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Abstract.

We propose a new method to compute connection matrices of
quantum Knizhnik-Zamolodchikov equations associated to integrable
vertex models with super algebra and Hecke algebra symmetries. The
scheme relies on decomposing the underlying spin representation of
the affine Hecke algebra in principal series modules and invoking the
known solution of the connection problem for quantum affine Knizhnik-
Zamolodchikov equations associated to principal series modules. We

apply the method to the spin representation underlying the Uq

(
ĝl(2|1))

Perk-Schultz model. We show that the corresponding connection ma-
trices are described by an elliptic solution of the dynamical quantum
Yang-Baxter equation with spectral parameter.

§1. Introduction

1.1. (Quantum) Knizhnik-Zamolodchikov equations

Knizhnik-Zamolodchikov (KZ) equations were introduced in [41] as
a system of holonomic differential equations satisfied by n-point corre-
lation functions of primary fields in the Wess-Zumino-Novikov-Witten
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field theory [56, 46, 47, 57, 58]. Although they were introduced within a
physical context, it has since proved to play an important role in several
branches of mathematics. One of the reasons for that lies in the fact
that KZ equations exhibit strong connections with the representation
theory of affine Lie algebras. For instance, they are not restricted to
Wess-Zumino-Novikov-Witten theory and they can be used to describe
correlation functions of general conformal field theories [8] associated
with affine Lie algebras. Within the context of representation theory,
correlation functions are encoded as matrix coefficients of intertwining
operators between certain representations of affine Lie algebras. This
formulation is then responsible for associating important representation
theoretic information to the structure of the particular conformal field
theory. Moreover, one remarkable feature of KZ equations from the
representation theory point of view is related to properties of the mon-
odromies (or connection matrices) of its solutions along closed paths.
The latter was shown in [38] to produce intertwining operators for quan-
tum group tensor product representations.

The interplay between KZ equations and affine Lie algebras also
paved the way for the derivation of a quantised version of such equa-
tions having the representation theory of quantum affine algebras as its
building block. In that case one finds a holonomic system of difference
equations satisfied by matrix coefficients of a product of intertwining
operators [22]. The latter equations are known as quantum Knizhnik-
Zamolodchikov equations, or qKZ equations for short.

The fundamental ingredient for defining a qKZ equation is a solution
of the quantum Yang-Baxter equation with spectral parameter, also re-
ferred to as a R-matrix. Several methods have been developed along the
years to find solutions of the Yang-Baxter equation; and among promi-
nent examples we have the Quantum Group framework [29, 30, 31, 17]
and the Baxterization method [36]. These methods are not completely

unrelated and solutions having Uq(ĝl(m|n)) symmetry [13] are known to
be also obtained from Baxterization of Hecke algebras [11, 14]. The par-

ticular cases Uq(ĝl(2)) and Uq(ĝl(1|1)) are in their turn obtained from the
Baxterization of a quotient of the Hecke algebra known as Temperley-
Lieb algebra [55]. Other quantised Lie super algebras have also been

considered within this program. Solutions based on the Uq(ĝl
(2)

(m|n)),
Uq(ôsp(m|n)) and Uq(ôsp

(2)
(m|n)) have been presented in [5, 23, 24].

The latter cases also originate from the Baxterization of Birman-Wenzl-
Murakami algebras [9, 45, 28, 26, 27], as shown in [24].
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1.2. Relation to integrable vertex models

The quantum inverse scattering method attaches an integrable two-
dimensional vertex model to an R-matrix. A well known example is
the six-vertex model, which is governed by the R-matrix obtained as

the intertwiner U(z1) ⊗ U(z2) → U(z2) ⊗ U(z1) of Uq(ŝl(2))-modules

with U(z) the Uq(ŝl(2)) evaluation representation associated to the two-
dimensional vector representation U of Uq(sl(2)). The qKZ equations
associated to this R-matrix are solved by quantum correlation func-
tions of the six-vertex model [32]. We will sometimes say that the qKZ
equation is associated to the integrable vertex model governed by the
R-matrix, instead of being associated to the R-matrix itself.

A large literature has been devoted to the study of integrable sys-

tems based on the Lie super algebra ĝl(m|n), see for instance [1, 2, 16,
54, 50, 18]. The supersymmetric t-j model is one of the main exam-
ples. The associated R-matrix arises as intertwiner of the Yangian alge-

bra Y(ĝl(2|1)). Another example is the q-deformed supersymmetric t-j
model [54, 3] whose R-matrix was firstly obtained by Perk and Schultz

[49]. The relation between the Perk-Schultz model and the Uq(ĝl(2|1))
invariant R-matrix was clarified in [54, 42, 3].

1.3. Connection problems

A basis of solutions of the qKZ equations can be constructed such
that the solutions have asymptotically free behaviour deep in a particular
asymptotic sector S. The connection problem is the problem to explicitly
compute the change of basis matrix between basis associated to different
asymptotic sectors. The basis change matrix is then called a connection
matrix.

The connection problem for qKZ equations has been solved in special
cases. Frenkel and Reshetikhin [22] solved it for the qKZ equations
attached to the six-vertex model. Konno [39] computed for a simple
classical Lie algebra g the connection matrices for the qKZ equations
attached to the Uq(ĝ)-intertwiner U(z1)⊗ U(z2) → U(z2)⊗ U(z1) with
U the vector representation of Uq(g). In both cases the computation of
the connection matrices relies on explicitly solving the two-variable qKZ
equation in terms of basic hypergeometric series.

1.4. The goals of the paper

The aim of this paper is two-fold. Firstly we present a new ap-
proach to compute connection matrices of qKZ equations associated to
intertwiners RW (z1/z2) : W (z1)⊗W (z2) → W (z2)⊗W (z1) when the as-
sociated tensor product representationW (z1)⊗· · ·⊗W (zn) of evaluation
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modules, viewed as module over the finite quantum (super)group, be-
comes a Hecke algebra module by the action of the universal R-matrix
on neighbouring tensor legs [29, 30]. Adding a quasi-cyclic operator,
which physically is imposing quasi-periodic boundary conditions, W⊗n

becomes a module over the affine Hecke algebra of type An−1, which we
call the spin representation. The spin representation thus is governed
by a constant R-matrix, which is the braid limit of the R-matrix RW (z)
underlying the qKZ equations we started with. In this setup the qKZ
equations coincide with Cherednik’s [12] quantum affine KZ equations
associated to the spin representation.

The new approach is based on the solution of the connection problem
of quantum affine KZ equations for principal series modules of the affine
Hecke algebra, see [53, §3] and the appendix of the present paper. To
compute the connection matrices of the qKZ equations associated to
RW (z) it then suffices to decompose, if possible, the spin representation
as direct sum of principal series modules and construct the connection
matrices by glueing together the explicit connection matrices associated
to the principal series blocks in the decomposition.

Secondly, we apply the aforementioned approach to compute the

connection matrices for qKZ equations attached to the Uq(ĝl(2|1)) Perk-
Schultz model. We show that they are governed by an explicit elliptic
solution of the dynamical quantum Yang-Baxter equation. The latter
equation was proposed by Felder [20] as the quantised version of a mod-
ified classical Yang-Baxter equation arising as the compatibility condi-
tion of the Knizhnik-Zamolodchikov-Bernard equations [6, 7].

1.5. Relation to elliptic face models

Felder [20, 21] showed that solutions of the dynamical quantum
Yang-Baxter equation encodes statistical weights of face models. For
instance, the solution of the dynamical quantum Yang-Baxter equation
arising from the connection matrices for the qKZ equations associated to
the six-vertex model encodes the statistical weights of Baxter’s [4] eight-
vertex face model [22, 53]. More generally, for a simple Lie algebra g of
classical type Xn and U the vector representation of Uq(g), Konno [39]
has shown that the connection matrices of the qKZ equations associated
to the U(ĝ)-intertwiner U(z1)⊗U(z2) → U(z2)⊗U(z1) are described by

the statistical weights of the X
(1)
n elliptic face models of Jimbo, Miwa

and Okado [33, 34, 35].
We expect that our elliptic solution of the dynamical quantum Yang-

Baxter equation, obtained from the connection matrices for the qKZ

equations associated to the Uq(ĝl(2|1)) Perk-Schultz model, is closely
related to Okado’s [48] elliptic face model attached to gl(2|1).
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1.6. Future directions

It is natural to apply our techniques to compute connection matri-

ces when the R-matrix is the Uq(ĝl(m|n))-intertwiner U(z1)⊗ U(z2) →
U(z2)⊗U(z1) with U the vector representation of the quantum super al-
gebra Uq(gl(m|n)), and to relate the connection matrices to Okado’s [48]
elliptic face models attached to gl(m|n). Another natural open problem
is the existence of a face-vertex transformation [4] turning our dynam-
ical elliptic R-matrix into an elliptic solution of the (non dynamical)
quantum Yang-Baxter equation with spectral parameter. If such trans-
formation exists it is natural to expect that the resulting R-matrix will

be an elliptic deformation of the R-matrix underlying the Uq(ĝl(2|1))
Perk-Schultz model. Indeed, for gl(2) it is well known that the connec-
tion matrices of the qKZ equations attached to the six-vertex model is
governed by the elliptic solution of the dynamical quantum Yang-Baxter
equation underlying Baxter’s eight-vertex face model [22, 53]. By a face-
vertex transformation, this dynamical R-matrix turns into the quantum
R-matrix underlying Baxter’s symmetric eight-vertex model, which can
be regarded as the elliptic analogue of the six-vertex model. We plan to
return to these open problems in a future publication.

Outline. This paper is organised as follows. In Section 2 we give the
explicit elliptic solution of the dynamical quantum Yang-Baxter equa-
tion attached to the Lie super algebra gl(2|1). In Section 3 we discuss
the relevant representation theory of the affine Hecke algebra. In 4 we
present our new approach to compute connection matrices of quantum
affine KZ equations attached to spin representations. In Section 5 we de-

scribe the spin representation associated to the Uq(ĝl(2|1)) Perk-Schultz
model and decompose it as direct sum of principal series modules. The
connection matrices of the quantum affine KZ equations associated to
this spin representation is computed in Section 6. In this section we also
relate the connection matrices to the elliptic solution of the dynamical
quantum Yang-Baxter equation from Section 2. In Section 6 we need to
have the explicit solution of the connection problem of quantum affine
KZ equations associated to an arbitrary principal series module, while
[53, §3] only deals with a special class of principal series modules. We
discuss the extension of the results from [53, §3] to all principal series
modules in the appendix.

Acknowledgements. We thank Giovanni Felder and Huafeng Zhang
for valuable comments and discussions.



160 W. Galleas and J. V. Stokman

§2. The elliptic solution of the dynamical quantum Yang-
Baxter equation

This paper explains how to obtain new elliptic dynamical R-matrices
by solving connection problems for qKZ equations. The starting point
is a constant R-matrix satisfying a Hecke relation. We will describe
a method to explicitly compute the connection matrices of the qKZ
equations associated to the Baxterization of the constant R-matrix. In
pertinent cases we show that these connection matrices are governed by
explicit elliptic dynamical R-matrices.

We shall explain the technique in more detail from Section 3 on-
wards. In this section we present the explicit elliptic dynamical R-matrix
one obtains by applying this method to the spin representation of the
affine Hecke algebra arising from the action of the universal R-matrix of
the quantum group Uq(gl(2|1)) on V ⊗ V , with V the (3-dimensional)
vector representation of Uq(gl(2|1)).

2.1. The Lie super algebra gl(2|1)
Let V = V0⊕V1 be a Z/2Z-graded vector space with even (bosonic)

subspace V0 = Cv1 ⊕ Cv2 and odd (fermionic) subspace V1 = Cv3. Let
p : {1, 2, 3} → Z/2Z be the parity map

(2.1) p(i) :=

{
0 if i ∈ {1, 2},
1 if i = 3,

so that vi ∈ Vp(i) for i = 1, 2, 3.
Let gl(V ) be the associated Lie super algebra, with Z/2Z-grading

given by

gl(V )0 = {A ∈ gl(V ) | A(V0) ⊆ V0 & A(V1) ⊆ V1},
gl(V )1 = {A ∈ gl(V ) | A(V0) ⊆ V1 & A(V1) ⊆ V0}

and with Lie super bracket [X,Y ] := XY −(−1)X Y Y X for homogeneous
elements X,Y ∈ gl(V ) of degree X,Y ∈ Z/2Z. Note that gl(V ) �
gl(2|1) as Lie super algebras by identifying gl(V ) with a matrix Lie
super algebra via the ordered basis {v1, v2, v3} of V .

For 1 ≤ i, j ≤ 3 we write Eij ∈ gl(V ) for the matrix units defined
by

Eij(vk) := δj,kvi, k = 1, 2, 3.

The standard Cartan subalgebra h of the Lie super algebra gl(V ) is

h := CE11 ⊕ CE22 ⊕ CE33,
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which we endow with a symmetric bilinear
(·, ·) : h× h → C by

(
Eii, Ejj

)
=

⎧⎪⎨⎪⎩
1 if i = j ∈ {1, 2},
−1 if i = j = 3,

0 otherwise.

In the definition of weights of a representation below we identify h∗ � h
via the non degenerate symmetric bilinear form (·, ·).

Let W = W0 ⊕W1 be a finite dimensional representation of the Lie
super algebra gl(V ) with representation map π : gl(V ) → gl(W ). We
call λ ∈ h a weight of W if the weight space

W [λ] := {u ∈ W | π(h)u = (h, λ)u ∀h ∈ h}
is nonzero. We write P (W ) ⊂ h for the set of weights of W .

The vector representation of gl(V ) is the Z/2Z-graded vector space
V , viewed as representation of the Lie super algebra gl(V ) by the natural
action of gl(V ) on V . Note that V decomposes as direct sum of weight
spaces with the set of weights P (V ) = {E11, E22,−E33} and weight
spaces V [Eii] = Cvi (i = 1, 2) and V [−E33] = Cv3.

2.2. The dynamical quantum Yang-Baxter equation asso-
ciated to gl(2|1)

We present here Felder’s [20, 21] dynamical quantum Yang-Baxter
equation for the Lie super algebra gl(2|1).

Let W be a finite dimensional representation of gl(V ) with weight
decomposition

W =
⊕

λ∈P (W )

W [λ]

and suppose that G(μ) : W⊗n → W⊗n is a family of linear operators on
W⊗n depending meromorphically on μ ∈ h. For β ∈ C and 1 ≤ i ≤ n
we write

G(μ+ βhi) : W
⊗n → W⊗n

for the linear operator which acts asG(μ+βλ) on the subspaceW⊗(i−1)⊗
W [λ]⊗W⊗(n−i) of W⊗n. More precisely, denote by pr

(i)
λ : W⊗n → W⊗n

the projection onto the subspace W⊗(i−1) ⊗W [λ]⊗W⊗(n−i) along the
direct sum decomposition

W⊗n =
⊕

λ∈P (W )

W⊗(i−1) ⊗W [λ]⊗W⊗(n−i).
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Then
G(μ+ βhi) :=

∑
λ∈P (W )

G(μ+ βλ) ◦ pr(i)λ .

Let RW (x;μ) : W ⊗ W → W ⊗ W be linear operators, depending
meromorphically on x ∈ C (the spectral parameter) and μ ∈ h (the
dynamical parameters). Let κ ∈ C. We say that RW (x;μ) satisfies the
dynamical quantum Yang-Baxter equation in braid-like form if

RW
12(x;μ+ κh3)RW

23(x+ y;μ− κh1)RW
12 (y;μ+ κh3)

= RW
23(y;μ− κh1)RW

12 (x+ y;μ+ κh3)RW
23(x;μ− κh1)

(2.2)

as linear operators on W ⊗W ⊗W . We say that RW (x;μ) is unitary if

RW (x;μ)RW (−x;μ) = IdW⊗2 .

Remark 1. Let P ∈ End(W ⊗W ) be the permutation operator and
write

ŘW (x;μ) := PRW (x;μ)

with RW satisfying (2.2). Then ŘW (x;μ) satisfies the relation

ŘW
23(x;μ+ κh1)ŘW

13(x+ y;μ− κh2)ŘW
12 (y;μ+ κh3)

= ŘW
12(y;μ− κh3)ŘW

13 (x+ y;μ+ κh2)ŘW
23(x;μ− κh1)

(2.3)

which is the dynamical quantum Yang-Baxter equation as introduced by
Felder [21] with dynamical shifts adjusted to the action of the Cartan
subalgebra h of the Lie super algebra gl(V ).

2.3. The dynamical R-matrix

We present an explicit elliptic solution of the dynamical quantum
Yang-Baxter equation (2.2) for W = V the vector representation. Fix
the nome 0 < p < 1. We express the entries of the elliptic dynamical
R-matrix in terms of products of renormalised Jacobi theta functions

θ(z1, . . . , zr; p) :=
r∏

j=1

θ(zj ; p),

θ(z; p) :=
∞∏

m=0

(1− pmz)(1− pm+1/z).



Connection matrices of qKZ equations and Lie super algebras 163

The natural building blocks of the R-matrix depend on the additional
parameter κ ∈ C and are given by the functions

Ay(x) :=
θ
(
p2κ, py−x; p

)
θ
(
py, p2κ−x; p

)p(2κ−y)x,

By(x) :=
θ
(
p2κ−y, p−x; p

)
θ
(
p2κ−x, p−y; p

)p2κ(x−y),

(2.4)

and the elliptic c-function

(2.5) c(x) := p2κx
θ(p2κ+x; p)

θ(px; p)
.

To write down explicitly the R-matrix

R(x;μ) = RV (x;μ) : V ⊗ V → V ⊗ V

it is convenient to identify h � C
3 via the ordered basis (E11, E22, E33)

of h,
φ1E11 + φ2E22 + φ3E33 ↔ φ := (φ1, φ2, φ3).

Note that the weights {E11, E22,−E33} of V correspond to
{(1, 0, 0), (0, 1, 0), (0, 0,−1)}.

Recall the parity map p : {1, 2, 3} → Z/2Z given by (2.1).

Definition 2.1. We write R(x;φ) : V ⊗ V → V ⊗ V for the linear
operator satisfying

R(x, φ)vi ⊗ vi = (−1)p(i)
c(x)

c((−1)p(i)x)
vi ⊗ vi,

R(x;φ)vi ⊗ vj = Aφi−φj (x)vi ⊗ vj + (−1)p(i)+p(j)Bφi−φj (x)vj ⊗ vi

for 1 ≤ i = j ≤ 3, with the κ-dependent coefficients given by (2.4) and
(2.5).

We can now state the main result of the present paper.

Theorem 2. The linear operator R(x;φ) satisfies the dynamical
quantum Yang-Baxter equation in braid-like form

R12(x;φ+ κh3)R23(x+ y;φ− κh1)R12(y;φ+ κh3)

= R23(y;φ− κh1)R12(x+ y;φ+ κh3)R23(x;φ− κh1),
(2.6)

and the unitarity relation

R(x;φ)R(−x;φ) = IdV ⊗2 .
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The theorem can be proved by direct computations. The main point
of the present paper is to explain how elliptic solutions of dynamical
quantum Yang-Baxter equations, like R(x;φ), can be found by explicitly
computing connection matrices of quantum affine KZ equations.

For example,

(2.7)

⎛⎜⎜⎝
1 0 0 0
0 Ay(x) B−y(x) 0
0 By(x) A−y(x) 0
0 0 0 1

⎞⎟⎟⎠
is an elliptic solution of a gl(2) dynamical quantum Yang-Baxter equa-
tion in braid form, with x the spectral parameter and y the dynami-
cal parameter, which governs the integrability of Baxter’s 8-vertex face
model, see for instance [4, 22] and [53]. It was obtained in [22] by solving
the connection problem of the qKZ equations associated to the spin-12
XXZ chain. The associated spin representation is constructed from the
Uq(gl(2)) vector representation.

In the following sections we show that our present solution R(x;φ)
can be obtained from the connection problem of the quantum affine

KZ equations associated to the Uq(ĝl(2|1)) Perk-Schultz model. In this
case the associated spin representation is V ⊗n with V the Uq(gl(2|1))
vector representation, viewed as spin representation of the affine Hecke
algebra by the action of the universal R-matrix on neighbouring tensor
legs [29, 30]. We expect that R(x;φ) is closely related to Okado’s [48]
face model attached to sl(2|1).

Remark 3. With respect to the ordered basis

{v1 ⊗ v1, v1 ⊗ v2, v1⊗v3, v2 ⊗ v1, v2 ⊗ v2,

v2 ⊗ v3, v3 ⊗ v1, v3 ⊗ v2, v3 ⊗ v3},(2.8)

the solution R(x;φ) is explicitly expressed as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 Aφ1−φ2(x) 0 Bφ2−φ1(x) 0 0 0 0 0
0 0 Aφ1−φ3(x) 0 0 0 −Bφ3−φ1(x) 0 0
0 Bφ1−φ2(x) 0 Aφ2−φ1(x) 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 Aφ2−φ3(x) 0 −Bφ3−φ2(x) 0
0 0 −Bφ1−φ3(x) 0 0 0 Aφ3−φ1(x) 0 0
0 0 0 0 0 −Bφ2−φ3(x) 0 Aφ3−φ2(x) 0

0 0 0 0 0 0 0 0 − c(x)
c(−x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the dependence on the dynamical parameters φ is a 2-dimen-
sional dependence, reflecting the fact that it indeed corresponds to the
Lie super algebra sl(2|1).
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§3. Representations of the extended affine Hecke algebra

In this section we recall the relevant representation theoretic features
of affine Hecke algebras.

3.1. The extended affine Hecke algebra

Let n ≥ 2 and fix 0 < p < 1 once and for all. Fix a generic κ ∈ C and
write q = p−κ ∈ C×. The extended affine Hecke algebra Hn(q) of type
An−1 is the unital associative algebra over C generated by T1, . . . , Tn−1

and ζ±1 with defining relations

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i < n− 1,

TiTj = TjTi, |i− j| > 1,

(Ti − q)(Ti + q−1) = 0, 1 ≤ i < n,

ζζ−1 = 1 = ζ−1ζ,

ζTi = Ti+1ζ, 1 ≤ i < n− 1,

ζ2Tn−1 = T1ζ
2.

Note that Ti is invertible with inverse T−1
i = Ti−q+q−1. The subalgebra

H
(0)
n (q) of Hn(q) generated by T1, . . . , Tn−1 is the finite Hecke algebra

of type An−1. Define for 1 ≤ i ≤ n,

(3.1) Yi := T−1
i−1 · · ·T−1

2 T−1
1 ζTn−1 · · ·Ti+1Ti ∈ Hn(q).

Then [Yi, Yj ] = 0 for 1 ≤ i, j ≤ n and Hn(q) is generated as algebra by

H
(0)
n (q) and the abelian subalgebra A generated by Y ±1

i (1 ≤ i ≤ n).

The Hecke algebra H
(0)
n (q) is a deformation of the group algebra of

the symmetric group Sn in n letters. For 1 ≤ i < n we write si for the
standard Coxeter generator of Sn given by the simple neighbour trans-
position i ↔ i+ 1. The extended affine algebra Hn(q) is a deformation
of the group algebra of the extended affine symmetric group Sn � Zn,
where Sn acts on Z

n via the permutation action.
The commutation relations between Ti (1 ≤ i < n) and Y λ :=

Y λ1
1 Y λ2

2 · · ·Y λn
n (λ ∈ Z

n) are given by the Bernstein-Zelevinsky cross
relations

(3.2) TiY
λ − Y siλTi = (q − q−1)

(
Y λ − Y siλ

1− Y −1
i Yi+1

)
.

Note that the right hand side, expressed as element of the quotient field
of A, actually lies in A.
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3.2. Principal series representations

Let I ⊆ {1, . . . , n − 1}. We write Sn,I ⊆ Sn for the subgroup
generated by si (i ∈ I). It is called the standard parabolic subgroup of
Sn associated to I. The standard parabolic subalgebra HI(q) of Hn(q)
associated to I is the subalgebra generated by Ti (i ∈ I) and A. Note
that H∅(q) = A.

Let ε = (εi)i∈I be a #I-tuple of signs, indexed by I, such that εi = εj
if si and sj are in the same conjugacy class of Sn,I . Define

EI,ε := {γ = (γ1, . . . , γn) ∈ C
n | γi − γi+1 = 2εiκ ∀i ∈ I}.

For γ ∈ EI,ε there exists a unique linear character χI,ε
γ : HI(q) → C

satisfying

χI,ε
γ (Ti) = εiq

εi = εip
−εiκ, i ∈ I,

χI,ε
γ (Yj) = p−γj , 1 ≤ j ≤ n .

(3.3)

Indeed, (3.3) respects the braid relations, the Hecke relations (Ti−q)(Ti+
q−1) = 0 (i ∈ I) and the cross relations (3.2) for i ∈ I and 1 ≤ j ≤ n.
We write CχI,ε

γ
for the corresponding one-dimensional HI(q)-module.

The principal series module M I,ε(γ) for γ ∈ EI,ε is the induced Hn(q)-
module

M I,ε(γ) := Ind
Hn(q)
HI(q)

(
χI,ε
γ

)
= Hn(q)⊗HI(q) CχI,ε

γ
.

We write πI,ε
γ for the corresponding representation map and vI,ε(γ) :=

1⊗HI(q) 1 ∈ M I,ε(γ) for the canonical cyclic vector of M I,ε(γ).

To describe a natural basis of the principal series module M I,ε(γ)
we need to recall first the definition of standard parabolic subgroups of
Sn. Let w ∈ Sn. We call an expression

(3.4) w = si1si2 · · · sir
reduced if the word (3.4) of w as product of simple neighbour trans-
positions si is of minimal length. The minimal length r of the word is
called the length of w and is denoted by l(w). Let SI

n be the minimal
coset representatives of the left coset space Sn/Sn,I . It consists of the
elements w ∈ Sn such that l(wsi) = l(w) + 1 for all i ∈ I.

For a reduced expression (3.4) of w ∈ Sn, the element

Tw := Ti1Ti2 · · ·Til(w)
∈ H(0)

n (q)

is well defined. Set

vI,εw (γ) := πI,ε
γ (Tw)v

I,ε(γ), w ∈ SI
n.
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Then {vI,εw (γ)}w∈SI
n
is a linear basis of M I,ε(γ) called the standard basis

of M I,ε(γ).

3.3. Spin representations

Let W be a finite dimensional complex vector space and let B ∈
End(W ⊗W ) satisfy the braid relation

B12B23B12 = B23B12B23

as a linear endomorphism of W⊗3 where we have used the usual tensor
leg notation, i.e. B12 = B ⊗ IdW and B23 = IdW ⊗B. In addition, let B
satisfy the Hecke relation

(3.5) (B − q)(B + q−1) = 0

and suppose that D ∈ GL(W ) is such that [D ⊗D,B] = 0. Then there
exists a unique representation πB,D : Hn(q) → End(W⊗n) such that

πB,D(Ti) := Bi,i+1, 1 ≤ i < n,

πB,D(ζ) := P12P23 · · ·Pn−1,nDn

(recall that P ∈ End(W ⊗W ) denotes the permutation operator). We
call πB,D the spin representation associated to (B, D). Spin represen-
tations arise in the context of integrable one-dimensional spin chains
with Hecke algebra symmetries and twisted boundary conditions, see
for instance [15]. The corresponding spin chains are governed by the
Baxterization

(3.6) RB(z) := P ◦
(B−1 − zB

q−1 − qz

)
of B, which is a unitary (i.e., RB

21(z)
−1 = RB(z−1)) solution of the

quantum Yang-Baxter equation

(3.7) RB
12(x)R

B
13(xy)R

B
23(y) = RB

23(y)R
B
13(xy)R

B
12(x).

3.4. Quantum KZ equations and the connection problem

We introduce Cherednik’s [12] quantum KZ equations attached to
representations of the affine Hecke algebra Hn(q). Following [53] we
formulate the associated connection problem.

Let M be the field of meromorphic functions on Cn. We write F
for the field of Zn-translation invariant meromorphic functions on C

n.
Let {ei}ni=1 be the standard linear basis of Cn, with ei having a

one at the ith entry and zeros everywhere else. We define an action
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σ : Sn �Zn → GL(M) of the extended affine symmetric group Sn �Zn

on M by (
σ(si)f

)
(z) := f(z1, . . . , zi−1, zi+1, zi, zi+2, . . . , zn),(

σ(τ(ej))f
)
(z) := f(z1, . . . , zj−1, zj − 1, zj+1, . . . , zn)

for 1 ≤ i < n, 1 ≤ j ≤ n and f ∈ M, where we have written z =
(z1, . . . , zn) and τ(ej) denotes the element in Sn � Z

n corresponding to
ej ∈ Zn. The element ξ := s1 · · · sn−2sn−1τ(en) acts as

(
σ(ξ)f

)
(z) =

f(z2, . . . , zn, z1 − 1).
Let L be a finite dimensional complex vector space. We write σL

for the action σ ⊗ IdL of Sn �Z
n on the corresponding space M⊗L of

meromorphic L-valued functions on Cn.
Given a complex representation (π, L) of Hn(q) there exists a unique

family {Cπ
w}w∈Sn�Zn of End(L)-valued meromorphic functions Cπ

w on
C

n satisfying the cocycle conditions

Cπ
uv = Cπ

uσL(u)C
π
v σL(u

−1), u, v ∈ Sn � Z
n,

Cπ
e ≡ IdL,

where e ∈ Sn denotes the neutral element, and satisfying

Cπ
si(z) :=

π(T−1
i )− pzi−zi+1π(Ti)

q−1 − qpzi−zi+1
, 1 ≤ i < n,

Cπ
ξ (z) := π(ζ).

It gives rise to a complex linear action ∇π of Sn � Z
n on M⊗ L by

∇π(w) := Cπ
wσL(w), w ∈ Sn � Z

n.

Remark 4. For a spin representation πB,D : Hn(q) → End(W⊗n),

CπB,D
si (z) = Pi,i+1R

B
i,i+1(p

zi−zi+1), 1 ≤ i < n

with RB(z) given by (3.6).

Definition 3.1. Let (π, L) be a finite dimensional representation of
Hn(q). We say that f ∈ M⊗ L is a solution of the quantum affine KZ
equations if

Cπ
τ(ej)

(z)f(z− ej) = f(z), j = 1, . . . , n.

We write Solπ ⊆ M⊗ L for the solution space.
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Alternatively,

Solπ = {f ∈ M⊗ L | ∇π(τ(λ))f = f ∀λ ∈ Z
n}.

Observe that Solπ is a F -module. The symmetric group Sn acts FSn-
linearly on Solπ by ∇π|Sn .

In the limit �(zi− zi+1) → −∞ (1 ≤ i < n) the transport operators

Cπ
τ(λ)(z) tend to commuting linear operators π(Ỹ λ) on L for λ ∈ Z

n.

The commuting elements Ỹ λ ∈ Hn(q) are explicitly given by

Ỹ λ := p−(ρ,λ)Tw0Y
w0λT−1

w0

with w0 ∈ Sn the longest Weyl group element and

ρ = ((n− 1)κ, (n− 3)κ, . . . , (1− n)κ)

(see [53] and the appendix).
For a generic class of finite dimensional complex affine Hecke alge-

bra modules the solution space of the quantum KZ equations can be
described explicitly in terms of asymptotically free solutions. The class
of representations is defined as follows. Write �i = e1 + · · · + ei for
i = 1, . . . , n.

Definition 3.2. Let π : Hn(q) → End(L) be a finite dimensional
representation.

1. We call (π, L) calibrated if π(Ỹj) ∈ End(L) is diagonalisable
for j = 1, . . . , n, i.e. if

L =
⊕
s

L[s]

with L[s] := {v ∈ L | π(Ỹ λ)v = p(s,λ)v (λ ∈ Z
n)}, where

s ∈ Cn/2π
√−1 log(p)−1Zn.

2. We call (π, L) generic if it is calibrated and if the nonresonance
conditions

p(s
′−s,�i) ∈ pZ\{0} ∀ i ∈ {1, . . . , n− 1}

hold true for s and s′ such that L[s] = {0} = L[s′].

Set

Q+ :=
n−1⊕
i=1

Z≥0(ei − ei+1).

We recall the following key result on the structure of the solutions of the
quantum KZ equations.
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Theorem 5 ([43]). Let (π, L) be a generic Hn(q)-representation
and v ∈ L[s]. There exists a unique meromorphic solution Φπ

v of the
quantum KZ equations characterised by the series expansion

Φπ
v (z) = p(s,z)

∑
α∈Q+

Γπ
v (α)p

−(α,z), Γπ
v (0) = v

for �(zi − zi+1) � 0 (1 ≤ i < n). The assignment f ⊗ v �→ fΦπ
v (f ∈ F ,

v ∈ L[s]) defines a F -linear isomorphism

Sπ : F ⊗ L
∼−→ Solπ.

Remark 6. Let (π, L) and (π′, L′) be two genericHn(q)-representations
and T : L → L′ an intertwiner of Hn(q)-modules. Also write T for its
M-linear extension M⊗ L → M⊗ L. Then

T ◦ Sπ = Sπ′ ◦ T
as F -linear maps F ⊗ L → Solπ

′
since

T
(
Φπ

v (z)
)
= Φπ′

T (v)(z)

for v ∈ L[s].

Let (π, L) be a generic Hn(q)-representation. For w ∈ Sn we define
a F -linear map M

π(w) : F ⊗ L → F ⊗ L as follows,

M
π(w) =

((
Sπ

)−1∇π(w)Sπ
) ◦ σL(w

−1).

The linear operators Mπ(w) (w ∈ Sn) form a Sn-cocycle, called the
monodromy cocycle of (π, L).

If T : L → L′ is a morphism between generic Hn(q)-modules (π, L)
and (π′, L′) then

(3.8) T ◦Mπ(w) = M
π′
(w) ◦ T, w ∈ Sn

as F -linear maps F ⊗ L → F ⊗ L′ by Remark 6.
With respect to a choice of linear basis {vi}i of L consisting of com-

mon eigenvectors of the π(Ỹ λ) (λ ∈ Zn) we obtain from the monodromy
cocycle matrices with coefficients in F , called connection matrices. The
cocycle property implies braid-like relations for the connection matrices.
We will analyse the connection matrices for the spin representation of
Hn(q) associated to the vector representation of Uq(gl(2|1)). It leads to
explicit solutions of dynamical quantum Yang-Baxter equations.
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§4. Connection matrices for principal series modules

First we recall the explicit form of the monodromy cocycle for a
generic principal series moduleM I,ε(γ) (γ ∈ EI,ε), see [53] for the special
case εi = + for all i and the appendix for the general case. Fix the

normalised linear basis {b̃σ}σ∈SI
n
of M I,ε(γ), given by (7.2), specialised

to the GLn root datum and with q in (7.2) replaced by p. The basis

elements are common eigenvectors for the action of Ỹ λ (λ ∈ Zn). We
write for w ∈ Sn,

(4.1) M
πI,ε
γ (w)̃bτ2 =

∑
τ1∈SI

n

mI,ε,w
τ1τ2 (z; γ)̃bτ1 ∀ τ2 ∈ SI

n

with mI,ε,w
τ1τ2 (z; γ) ∈ F (as function of z). For w = si with 1 ≤ i <

n the coefficients are explicitly given in terms of the elliptic functions
Ay(x), By(x) and the elliptic c-function c(x) (see (2.4) and (2.5)) as
follows.

(a) On the diagonal: if σ ∈ SI
n and sn−iσ ∈ SI

n then

(4.2) mI,ε,si
σ,σ (z; γ) = εiσ

c(zi − zi+1)

c(εiσ (zi − zi+1))

with iσ ∈ I the unique index such that sn−iσ = σsiσ . If σ ∈ SI
n

and sn−iσ ∈ SI
n then

(4.3) mI,ε,si
σ,σ (z; γ) = Aγσ−1(n−i)−γσ−1(n−i+1)(zi − zi+1).

(b) All off-diagonal matrix entries are zero besides the entries
mI,ε,si

sn−iσ,σ(z; γ) with both σ and sn−iσ in SI
n, which are given

by

(4.4) mI,ε,si
sn−iσ,σ(z; γ) = Bγσ−1(n−i)−γσ−1(n−i+1)(zi − zi+1).

For w ∈ Sn we write

(4.5) M
I,ε,w(z; γ) =

(
mI,ε,w

σ,τ (z; γ)
)
σ,τ∈SI

n

for the matrix of MπI,ε
γ (w) with respect to the F -linear basis {b̃σ}σ∈SI

n
.

The cocycle property of the monodromy cocycle then becomes

M
I,ε,ww′

(z; γ) = M
I,ε,w(z; γ)MI,ε,w′

(w−1z; γ) ∀w,w′ ∈ Sn

and MI,ε,e(z; γ) = 1, where the symmetric group acts by permuting the
variables z. As a consequence, one directly obtains the following result.
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Proposition 7. The matrices (4.5) satisfy the braid type equations

M
I,ε,si(z; γ)MI,ε,si+1(siz; γ)M

I,ε,si(si+1siz; γ)

= M
I,ε,si+1(z; γ)MI,ε,si(si+1z; γ)M

I,ε,si+1(sisi+1z; γ)
(4.6)

for 1 ≤ i < n− 1 and the unitarity relation

(4.7) M
I,ε,si(z; γ)MI,ε,si(siz; γ) = 1

for 1 ≤ i < n.

In this paper we want to obtain explicit elliptic solutions of dynam-
ical quantum Yang-Baxter equations by computing connection matrices
of a particular spin representation

(
πB,D,W⊗n

)
. To relate M

πB,D (si)
to elliptic solutions of quantum dynamical Yang-Baxter equations act-
ing locally on the ith and (i + 1)th tensor legs of W⊗n one needs to
compute the matrix coefficients of MπB,D (si) with respect to a suitable
tensor product basis {vi1 ⊗· · ·⊗viN } of W⊗n, where {vi}i is some linear
basis of W .

The approach is as follows. Suppose we have an explicit isomorphism
of Hn(q)-modules

(4.8) T : W⊗n ∼−→
⊕
k

M I(k),ε(k)

(γ(k)).

Writing π(k) for the representation map of M I(k),ε(k)

(γ(k)) we conclude
from Remark 6 that the corresponding monodromy cocycles are related
by

(4.9) M
πB,D (w) = T−1 ◦

(⊕
k

M
π(k)

(w)
)
◦ T

as F -linear endomorphisms of F ⊗L. If {vi}i is a linear basis of W and
{vi1 ⊗ · · · ⊗ viN } the corresponding tensor product basis of W⊗n, then
in general T will not map the tensor product basis onto the union of the

linear bases {b̃σ}σ∈I(k) of the constituents M I(k),ε(k)

(γ(k)) in (4.8). Thus
trying to explicitly compute M

πB,D(si) with respect to a tensor product

basis, using (4.9) and using the explicit form of Mπ(k)

(si) with respect

to {b̃σ}σ∈I(k) , will become cumbersome.
The way out is as follows. As soon as we know the existence of an

isomorphism (4.8) of Hn(q)-modules, we can try to modify T to obtain
an explicit complex linear isomorphism

T̃ : W⊗n ∼−→
⊕
k

M I(k),ε(k)

(γ(k))



Connection matrices of qKZ equations and Lie super algebras 173

(not an intertwiner of Hn(q)-modules!), which does have the property
that a tensor product basis of W⊗n is mapped to the basis of the di-
rect sum of principal series blocks consisting of the union of the bases

{b̃σ}σ∈SI(k)
n

. As soon as T̃ is constructed, we can define the modified

monodromy cocycle {M̃πB,D (w)}w∈Sn of the spin representation πB,D by

M̃
πB,D (w) := T̃−1 ◦

(⊕
k

M
π(k)

(w)
)
◦ T̃ , w ∈ Sn

(clearly the M̃πB,D(w) still form a Sn-cocycle). Then the matrix of

M̃πB,D (si) with respect to the tensor product basis of W⊗n will lead
to an explicit solution of the dynamical quantum Yang-Baxter equation
on W ⊗W with spectral parameters.

We will apply this method for the spin representation associated to

the Uq(ĝl(2|1)) Perk-Schultz model in the next section.

Remark 8. The linear isomorphism T̃ in the example treated in the
next section is of the form

T̃ =
(⊕

k

G(k)
) ◦ T

with T an isomorphism of Hn(q)-modules and with G(k) the linear

automorphism of M I(k),ε(k)

(γ(k)) mapping the standard basis element

vI
(k),ε(k)

σ (γ(k)) to a suitable constant multiple of b̃σ for all σ ∈ SI(k)

n .

§5. The spin representation associated to gl(2|1)
Recall the vector representation V = V0 ⊕ V1 with V0 = Cv1 ⊕ Cv2

and V1 = Cv3 of the Lie super algebra gl(V ) � gl(2|1). The vector
representation can be quantized, leading to the vector representation
of the quantized universal enveloping algebra Uq(gl(2|1)) on the same
vector space V . The action of the universal R-matrix of Uq(gl(2|1)) on
V ⊗ V gives rise to an explicit solution B : V ⊗ V → V ⊗ V of the
braid algebra relation (3.3). With respect to the ordered basis (2.8) it
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is explicitly given by
(5.1)

B :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q 0 0 0 0 0 0 0 0
0 q − q−1 0 1 0 0 0 0 0
0 0 q − q−1 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 q 0 0 0 0
0 0 0 0 0 q − q−1 0 −1 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −q−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

see [11, 14] (we also refer the reader to [40, 59]). It satisfies the Hecke
relation (3.5).

The Baxterization RB(z) of B gives
(5.2)

RB(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(z) 0 0 0 0 0 0 0 0
0 b(z) 0 c+(z) 0 0 0 0 0
0 0 −b(z) 0 0 0 c+(z) 0 0
0 c−(z) 0 b(z) 0 0 0 0 0
0 0 0 0 a(z) 0 0 0 0
0 0 0 0 0 −b(z) 0 c+(z) 0
0 0 c−(z) 0 0 0 −b(z) 0 0
0 0 0 0 0 c−(z) 0 −b(z) 0
0 0 0 0 0 0 0 0 w(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with

a(z) :=
q−1 − qz

q−1 − qz
, b(z) :=

1− z

q−1 − qz
,

c+(z) :=
q−1 − q

q−1 − qz
, c−(z) :=

(q−1 − q)z

q−1 − qz

and w(z) := q−1z−q
q−1−qz . Note that P ◦ B can be re-obtained from RB(z)

by taking the braid limit z → ∞. The same solution RB(z) is among
the ones found by Perk and Schultz through the direct resolution of the
quantum Yang-Baxter equation (3.7), see [49]. It can also be obtained

from the Uq(ĝl(2|1)) invariant R-matrix with spectral parameter, see for
instance [11, 14, 37, 10, 13, 60]. Due to that the associated integrable

vertex model is commonly refereed to as Uq(ĝl(2|1)) Perk-Schultz model.
Also, it is worth remarking that RB(z) gives rise to a q-deformed version
of the supersymmetric t-j model [54, 3].
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Remark 9. We have written the R-matrix (5.2) in such a way that it
satisfies the quantum Yang-Baxter equation with standard tensor prod-
ucts. In order to make the gradation of V explicitly manifested, and
thus having a solution of the graded Yang-Baxter equation as described
in [38], we need to consider the matrix R̄B := Pg P RB where Pg stands
for the graded permutation operator.

Remark 10. Due to small differences of conventions and grading,
one also needs to consider a simple gauge transformation in order to
compare (5.2) with the results presented in [11, 14, 13, 60].

Consider the linear map Dφ : V → V for a three-tuple φ :=

(φ1, φ2, φ3) of complex numbers, defined by

Dφ(vi) := p−φivi, i = 1, 2, 3 .

It satisfies [Dφ ⊗Dφ,B] = 0. We write πB,φ : Hn(q) → End(V ) for the
resulting spin representation πB,Dφ

.
We are interested in computing the connection matrices of the quan-

tum affine KZ equations associated to the spin representation πB,φ. With
this goal in mind we firstly decompose the spin representation explicitly
as direct sum of principal series modules.

Let
Kn := {α := (α1, . . . , αn) | αi ∈ {1, 2, 3}}

and write vα := vα1 ⊗ vα2 ⊗ · · · ⊗ vαn ∈ V ⊗n for α ∈ Kn. We will refer
to {vα}α∈Kn as the tensor product basis of V ⊗n. Next write

Jn := {r = (r1, r2, r3) ∈ Z
3
≥0 | r1 + r2 + r3 = n}.

Write Kn[r] for the subset of n-tuples α ∈ Kn with rj entries equal to j
for j = 1, 2, 3. For instance,

(5.3) α(r) :=
(
3, . . . , 3︸ ︷︷ ︸

r3

, 2, . . . , 2︸ ︷︷ ︸
r2

, 1, . . . , 1︸ ︷︷ ︸
r1

) ∈ Kn[r]

Write (V ⊗n)r := span{vα | α ∈ Kn[r]}, so that

V ⊗n =
⊕
r∈Jn

(V ⊗n)r.

Lemma 11. (V ⊗n)r is a Hn(q)-submodule of the spin representa-
tion (πB,φ, V

⊗n).

Proof. This follows immediately from the definition of the spin
representation and the fact that [Dθ⊗Dθ,B] = 0 for all θ ∈ C

3. Q.E.D.
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The permutation action α �→ wα of Sn on Kn[r], with wα defined by
(wα)i := αw−1(i) for 1 ≤ i ≤ n, is transitive. The stabiliser subgroup of

α(r) (see (5.3)) is Sn,I(r) with

I(r) := {1, . . . , n− 1} \ ({r3, r2 + r3} ∩ {1, . . . , n− 1})
For instance, if 1 ≤ r3, r2 + r3 < n then

I(r) = {1, . . . , r3 − 1}∪{r3 + 1, . . . , r3 + r2 − 1}
∪ {r3 + r2 + 1, . . . , n− 1},

while I(r) = {1, . . . , n − 1} if rj = n for some j. The assignment w �→
wα(r) thus gives rise to a bijective map

Σ(r) : SI(r)

n
∼−→ Kn[r].

Its inverse can be described as follows. For α ∈ Kn[r] and j ∈ {1, 2, 3}
write

1 ≤ k
α,(j)
1 < k

α,(j)
2 < · · · < kα,(j)rj ≤ n

for indices k such that αk = j and denote

wα :=

(
1 · · · r3 r3 + 1 · · ·

k
α,(3)
1 · · · k

α,(3)
r3 k

α,(2)
1 · · ·

· · · r3 + r2 r3 + r2 + 1 · · · n

· · · k
α,(2)
r2 k

α,(1)
1 · · · k

α,(1)
r1

)
∈ Sn

(5.4)

in standard symmetric group notations. Note that wαα
(r) = α. In

addition, wα ∈ SI(r)

n since

l(wαsi) > l(wα) ∀ i ∈ I(r),

which is a direct consequence of the well known length formula

(5.5) l(w) = #{(i, j) | 1 ≤ i < j ≤ n & w(i) > w(j)}.
It follows that (

Σ(r)
)−1

(α) = wα, ∀α ∈ Kn[r].

Let ε(r) = {ε(r)i }i∈I(r) be given by

ε
(r)
i :=

{
− if i < r3

+ else,
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and define γ(r) ∈ EI(r),ε(r) as

γ
(r)
i :=

⎧⎪⎨⎪⎩
η
(r)
3 + φ3 + 2iκ, if i ≤ r3,

η
(r)
2 + φ2 − 2(i− r3)κ, if r3 < i ≤ r3 + r2,

η
(r)
1 + φ1 − 2(i− r2 − r3)κ, if r3 + r2 < i ≤ n,

with η
(r)
j ∈ C (j = 1, 2, 3) given by

η
(r)
1 := −π

√−1r3 log(p)
−1 + (r1 + 1)κ,

η
(r)
2 := −π

√−1r3 log(p)
−1 + (r2 + 1)κ,

η
(r)
3 := −π

√−1(n− 1) log(p)−1 − (r3 + 1)κ.

(5.6)

Proposition 12. Let r ∈ Jn. For generic parameters, there exists
a unique isomorphism

ψ(r) : M I(r),ε(r)(γ(r))
∼−→ (V ⊗n)r

of Hn(q)-modules mapping the cyclic vector vI
(r),ε(r)(γ(r)) to

vα(r) = v⊗r3
3 ⊗ v⊗r2

2 ⊗ v⊗r1
1 ∈ (V ⊗n)r.

Furthermore, for w ∈ SI(r)

n we have

(5.7) ψ(r)
(
vI

(r),ε(r)

w (γ(r))
)
= (−1)η(w)vwα(r)

with

(5.8) η(w) := #{(i, j) | 1 ≤ j < r3 < i ≤ n & w(i) < w(j)}.
Proof. From the explicit form of B it is clear that

(5.9) πB,φ(Ti)vα(r) = Bi,i+1vα(r) = ε
(r)
i qε

(r)
i vα(r) ∀ i ∈ I(r).

Next we show that πB,φ(Yj)vα(r) = p−γ
(r)
j vα(r) for 1 ≤ j ≤ n. By the

explicit expression of γ(r) the desired eigenvalues are

p−γ
(r)
i =

⎧⎪⎨⎪⎩
(−1)n+1q2i−r3−1p−φ3 , if i ≤ r3,

(−1)r3qr2+2(r3−i)+1p−φ2 , if r3 < i ≤ r3 + r2,

(−1)r3qr1+2(r2+r3−i)+1p−φ1 , if r3 + r2 < i ≤ n.

We give the detailed proof of the eigenvalue equation for 1 ≤ j ≤ r3, the
other two cases r3 < j ≤ r3 + r2 and r3 + r2 < j ≤ n can be verified by
a similar computation.
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Since j ≤ r3, by (3.1) and (5.9) we have

πB,φ(Yj)vα(r) = (−q−1)r3−iπB,φ(T
−1
j−1 · · ·T−1

1 ζTn−1 · · ·Tr3)vα(r) .

Since B(v3 ⊗ v2) = −v2 ⊗ v3 we get

πB,φ(Yj)vα(r) =(−1)r2(−q−1)r3−i

× πB,φ(T
−1
j−1 · · ·T−1

1 ζTn−1 · · ·Tr3+r2)u

with u := v
⊗(r3−1)
3 ⊗v⊗r2

2 ⊗v3⊗v⊗r1
1 . Then B(v3⊗v1) = −v1⊗v3 gives

πB,φ(Yj)vα(r) = (−1)r2+r1(−q−1)r3−jπB,φ(T
−1
j−1 · · ·T−1

1 ζ)w

= (−1)r2+r1(−q−1)r3−jφ3πB,φ(T
−1
j−1 · · ·T−1

1 )vα(r)

with w := v
⊗(r3−1)
3 ⊗v⊗r2

2 ⊗v⊗r1
1 ⊗v3. Finally, using (5.9) again we find

πB,φ(Yj)vα(r) = (−1)r2+r1(−q−1)r3−2j+1φ3vα(r) = p−γ
(r)
j vα(r)

as desired.
Consequently we have a unique surjective Hn(q)-intertwiner

ψ(r) : M I(r),ε(r)(γ(r)) � Hn(q)vα(r) ⊆ (V ⊗n)r

mapping the cyclic vector vI
(r),ε(r)(γ(r)) to vα(r) . To complete the proof

of the proposition, it thus suffices to prove (5.7).
Fix α ∈ Kn[r]. We need to show that

ψ(r)
(
vI

(r),ε(r)

wα
(γ(r))

)
= (−1)η(wα)vα.

For the proof of this formula we first need to obtain a convenient re-

duced expression of wα. We construct an element w ∈ wαS
I(r)

n (i.e., an
element w ∈ Sn satisfying wα(r) = α) as product w = sj1sj2 · · · sjr
of simple neighbour transpositions such that, for all u, the n-tuple
sju+1sju+2 · · · sjrα(r) is of the form (βu

1 , . . . , β
u
n) with βu

ju
> βu

ju+1. This

can be done by transforming α(r) to α by successive nearest neighbour
exchanges between neighbours (β, β′) with β > β′. Then it follows that
l(w) = l

(
wα

)
, hence w = wα. From this description of a reduced ex-

pression of wα it follows that the number of pairs (βu
ju
, βu

ju+1) equal to

(t, s) is #{(i, j) | kα,(s)i < k
α,(t)
j } for all 1 ≤ s < t ≤ 3.

Since Bv3⊗v1 = −v1⊗v3, Bv3⊗v2 = −v2⊗v3 and Bv2⊗v1 = v1⊗v2
we conclude that

ψ(r)
(
vI

(r),ε(r)

wα
(γ(r))

)
= πB,φ(Twα)vα(r) = (−1)η(wα)vα,

with η(w) given by (5.8). Q.E.D.
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Lemma 13. Let 1 ≤ i < n and α ∈ Kn[r].

(a) sn−iwα ∈ SI(r)

n if and only if αn−i = αn+1−i.

(b) If sn−iwα ∈ SI(r)

n then l(sn−iwα) = l(wα) + 1 if and only if
αn−i > αn+1−i.

(c) If sn−iwα ∈ SI(r)

n then iwα ∈ {1, . . . , r3 − 1} if and only if
αn−i = 3 (recall that iwα ∈ I(r) is the unique index such that
sn−iwα = wαsiwα

).

Proof. The lemma follows directly from the explicit expression
(5.4) of wα and the length formula (5.5). Q.E.D.

§6. The elliptic R-matrix associated to gl(2|1)
6.1. The modified monodromy cocycle

By Proposition 12 we have an isomorphism

T : V ⊗n ∼−→
⊕
r∈Jn

M I(r),ε(r)(γ(r))

of Hn(q)-modules defined by

T
(
vwα(r)

)
= (−1)η(w)vI

(r),ε(r)

w (γ(r)), ∀w ∈ SI(r)

n , ∀ r ∈ Jn.

Write b̃
(r)
w for the basis b̃w element of M I(r),ε(r)(γ(r)) as defined in Sec-

tion 4, where w ∈ SI(r)

n . Let G(r) be the linear automorphism of

M I(r),ε(r)(γ(r)) defined by

G(r)
(
vI(r),ε(r)

w (γ(r))
)
= b̃(r)w , ∀w ∈ SI(r)

n

and write

T̃ :=
(⊕
r∈Jn

G(r)
)
◦ T : V ⊗n −→

⊕
r∈Jn

M I(r),ε(r)(γ(r)).

T̃ is a linear isomorphism given explicitly by

T̃
(
vwα(r)

)
= (−1)η(w)b̃(r)w , ∀w ∈ SI(r)

n , ∀ r ∈ Jn.

Set

(6.1) M̃πB,D (u) := T̃−1 ◦
(⊕
r∈Jn

Mπ(r)

(u)
)
◦ T̃ ∈ End

(
V ⊗n

)
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for u ∈ Sn, with π(r) the representation map of M I(r),ε(r)(γ(r)). Then it
follows that

(6.2) M̃πB,D (u)vβ =
∑

α∈Kn[r]

(−1)η(wα)+η(wβ)mI(r),ε(r),u
wα,wβ

(z; γ(r))vα

for β ∈ Kn[r] and u ∈ Sn. Using the expressions of the connection

coefficients mI(r),ε(r),si
w,w′ (z; γ(r)) (see (4.2), (4.3) and (4.4)) we obtain the

following explicit formulas.

Corollary 14. Let r ∈ Jn and 1 ≤ i < n.

(a) For β = (β1, . . . , βn) ∈ Kn[r] with βn−i = βn+1−i we have

M̃πB,D (si)vβ =

{
vβ if βn−i ∈ {1, 2},
− c(zi−zi+1)

c(zi+1−zi)
vβ if βn−i = 3.

(b) For β = (β1, . . . , βn) ∈ Kn[r] with βn−i = βn+1−i we have

M̃πB,D (si)vβ = A
γ
(r)

w
−1
β

(n−i)
−γ

(r)

w
−1
β

(n−i+1)(zi − zi+1)vβ

+ (−1)δβn−i,3
+δβn+1−i,3B

γ
(r)

w
−1
β

(n−i)
−γ

(r)

w
−1
β

(n−i+1)(zi − zi+1)vsn−iβ .

Proof. (a) is immediate from the remarks preceding the corollary.

(b) If βn−i = βn+1−i then sn−iwβ ∈ SI(r)

n by Lemma 13, hence sn−iwβ =
wγ for some γ ∈ Kn[r]. Then

γ = Σ(r)(sn−iwβ) = (sn−iwβ)α
(r) = sn−iβ,

hence sn−iwβ = wsn−iβ . Using the fact that

η(wβ) = #{(r, s) | kβ,(2)r < kβ,(3)s }+#{(r, s) | kβ,(1)r < kβ,(3)s }
we obtain

(−1)η(wβ)+η(wsn−iβ
) = (−1)δβn−i,3

+δβn+1−i,3

if βn−i = βn+1−i. The proof now follows directly from the explicit
expressions (4.2), (4.3) and (4.4) of the connection coefficients. Q.E.D.

6.2. Finding R(x;φ)

In this subsection we fix n = 2 and focus on computing the modified
monodromy cocycle of the quantum affine KZ equations associated to
the rank two spin representation πB,φ : H2(q) → End(V ⊗2). It will lead
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to the explicit expression of the elliptic dynamical R-matrixR(x;φ) from
Subsection 2.3.

From our previous results we know that the rank two spin represen-
tation V ⊗2 splits as H2(q)-module into the direct sum of six principal
series blocks

V ⊗2 =
⊕
r∈J2

(V ⊗2)r

= (V ⊗2)(2,0,0) ⊕ (V ⊗2)(0,2,0) ⊕ (V ⊗2)(0,0,2)

⊕ (V ⊗2)(1,1,0) ⊕ (V ⊗2)(1,0,1) ⊕ (V ⊗2)(0,1,1),

where the first three constituents are one-dimensional and the last three
two-dimensional. Write s = s1 for the nontrivial element of S2.

Lemma 15. For n = 2 we have M̃πB,D (s) = R(z1− z2;φ) as linear
operators on V ⊗ V .

Proof. This follows by a direct computation using Corollary 14.
For instance, in the 9×9-matrix representation of R(x;φ) the first, fifth

and ninth column of R(x;φ) arise from the action of M̃πB,D (s) on the

one-dimensional constituents (V ⊗2)(2,0,0), (V
⊗2)(0,2,0) and (V ⊗2)(0,0,2)

respectively, in view of Corollary 14(a). The second and fourth columns

correspond to the action of M̃πB,D (s) on

(V ⊗2)(1,1,0) = span{v1 ⊗ v2, v2 ⊗ v1},
in view of Corollary 14(b). Similarly, the third and seventh column
(respectively sixth and eighth column) corresponds to the action of

M̃πB,D (s) on the constituent (V ⊗2)(1,0,1) (respectively (V ⊗2)(0,1,1)).
Q.E.D.

Corollary 16 (Unitarity).

R(x;φ)R(−x;φ) = IdV ⊗2 .

Proof. This follows from (4.7) and (6.1). Q.E.D.

6.3. The dynamical quantum Yang-Baxter equation

Next we prove that R(x;φ) satisfies the dynamical quantum Yang-
Baxter equation in braid-like form (see Theorem 2) by computing the
modified monodromy cocycle of the quantum affine KZ equations associ-
ated to the spin representation πB,φ : H3(q) → End(V ⊗3) and expressing

them in terms of local actions of R(x;φ). So in this subsection, we fix
n = 3.
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Let Ψ(j) ∈ C3 for j = 1, 2, 3 and let Q(φ) : V ⊗3 → V ⊗3 be a

family of linear operators on V ⊗3 depending on φ ∈ C
3. We use the

notation Q(φ+ Ψ̂i) to denote the linear operator on V ⊗3 which acts on

the subspace V ⊗(i−1) ⊗ Cvj ⊗ V ⊗(3−i) as Q(φ+Ψ(j)) for 1 ≤ i, j ≤ 3.

Lemma 17. Let n = 3. For the simple reflections s1 and s2 of S3

we have

M̃πB,D (s1) = R23(z1 − z2;φ+ Ψ̂(κ)1),

M̃πB,D (s2) = R12(z2 − z3;φ+ Ψ̂(−κ)3)
(6.3)

as linear operators on V ⊗3, where

(6.4) Ψ(j)(α) :=

⎧⎪⎨⎪⎩
(−α, 0,−π

√−1 log(p)−1) if j = 1,

(0,−α,−π
√−1 log(p)−1) if j = 2,

(0, 0, α) if j = 3.

Proof. The proof of (6.3) is a rather long case by case verification
which involves computing the action of the left hand side on the tensor
product basis elements using Corollary 14. As an example of the typical
arguments, we give here the proof of the first identity in (6.3) when
acting on the tensor product basis vectors v1 ⊗ v3 ⊗ v2 and v2 ⊗ v3 ⊗ v2.
This will also clarify the subtleties arising from the fact that V ⊗3 has
multiple principal series blocks,

V ⊗3 =
⊕
r∈J3

(V ⊗3)r.

Consider the tensor product basis element v1 ⊗ v3 ⊗ v2. Note that

v1 ⊗ v3 ⊗ v2 = vβ ∈ (V ⊗3)(1,1,1)

with β := (1, 3, 2) ∈ K3[(1, 1, 1)]. Note that I(1,1,1) = ∅, ε(1,1,1) = ∅,

wβ =

(
1 2 3
2 3 1

)
and

γ(1,1,1) = (η
(1,1,1)
3 + φ3 + 2κ, η

(1,1,1)
2 + φ2 − 2κ, η

(1,1,1)
1 + φ1 − 2κ)

= (−2π
√−1 log(p)−1 + φ3,

− π
√−1 log(p)−1 + φ2,−π

√−1 log(p)−1 + φ1).
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Consequently,

γ
(1,1,1)

w−1
β (2)

− γ
(1,1,1)

w−1
β (3)

= γ
(1,1,1)
1 − γ

(1,1,1)
2 = φ3 − φ2 − π

√−1 log(p)−1.

Hence Corollary 14(b) gives

M̃πB,D (s1)(v1⊗v3 ⊗ v2) = M̃πB,D (s1)vβ

= Aφ3−φ2−π
√−1 log(p)−1

(z1 − z2)vβ

−Bφ3−φ2−π
√−1 log(p)−1

(z1 − z2)vs2β

= v1 ⊗R(z1 − z2;φ+Ψ(1)(κ))
(
v3 ⊗ v2

)
,

which proves the first equality of (6.3) when applied to the vector v1 ⊗
v3 ⊗ v2.

As a second example, we consider the validity of the first equality
of (6.3) when applied to v2 ⊗ v3 ⊗ v2 = vα ∈ (V ⊗3)(0,2,1), where α :=

(2, 3, 2) ∈ K3[(0, 2, 1)]. This time we have I(0,2,1) = {2}, ε(0,2,1) = {+},

wα =

(
1 2 3
2 1 3

)
and

γ(0,2,1) = (η
(0,2,1)
3 + φ3 + 2κ, η

(0,2,1)
2 + φ2 − 2κ, η

(0,2,1)
2 + φ2 − 4κ)

= (−2π
√−1 log(p)−1 + φ3,

− π
√−1 log(p)−1 + φ2 + κ,−π

√−1 log(p)−1 + φ2 − κ).

Hence

γ
(0,2,1)

w−1
α (2)

− γ
(0,2,1)

w−1
α (3)

= γ
(0,2,1)
1 − γ

(0,2,1)
3 = φ3 − φ2 − π

√−1 log(p)−1 + κ.

Therefore, Corollary 14(b) gives

M̃πB,D (s1)(v2⊗v3 ⊗ v2) = M̃πB,D (s1)vα

= Aφ3−φ2−π
√−1 log(p)−1+κ(z1 − z2)vα

−Bφ3−φ2−π
√−1 log(p)−1+κ(z1 − z2)vs2α

= v2 ⊗R(z1 − z2;φ+Ψ(2)(κ))
(
v3 ⊗ v2

)
,

which proves the first equality of (6.3) when applied to the vector v2 ⊗
v3 ⊗ v2. All other cases can be checked by a similar computation.

Q.E.D.
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Corollary 18. The linear operator R(x;φ) : V ⊗2 → V ⊗2 satisfies

R12(x;φ+ Ψ̂(−κ)3)R23(x+ y;φ+ Ψ̂(κ)1)R12(y;φ+ Ψ̂(−κ)3)

= R23(y;φ+ Ψ̂(κ)1)R12(x+ y;φ+ Ψ̂(−κ)3)R23(x;φ+ Ψ̂(κ)1)
(6.5)

as linear operators on V ⊗3.

Proof. The braid type relation (6.5) is a direct consequence of
(6.3) in view of the cocycle property of the modified monodromy co-

cycle {M̃πB,D (u)}u∈Sn (cf. (4.6) for the unmodified monodromy cocycle).
Q.E.D.

We are now ready to obtain the proof of Theorem 2. It suffices to show
that R(x;φ) is satisfying the dynamical quantum Yang-Baxter equation
(2.6) in braid-like form. We derive it as consequence of (6.5).

First of all, replacing φ in (6.5) by φ + (0, 0, π
√−1 log(p)−1) we

conclude that

R12(x;φ+ Φ̂(−κ)3)R23(x+ y;φ+ Φ̂(κ)1)R12(y;φ+ Φ̂(−κ)3)

= R23(y;φ+ Φ̂(κ)1)R12(x+ y;φ+ Φ̂(−κ)3)R23(x;φ+ Φ̂(κ)1)
(6.6)

with respect to the shift vectors

(6.7) Φ(j)(α) :=

⎧⎪⎨⎪⎩
(−α, 0, 0) if j = 1,

(0,−α, 0) if j = 2,

(0, 0, α+ π
√−1 log(p)−1) if j = 3.

Now note that the dynamical quantum Yang-Baxter equation (2.6) is
equivalent to the equation

R12(x;φ+ Ξ̂(−κ)3)R23(x+ y;φ+ Ξ̂(κ)1)R12(y;φ+ Ξ̂(−κ)3)

= R23(y;φ+ Ξ̂(κ)1)R12(x+ y;φ+ Ξ̂(−κ)3)R23(x;φ+ Ξ̂(κ)1)
(6.8)

with shift vectors

Ξ(j)(α) :=

⎧⎪⎨⎪⎩
(−α, 0, 0) if j = 1,

(0,−α, 0) if j = 2,

(0, 0, α) if j = 3.

So it remains to show that the π
√−1 log(p)−1 term in Φ

(3)
3 (α) may

be omitted in the equation (6.6). Acting by both sides of (6.6) on
a pure tensor vi ⊗ vj ⊗ vk, the resulting equation involves the shift

Φ
(3)
3 (α) only if two of the indices i, j, k are equal to 3. In case (i, j, k) ∈



Connection matrices of qKZ equations and Lie super algebras 185

{(1, 3, 3), (3, 1, 3), (3, 3, 1)} the dependence on the dynamical parameters
is a dependence on

(φ1 +Φ
(3)
1 (±κ))− (φ3 +Φ

(3)
3 (±κ)) = φ1 − φ3 ∓ κ− π

√−1 log(p)−1.

Thus replacing φ3 by φ3 − π
√−1 log(p)−1, it follows that the equation

is equivalent to the equation with Φ
(3)
3 (α) omitted. A similar argument

applies to the case

(i, j, k) ∈ {(2, 3, 3), (3, 2, 3), (3, 3, 2)}.
This proves (6.8) and thus completes the proof of Theorem 2.

§7. Appendix

The computation of the connection matrices of quantum affine KZ
equations associated to principal series modules in [53, §3] only deal with
principal series modules M I,ε(γ) with εi = + for all i. We describe here
the extension of the results in [53, §3] to include the case of signs εi
(i ∈ I) such that εi = εj if si and sj are in the same conjugacy class of
Sn,I . Following [53] we will discuss it in the general context of arbitrary
root data.

We forget for the moment the notations and conventions from the
previous sections and freely use the notations from [53, §3.1]. In case of
GL(n) initial data, these notations slightly differ from the notations of
the previous sections (for instance, our present parameter p corresponds
to q in [53]). At the end of the appendix we will explicitly translate the
results in this appendix to the setting and conventions of this paper.

Fix a choice of initial data (R0,Δ0, •,Λ, Λ̃) (see [53, §3.1] for more
details) and a subset I ⊆ {1, . . . , n}. Write W0 for the finite Weyl group
associated to R0 and W0,I ⊆ W0 for the parabolic subgroup generated
by si (i ∈ I). Fix a #I-tuple ε = (εi)i∈I of signs such that εi = εj if si
and sj are conjugate in W0,I . We write

EI,ε
C

:= {γ ∈ EC | (α̃i, γ) = εi(κ̃α̃i
+ κ̃2α̃i

) ∀ i ∈ I }
with EC the complexification of the ambient Euclidean space E of the
root system R0. The definition [53, Def. 3.3] of the principal series
module of the (extended) affine Hecke algebra Hn(κ) now generalises as
follows,

M I,ε(γ) := Ind
H(κ)
HI(κ)

(
CχI,ε

γ

)
, γ ∈ EI,ε

C
,
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with χI,ε
γ : HI(κ) → C being the linear character defined by

χI,ε
γ (Ti) := εiq

−εiκi , i ∈ I,

χI,ε
γ (Y ν) := q−(ν,γ), ν ∈ Λ̃.

We write M(γ) for M I,ε(γ) when I = ∅.
We now generalise the two natural bases of the principal series mod-

ules. Fix generic γ ∈ EI,ε
C

. For w ∈ W0 set

vI,εw (γ) := Tw ⊗HI(κ) CχI,ε
γ

∈ M I,ε(γ).

Note that vI,εw (γ) = χI,ε
v (Tv)v

I,ε
u (γ) if w = uv with u ∈ W I

0 and v ∈ W0,I .
We write vw(γ) for vI,εw (γ) if I = ∅. Let φI,ε

γ : M(γ) � M I,ε(γ) be the

canonical intertwiner mapping vw(γ) to vI,εw (γ) for w ∈ W0. Then [53,
Prop. 3.4] is valid for M I,ε(γ), with the unnormalised elements bunn,Iw (γ)
replaced by

bunn,I,εw (γ) := φI,ε
γ

(
Aunn

w (γ)ve(w
−1γ)

)
, w ∈ W0.

Indeed, as in the proof of [53, Prop. 3.4], one can show by a direct
computation that

φI,ε
γ

(
Aunn

si (γ)vτ (siγ)
)
= 0, ∀ τ ∈ W0

if i ∈ I and εi ∈ {±} (despite the fact that the term Dα̃i
(γ) appearing

in the proof of [53, Prop. 3.4] is no longer zero when i ∈ I and εi = −).

Similarly as in [53, §3.2], the normalised basis {bI,εσ−1(γ)}σ∈W I
0
of M I,ε(γ)

can be defined by

bI,εσ−1(γ) := Dσ−1(γ)−1bunn,I,εσ−1 (γ), σ ∈ W I
0 ,

see [53, Cor 3.6].
Following [53, §3.4] we write, for a finite dimensional affine Hecke

algebra module L, ∇L for the action of the extended affine Weyl group
W on the space of L-valued meromorphic functions on EC given by(∇L(w)f

)
(z) = CL

w(z)f(w
−1z), w ∈ W

for the explicitW -cocycle {CL
w}w∈W as given by [53, Thm. 3.7]. Chered-

nik’s [12] quantum affine KZ equations then read

∇L(τ(λ))f = f ∀λ ∈ Λ̃,
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see [53, (3.7)] in the present notations. In the limit that �((α, z)) → −∞
for all α ∈ R+

0 , the transport operators C
L
τ(λ)(z) tend to π(Ỹ λ) for λ ∈ Λ̃,

where π is the representation map of L and

Ỹ λ := q−(ρ,λ)Tw0Y
w0λT−1

w0

with w0 ∈ W0 the longest Weyl group element.
An F -basis of solutions of the quantum affine KZ equations(∇MI,ε(γ)(τ(λ))f

)
(z)f(z), ∀λ ∈ Λ̃

for M I,ε(γ)-valued meromorphic functions f(z) in z ∈ EC (see [53, Def.
3.8]) is given by

ΦI,ε
σ−1(z, γ) := φI,ε

γ

(
Aσ−1(γ)φV

σγ(Φ(z, σγ))
)

σ ∈ W I
0

for generic γ ∈ EI,ε
C

, where we freely used the notations from [53, §3]
(in particular, φV

σγ is the linear isomorphism from V =
⊕

w∈W0
Cvw

onto M(σγ) mapping vw to vw(σγ) for w ∈ W0, and Φ(z, γ) is the
asymptotically free solution of the bispectral quantum KZ equations
from [53, Thm. 3.10]). The characterising asymptotic behaviour of

ΦI,ε
σ−1(z, γ) (σ ∈ W I

0 ) is

(7.1) ΦI,ε
σ−1(z; γ) = q(w0ρ−w0σγ,z)

∑
α∈Q+

ΓI,ε,γ
σ (α)q−(α,z)

if �((α, z)) � 0 for all α ∈ R+
0 , with Q+ = Z≥0R

+
0 and with leading

coefficient

b̃σ :=ΓI,ε,γ
σ (0) = cstγσπ

I,ε
γ (Tw0)b

I,ε
σ−1(γ),

cstγσ :=
q(ρ̃,ρ−σγ)

S̃(σγ)
( ∏
α∈R+

0

(
q2αq

−2(α̃,σγ); q2α
)
∞
)
,

(7.2)

where πI,ε
γ is the representation map of M I,ε(γ), see [53, Prop. 3.13].

Note that
πI,ε
γ (Ỹ λ)̃bσ = q−(λ,ρ+w0σγ)b̃σ ∀λ ∈ Λ̃.

For generic γ ∈ EI,ε
C

, there exists unique mI,ε,σ
τ1,τ2(·, γ) ∈ F (σ ∈ W0,

τ1, τ2 ∈ W I
0 ) such that

(7.3) ∇MI,ε(γ)(σ)ΦI,ε

τ−1
2

(·, γ) =
∑

τ1∈W I
0

mI,ε,σ
τ1,τ2(·, γ)ΦI,ε

τ−1
1

(·, γ)
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for all σ ∈ W0 and τ1 ∈ W I
0 . The connection matrices

M I,ε,σ(·, γ) := (
mI,ε,σ

τ1,τ2(·, γ)
)
τ1,τ2∈W I

0
, σ ∈ W0

satisfy the cocycle properties

M I,ε,σσ′
(z, γ) = M I,ε,σ(z, γ)M I,ε,σ′

(σ−1z, γ)

for σ, σ′ ∈ W0, and M I,ε,e(z, γ) = Id. Now [53, Thm. 3.15] generalises
as follows.

For i ∈ {1, . . . , n} we write i∗ ∈ {1, . . . , n} for the index such that
αi∗ = −w0αi, where w0 ∈ W0 is the longest Weyl group element. The
elliptic c-function is defined by

(7.4) cα(x) :=
θ(aαq

x, bαq
x, cαq

x, dαq
x; q2α)

θ(q2x; q2α)
q

1
μα

(κα+κ
α(1) )x

for α ∈ R0, where {aα, bα, cα, dα} are the Askey-Wilson parameters, see
[53, §3.1].

Theorem 19. Fix a generic γ ∈ EI,ε
C

satisfying in particular the
generic conditions

q2(β̃,γ) ∈ q2Zβ

for all β ∈ R0. Let τ2 ∈ W I
0 and i ∈ {1, . . . , n}. If si∗τ2 ∈ W I

0 then

mI,ε,si
τ1,τ2 (z, γ) = δτ1,τ2εi∗τ2

cαi((αi, z))

cαi(εi∗τ2 (αi, z))
, ∀ τ1 ∈ W I

0 ,

with i∗τ2 ∈ I such that αi∗τ2
= τ−1

2 (αi∗). If si∗τ2 ∈ W I
0 then mI,ε,si

τ1,τ2 (·, γ) ≡
0 if τ1 ∈ {τ2, si∗τ2} while

mI,ε,si
τ2,τ2 (z, γ) =

eαi((αi, z), (α̃i∗ , τ2γ))− ẽαi((α̃i∗ , τ2γ), (αi, z))

ẽαi((α̃i∗ , τ2γ),−(αi, z))
,

mI,ε,si
si∗τ2,τ2(z, γ) =

eαi((αi, z),−(α̃i∗ , τ2γ))

ẽαi((α̃i∗ , τ2γ),−(αi, z))
,

with the functions eα(x, y) and ẽα(x, y) given by

eα(x, y) := q−
1

2μα
(κα+κ2α−x)(κα+κ

α(1)−y)

× θ
(
ãαq

y, b̃αq
y, c̃αq

y, dαq
y−x/ãα; q

2
α

)
θ
(
q2y, dαq−x; q2α

) ,

ẽα(x, y) := q−
1

2μα
(κα+κ

α(1)−x)(κα+κ2α−y)

× θ
(
aαq

y, bαq
y, cαq

y, d̃αq
y−x/aα; q

2
α

)
θ
(
q2y, d̃αq−x; q2α

) .
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Here {ãα, b̃α, c̃α, d̃α} are the dual Askey-Wilson parameters, see [53,
§3.1].

Proof. Repeating the proof of [53, Thm. 3.15] in the present gen-
eralised setup we directly obtain the result when τ2 ∈ W I

0 satisfies
si∗τ2 ∈ W I

0 . If si∗τ2 ∈ W I
0 then the proof leads to the expression

mI,ε,si
τ1,τ2 (z, γ) = δτ1,τ2n

si
τ2,τ2(z, γ), τ1 ∈ W I

0

with

nsi
τ2,τ2(z, γ) =

eαi((αi, z), (α̃i∗τ2
, γ))− ẽαi((α̃i∗τ2

, γ), (αi, z))

ẽαi((α̃i∗τ2
, γ),−(αi, z))

.

So it suffices to show that

nsi
τ2,τ2(z, γ) =

{
1 if εi∗τ2 = +,

− cαi
((αi,z))

cαi
(−(αi,z))

if εi∗τ2 = −

if si∗τ2 ∈ W I
0 . The case εi∗τ2

= + is proved in [53, Thm. 3.15] by

applying a nontrivial theta-function identity. If εi∗τ2 = − then

eαi((αi, z), (α̃i∗τ2
, γ)) = eαi((αi, z),−κ̃α̃i

− κ̃2α̃i
) = 0,

hence

nsi
τ2,τ2(z, γ) = −

ẽαi((α̃i∗τ2
, γ), (αi, z))

ẽαi((α̃i∗τ2
, γ),−(αi, z))

= − ẽαi(−κ̃α̃i
− κ̃2α̃i

, (αi, z))

ẽαi(−κ̃α̃i
− κ̃2α̃i

,−(αi, z))
= − cαi((αi, z))

cαi(−(αi, z))
,

where the last equality follows by a direct computation. Q.E.D.

In this paper we have used this general result in the special case of the

GL(n) initial data (R0,Δ0, •,Λ, Λ̃), with root system

R0 = {ei − ej}1≤i �=j≤n ⊂ R
n =: E of type An−1

(here {ei}ni=1 denotes the standard orthonormal basis of R
n), with

Δ = {α1, . . . , αn−1} = {e1 − e2, . . . , en−1 − en}, with • = u (hence

μα = 1 and α̃ = α for all α ∈ R0), and with lattices Λ = Z
n = Λ̃. In this

case i∗ = n − i for i ∈ {1, . . . , n − 1} and the multiplicity function κ is
constant and equal to the dual multiplicity function κ̃. The correspond-
ing Askey-Wilson parameters, which coincide in this case with the dual
Askey-Wilson parameters, are independent of α ∈ R0 and are given by

{a, b, c, d} = {q2κ,−1, q1+2κ,−q}.
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Then the elliptic c-function (7.4) reduces to

cα(x) = q2κx
θ(q2κ+x; q)

θ(qx; q)

for α ∈ R0, and

mI,ε,si
τ2,τ2 (z, γ) =

θ(q2κ, q(αi∗ ,τ2γ)−(αi,z); q)

θ(q(αn−i,τ2γ), q2κ−(αi,z); q)
q(2κ−(α̃n−i,τ2γ))(αi,z),

mI,ε,si
sn−iτ2,τ2(z, γ) =

θ(q2κ−(αn−i,τ2γ), q−(αi,z); q)

θ(q2κ−(αi,z), q−(αn−i,τ2γ); q)
q2κ((αi,z)−(αn−i,τ2γ))

if τ2 ∈ W I
0 and sn−iτ2 ∈ W I

0 by [52, (1.9) & Prop. 1.7].
The precise connection to the notation in the main text is given as

follows: if q is replaced by p in the above formulas, then the principal
series modules coincide with the ones as defined in Subsection 3.2 and
the connection matrices M I,ε,w(z, γ) become the matrices M

I,ε,w(z, γ)
as defined by (4.5).
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