchy
determinant.
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We remark that, when m = 1 and y1 = 1, (2.9) implies the trans-
formation

Wn,3

( {bi}n
{xi}n

∣∣∣ a; c, d, e; f, μfqN , q−N ; q, q

)
(2.11)

=
(μcf/a, μdf/a, μef/a, f)N
(μq, aq/c, aq/d, aq/e)N

∏
1≤i≤n

(aqxi, (μbif/a)x
−1
i )N

((aq/bi)xi, (μf/a)x
−1
i )N

× 2n+8W2n+7

[
μ; aq/cf, aq/df, aq/ef, g, q−N ,

{(aq/bif)xi}n, {(μf/a)x−1
i }n; q, q

]
,

between a multiple sum and a single sum, where μ = a3q2/Bcdef2.
Also, when m = 0, it gives the summation formula

Wn,2

( {bi}n
{xi}n

∣∣∣ a; d, e;λqN , q−N ; q, q

)
(2.12)

=
(λd/a, λe/a)N
(aq/d, aq/e)N

∏
1≤i≤n

(aqxi, (λbi/a)x
−1
i )N

((aq/bi)xi, (λ/a)x
−1
i )N

,

where λ = a2q/Bde.

Remark 2.2. Equality (2.9) is equivalent to the transformation

∑
γ∈N

n

|γ|=N

Δ(xqγ)

Δ(x)

∏
1≤i,j≤n

(ajxi/xj)γi

(qxi/xj)γi

∏
1≤i≤n
1≤k≤m

(bkxiyk)γi

(cxiyk)γi

(2.13)

=
∑
δ∈N

m

|δ|=N

Δ(yqδ)

Δ(y)

∏
1≤k,
l≤m

((c/bl)yk/yl)δk
(qyk/yl)δk

∏
1≤i≤n
1≤k≤m

((c/ai)xiyk)δk
(cxiyk)δk

,

under the condition a1 · · · anb1 · · · bm = cm ([10, Proposition 6.2]). In
fact, Proposition 2.1 is obtained by rewriting the both sides of (2.13) in
terms of W series.

§3. Transformations between n-ple sums and m-ple sums

As the preparation for the next section, we derive below several
types of balanced duality transformations among Φ series and W series
from the balanced duality transformation (2.9) through limiting pro-
cedures. They include two new transformations that generalize 8W7

transformations (Propositions 3.4 and 3.5).



254 Y. Kajihara

3.1. Transformation between W series and Φ series

First, we present a transformation betweenWn,m+1 series and Φm
n+1,1

series. It generalizes the following transformation between terminating

8W7 series and terminating balanced 4φ3 series:

8W7

[
a; b, c, d, e, q−N ; q,

a2qN+2

bcde

]
(3.1)

=
(a2q2/bcde, e, aq)N
(aq/b, aq/c, aq/d)N

4φ3

[
q−N , aq/be, aq/ce, aq/de
q1−N/e, a2q2/bcde, aq/e

; q, q

]
.

Proposition 3.1. ([10] Proposition 6.1) We have

(3.2)

Wn,m+1

( {bi}n
{xi}n

∣∣∣ a; c, {dkyk}m; q−N , {ey−1
k }m; q,

am+1qN+m+1

BcDem

)

=
(am+1qm+1/BcDem)N

(aq/c)N

∏
1≤i≤n

(aqxi)N
((aq/bi)xi)N

∏
1≤k≤m

(ey−1
k )N

((aq/di)y
−1
k )N

× Φm
n+1,1

(
{aq/dke}m

{yk}m

∣∣∣∣∣ {(aq/bie)xi}n, aq/ce
{(aq/e)xi}n, q1−N/e

∣∣∣∣∣ q−N

am+1BcDem

∣∣∣∣∣ q, q
)
,

where B = b1 · · · bn and D = d1 · · · dm.

Proof. In (2.9), setting g = μfqN , take the limit e → ∞ and change
the parameter as f → e. Q.E.D.

We remark that, when m = 1 and y1 = 1, (3.2) reduces to

Wn,2

( {bi}n
{xi}n

∣∣∣ a; c, d; q−N , e; q,
a2qN+2

Bcde

)
(3.3)

=
(a2q2/Bcde, e)N
(aq/c, aq/d)N

∏
1≤i≤n

(aqxi)N
((aq/bi)xi)N

× n+3φn+2

[
q−N , {(aq/bie)xi}n, aq/ce, aq/de
q1−N/e, {(aq/e)xi}n, a2q2/Bcde,

; q, q

]
.
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Also, when n = 1 and x1 = 1, (3.2) reduces to

2m+6W2m+5

[
a; b, {ckyk}m, d, {ey−1

k }m, q−N ; q,
am+1qN+m+1

bCdem

]
(3.4)

=
(am+1qm+1/bCdem, aq)N

(aq/b, aq/d)N

∏
1≤k≤m

(ey−1
k )N

((aq/ck)y
−1
k )N

× Φm
2,1

(
{aq/dke}m

{yk}m

∣∣∣∣∣ aq/be, aq/ce

aq/e, q1−N/e

∣∣∣∣∣ q−N

am+1bcDem

∣∣∣∣∣ q, q
)
.

When m = n = 1 and x1 = y1 = 1, (3.2) reduces to (3.1). Special
transformations like (3.3) and (3.4), where one side is a single sum, will
be crucial in the argument of the next section.

Remark 3.1. In [10], (3.2) was proved by taking the coefficient
of uN in the both side of the multiple Euler transformation (3.14) be-
low. In [27] Rosengren gave another proof using his reduction formula
of Karlsson-Minton type. As is mentioned in [27], the balanced duality
transformation (2.9) itself can also be considered as a special case of
(3.2).

3.2. Two transformations among Φ series

We now propose a transformation between terminating balanced
Φn

m,2 series and terminating balanced Φm
n,2 series. It generalizes the

Sears transformation for terminating balanced 4φ3 series:

4φ3

[
q−N , a, b, c

d, e, abcq1−N/de
; q, q

]
(3.5)

=
(e/a, de/bc)N
(e, de/abc)N

4φ3

[
q−N , a, d/b, d/c
d, aq1−N/e, de/bc

; q, q

]
.

Proposition 3.2. ([10, Proposition 7.1]) We have

Φn
m,2

(
{bi}n
{xi}n

∣∣∣∣∣ {ckyk}m
{(dyk}m

∣∣∣∣∣ a, q−N

e, aBCq1−N/dme

∣∣∣∣∣ q, q
)

(3.6)

=
(e/a, dme/BC)N
(e, dme/aBC)N

× Φm
n,2

(
{d/ck}m
{yk}m

∣∣∣∣∣ {(d/bi)xi}n
{dxi}n

∣∣∣∣∣ a, q−N

dme/BC, q1−Na/e

∣∣∣∣∣ q, q
)
.
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Proof. In (2.9), replace the parameters d, e and f by aq/d, aq/e
and aq/f respectively, and take the limit a → 0. Then change the
parameters again as f → d and d → aBCq1−N/defm. Q.E.D.

When m = 1 and y1 = 1, (3.6) reduces to

Φn
1,2

(
{bi}n
{xi}n

∣∣∣∣∣ c

d

∣∣∣∣∣ a, q−N

e, aBcq1−N/de

∣∣∣∣∣ q, q
)

(3.7)

=
(e/a, de/Bc)N
(e, de/aBc)N

n+3φn+2

[
q−N , a, {(d/bi)xi}n, d/c
q1−Na/e, {dxi}n, de/Bc

; q, q

]
.

When m = n = 1 and x1 = y1 = 1, (3.6) reduces to (3.5). (Further
information on the multiple Sears transformation (3.6) can be found in
[9].)

We next derive a transformation between terminating balanced
Φn

1,m+1 series and terminating balanced Φm
1,n+1 series. It generalizes the

following transformation formula for terminating balanced 4φ3 series:

4φ3

[
q−N , a, b, c

d, e, f
; q, q

]
(3.8)

=
(ef/ab, ef/ac, a)N
(e, f, ef/abc)N

4φ3

[
q−N , ef/abc, e/a, f/a
def/a2bc, ef/ab, ef/ac

; q, q

]
(abcq1−N = def).

We remark that (3.8) is obtained by reversing the order of summation
in the Sears transformation (3.5), or alternatively by iterating the Sears
transformation twice.

Proposition 3.3. ([10, Proposition 7.2]) Under the balancing
condition amBcq1−N = dEf , we have

(3.9)

Φn
1,m+1

(
{bi}n
{xi}n

∣∣∣∣∣ c

d

∣∣∣∣∣ {ayk}m, q−N

{ekyk}m, f

∣∣∣∣∣ q, q
)

=
(Ef/amB)N

(f)N

∏
1≤k≤m

(ayk)N
(ekyk)N

∏
1≤i≤n

((Ef/amc)zi)N
((Ef/amBc)zi)N

× Φm
1,n+1

(
{el/a}m
{wk}m

∣∣∣∣∣ f/a

dEf/amBc

∣∣∣∣∣ {(Ef/ambic)zi}n, q−N

{(Ef/amc)zi}n, Ef/amB

∣∣∣∣∣ q, q
)
,

where zi = bi/Bxi (1 ≤ i ≤ n) and wk = y−1
k (1 ≤ k ≤ m) respectively.
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Proof. In (2.9), change the parameters as ck → aq/ck (1 ≤ k ≤ m)
and e → aq/e, and put a = 0. Next change the parameters again as
f → a, d → c, ck → ek (1 ≤ k ≤ m), e → f . Q.E.D.

When m = 1 and y1 = 1, (3.9) reduces to

Φn
1,2

(
{bi}n
{xi}n

∣∣∣∣∣ c

d

∣∣∣∣∣ a, q−N

e, f

∣∣∣∣∣ q, q
)

(3.10)

=
(ef/aB, a)N

(e, f)N

∏
1≤i≤n

((ef/ac)zi)N
((ef/aBc)zi)N

× n+3φn+2

[
q−N , e/a, f/a, {(ef/abic)zi}n

def/a2Bc, ef/aB, {(ef/ac)zi}n; q, q
]

under the condition aBcq1−N = def , where zi = bi/Bxi (1 ≤ i ≤ n).
When m = n = 1 and x1 = y1 = 1, (3.9) reduces to (3.8).

3.3. Passage to the multiple basic Euler transformation

Let N tend to infinity in the multiple Sears transformation (3.6).
Then we obtain a transformation between Φn

m,1 series and Φm
n,1 series

which generalizes the transformation

3φ2

[
a, b, c
d, e

; q,
de

abc

]
=

(e/a, de/bc)∞
(e, de/abc)∞

3φ2

[
a, d/b, d/c
d, de/bc

; q,
e

a

]
(3.11)

for nonterminating 3φ2 series.

Lemma 3.1 ([9]). We have

Φn
m,1

(
{bi}n
{xi}n

∣∣∣∣∣ {ckyk}m
{dyk}m

∣∣∣∣∣ a

e

∣∣∣∣∣ q, dme

aBC

)
(3.12)

=
(e/a, dme/BC)∞
(e, dme/aBC)∞

× Φm
n,1

(
{d/ck}m
{yk}m

∣∣∣∣∣ {(d/bi)xi}n
{dxi}n

∣∣∣∣∣ a

dme/BC

∣∣∣∣∣ q, ea
)

under the convergence condition max(|dme/aBC|, |e/a|) < 1.
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For the convergence of multiple series, see Milne–Newcomb [25, 26]
and Milne [22]. When m = 1 and y1 = 1, (3.12) reduces to

Φn
1,1

(
{bi}n
{xi}n

∣∣∣∣∣ c

d

∣∣∣∣∣ a

e

∣∣∣∣∣ q, dme

aBC

)
(3.13)

=
(e/a, de/Bc)∞
(e, de/aBc)∞

n+2φn+1

[
d/c, a, {(d/bi)xi}n
de/Bc, {dxi}n ; q,

e

a

]

under the convergence condition max(|dme/aBC|, |e/a|) < 1. When
m = n = 1 and x1 = y1 = 1, (3.12) reduces to (3.11).

Changing the parameter e → aBCu/dm and taking limit as a → ∞
in (3.12), we obtain the following multiple basic Euler transformation.

Theorem 3.1. ([10, Theorem 1.1]) Under the convergence condi-
tion max(|u|, |ABu/cm|) < 1, we have

Φn
m,0

(
{ai}n
{xi}n

∣∣∣∣∣ {bkyk}m
{cyk}m

∣∣∣∣∣ ·
·

∣∣∣∣∣ q, u
)

(3.14)

=
(ABu/cm)∞

(u)∞
Φm

n,0

(
{c/bk}m
{yk}m

∣∣∣∣∣ {(c/ai)xi}n
{cxi}n

∣∣∣∣∣ ·
·

∣∣∣∣∣ q, ABu

cm

)
,

where A = a1 · · · an and B = b1 · · · bm.

Note that, when n = m = 1 and x1 = y1 = 1, (3.14) reduces to the
basic Euler transformation formula for 2φ1-series: :

2φ1

[
a, b
c
; q, u

]
=

(abu/c)∞
(u)∞

2φ1

[
c/b, c/a

c
; q, abu/c

]
.(3.15)

Remark 3.2. We have investigated so far the following four typical
transformations for multiple basic hypergeometric series of type A.

a) Balanced duality transformation (2.9) (terminating 10W9)
b) Watson type transformation (3.2) (terminating 8W7 and 4φ3)
c) Multiple Sears transformation (3.6) (terminanting 4φ3 )
d) Multiple basic Euler transformation (3.14) (nonterminating 2φ1)

We have shown in fact the implications a) ⇒ b) and a) ⇒ c) ⇒ d),
regarding a) as the master identity. We also have gaven a remark on
b) ⇒ a) in Remark 3.1. Note that the multiple basic Euler transfor-
mation (3.14) itself is the main theorem of our paper [10, Theorem 1.1],
from which we have deduced the other three transformations. This means
that these four transformations are equivalent to each other, and that any
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of them can play the part of a master identity for multiple basic hyperge-
ometric transformations of type A. This fact could be considered as one
of the most remarkable features of multiple basic hypergeometric series
and their transformations.

Remark 3.3. In our previous work [11], we derived some multiple
generalizations, as well as their applications, of other Heine transforma-
tions and a basic Pfaff transformation from (3.6) and (3.9) in a similar
way as in this paper.

3.4. Transformations for W series

Here we present two types of new transformations forW series which
are derived from the balanced duality transformation (2.9)

We first give a transformation between nonterminating Wn,m+1
−1 se-

ries and nonterminating Wm,n+1
−1 series. It generalizes the following

transformation formula for nonterminating 8W7 series:

8W7

[
a; b, c, d, e, f ; q, a2q2/bcdef

]
(3.16)

=
(μbf/a, μcf/a, μdf/a, μef/a, aq, f)∞
(aq/b, aq/c, aq/d, aq/e, μq, μf/a)∞

× 8W7

[
μ; aq/bf, aq/cf, aq/df, aq/ef, μf/a; q, f

]
,

where μ = a3q2/bcdef2, under the condition max(|a2q2/bcdef |, |f |) < 1.

Proposition 3.4. Assume that
∣∣am+1qm+1/BCdefmxi

∣∣ < 1 for all

i = 1, · · · , n and |fy−1
k | < 1 for all k = 1, · · · ,m. Then we have

(3.17)

Wn,m+1
−1

( {bi}n
{xi}n

∣∣∣ a; {ckyk}m, d, e; {fy−1
k }m; q,

am+1qm+1

BCdefm

)

=
(μdf/a, μef/a)∞
(aq/d, aq/e)∞

∏
1≤k≤m

((μckf/a)yk, fy
−1
k )∞

(μqyk, (aq/ck)y
−1
k )∞

×
∏

1≤i≤n

(aqxi, (μbif/a)x
−1
i )∞

((aq/bi)xi, (μf/a)x
−1
i )∞

× Wm,n+1
−1

( {aq/ckf}m
{yk}m

∣∣∣μ;{ aq

bif
xi

}
n

,
aq

df
,
aq

ef
;

{
μf

a
x−1
i

}
n

; q, f

)
,

where μ = am+2qm+1/BCdefm+1.

Proof. Setting g = μfqN in (2.9), let N tend to infinity. Q.E.D.
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When m = 1 and y1 = 1, (3.17) can be stated as

Wn,2
−1

( {bi}n
{xi}n

∣∣∣ a; c, d, e; f ; q, a2q2

Bcdef

)
(3.18)

=
(μcf/a, μdf/a, μef/a, f)∞
(aq/c, aq/d, aq/e, μq)∞

∏
1≤i≤n

(aqxi, (μbif/a)x
−1
i )∞

((aq/bi)xi, (μf/a)x
−1
i )∞

× 2n+4W2n+3 [μ; {(aq/bif)xi}n, aq/cf, aq/df,
aq/ef, {(μf/a)x−1

i }n; q, f
]
,

where μ = a3q2/Bcdef2. When m = n = 1 and x1 = y1 = 1, (3.17)
reduces to (3.16).

We next give a transformation between terminating Wn,m+1
+1 series

and terminating Wm,n+1
+1 series. It generalizes the following transforma-

tion formula for terminating 8W7 series:

8W7

[
a; b, c, d, e, q−N ; q,

a2qN+2

bcde

]
(3.19)

=
(aq/be, aq/ce, aq, d)N
(aq/b, aq/c, aq/e, d/e)N

× 8W7

[
q−Ne/d; aq/bd, q−Ne/a, aq/cd, e, q−N ; q,

bc

a

]
.

Proposition 3.5. The following identity holds :

(3.20)

Wn,m+1
+1

( {bi}n
{xi}n

∣∣∣ a; {ckyk}m; {dy−1
k }m, e, q−N ; q,

am+1qN+m+1

BCdme

)

=
∏

1≤k≤m

((aq/cke)y
−1
k , dy−1

k )N

((aq/ck)y
−1
k , (d/e)y−1

k )N

∏
1≤i≤n

((aq/bie)xi, aqxi)N
((aq/bi)xi, (aq/e)xi)N

×Wm,n+1
+1

({aq/ckd}m
{yk}m

∣∣∣q−Ne

d
;
{ aq

bid
xi

}
n
;
{q−Ne

a
x−1
i

}
n
, e, q−N ; q,

Bcdm−1

am

)
.

Proof. In (2.9), write e = am+2qm+N+1/BCdfmg and let d tend
to infinity. Then change the parameters as f → d and g → e to get
(3.20). Q.E.D.
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When m = 1 and y1 = 1, (3.20) can be stated as:

Wn,2
+1

( {bi}n
{xi}n

∣∣∣ a; c; d, e, q−N ; q,
a2qN+2

Bcde

)
(3.21)

=
(aq/ce, d)N
(aq/c, d/e)N

∏
1≤i≤n

((aq/bie)xi, aqxi)N
((aq/bi)xi, (aq/e)xi)N

× 2n+6W2n+5

[
q−Ne/d; {(aq/bid)xi}n, {(q−Ne/a)x−1

i }n,
aq/cd, e, q−N ; q,Bc/a

]
.

When m = n = 1 and x1 = y1 = 1, (3.20) reduces to (3.19).

§4. Transformations of n-ple sums

We have shown in Section 3 that the balanced duality transforma-
tion (2.9) gives rise to various transformations between n-ple sums and
m-ple sums. In the case of a transformation that relate a multiple sum
to a single sum, it is a common feature that the single-sum side has
bigger symmetry which is not apparent in the multiple-sum side. In
this section, we use this symmetry of single sums for constructing vari-
ous transformations between multiple series within an equal number of
running indices. They include a number of transformations previously
known by Milne–Lilly [24] and our paper [9], as well as new transforma-
tions.

We remark that this method of symmetry, based on transformations
from multiple sums to single sums, was first used in our previous work
[9], and was developed by [15] in the study of multiple elliptic hyperge-
ometric transformations.

4.1. Watson transformations between Wn,2 and Φn
1,2 series

In this subsection and the next, we derive two An−1 generalizations
of the Watson transformation between terminating 8W7 series and ter-
minating balanced 4φ3 series ([7, (2.5.1)]):

8W7

[
a; b, c, d, e, q−N ; q,

a2q2+N

bcde

]
(4.1)

=
(aq, aq/de)N
(aq/d, aq/e)N

4φ3

[
q−N , d, e, aq/bc

aq/b, aq/c, deq−N/a
; q, q

]
.
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Proposition 4.1. We have

Wn,2

( {bi}n
{xi}n

∣∣∣ a; c, d; e, q−N ; q,
a2qN+2

Bcde

)
(4.2)

=
(aq/Bd)N
(aq/d)N

∏
1≤i≤n

(axi)N
((aq/bi)xi)N

× Φn
1,2

(
{bi}n
{xi}n

∣∣∣∣∣ d

aq/e

∣∣∣∣∣ aq/ce, q−N

aq/c,Bdq1−N/a

∣∣∣∣∣ q, q
)
.

Proof. In (3.6), set n = 1 and change m to n to get

n+3φn+2

[
q−N , a, c, {ui}n

e, {vi}n, acUq1−N/eV
; q, q

]
=

(e, eV/acU)N
(e/a, eV/cU)N

(4.3)

× Φn
1,2

(
{vi/ui}n
{vi}n

∣∣∣∣∣ 1/c

1

∣∣∣∣∣ a, q−N

eV/cU, aq1−N/e

∣∣∣∣∣ q, q
)
.

Equation (4.2) is obtained by identifying the terminating balanced n+3φn+2

series appearing in (4.3) and (3.3). In view of the set of variables

({(aq/bie)xi}n, aq/ce, aq/de, a2q2/Bcde, {(aq/e)xi}n)(4.4)

in the n+3φn+2 series in (3.3), apply the change of variables

(4.5)
a → aq/ce, c → aq/de, e → a2q2/Bcde,

ui → (aq/bie)xi, vi → (aq/e)xi (i = 1, · · · , n).
to (4.3). Then the left-hand side of the resulting formula coincides with
the n+3φn+2-series in (3.3). Q.E.D.

Note that both the W series and the Φ series in (4.2) terminate with
respect to the length of multi-indices (by confining the running multi-
indices to those with length ≤ N); we call such terminating multiple se-
ries triangular. As compared with those triangular cases, we call a finite
multiple series rectangular if it terminates with respect to a fixed multi-
index M = (m1, . . . ,mn) ∈ N

n as a sum over γ = (γ1, . . . , γn) ∈ N
n

such that γi ≤ mi (i = 1, . . . , n). Using a general recipe, one can trans-
late identities for triangular multiple series into those for rectangular
multiple series, and vice versa.
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Corollary 4.1. (S.C. Milne and G.M. Lilly [24, Theorem 6.1])
The following identity holds :

Wn,2

( {q−mi}n
{xi}n

∣∣∣ a; c, d; b, e; q, a2q|M |+2

bcde

)
(4.6)

=
(aq/bd)|M |
(aq/d)|M |

∏
1≤i≤n

(aqxi)mi

((aq/b)xi)mi

× Φn
1,2

(
{q−mi}n
{xi}n

∣∣∣∣∣ d

aq/e

∣∣∣∣∣ aq/ce, b

aq/c, bdq1−|M |/a

∣∣∣∣∣ q, q
)
.

Proof. We first write the prefactor in the right-hand side of (4.2)
as a quotient of infinite products. Set bi = q−mi in (4.2), and notice
that (4.6) is true for b = q−N for all nonnegative integer N . Clear the
denominators in (4.6). Then we find that it is a polynomial identity in
b−1 with an infinite number of roots. Thus, (4.6) is true for arbitrary
b. Q.E.D.

We remark that all the corollaries of rectangular type in this sec-
tion can be proved from the triangular versions by similar polynomial
arguments. For this reason we omit proofs for the corollaires below.

The next proposition is a variant of (4.2) which is obtained by com-
bining (3.3) and (3.9) with n = 1.

Proposition 4.2. We have

Wn,2

( {bi}n
{xi}n

∣∣∣ a; c, d; e, q−N ; q,
a2qN+2

Bcde

)
(4.7)

=
∏

1≤i≤n

(axi, (aq/bie)xi)N
((aq/bi)xi, (aq/e)xi)N

× Φn
1,2

(
{bi}n
{zi}n

∣∣∣∣∣ aq/cd

Beq−N/a

∣∣∣∣∣ e, q−N

aq/c, aq/d

∣∣∣∣∣ q, q
)
,

where zi = bi/Bxi for 1 ≤ i ≤ n.
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Proof. In (3.9), set n = 1 and change m to n:

n+3φn+2

[
q−N , a, c, {ui}n

e, {vi}n, acUq1−N/eV
; q, q

]
(4.8)

=
(eV/aU, eV/cU)N
(eV/acU, e)N

∏
1≤i≤n

(ui)N
(vi)N

× Φn
1,2

(
{vi/ui}n
{u−1

i }n

∣∣∣∣∣ e

q1−N

∣∣∣∣∣ eV/acU, q−N

eV/aU, eV/cU

∣∣∣∣∣ q, q
)
.

Equation (4.7) is obtained by identifying the terminating balanced n+3φn+2

series appearing in (4.8) and (3.3) through the change of variables (4.5).
Q.E.D.

Corollary 4.2.

Wn,2

( {q−mi}n
{xi}n

∣∣∣ a; c, d; b, e; q, a2q|M |+2

bcde

)
(4.9)

=
∏

1≤i≤n

(aqxi, (aq/be)xi)mi

((aq/b)xi, (aq/e)xi)mi

× Φn
1,2

(
{bi}n
{zi}n

∣∣∣∣∣ aq/cd

Beq−N/a

∣∣∣∣∣ e, q−N

aq/c, aq/d

∣∣∣∣∣ q, q
)
,

where zi = q−mi+|M |x−1
i for i = 1, · · · , n.

Remark 4.1. The transformation (4.7) can also be proved by a lim-
iting procedure from the multiple Bailey transformation for Wn,3 series
([15, (4.36)]) :

Wn,3

( {ei}n
{xi}n

∣∣∣ a; b, c, d; q−N , f,
aλq1+N

Ef
; q, q

)
(4.10)

=
∏

1≤i≤n

(aqxi, (aq/eif)xi, (λq/ei)zi, (λq/f)zi)N
((aq/ei)xi, (aq/f)xi, λqzi, (λq/eif)zi)N

× Wn,3

( {ei}n
{zi}n

∣∣∣λ; aq
cd

,
aq

bd
,
aq

bc
; q−N , f,

aλq1+N

Ef
; q, q

)
,

where λ = a2q/bcd and zi = ei/Exi for 1 ≤ i ≤ n.
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4.2. Watson transformation between Wn,2
+1 and Φn

2,1 series

We next present Watson transformations between terminating Wn,2
+1

series and terminating balanced Φn
2,1 series. They are proved by com-

bining (3.21) and (3.4) through terminating 2n+6W2n+5 series.

Proposition 4.3. We have

Wn,2
+1

( {bi}n
{xi}n

∣∣∣ a; c; d, e, q−N ; q,
a2qN+2

Bcde

)
(4.11)

=
(aq/Bc)N
(aq/c)N

∏
1≤i≤n

(aqxi)N
((aq/bi)xi)N

× Φn
2,1

(
{bi}n
{xi}n

∣∣∣∣∣ c, aq/de

aq/d, aq/e

∣∣∣∣∣ q−N

q−NBc/a

∣∣∣∣∣ q, q
)
.

Proof. We combine (3.21) and (3.4). Changing the parameteriza-
tion, (3.4) can be rewritten as

2n+6W2n+5

[
a; b, {ui}n, d, {vi}n, q−N ; q,

an+1qN+n+1

bdUV

]
(4.12)

=
(an+1qn+1/bdUV, aq)N

(aq/b, aq/d)N

∏
1≤i≤n

(vi)N
(aq/ui)N

× Φn
2,1

(
{aqvi/ui}n
{v−1

i }n

∣∣∣∣∣ aq/b, aq/d

aq, q1−N

∣∣∣∣∣ q−N

an+1qn+1/bdUV

∣∣∣∣∣ q, q
)
.

The very well-poised balanced 2n+6W2n+5 series in (3.21) and (4.12) are
identified through the change of variables

(4.13)
a → q−Ne/d, b → aq/cd, d → e,

ui → (aq/bid)xi, vi → (q−Ne/a)x−1
i (i = 1, · · · , n)

in (4.12). Q.E.D.

Corollary 4.3. The following identity holds :

Wn,2
+1

( {q−mi}n
{xi}n

∣∣∣ a; c; b, d, e; q, a2q|M |+2

bcde

)
(4.14)

=
(aq/bc)|M |
(aq/c)|M |

∏
1≤i≤n

(aqxi)mi

((aq/b)xi)mi

× Φn
2,1

(
{q−mi}n
{xi}n

∣∣∣∣∣ c, aq/de

aq/d, aq/e

∣∣∣∣∣ b

q−|M |bc/a

∣∣∣∣∣ q, q
)
.
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4.3. Sears transformations for Φn
1,2 series

In this subsection and the next, we present two Φn
1,2 generalizations

of the Sears transformation formula for terminating balanced 4φ3 series
(3.5). They are derived by using special cases of (3.6) and (3.9) through
terminating balanced n+3φn+2 series.

Proposition 4.4. We have

Φn
1,2

(
{bi}n
{xi}n

∣∣∣∣∣ c

d

∣∣∣∣∣ a, q−N

e, aBcq1−N/de

∣∣∣∣∣ q, q
)

(4.15)

=
(e/B, de/ac)N
(e, de/aBc)N

Φn
1,2

(
{bi}n
{xi}n

∣∣∣∣∣ d/a

d

∣∣∣∣∣ d/c, q−N

de/ac, Bq1−N/e

∣∣∣∣∣ q, q
)
.

Proof. We combine (3.10) and (4.8). The terminating balanced

n+3φn+2 series in these formulas are identified through the change of
variables

(4.16)

a → e/a, c → f/a, e → def/a2Bc,

ui → ef

abic
zi, vi → ef

ac
zi (1 ≤ i ≤ n).

Q.E.D.

Corollary 4.4. The following identity holds :

Φn
1,2

(
{q−mi}n
{xi}n

∣∣∣∣∣ c

d

∣∣∣∣∣ a, b

e, abcq1−|M |/de

∣∣∣∣∣ q, q
)

(4.17)

=
(e/b,de/ac)|M|
(e,de/abc)|M|

Φn
1,2

(
{q−mi}n
{xi}n

∣∣∣∣∣ d/a

d

∣∣∣∣∣ d/c, b

de/ac, bq1−|M |/e

∣∣∣∣∣ q, q
)
.

Proposition 4.5. We have

Φn
1,2

(
{bi}n
{xi}n

∣∣∣∣∣ c

d

∣∣∣∣∣ a, q−N

e, aBcq1−N/de

∣∣∣∣∣ q, q
)

(4.18)

=
(de/ac)N
(de/aBc)N

∏
1≤i≤n

((d/bi)xi)N
(dxi)N

× Φn
1,2

(
{bi}n
{zi}n

∣∣∣∣∣ e/c

q−NB/d

∣∣∣∣∣ e/a, q−N

de/ac, e

∣∣∣∣∣ q, q
)
,

where zi = bi/Bxi for 1 ≤ i ≤ n.
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Proof. Combine (3.7) and (4.8) through the change of variables

(4.19)

a → a, c → d/c, e → de/Bc,

ui → d

bi
xi, vi → dxi (1 ≤ i ≤ n).

Q.E.D.

Corollary 4.5. (S.C. Milne and G.M. Lilly [24, Theorem 6.5])
The following identity holds :

Φn
1,2

(
{q−mi}n
{xi}n

∣∣∣∣∣ c

d

∣∣∣∣∣ a, b

e, abcq1−|M |/de

∣∣∣∣∣ q, q
)

(4.20)

=
(de/ac)|M |
(de/abc)|M |

∏
1≤i≤n

((d/b)xi)mi

(dxi)mi

× Φn
1,2

(
{q−mi}n
{zi}n

∣∣∣∣∣ e/c

q−|M |b/d

∣∣∣∣∣ e/a, b

de/ac, e

∣∣∣∣∣ q, q
)
,

where zi = q−mi+|M |x−1
i for 1 ≤ i ≤ n.

Remark 4.2. Equations (4.15) and (4.17) can be proved by the
iteration of (4.18) and (4.20), respectively. Including this fact, in our
previous work [12] we gave a description of the transformation properties
of Φn

1,2 series in the limit q → 1.

Remark 4.3. The two Watson transformations (4.2) and (4.7)
transforms to each other by the Sears transformation (4.18). Similarly,
(4.6) and (4.9) transform to each other by (4.20).

4.4. Sears transformation for Φn
2,1 series

Here we propose the Sears transformation for Φn
2,1 series. It is proved

by using two special cases of (3.2) through terminating 2n+6W2n+5 series.

Proposition 4.6. We have

Φn
2,1

(
{ai}n
{xi}n

∣∣∣∣∣ b, c

e, Abcq1−N/de

∣∣∣∣∣ q−N

d

∣∣∣∣∣ q, q
)

(4.21)

=
∏

1≤i≤n

((de/bc)zi, (e/ai)xi)N
((de/aibc)zi, exi)N

× Φn
2,1

(
{ai}n
{zi}n

∣∣∣∣∣ d/b, d/c

de/bc, Aq1−N/e

∣∣∣∣∣ q−N

d

∣∣∣∣∣ q, q
)
,

where zi = ai/Axi for i = 1, 2, · · · , n.
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Proof. Rewriting (3.4) as

Φn
2,1

(
{ai}n
{xi}n

∣∣∣∣∣ b, c

e, Abcq1−N/de

∣∣∣∣∣ q−N

d

∣∣∣∣∣ q, q
)

(4.22)

=
(de/Ac, de/Ab)N
(de2/Abc, d)N

∏
1≤i≤n

((deai/Abc)x
−1
i )N

((de/Abc)x−1
i )N

× 2n+6W2n+5

[
de2q−1/Abc; {(e/ai)xi}n,
{(deq−1/Abc)x−1

i }n, e/b, e/c, q−N ; q, dqN
]
,

combine (4.22) and (4.12). The very well-poised balanced 2n+6W2n+5

series in these formulas are identified through change of variables:

(4.23) a → de2q−1

Abc
, b → e/b, d → e/c,

ui → (deq−1/Abc)x−1
i , vi → (e/ai)xi (i = 1, · · · , n).

Q.E.D.

Corollary 4.6. (S.C. Milne and G.M. Lilly [24, Theorem 6.8])
The following identity holds :

Φn
2,1

(
{q−mi}n
{xi}n

∣∣∣∣∣ b, c

e, abcq1−|M |/de

∣∣∣∣∣ a

d

∣∣∣∣∣ q, q
)

(4.24)

=
∏

1≤i≤n

((de/bc)zi, (e/a)xi)mi

((de/abc)zi, exi)mi

× Φn
2,1

(
{ai}n
{zi}n

∣∣∣∣∣ d/b, d/c

de/bc, aq1−|M |/e

∣∣∣∣∣ a

d

∣∣∣∣∣ q, q
)
,

where zi = qmi−|M |x−1
i for i = 1, 2, · · · , n.

Remark 4.4. In the original work of Milne–Lilly [24], (4.24) is
referred to as the Cr Sears transformation. The equation (4.21) can be
obtained from the multiple Bailey transformation (4.10) in the following
way : First replace the parameters as d → aq/d and f → aq/f in (4.10),
and then let a tends to infinity in the resulting formula.
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4.5. Transformation for nonterminating Wn,2
−1 series

Here we derive a transformation for nonterminating Wn,2
−1 series

which generalizes the nonterminating 8W7 transformation

8W7

[
a; b, c, d, e, f ; q,

a2q2

bcdef

]
(4.25)

=
(aq, aq/ef, λq/e, λq/f)∞
(aq/e, aq/f, λq, λq/ef)∞

8W7

[
λ;λb/a, λc/a, λd/a, e, f ; q,

aq

ef

]
,

for where λ = a2q/bcd. It is proved by using (3.18) through nontermi-
nating 2n+6W2n+5 series.

Proposition 4.7. We have

Wn,2
−1

( {ei}n
{xi}n

∣∣∣ a; b, c, d; f ; q, a2q2

bcdEf

)
(4.26)

=
∏

1≤i≤n

(aqxi, (aq/eif)xi, (λq/ei)zi, (λq/f)zi)∞
((aq/ei)xi, (aq/f)xi, (λq/eif)zi, λqzi)∞

× Wn,2
−1

( {ei}n
{zi}n

∣∣∣λ; aq/cd, aq/bd, aq/bc; f ; q, aq

Ef

)
,

where λ = a2q/bcd and zi =
ei
E
x−1
i .

Proof. In the 2n+6W2n+5 series appearing in (3.18), interchange
the parameters (aq/bif)xi and (μf/a)x−1

i (i = 1, · · · , n) simultaneously.
Q.E.D.

Remark 4.5. Equation (4.26) can also be obtained by taking the
limit N → ∞ in the multiple Bailey transformation (4.10).

§5. Summation formulas

In this final section, we give some remarks on summation formulas
which are obtained as special cases of multiple basic hypergeometric
transformations in Section 3. We also give a new proof of the basic
analogue of the Minton–Karlsson summation due to Gasper [6].

5.1. Summation formulas for W series

The transformation (3.2) with m = 0 implies Milne’s generalization
of Rogers’ summation formula [7, (2.4.2)]

6W5

[
a; b, c, q−N ; q,

aqN+1

bc

]
=

(aq, aq/bc)N
(aq/b, aq/c)N

(5.1)
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to terminating Wn,1 series.

Corollary 5.1. (S.C. Milne [22, Theorem 2.1]) We have

Wn,1

( {bi}n
{xi}n

∣∣∣ a; c; q−N ; q,
aqN+1

Bc

)
(5.2)

=
(aq/Bc)N
(aq/c)N

∏
1≤i≤n

(aqxi)N
((aq/bi)xi)N

.

Remark 5.1. The summation (5.2) is equivalent to the An−1 mul-
tiple q-binomial theorem

∑
γ∈Nn,|γ|=N

Δ(xqγ)

Δ(x)

∏
1≤i,j≤n

(ajxi/xj)γi

(qxi/xj)γi

=
(A)N
(q)N

.(5.3)

From this formula, it follows that the Φn
m,r series with m = 0 essentially

reduce to r+1φr series as

Φn
0,r

(
{ai}n
{xi}n

∣∣∣∣∣ ·
·

∣∣∣∣∣ {cs}r
{es}r

∣∣∣∣∣ q, u
)

= r+1φr

[
A, {cs}r
{es}r ; q;u

]
.(5.4)

The transformation (3.20) with m = 0 gives a generalization of

Rogers’ summation formula to terminating Wn,1
+1 series.

Corollary 5.2. The following identity holds :

Wn,1
+1

( {bi}n
{xi}n

∣∣∣ a; ·; c, q−N ; q,
a2qN+2

Bc

)
(5.5)

=
∏

1≤i≤n

((aq/bic)xi, aqxi)N
((aq/bi)xi, (aq/c)xi)N

.

As the special case of (3.17) with m = 0, we obtain Milne’s gener-
alization of Jackson’s q-Dougall summation [7]

6W5

[
a; b, c, d; q,

aq

bcd

]
=

(aq, aq/cd, aq/bd, aq/bc)∞
(aq/bcd, aq/b, aq/c, aq/d)∞

(5.6)

to nonterminating Wn,1
−1 series.
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Corollary 5.3. (S.C. Milne [21, Theorem 4.27]) Assume that∣∣∣ aq

Bcd
x−1
i

∣∣∣ < 1 for all i = 1, · · · , n. Then we have

Wn,1
−1

( {bi}n
{xi}n

∣∣∣ a; c, d; ·; q, a2q2
Bcd

)
(5.7)

=
(aq/Bc, aq/Bd)∞
(aq/c, aq/d)∞

∏
1≤i≤n

(aqxi, (aqbi/Bcd)x−1
i )∞

((aq/bi)xi, (aq/Bcd)x−1
i )∞

.

5.2. Summation formulas for Φ series

Amultiple generalization of the Pfaff-Saalschütz summation formula
[7, (1.7.2)]

(5.8) 3φ2

[
a, b, q−N

c, abq1−N/c
; q, q

]
=

(c/a, c/b)N
(c, c/ab)N

.

is obtained as the special case of (3.2) with m = 0.

Corollary 5.4. (S.C. Milne [22, Theorem 4.15]) We have

Φn
1,1

(
{ai}n
{xi}n

∣∣∣∣∣ b

c

∣∣∣∣∣ q−N

Abq1−N/c

∣∣∣∣∣ q, q
)

(5.9)

=
(c/b)N
(c/Ab)N

∏
1≤i≤n

((c/ai)xi)N
(cxi)N

.

By the general recipe as in the proof of Corollary 4.1, from the
multiple summation (5.9) of triangular type we obtain the following
rectangular version.

Corollary 5.5. (S.C. Milne [22, Theorem 2.2]) We have

Φn
1,1

(
{q−mi}n
{xi}n

∣∣∣∣∣ b

c

∣∣∣∣∣ a

abq1−|M |/c

∣∣∣∣∣ q, q
)

(5.10)

=
(c/b)|M |
(c/ab)|M |

∏
1≤i≤n

((c/a)xi)mi

(cxi)mi

.

We now apply the transformation (3.13) to rewrite the left-hand side
of (5.10) into an n+2φn+1 series. Then, the resulting formula turns out
to be Gasper’s q-analogue of the Minton–Karlsson summation.
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Corollary 5.6. (G. Gasper [6, Equation (19)])

n+2φn+1

[
a, b, {cqmixi}n

bq, {cxi}n ; q, a−1q1−|M |
]

(5.11)

= b|M | (q, bq/a)∞
(bq, q/a)∞

∏
1≤i≤n

((c/b)xi)mi

(cxi)mi

.

This means that Gasper’s q-analogue of the Minton–Karlsson sum-
mation (5.11) for n+2φn+1 series and the multiple q-Pfaff-Saalschütz
summation (5.10) transform into each other through the multiple 3φ2

transformation (3.12).

We have shown that various An−1 multiple hypergeometric sum-
mation formulas due to Milne and his collaborators are interpreted as
special cases of the transformations discussed in Section 3. (For their se-
ries of works, see the references cited in Milne [23] and Milne–Newcomb
[26])

In view of the results in Section 4 and this section, we may say that
our multiple basic hypergeometric transformations in Section 3 recover
a large extent of previously known results on An−1 multiple summa-
tions and transformations as special cases. Also, we have clarified in
this paper that a variety of identities that characterize An−1 multiple
basic hypergeometric series arise from the symmetry hidden behind the
transformations between multiple sums and single sums.
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