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Abstract.

Many types of automorphism groups in algebra have nice struc-
tures arising from actions on combinatoric spaces. We recount some
examples including Nagao’s Theorem, the Jung-Van der Kulk Theo-
rem, and a new structure theorem for the tame subgroup TA3(K) of
the group GA3(K) of polynomial automorphisms of A3

K , for K a field
of characteristic zero. We also ask whether a larger collection of auto-
morphism groups possess a similar kind of structure.

§1. Introduction

This paper is intended to be only an overview. The proofs of the
results summarized here are all published in other places that will be
referenced.

§2. Amalgamated products of two groups

We start with a classical construction. Given two groups A1 and A2

containing a common subgroup B, we can form the free product G of
A1 and A2 amalgamated along B:

G = A1 ∗B A2

In this situation the two groups inject into the amalgamated product and
a very strong factorization holds. Moreover the Bass-Serre tree theory
of groups acting on trees [17] provides a tree on which G acts without
inversion, having a fundamental domain consisting of a single edge with
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its end vertices, the stabilizers of the vertices being A1 and A2 and the
stabilizer of the edge the common subgroup B.

According to the Bass-Serre tree theory, a group G having an amal-
gamated free product structure G = A ∗B C is equivalent to G acting
without inversion of a tree T with fundamental domain consisting of
single edge:

e
s t

with A and C being the stabilizers in G of the vertices s and t, respec-
tively, and B the stabilizer of the edge e. The quotient of the tree by
the group action is again a single edge, onto which e maps.

Upon choosing nontrivial left coset representatives of A and C mod
B, a path corresponds to a factorization using these representatives. For
example, if a ∈ A and c ∈ C are such representatives, we have the path:

e c e c a e

s t c s c a t

This gives a kind of unique factorization for elements of G. Strong
theorems can be proved for groups having such an amalgamated free
product structure using the tree action. For example, it is fairly easy to
prove that any finite subgroup of G is conjugate to a subgroup of either
A or C. This is tantamount to proving that a finite group acting on a
tree has a fixed point.

The Bass-Serre theory provides the tree abstractly, but often the
tree can be seen in a natural way. We recount some examples.

Example 2.1. The special linear group over Z, the integer has the
structure

SL2(Z) = (Z/4Z) ∗Z/2Z (Z/6Z) .

The generators of Z/4Z and Z/6Z can be taken to be
(

0 1−1 0

)
and(

1 −1
1 0

)
, respectively. This result can be derived from the action of

SL2(Z) on the upper half plane. Here the translates of the circular
arc z = eiθ with π/3 ≤ θ ≤ π/2 form a tree with this arc as a funda-
mental domain, and this is the tree (up to isomorphism) provided by
the Bass-Serre theory.

Example 2.2. Let K be a local field, i.e., the field of fractions
of a discrete valuation ring O with uniformizing parameter π. Let V
be a rank two vector space over K. Form a graph whose vertices are
equivalence classes Λ of rank twoO-lattices in V under the multiplicative
action of K∗. Connect Λ to Λ′ if they are represented by lattices L and
L′, respectively, having O-bases {e1, e2} and {πe1, e2}. This forms a
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tree with a single edge serving as a fundamental domain, yielding Ihara’s
Theorem:

SL2(K) = SL2(O) ∗Γ SL2(O)

where Γ =
{(

a b
c d

)
∈ SL2(O) | c ≡ 0 (mod π)

}
. The two injections Γ ↪→

SL2(O) are the identity map and the map given by
(
a b
c d

)
�→

(
a πb

π−1c d

)
.

The details of this are laid out in [17].

Example 2.3 (Nagao’s Theorem [15]). ForK an arbitrary field, the
general linear group GL2(K[T ]) has the structure of an amalgamated
free product. (Here T represents a single variable.) This structure can
be derived from the above example as follows: SL2(K[T ]) acts on O-
lattices in the rank two vector space over K(T ), where O is the DVR
of K(T ) with uniformizing parameter 1/T . Here the quotient of the
SL2(K[T ])-action on the tree is not just an edge, but an edge connected
to a “directed geodesic.”

· · ·
v0 v1 v2

The stabilizer of v0 is SL2(K), and for n ≥ 1, the stabilizer of vd is

B(d) =

{(
α 0

f(T ) β

)
∈ B2(K[T ]) |deg f ≤ d

}
.

Writing B2 for the lower triangular group, and noting that B2(K[T ]) is
the ascending union of B(d), d ≥ 1, one can derive Nagao’s Theorem:

SL2(K[T ]) = SL2(K) ∗B2(K) B2(K[T ]) .

This argument is easily modifiable to obtain a similar amalgamated
product structure for GL2(K[T ]), namely GL2(K[T ]) = GL2(K) ∗B2(K)

B2(K[T ]).

Example 2.4 (Jung-Van der Kulk Theorem [11], [12]). For K a
field, the group GA2(K) of polynomial automorphisms of the affine plane
has the structure

(1) GA2(K) = Af2(K) ∗Bf2(K) BA2(K) .

Here Af2(K) is the affine group, i.e., those automorphisms having coor-
dinate functions of the type (γ11X1 + γ12X2 + δ1, γ21X1 + γ22X2 + δ2)
with γij , δi ∈ K, ( γ11 γ12

γ21 γ22 ) ∈ GL2(K), and BA2(K) is the group of au-
tomorphisms of the form (αX1 + γ, βX2 + f(X1)), α, β, γ ∈ K, αβ 	= 0,
f(X1) ∈ K[X1]; Bf2(K) is then the intersection Af2(K) ∩ BA2(K).
Again, this structure arises from the action of GA2(K) on a tree whose
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vertices are certain complete algebraic surfaces realized as collections of
local rings (“models”) inside the function field K(X1,X2) (see [21]).

Remark 2.5. An analog of (1) in Example holds when K is an
integral domain, replacing the full automorphism group by its tame sub-
group. This and other interesting results can be found in [5].

Remark 2.6. It can be easily derived from the Jung-Van der Kulk
Theorem that the subgroup of GA2(K) consisting of automorphisms
having Jacobian determinant 1, sometimes denotes SA2(K), also has an
amalgamated product structure, namely the same as 1 replacing Af2(K),
BA2(K), and B2(K) by their intersections with SA2(K). In [4] it was
proved that SA2(K) is not a simple group. In [9] this result is refined
using results of [16] to describe which elements of SA2(K) have normal
closure strictly smaller than SA2(K) using the “length” of the elements
in the amalgamated product structure. This approach allows one to see
more clearly why SA2(K) is not simple.

§3. Generalized amalgamations

We begin with the definition of a generalized amalgamation of
groups. We refer the reader to [14] for a comprehensive discussion of
combinatorial group theory.

Definition 3.1. Suppose we are given groups Ai for each i ∈
{1, · · · , n} and for each i, j ∈ {1, · · · , n} with i 	= j we have groups Bij =
Bji with injective homomorphisms ϕij : Bij → Ai which are compati-

ble, meaning if i, j, k are distinct then ϕ−1
ij (ϕik(Bik)) = ϕ−1

ji (ϕjk(Bjk))

and on this group ϕ−1
ik ϕij = ϕ−1

jk ϕji. This gives set-theoretic gluing

data by which we can compatibly glue Ai to Aj along Bij via ϕ−1
ij ϕji

forming an amalgamated union S of the sets A1, . . . , An. We then form
the free group F on S, denoting the group operation on F by ∗. For
i ∈ {1, · · · , n} and x, y ∈ Ai ⊂ S, we let rx,y = x ∗ y ∗ (xy)−1 ∈ F
(where xy is the product in Ai). Finally we let G be the quotient of F
by all the relations rx,y. The group G is called the generalized amalga-
mated product of the groups1 Ai, i ∈ {1, . . . , n} along the groups Bij ,
i, j ∈ {1, . . . , n}. There are natural group homomorphisms ιi : Ai → G
with ιiϕij = ιjϕji on Bij .

1We use the term generalized amalgamated product to distinguish it from
the usual amalgamated product of two or more groups along a single common
subgroup.
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The group G has the following universal property: Given a group
H and maps ρi : Ai → H for i ∈ {1, . . . , n} such that ρiϕij = ρjϕji on
Bij for all i, j ∈ {1, . . . , n}, then there is a unique map Φ : G → H with
ρi = Φιi for all i.

When there are only two subgroups A1 and A2 containing a common
subgroup B, G is the usual amalgamated free product discussed above.
In this case the two groups inject into the amalgamated product and, as
was noted, a very strong factorization theorem holds. Such a property
does not hold in general for generalized amalgamations of three or more
groups along pairwise intersections. Worse, the groups Ai may not even
map injectively into G; in fact G may be the trivial group when none of
the groups Ai are trivial, as the following example from [19] shows.

Example 3.2. For {i, j, k} = {1, 2, 3} let Bij be the infinite cyclic
group generated by bk. Let

A1 = 〈 b2, b3 | b2b3b−1
2 = b23 〉

A2 = 〈 b3, b1 | b3b1b−1
3 = b21 〉

A3 = 〈 b1, b2 | b1b2b−1
1 = b22 〉

Then Bij is a common subgroup of Ai and Aj and we can form the
generalized amalgamation G of the groups Ai along the groups Bij . It
can be shown that in this case G is the trivial group.

Whether such amalgamation data gives rise to the group acting on
a simplicial complex is not easy to detect (see, for example, [19], [10],
and [3]). It occurs precisely when each of the groups Ai maps injectively
to G, and in this situation, the amalgamated union S maps injectively
to G as well. The n-simplex of groups arising from this data is called
developable by Haefliger ([10]) in case of this occurence.

However, if the groups Ai are subgroups of a given group G and if we
take Bij to be Ai ∩Aj and ϕij the inclusion map within G, then clearly
there exists a homomorphism Φ : G → G restricting to the identity
on each Ai, which shows that in this case the amalgamated union S
maps injectively to G. The map Φ will be surjective precisely when
G is generated by the subgroups A1, . . . , An. If Φ is an isomorphism,
then the structure of G arises from the action of G on an n-dimensional
simply connected simplicial complex, with a single simplex serving as a
fundamental domain.
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In this case the combinatoric generalization of the Bass-Serre theory
holds, providing an (n−1)-dimensional simply connected simplicial com-
plex D on which G acts without rotation2, and for which a single simplex
serves as a fundamental domain. There are many unanswered questions
about D. For example, how does one determine connectivity properties
it possesses, and when does it have infinite diameter (i.e., does the 1-
skeleton of D have infinite diameter as a graph)? It is not necessarily
true that a finite group of a generalized amalgamation is conjugate to
one of the subgroups Ai, as will be seen from Example 3.3 below, but
one can ask what condition(s) (e.g., 2-connectivity?) might guarantee
that any finite subgroup of G is conjugate to one of the groups Ai?

Example 3.3. Let F = Z/2Z, and let G be the vector space of
rank three over F , with basis {e1, e2, e3}, viewed as an additive group.
Set Ai = Fej ⊕ Fek and Bij = Bji = Fek, where {i, j, k} = {1, 2, 3}.
Following the recipe above using the natural inclusions Bij ↪→ Ai, we ob-
tain G as the generalized amalgamated product of the groups A1, A2, A3.
The associated simplicial complex D is an octahedron of triangles. In
this case D is not 2-connected, and the finite group G fixes no vertex in
D.

Below are two examples of automorphism groups that can be real-
ized as generalized amalgamations of groups.

Example 3.4. The full Cremona group Cr2(K) over an alge-
braically closed field K is the generalized amalgamation of three groups:
the automorphism group of P2

K (which is PGL2(K)), the automorphism
group of P1

K ×P1
K , and thirdly the K-automorphism group of P1

L where
L = K(t), with t transcendental over K. There is a naturally realizable
simplicial complex of triangles C on which Cr2(K) acts which yields this
structure and also contains the tree of Example 2.4 with the action of
GA2(K) being the restriction of the action of Cr2(K) on C. See [21]
for details. In private correspondence Stéphane Lamy has shown that
this complex is not 2-connected; in fact it has a simplicial 2-sphere com-
prising twelve triangles and a finite subgroup of Cr2(K) acting on this
sphere with no fixed point therein.

Remark 3.5. The task of understanding the Cremona group
Cr2(K) seems formidable. In [2], Bisi, Furter, and Lamy begin this
undertaking by establishing some facts about certain subgroups.

2meaning that if a group element fixes a simplex, it acts as the identity on
that simplex.
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Example 3.6. In this example K is a field of characteristic zero.
The tame automorphism group in dimension three over such a field has
now been shown to be the generalized amalgamated product of three
groups. This recent result appears in [22]. To understand the structure
theorem we will need some preliminaries. Generalizing the notation of
Example 2.4, we denote by GAn(K) the group of polynomial automor-
phisms of affine n-space over K. We consider the subgroup EAn(K)
generated by the elementary automorphisms, i.e., those of the form

ei(f) = (X1, . . . ,Xi−1,Xi + f,Xi+1, . . . ,Xn)

for some i ∈ {1, . . . , n}, f ∈ K[X1, . . . ,Xi−1,Xi+1, . . . ,Xn]. We also
have a natural containment of the general linear group GLn(K) in
GAn(K). The subgroup of tame automorphisms is defined to be the
subgroup generated by EAn(K) and GLn(K), i.e.,

TAn(K) = 〈GLn(K),EAn(K)〉 .

The classical result of Example 2.4 contains the fact that TA2(K) =
GA2(K). The famous result of Shestakov and Umirbaev ([18]) asserts
that TA3(K) 	= GA3(K). We do not know whether TAn(K) = GAn(K)
for n ≥ 4.

The group GAn(K) acts on the polynomial ring K[X1, . . . ,Xn] in
an obvious way. For i ∈ {1, . . . , n}, let Vi be the sub-vector space of
K[X1, . . . ,Xn] generated by K and the variables X1, . . . ,Xi, i.e.,

(2) Vi = K ⊕KX1 ⊕ · · · ⊕KXi .

Let Hi be the stabilizer of Vi in GAn(K), i.e.,

(3) Hi = {ϕ ∈ GAn(K) |ϕ(Vi) = Vi} .

These subgroups are defined in [7], p. 23, where it is conjectured that
together they generate GAn(K) (Conjecture 14.1) and that (whether
or not that conjecture is true) the subgroup generated by H1, . . . ,Hn

is the generalized amalgamated product of these groups along pairwise
intersections (Conjecture 14.2). It should be noted that Freudenburg
produced an example (see [8], p. 171) of an automorphism in GA3(K)
which has not been shown to lie in this subgroup.3

Furthermore the groups H̃i are defined by

(4) H̃i = Hi ∩ TAn(K) ,

3This example is also of interest because it has not been shown to be stably
tame. See [1] for the definition of this concept.
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which are easily seen to generate TAn(K). It is also easy to see that

H̃n = Hn, both being equal to the affine group Afn(K), and that H̃n−1 =
Hn−1.

There is one case where the containment H̃n ⊆ Hn is known to be
a proper containment: For n = 3 we have H̃1 � H1. This follows from
one of the deep results, Corollary 10, of [18]. By the above paragraph,

however, we have H̃2 = H2 and H̃3 = H3. We can now state the main
result of [22], which is based on generators and relations for TAn(K)
given in [20]:

Theorem 3.7. For K a field of characteristic zero, TA3(K) is the

generalized amalgamated product of the three groups H̃1,H2,H3 along
their pairwise intersections.

As explained previously, this means that TA3(K) acts on a simply con-
nected complex of triangles, with a single triangle serving as a funda-

mental domain whose three vertices have stabilizers H̃1, H2, and H3. It
is not known whether this complex is 2-connected, nor whether all finite
subgroups of TA3(K) are conjugate to a subgroup of one of the three

groups H̃1,H2,H3.

Remark 3.8. Referring to (3) in the case n = 2, the groups H1 and

H2 (which coincide with H̃1 and H̃2 for reasons given above) are precisely
BA2(K) and Af2(K), respectively, of Example 2.4. This gives GA2(K),
which equals TA2(K), as the amalgamated product H1∗H1∩H2H2. Thus
Example 3.6 can be viewed as an extension to n = 3 of the Jung-Van
der Kulk theorem, for characteristic zero.

Remark 3.9. We note that the preprint [13] offers another proof
of Theorem 3.7, using combinatoric methods.

Remark 3.10. It turns out that amalgamations play a role in the
study of subgroups of GA3(K). In [6] the authors show that any sub-
group lying strictly between Af3(K) and GA3(K) has the structure of
an amalgamated product of Af3(K) with a finite group, over the inter-
section.

§4. Concluding remarks

The author suspects that a wider collection of automorphisms
groups can be realized as generalized amalgamations. Examples
might include a generalization of Nagao’s theorem (Example 2.3) to
GLn(K[T ]), or even GLn(K[X1, . . . ,Xn]) for n ≥ 3.4 This, in turn,

4The case of GL2(K[X1, . . . , Xn]) is more complicated.
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might result from a generalization of Example 2.2 which would provide
a structure theorem for SLn(K), for K a local field.
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