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Q-Fano threefolds with three birational Mori fiber
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Takuzo Okada

Abstract.

In this paper we give first examples of Q-Fano threefolds whose
birational Mori fiber structures consist of exactly three Q-Fano three-
folds. These examples are constructed as weighted hypersurfaces in
a specific weighted projective space. We also observe that the num-
ber of birational Mori fiber structures does not behave upper semi-
continuously in a family of Q-Fano threefolds.

§1. Introduction

A Mori fiber space which is birational to a given variety is called a
birational Mori fiber structure of the variety. We say that a Q-Fano va-
riety X with Picard number one is birationally rigid (resp. birationally
birigid) if the birational Mori fiber structures of X consist of a single
element X (resp. exactly two elements including X). There are many
birationally rigid Q-Fano varieties such as nonsingular hypersurfaces of
degree n + 1 in Pn+1 for n ≥ 3 ([14, 10]) and quasismooth anticanoni-
cally embedded Q-Fano threefold weighted hypersurfaces ([9, 6]). Com-
pared to birational rigidity, Q-Fano varieties with finite birational Mori
fiber structures (or with finite pliability) are less known. Corti-Mella
[8] proved that a quartic threefold with a specific singular point is bi-
rationally birigid. Cheltsov-Grinenko [5] constructed an example of a
birationally birigid complete intersection of a quadric and a cubic in P5

with a single ordinary double point. In a series of papers [18, 19, 20],
we proved that 19 families and 35 families of Q-Fano threefold weighted
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complete intersections consist of birationally rigid and birationally bi-
rigid Q-Fano threefolds, respectively (see also [2]). There are other in-
teresting examples of birationally non-rigid Q-Fano threefolds [1, 3, 4]
but their birational Mori fiber structures are yet to be determined.

The aim of this paper is to construct first examples of Q-Fano three-
folds with exactly three birational Mori fiber structures. We also observe
that the number of birational Mori fiber structures does not behave
upper semi-continuously in a family. The main objects of this paper
are weighted hypersurfaces of degree 8 in the weighted projective space
P(1, 1, 2, 2, 3). We explain known results for this family.

Theorem 1.1 ([6, 9]). A quasismooth weighted hypersurface of de-
gree 8 in P(1, 1, 2, 2, 3) is birationally rigid.

Theorem 1.2 ([19]). A Q-Fano weighted hypersurface of degree 8 in
P(1, 1, 2, 2, 3) with a single cAx/2 singular point together with some other
terminal quotient singular points is birationally birigid. More precisely,
it is birational to a quasismooth Q-Fano weighted complete intersection
of type (6, 8) in P(1, 1, 2, 3, 4, 4) and it is not birational to any other Mori
fiber space.

We consider further special members that admit two cAx/2 singular
points and determine the birational Mori fiber structures of them. We
state the main theorem of this paper. In the statement, P(1, 1, 2, 2, 3)
(resp. P(1, 1, 2, 3, 4, 4)) is the weighted projective space with homoge-
neous coordinates x0, x1, y0, y1 and z of degree respectively 1, 1, 2, 2 and
3 (resp. x0, x1, y, z, s0 and s1 of degree respectively 1, 1, 2, 3, 4 and 4).

Theorem 1.3. Let X ′ be a Q-Fano weighted hypersurface

X ′ = (y20y
2
1 + y0a6 + y1b6 + c8 = 0) ⊂ P(1, 1, 2, 2, 3),

where a6, b6, c8 ∈ C[x0, x1, z] are homogeneous polynomials of degree re-
spectively 6, 6, 8. Then X ′ is birational to Q-Fano weighted complete
intersections

X1 = (s0y + s1y + a6 = s0s1 − yb6 − c8 = 0) ⊂ P(1, 1, 2, 3, 4, 4),

and

X2 = (s0y + s1y + b6 = s0s1 − ya6 − c8 = 0) ⊂ P(1, 1, 2, 3, 4, 4),

and not birational to any other Mori fiber space. Moreover we have the
following.

(1) If (a6, b6, c8) is asymmetric (see Definition 3.14), then X1 is
not isomorphic to X2 and the birational Mori fiber structures
of X ′ consist of three Q-Fano threefolds X ′,X1 and X2.
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(2) If (a6, b6, c8) is symmetric, then X1 is isomorphic to X2 and
the birational Mori fiber structures of X ′ consist of two Q-Fano
threefolds X ′ and X1

∼= X2.

In the above theorem, the members X ′ with the property (1) are
more general than those with the property (2). We observe through
the above theorems that the number of birational Mori fiber structures
increases as we specialize Q-Fano threefolds in a family except for the
final specialization from (1) to (2) in Theorem 1.3 where the number
decreases. Therefore the number of birational Mori fiber structures does
not behave upper semi-continuously in a family. A similar observation
is also given in [5].

Acknowledgments. The author would like to thank Dr. Hamid
Ahmadinezhad for valuable comments. He also would like to thank Pro-
fessor Takashi Kishimoto for warm encouragement. He is grateful to the
referees for numerous constructive suggestions. The author is partially
supported by JSPS Grant-in-Aid for Young Scientists No. 26800019.

§2. Maximal and Sarkisov extractions

Notion of maximal singularities for Fano varieties firstly appeared
in [14] and was developed, applied by Iskovskikh, Pukhlikov, Cheltsov,
Park, etc (see [21] for details). The recent result of de Fernex [10] brought
a new idea to this subject. A version of maximal singularity was intro-
duced by Corti in his study [7] of Sarkisov program and was applied in
[9].

We recall the definition of maximal extraction and center which are
due to Corti and define a version of them. Throughout this section, let
X be a Q-Fano variety with Picard number 1. By a Q-Fano variety, we
mean a normal projective Q-factorial variety with only terminal singu-
larities whose anticanonical divisor is ample. By a divisorial extraction
ϕ : Y → X, we mean an extremal divisorial extraction in the Mori cate-
gory. We sometimes write ϕ : (E ⊂ Y ) → (Γ ⊂ X), which means that E
is the exceptional divisor of the extraction ϕ and Γ = ϕ(E) is the center
of ϕ.

Definition 2.1. A divisorial extraction ϕ : (E ⊂ Y ) → (Γ ⊂ X)
is called a strong maximal extraction (resp. weak maximal extraction)
if there is a movable linear system H ∼Q −nKX on X such that the
inequality and equality

1

n
> c(X,H) =

aE(KX)

multE(H)

(
resp.

1

n
>

aE(KX)

multE(H)

)
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hold, where aE(KX) is the discrepancy of KX along E, multE(H) is the
multiplicity of H along E and

c(X,H) := max{λ | KX + λH is canonical}
is the canonical threshold of the pair (X,H). The center Γ of a strong
(resp. weak) maximal extraction is called a strong (resp. weak) maximal
center.

A strong maximal extraction is called a maximal extraction in [7].
We emphasize that weak maximal center is also defined in [9] but the
definition given there is different from ours. A maximal singularity in the
original sense (introduced by Iskovskikh and Manin) is an exceptional
divisor E (not necessarily an exceptional divisor of a divisorial extrac-
tion) over X such that there is a movable linear system H ∼Q −nKX

satisfying multE(H) > naE(KX). It follows that the exceptional divisor
of a weak maximal extraction is a maximal singularity in the original
sense.

Remark 2.2. As far as the author knows, notion of weak maximal
extraction has never appeared in the literature (although it is just a
weaker version of strong maximal extraction), so there will be no con-
fusion. However, a weak maximal center is also defined in [9] and the
definition is different from ours: a weak maximal center in our sense is
the center of a weak maximal extraction while a weak maximal center
in [9] is the center of a maximal singularity in the original sense. We
emphasize that a weak maximal center in this paper is always the one
given in Definition 2.1.

Definition 2.3. A Sarkisov link σ : V ��� V ′ between Mori fiber
spaces V/S and V ′/S′ is a birational map that sits in the commutative
diagram

W

ϕ

��

τ ����� W ′

ϕ′

��
V

σ
����� V ′

where each of ϕ and ϕ′ is either an identity or a divisorial extraction
and τ is either an identity or a composite of inverse flips, flops and flips.
In the case where ϕ (resp. ϕ′) is a divisorial extraction, we say that the
link σ starts (resp. ends) with the divisorial extraction ϕ (resp. ϕ′).

Note that, for a Q-Fano variety X with Picard number 1, any Sark-
isov link X ��� X ′/S′ to a Mori fiber spaceX ′/S′ starts with a divisorial
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extraction. Note also that a Sarkisov link starting with a given divisorial
extraction ϕ : Y → X is unique if it exists.

Definition 2.4. A divisorial extraction ϕ : Y → X is called a Sark-
isov extraction if there is a Sarkisov link starting with ϕ. The center on
X of a Sarkisov extraction is called a Sarkisov center.

Lemma 2.5. For a divisorial contraction ϕ : (E ⊂ Y ) → (Γ ⊂ X),
we have the following implications.

(1) If ϕ is a strong maximal extraction, then it is a Sarkisov ex-
traction.

(2) If ϕ is a Sarkisov extraction, then it is a weak maximal extrac-
tion.

Proof. The assertion (1) follows from [7] (see the proof of (5.4) The-
orem therein). We prove (2). The following proof may be straightfor-
ward for specialists but we include it for readers’ convenience. Suppose
that ϕ is a Sarkisov extraction and let σ : X ��� X ′/S′ be the Sarkisov
link starting with ϕ. If X ′ is a Q-Fano variety with Picard number 1,
then we have the following commutative diagram

Y

ϕ

��

τ ����� Y ′

ψ

��
X

σ
����� X ′,

and otherwise we have the commutative diagram

Y

ϕ

��

τ

���
�

�
�

X
σ

����� X ′,

where ψ : (E′ ⊂ Y ′) → (Γ′ ⊂ X ′) is an extremal divisorial extraction
and τ is a small birational map. Let V be a nonsingular projective va-
riety that admit birational morphisms p : V → X and q : V → X ′ such
that q = σ ◦ p. We assume that p factors through Y and that q factors
through Y ′ if X ′ is a Q-Fano variety with Picard number 1. By a slight
abuse of notation, we denote by E and E′ the proper transforms of E
and E′ on V , respectively. Then, since τ is an isomorphism in codi-
mension one, E (respectively, E′) is the unique p-exceptional divisor
(respectively, q-exceptional divisor) that is not q-exceptional (respec-
tively, p-exceptional). Let H ′ be a very ample divisor on X ′ and let n′
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be the rational number such that H ′ ∼Q,S′ −n′KX′ . We set H′ := |H ′|
and let H be the birational transform of H′ on X. Let n be the ratio-
nal number such that H ∼Q −nKX . By the Noether–Fano–Iskovskikh
inequality (see [7, (4.2) Theorem]), we have n > n′. We have

KV +
1

n
HV = q∗

(
KX′ +

1

n
H′

)
+ a′E′ +G′,

= p∗
(
KX +

1

n
H
)
+ aE +G,

where a, a′ ∈ Q, G and G′ are both p- and q-exceptional divisors and
HV = q∗H′. Note that

KX′ +
1

n
H′ ∼Q,S′

n′ − n

n
(−KX′)

is relatively anti-ample over S′ and KX + 1
nH ∼Q 0. Take a sufficiently

general curve C ′ ⊂ X ′ that is contracted by X ′ → S′. We may assume
that C ′ is disjoint from the image of any q-exceptional divisor. We
denote by the same symbol C ′ its inverse image on V . Then we have
(E′ · C ′) = (G′ · C ′) = (G · C ′) = 0 and thus

a(E · C ′) =
(
KX′ +

1

n
H′ · C ′

)
< 0.

Since C ′ is not contained in E, the above inequality shows that (E ·C ′) >
0 and a < 0. Therefore ϕ is a weak maximal extraction. Q.E.D.

In this paper, we employ the definition of weak maximal extraction
and center as follows.

Definition 2.6. A weak maximal extraction and a weak maximal
center are called a maximal extraction and a maximal center, respec-
tively.

An advantage of employing this definition is that the exclusion of a
divisorial extraction ϕ as a maximal center immediately implies that of
ϕ as a Sarkisov extraction by Lemma 2.5, which enables us to classify
Sarkisov links between Q-Fano varieties with Picard number 1.

Remark 2.7. The bad link method introduced in [9, Section 5.5]
excludes a divisorial extraction as a Sarkisov extraction (but not neces-
sarily as a weak maximal extraction). The approach of the recent paper
[2] by Ahmadinezhad and Zucconi can be thought of as a generalization
of the bad link method. It is important to mention that, all the exclusion
methods appeared in the literature so far, except for the ones based on
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the bad link methods explained above, exclude extractions and centers
not only as strong maximal ones but also as weak maximal ones.

§3. Preliminaries

The aim of this section is to study basic properties of the main
objects X ′, X1 and X2.

3.1. Quasismoothness

Let P = P(a0, . . . , an) be a weighted projective space with homoge-
neous coordinates x0, . . . , xn. We assume that P is well-formed, that is,
gcd(a0, . . . , âi, . . . , an) = 1 for each i, and let X be a closed subvariety
of P. For a non-empty subset I = {i0, . . . , ik} of {0, . . . , n}, we define

Π◦
I =

(⋂
i∈I

(xi �= 0)
)
∩
(⋂

j /∈I
(xj = 0)

)
⊂ P

and call it a coordinate stratum of P with respect to I. For a (k+1)-tuple
of non-negative integers m = (m0, . . . ,mk), we write

xm
I = xm0

i0
· · · xmk

ik
.

Definition 3.1. Let X be a closed subscheme of P and p : An+1 \
{0} → P the natural projection. We say that X is quasismooth if the
affine cone CX ⊂ An+1 of X, which is the closure of p−1(X) in An+1, is
smooth outside the origin. For a non-empty subset I ⊂ {0, . . . , n}, we
say that X is quasismooth along Π◦

I if CX is smooth along p−1(Π◦
I).

It follows from the definition that a closed subscheme X ⊂ P is
quasismooth if and only if X is quasismooth along Π◦

I for any non-empty
subset I ⊂ {0, . . . , n}.

Definition 3.2. Let M be a set of monomials of degree d. We
denote by Λ(M) the linear system on P spanned by elements in M . Let
M1 and M2 be sets of monomials of degree respectively d1 and d2. We
define

Λ(M1,M2) = {X1 ∩X2 ⊂ P | X1 ∈ Λ(M1),X2 ∈ Λ(M2)},
which is the family of weighted complete intersections of type (d1, d2)
defined as the scheme-theoretic intersection of weighted hypersurfaces
in Λ(M1) and Λ(M2).

We re-state the results of [13] on quasismoothness of weighted com-
plete intersections in a generalized form. Although the statements are



400 T. Okada

slightly different from the original ones, proofs are completely paral-
lel. More precisely, the proofs can be done by replacing complete linear
systems of degree d, d1, d2 with linear systems Λ(M), Λ(M1), Λ(M2),
respectively, in the proofs of the corresponding theorems in [13]. A
weighted hypersurface of degree d is said to be a linear cone if its defin-
ing polynomial f can be written as f = αxi + (other terms) for some i
and non-zero α ∈ C.

Theorem 3.3 (cf. [13, 8.1 Theorem]). Let I = {i0, . . . , ik−1} be a
non-empty subset of {0, . . . , n} and M a set of monomials of degree d.
A general weighted hypersurface in Λ(M) which is not a linear cone is
quasismooth along Π◦

I if and only if one of the following assertions hold.

(1) There exists a monomial xm
I = xm0

i0
· · ·xmk−1

ik−1
∈ M .

(2) For μ = 1, . . . , k, there exist monomials

x
mμ

I xeμ = x
m0,μ

i0
· · · xmk−1,μ

ik−1
xeμ ∈ M,

where {eμ} are k distinct elements.

Theorem 3.4 (cf. [13, 8.7 Theorem]). Let I = {i0, . . . , ik−1} be
a non-empty subset of {0, . . . , n} and M1, M2 sets of monomials of
degree d1, d2, respectively. A general weighted complete intersection in
Λ(M1,M2) which is not the intersection of a linear cone with another
hypersurface is quasismooth along Π◦

I if and only if one of the following
assertions hold.

(1) There exist monomials xm1

I ∈ M1 and xm2

I ∈ M2.
(2) There exists a monomial xm

I ∈ M1, and for μ = 1, . . . , k − 1
there exist monomials x

mμ

I xeμ ∈ M2, where {eμ} are k − 1
distinct elements.

(3) There exists a monomial xm
I ∈ M2, and for μ = 1, . . . , k − 1

there exist monomials x
mμ

I xeμ ∈ M1, where {eμ} are k − 1
distinct elements.

(4) For μ = 1, . . . , k, there exist monomials x
m1

μ

I xe1μ
∈ M1, and

x
m2

μ

I xe2μ
∈ M2, such that {e1μ} are k-distinct elements, {e2μ}

are k distinct elements and {e1μ, e2μ} contains at least k + 1
distinct elements.

Let P := P(a0, . . . , a4) be a weighted projective 4-space with homo-
geneous coordinates x0, x1, x2, x3, x4 with deg xi = ai and V a weighted
hypersurface in P which contains a weighted complete intersection curve
Γ := (x0 = f = g = 0), where f, g ∈ C[x1, x2, x3, x4] with deg f ≤
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deg g =: m. We give a criterion for quasismoothness of a general mem-
ber of a suitable linear system on V along Γ. Let M ⊂ |OV (m)| be a lin-
ear system on V generated by homogeneous polynomials g, d1f, . . . , dkf,
e1x0, . . . , elx0 of degree m, where k, j are some nonnegative integers and
di, ei ∈ C[x0, . . . , x4]. In this case, we define Mf and Mx0 to be the
linear systems spanned by d1, . . . , dk and e1, . . . , el, respectively. We
define

NQsm(V ) = p(SingCV \ {0}),
where CV ⊂ A5 is the affine cone of V and p : A5 \ {0} → P the natural
projection, and call it the non-quasismooth locus of V .

Proposition 3.5. Let V ⊂ P = P(a0, . . . , a4), Γ = (x0 = f = g =
0) ⊂ V , deg f ≤ deg g =: m and M ⊂ |OV (m)| be as above. Suppose
that Γ is quasismooth and that BsMf �⊃ Γ. Then a general member of
M is quasismooth along Γ \ (NQsm(V ) ∪ BsMx0).

Proof. A defining polynomial of V can be written as bf + cg+x0h
for some b, c ∈ C[x1, . . . , x4] and h ∈ C[x0, . . . , x4]. Let S ∈ M be a
general member. A section s which cuts out S on V can be written as
s = df+αg+x0e for some α ∈ C, d ∈ C[x1, . . . , x4] and e ∈ C[x0, . . . , x4]
such that Hd := (d = 0)∩X ∈ Mf and He := (e = 0)∩X ∈ Mx0 . Note
that α �= 0 and Hd �⊃ Γ since S is general and BsMf �⊃ Γ. If Mx0 ⊃ Γ,
then the assertion follows immediately (in the sense that the conclusion
is vacuous). Hence we may assume that BsMx0 �⊃ Γ and He �⊃ Γ. The
restriction to Γ of the Jacobian matrix of the affine cone CS of S can be
computed as

JCS |Γ=
(
h b ∂f

∂x1
+c ∂g

∂x1
b ∂f
∂x2

+c ∂g
∂x2

b ∂f
∂x3

+c ∂g
∂x3

b ∂f
∂x4

+c ∂g
∂x4

e d ∂f
∂x1

+α ∂g
∂x1

d ∂f
∂x2

+α ∂g
∂x2

d ∂f
∂x3

+α ∂g
∂x3

d ∂f
∂x4

+α ∂g
∂x4

)
.

Note that the matrix(
b ∂f
∂x1

+ c ∂g
∂x1

b ∂f
∂x2

+ c ∂g
∂x2

b ∂f
∂x3

+ c ∂g
∂x3

b ∂f
∂x4

+ c ∂g
∂x4

d ∂f
∂x1

+ α ∂g
∂x1

d ∂f
∂x2

+ α ∂g
∂x2

d ∂f
∂x3

+ α ∂g
∂x3

d ∂f
∂x4

+ α ∂g
∂x4

)

=

(
b c
d α

)( ∂f
∂x1

∂f
∂x2

∂f
∂x3

∂f
∂x4

∂g
∂x1

∂g
∂x2

∂g
∂x3

∂g
∂x4

)
.

is of rank 2 at any point of Γ \ (αb − cd = 0) and is of rank 1 at any
point of Γ ∩ (αb− cd = 0) since Γ is quasismooth and α �= 0. It follows
that S is quasismooth along Γ\ (αb−cd = 0). We shall show that JCS |Γ
is of rank 2 at any point p ∈ Γ \ (NQsm(V ) ∪ BsMx0).
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Assume that (b = c = 0)∩Γ = Γ, that is, both b and c vanish along
Γ. Then h does not vanish at p since V is quasismooth at p. It follows
that JCS |Γ is of rank 2 at p.

In the following, we assume that (b = c = 0) ∩ Γ �= Γ. We claim
that (αb − cd = 0) ∩ Γ is a finite set of points. If (b = 0) �⊃ Γ, then
(αb − cd = 0) ∩ Γ �= Γ for a general choice of α and d. Assume that
(b = 0) ⊃ Γ. Then (c = 0) �⊃ Γ since (b = c = 0) ∩ Γ �= Γ. In this case
(αb − cd = 0) ∩ Γ = (cd = 0) ∩ Γ and it is a finite set of points since
Hd �⊃ Γ.

If p /∈ (αb − cd = 0), then JCS |Γ is of rank 2 at p by the above
argument. It remains to consider the case p ∈ (αb− cd = 0) ∩ Γ. Since
V is quasismooth at p, the first row of (JCS |Γ)(p) is non-zero. If the
entries of the first row of (JCS |Γ)(p) are zero except for h(p), then JCS |Γ
is of rank 2. Otherwise there is a non-zero entry in the first row of
(JCS |Γ)(p) other than h(p) and we can choose a general e so that JCS |Γ
is of rank 2 at p since He ∈ Mx0 and p /∈ BsMx0 . Since there are only
finitely many points in Γ ∩ (αb − cd = 0), we can choose a general e
so that JCS |Γ is of rank 2 at every point of Γ ∩ (αb − cd = 0). This
completes the proof. Q.E.D.

3.2. Generality conditions and their consequences

In the rest of this paper, the coordinates x0, x1, y0, y1, y, z, s0 and s1
are of degree 1, 1, 2, 2, 2, 3, 4 and 4, respectively. We set

P(1, 1, 2, 2, 3) = ProjC[x0, x1, y0, y1, z]

and
P(1, 1, 2, 3, 4, 4) = ProjC[x0, x1, y, z, s0, s1].

Let a6, b6 and c8 be homogeneous polynomials of degree 6, 6 and 8,
respectively, in variables x0, x1, z. We define weighted hypersurface

X ′ = (y20y
2
1 + y0a6 + y1b6 + c8 = 0) ⊂ P(1, 1, 2, 2, 3)

and weighted complete intersections

X1 = (s0y + s1y + a6 = s0s1 − yb6 − c8 = 0) ⊂ P(1, 1, 2, 3, 4, 4),

X2 = (s0y + s1y + b6 = s0s1 − ya6 − c8 = 0) ⊂ P(1, 1, 2, 3, 4, 4).

We define points of X ′ as

p′1 = (0:0 :1 :0 :0), p′2 = (0:0 :0 :1 :0), p′3 = (0:0 :0 :0 :1),

and points of Xi, i = 1, 2, as

p1 = (0:0 :0 :0 :1 :0), p2 = (0:0 :0 :0 :0 :1), p3 = (0:0 :1 :0 :0 :0).
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We recall the definition of singularity of type cAx/2 and after that
we introduce conditions on the triplet (a6, b6, c8). In the following,
A4

x,y,z,u/Z2(a, b, c, d) is the quotient of the affine 4-space with affine co-
ordinates x, y, z, u under the Z2(= Z/2Z)-action given by

(x, y, z, u) 
→ ((−1)ax, (−1)by, (−1)cz, (−1)du),

and (g(x, y, z, u) = 0)/Z2(a, b, c, d) is the quotient of the hypersurface
g = 0 in A4 for a Z2-invariant polynomial g.

Definition 3.6. Let X be a germ of a 3-dimensional terminal sin-
gularity. We say that the singularity is of type cAx/2 if there is an
isomorphism

X ∼= (x2 + y2 + g(z, u) = 0)/Z2(0, 1, 1, 1),

where g(z, u) ∈ (z, u)4C{z, u} is Z2-invariant.

Lemma 3.7. Let

o ∈ (x2 + y2 + g(z, u) = 0)/Z2(0, 1, 1, 1)

be a germ, where g(z, u) is Z2-invariant, and let f be the lowest degree
part of g. If deg f = 6 and f does not have a multiple component, then
the germ is a cAx/2 singular point and there exists a unique divisorial
extraction centered at o.

Proof. We set V = (x2 + y2 + g(z, u) = 0)/Z2(0, 1, 1, 1). We need
to show that o ∈ V is terminal. Let ϕ : W → V be the weighted blowup
of V at o with wt(x, y, z, u) = 1

2 (4, 3, 1, 1). The exceptional divisor E is
isomorphic to

(y2 + f(z, u) = 0) ⊂ P(4, 3, 1, 1),

where x, y, z, u are thought of as homogeneous coordinates of degree
3, 4, 1, 1. We see that E is irreducible and it is straightforward to see
that W has a singularity of type 1

4 (1, 1, 3) at (1 : 0 : 0 : 0) ∈ E and is

nonsingular elsewhere. Moreover KW = ϕ∗KV + 1
2E. This shows that ϕ

is a divisorial contraction from a terminal threefold W . Therefore o ∈ V
is a terminal singularity.

According to the classification [12, 16] of divisorial extractions, there
is a unique divisorial extraction centered at o if the lowest degree part
of g, which is f , is not a square (see also [19, Section 2.2]). Therefore
the proof is completed. Q.E.D.

Condition 3.8. (1) X ′ is quasismooth outside the points p′1
and p′2.
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(2) The singularities of X ′ at p′1 and p′2 are both of type cAx/2.
(3) Both X1 and X2 are quasismooth outside the point p3.
(4) The singularities of X1 and X2 at p3 are both of type cAx/2.

Definition 3.9. For a positive integer d and a polynomial g in
variable y or in variables y0, y1, we define

Md = {xk
0x

l
1z

m | k, l,m ≥ 0 and k + l + 3m = d }
and

gMd = { gh | h ∈ Md }.
Proposition 3.10. Condition 3.8 is satisfied for a general triplet

(a6, b6, c8).

Proof. We set

N ′ = {y20y21} ∪ y0M6 ∪ y1M6 ∪M8,

N6 = {s0y, s1y} ∪M6,

N8 = {s0s1} ∪ yM6 ∪M8.

To verify conditions (1) and (3), it is enough to show that general mem-
bers of Λ(N ′) and Λ(N6, N8) are quasismooth outside p′1, p

′
2 and p3,

respectively. This follows from Theorems 3.3 and 3.4.
Note that (a6 = 0) ⊂ P(1, 1, 3) is quasismooth for a general a6. We

claim that if (a6 = 0) ⊂ P(1, 1, 3) is quasismooth, then p′1 ∈ X ′ is of type
cAx/2. We work on the open subset where y0 �= 0. Then, by setting
y0 = 1, X ′ is defined as

(y21 + a6 + y1b6 + c8 = 0) ⊂ A4
x0,x1,y1,z/Z2(1, 1, 0, 1).

Since (a6 = 0) ⊂ P(1, 1, 3) is quasismooth, z2 ∈ a6, and hence we may
write a6 = z2 + f6(x0, x1) for some f6 after replacing z. It follows again
from quasismoothness of (a6 = 0) ⊂ P(1, 1, 3) that f6 does not have a
multiple component. By a suitable analytic coordinate change, the germ
(X ′, p′1) is analytically equivalent to the origin of

(y21 + z2 + g(x0, x1) = 0) ⊂ A4
x0,x1,y1,z/Z2(1, 1, 0, 1),

where the lowest weight term of g is f6. By Lemma 3.7, p′1 is of type
cAx/2. By the symmetric argument, the point p′2 ∈ X ′ is of type cAx/2
if (b6 = 0) ⊂ P(1, 1, 3) is quasismooth, and the condition (2) is verified.

We claim that the singularity of X2 at p3 is equivalent to that of X ′

at p′1. By setting y = 1 in the defining polynomials of X2, we see that
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(X2, p3) is isomorphic to

(s0+s1 + b6 = s0s1 − a6 − c8 = 0) ⊂ A5
x0,x1,z,s0,s1/Z2(1, 1, 1, 0, 0)

∼= (s20 + a6 + s0b6 + c8 = 0) ⊂ A4
x0,x1,s0,z/Z2(1, 1, 0, 1).

Hence the germ (X2, p3) is isomorphic to (X ′, p′1). We have (X1, p3) ∼=
(X ′, p′2) by symmetry. Therefore the condition (4) follows from (2). This
completes the proof. Q.E.D.

In the following we assume that (a6, b6, c8) satisfies Condition 3.8.
We see that Sing(X ′) = {p′1, p′2, p′3} and the singularity of X ′ at p′3 is of
type 1

3 (1, 1, 2), and Sing(Xi) = {p1, p2, p3} and the singularity of Xi at

p1, p2 are of type 1
4 (1, 1, 3).

Lemma 3.11. The following assertions hold.

(1) The weighted hypersurfaces

(a6 = 0) ⊂ P(1, 1, 3) and (b6 = 0) ⊂ P(1, 1, 3)

are quasismooth.
(2) Let X be one of X ′, X1 and X2, and p a singular point of X.

Then there is a unique divisorial extraction centered at p.

Proof. Assume that C := (a6 = 0) ⊂ P(1, 1, 3) is not quasismooth
at a point (ξ0 : ξ1 : ζ) ∈ C. Let σ be a complex number such that
σ2 = −c8(ξ0, ξ1, ζ) and set p = (ξ0 :ξ1 : 0 :ζ :σ :−σ). We see that p ∈ X1

and X1 is not quasismooth at p. This is a contradiction because X1 is
quasismooth except at p3. Thus C is quasismooth. Quasismoothness
of (b6 = 0) ⊂ P(1, 1, 3) can be proved in the same way using X2. This
shows (1).

The uniqueness of divisorial extraction centered at a terminal quo-
tient singular point follows from [17]. We consider cAx/2 points. By the
proof of Proposition 3.10, after replacing z so that a6 = z2 + f6(x0, x1),
the singularity of X ′ at p′1 is equivalent to

(y21 + z2 + g(x0, x1) = 0) ⊂ A4
x0,x1,y1,z/Z2(1, 1, 0, 1),

where the lowest degree part of g is f6. By (1), the polynomial f6
does not have a multiple component. Thus the uniqueness follows from
Lemma 3.7. (2) follows for (X ′, p′2) by symmetry and for (X1, p3) and
(X2, p3) since the singularities of X1 at p3 and of X2 at p3 are equivalent
to those of X ′ at p′2 and at p′1, respectively. This proves (2). Q.E.D.

Proposition 3.12. The varieties X ′, X1 and X2 are Q-factorial.
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Proof. This follows from Lemma 3.13 below. Q.E.D.

Lemma 3.13. A singular point of type cAx/2 is (analytically) Q-
factorial.

Proof. Let (X, o) be a germ of singularity of type cAx/2. Then X
is analytically equivalent to

(x2 + y2 + g(z, t) = 0) ⊂ A4/Z2(0, 1, 1, 1),

where g(z, t) ∈ (z, t)4 is semi-invariant. We define

B = C[[x, y, z, t]]/(x2 + y2 + g(z, t))

and consider the Z2 action of type (0, 1, 1, 1) on B. We see that the

completion ÔX,o is isomorphic to A := BZ2 . Since o ∈ X is an isolated
singularity, there is no multiple in the irreducible decomposition g =
g1g2 · · · gd. We see that

Cl(B) =
⊕d

i=1
Z·[pi]/

∑d

i=1
[pi],

where pi = (x−√−1y, gi) is a height 1 prime ideal of B. Let j : Cl(A) →
Cl(B) be the homomorphism induced by the injection A ↪→ B. The
image of j is contained in Cl(B)Z2 and the kernel of j is contained in
H1(Z2, B

∗) (cf. [11, Theorem16.1]). The Z2 action on Cl(B) is given by
[pi] 
→ −[pi]. It is easy to see that Cl(B)Z2 = 0 and that H1(Z2, B

∗)
consists of 2-torsions. It follows that Cl(A) consists of 2-torsions and
in particular we have Cl(A) ⊗Z Q = 0. This shows that (X, o) is Q-
factorial. Q.E.D.

3.3. Condition for X1 and X2 being isomorphic

We consider a condition on (a6, b6, c8) for X1 and X2 being isomor-
phic to each other.

Definition 3.14. We say that a triplet (a6, b6, c8) is symmetric if
there are non-zero complex numbers α, β, γ and an automorphism τ of
P(1, 1, 3) such that γ3 = α2β2, τ∗a6 = αb6, τ

∗b6 = βa6 and τ∗c8 = γc8.
A triplet (a6, b6, c8) is called asymmetric if it is not symmetric.

Lemma 3.15. Set P := P(1, 1, 2, 3, 4, 4). Then the homomorphism
H0(P,OP(m)) → H0(X1,OX1(m)) is an isomorphism for m ≤ 5.

Proof. We set X := X1 and let Y = (s0s1 − yb6 − c8 = 0) ⊂ P be
the weighted hypersurface containing X. Let S be the non-quasismooth
locus of Y . We have dimS ≤ 1 since X is quasismooth outside a single
point. Let T be the union of S and the singular locus of P, and we
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see that U := P \ T , YU := Y ∩ U and XU := X ∩ U are nonsingular.
Moreover the codimension of X \XU in X is at least 2 since dimS ≤ 1
and T ∩X is a finite set of points. Since the codimension in P of each
component of S is greater than or equal to 3, we have Hi(U,OU (m)) =
Hi(P,OP(m)) for i = 0, 1, 2 and for any m. This follows by considering
the long exact sequence of local cohomologies. In particular, we have
H1(U,OU (m)) = H2(U,OU (m)) = 0 for any m. By the long exact
sequence associated to the exact sequence

0 → OU (m− 8) → OU (m) → OYU (m) → 0,

we have H0(U,OU (m)) ∼= H0(YU ,OYU (m)) for m < 8 and
H1(YU ,OYU (m)) = 0 for any m. Then, by the long exact sequence
associated to the exact sequence

0 → OYU (m− 6) → OYU (m) → OXU (m) → 0,

we have H0(YU ,OYU (m)) ∼= H0(XU ,OXU (m)) for m < 6. This shows
that the restriction H0(U,OU (m)) → H0(XU ,OXU (m)) is an isomor-
phism for m < 6. Q.E.D.

Proposition 3.16. X1 is isomorphic to X2 if and only if (a6, b6, c8)
is symmetric.

Proof. Assume that there is an isomorphism σ : X1 → X2. We
have σ∗OX2(m) ∼= OX1(m) for any m since σ∗KX2 = KX1 . By Lemma
3.15, the sections σ∗x0, σ

∗x1, σ
∗y, σ∗z, σ∗s0, σ∗s1 can be identified with

homogeneous polynomials of degree respectively 1, 1, 2, 3, 4, 4, and let ϕ
be the automorphism of P(1, 1, 2, 3, 4, 4) inducing σ. The divisor which
is cut out onX1 by σ∗si (i = 0, 1) passes through a singular point of type
1
4 (1, 1, 3). By replacing σ with the composite of σ and the automorphism
of X1 interchanging s0 and s1, we can assume that σ∗s0 (resp. σ∗s1)
vanishes at p2 (resp. p1) and does not vanish at p1 (resp. p2). We may
write ϕ∗si = λisi+λ′

iy
2+yq(i)+f (i), ϕ∗z = νz+y�+g and ϕ∗y = μy+h,

where λi, λ
′
i, μ, ν ∈ C, q(i), �, g, h ∈ C[x0, x1] and f (i) ∈ C[x0, x1, z].

Since the zero loci of ϕ∗(s0y+ siy+ b6) and ϕ∗(s0s1 − ya6 − c8) contain
X1, we have

(1) ϕ∗(s0y + s1y + b6) = δ(s0y + s1y + a6)

and

(2) ϕ∗(s0s1 + ya6 + c8) = ε(s0s1 − yb6 − c8) + q(s0y + s1y + a6)

for some non-zero δ, ε ∈ C and q ∈ C[x0, x1, y]. By comparing the
terms involving si in (1), we have λ0 = λ1, μ �= 0 and h = 0. We put
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λ := λ0 = λ1. Note that there is no monomial divisible by y3 in ϕ∗a6,
ϕ∗b6 and ϕ∗c8. By comparing terms involving si in (2), we have ε = λ2,
λ′
i = 0, f (i) = 0 and q = λq(0) = λq(1). By comparing terms involving

y3 in (2), we have � = 0. It follows that ϕ∗a6, ϕ∗b6, ϕ∗c8 ∈ C[x0, x1, z].
Thus, by comparing terms divisible by y2 in (1), we have q(0) = q(1) = 0.
Therefore, we have ϕ∗si = λsi and ϕ∗y = μy, ϕ∗z = νz + g(x0, x1) and
ϕ∗xi ∈ C[x0, x1], and the relations ϕ∗b6 = λμa6, μϕ∗a6 = λ2b6 and
ϕ∗c8 = λ2c8 are satisfied. By setting α = λ2/μ, β = λμ and γ = λ2, we
observe γ3 = α2β2. Thus (a6, b6, c8) is symmetric.

Conversely, if we are given an automorphism τ of P(1, 1, 3) and
α, β, γ ∈ C such that γ3 = α2β2, τ∗a6 = αb6, τ∗b6 = βa6 and
τ∗c8 = γc8, then the automorphism ϕ of P(1, 1, 2, 3, 4, 4) defined by
ϕ∗xi = τ∗xi for i = 0, 1, ϕ∗z = τ∗z and

ϕ∗y =
γ

α
y, ϕ∗s0 =

αβ

γ
s0, ϕ∗s1 =

αβ

γ
s1,

restricts to an isomorphism between X1 and X2. This completes the
proof. Q.E.D.

We show that there does exist a symmetric triplet (a6, b6, c8) that
satisfies Condition 3.8.

Proposition 3.17. Let a6 and c8 are general homogeneous poly-
nomials in variables x0, x1, z. Then the triplet (a6, a6, c8) is symmetric
and satisfies Condition 3.8.

Proof. Let X ′ be the weighted hypersurface

X ′ = (y20y
2
1 + y0a6 + y1a6 + c8 = 0) ⊂ P(1, 1, 2, 2, 3)

and let Λ be the linear system spanned by y20y
2
1 , M8 and (y0+y1)M6. A

general member X ′ of Λ is quasismooth outside the base locus of Λ by
the Bertini theorem and the base locus of Λ is the set {p′1, p′2, p′3}. The
check of singularity types of X ′ at p′1, p

′
2 and p′3 can be done as in the

proof of Proposition 3.10.
Let a6 and c8 be general so that X ′ is quasismooth outside {p′1, p′2}

and the singularity of X ′ at p′1 and p′2 are both of type cAx/2. Let X
be the weighted complete intersection

X = (s0y + s1y + a6 = s0s1 − ya6 − c8 = 0) ⊂ P(1, 1, 2, 3, 4, 4).

We have X = X1 = X2. It is easy to check that the singularities of X
at p1, p2 are both of type 1

4 (1, 1, 3). As in the proof of Proposition 3.10,
we have the equivalences of singularities (X, p3) ∼= (X ′, p′1), hence the
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singularity of X at p3 is of type cAx/2. It remains to show that X◦ :=
X \ {p1, p2, p3} is nonsingular. Instead of proving quasismoothness of
X directly, we derive it from the description of singularities of X ′ by
making use of the arguments in Section 4.3 (note that we do not need
here the fact that ψ′

1 and ψ1 are small). There is a birational map
σ11 : X

′ ��� X which factorizes as

Y ′

ϕ′

��

����� Y

ϕ

��
X ′ σ11 ����� X

where ϕ′ is the weighted blowup of X ′ at p′1 with wt(x0, x1, y1, z) =
1
2 (1, 1, 4, 3), ϕ is the Kawamata blowup of X at p1 and Y ′ ��� Y is a
birational map. The construction of the above birational map is possible
in the case where the singularity of X ′ at p′1 is of type cAx/2 and that
of X at p1 is of type 1

4 (1, 1, 3). Let Δ′ ⊂ Y ′ and Δ ⊂ Y be proper
transforms of (y1 = a6 = c8 = 0) ⊂ X ′ and (y = s1 = a6 = c8 =
0) ⊂ X, respectively. Then the birational map Y ′ ��� Y induces an
isomorphism Y ′ \ Δ′ ∼= Y \ Δ. We know that X ′ has three singular
points of type 1

3 (1, 1, 2), cAx/2 and cAx/2. Thus Y ′ has three singular

points whose types are 1
3 (1, 1, 2),

1
4 (1, 1, 3) and cAx/2 by the description

of the weighted blowup. By Y ′ \ Δ′ ∼= Y \ Δ, we see that Y \ Δ has
at most three singular points of type 1

3 (1, 1, 2),
1
4 (1, 1, 3) and cAx/2.

It follows that X \ (y = s1 = a6 = c8 = 0) has also at most three
singular points of type 1

3 (1, 1, 2),
1
4 (1, 1, 3) and cAx/2 since the center

of ϕ : Y → X is contained in (y = s1 = a6 = c8 = 0). On the other
hand, X has singularities of type 1

4 (1, 1, 3),
1
4 (1, 1, 3) and cAx/2 at p1, p2

and p3, respectively, and possibly Gorenstein singularities. Therefore
X \ (y = s1 = a6 = c8 = 0) has only singularities of type 1

4 (1, 1, 4) and
cAx/2 (at p2 and p3). By changing the role of s0 and s1, we also see
that X \ (y = s0 = a6 = c8 = 0) has only singularities of type 1

4 (1, 1, 3)
and cAx/2 (at p1 and p3).

It is then enough to show that X is nonsingular along S := (y =
s0 = s1 = a6 = c8 = 0). We see that the restriction to S of the Jacobian
matrix of the affine cone CX of X can be written as

JCX |S =

(
∂a6

∂x0

∂a6

∂x1
0 ∂a6

∂z 0 0

− ∂c8
∂x0

− ∂c8
∂x1

0 −∂c8
∂z 0 0

)
.

Therefore X is quasismooth along S since the complete intersection
(a6 = c8 = 0) in P(1, 1, 3) is quasismooth for general a6 and c8 by
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Theorem 3.4. Thus X is nonsingular along S and this completes the
proof. Q.E.D.

3.4. Structure of proof

The remainder of this paper is devoted to a proof of the following.

Theorem 3.18. Let (a6, b6, c8) be a triplet of homogeneous polyno-
mials in x0, x1, z satisfying Condition 3.8 and X ′, X1, X2 the Q-Fano
threefolds corresponding to (a6, b6, c8). Then no nonsingular point and
no curve on X ′, X1 and X2 is a maximal center. As for the Sarkisov
links from X ′, X1 and X2 centered at singular points, the following hold.

(1) There exit Sarkisov links X ′ ��� X1 and X ′ ��� X2 centered
at the cAx/2 points p′1 and p′2, respectively.

(2) There exists a Sarkisov link X ′ ��� X ′ centered at the 1
3 (1, 1, 2)

point p′3 of X ′ which is a birational involution.
(3) For i = 1, 2, there exists a Sarkisov link Xi ��� X ′ centered at

each 1
4 (1, 1, 3) point of Xi.

(4) For the cAx/2 points p3 ∈ X1 and p3 ∈ X2, one of the following
holds.
(a) Neither p3 ∈ X1 nor p3 ∈ X2 is a maximal center.
(b) There exits a Sarkisov link X1 ��� X2 centered at p3 ∈ X1

and its inverse X2 ��� X1 is centered at p3 ∈ X2.

In view of the fact that there is a unique divisorial extraction cen-
tered at each singular point of X ′, X1 and X2, Theorem 1.3 follows
from Proposition 3.16 and Theorem 3.18 by [19, Lemma 2.32]. The con-
struction of Sarkisov links will be given in Section 4 and exclusion of
nonsingular points and curves as maximal centers will be done in Sec-
tions 5 and 6. In Section 7, we state the classification of Sarkisov links
and give a description of the birational automorphism group.

§4. Sarkisov links

We construct various Sarkisov links between X ′, X1 and X2.
Throughout this section we assume that (a6, b6, c8) satisfies Condition
3.8.

4.1. Birational involution of X ′

We construct a birational involution ι′ of X ′ which is a Sarkisov
link centered at the 1

3 (1, 1, 2) point p
′
3. The construction is the same as

that of [9, Section 4.4] to which we refer the readers for a detail. After
re-scaling y0, y1, z, we may assume that the coefficients of z2 in a6 and
b6 are both 1. We write a6 = z2 + zf3 + f6, b6 = z2 + zg3 + g6 and
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c8 = z2h2 + zh5 + h8, where fi, gi, hi ∈ C[x0, x1]. It follows that the
defining polynomial of X ′ is

F ′ := (y0 + y1 + h2)z
2 + (y0f3 + y1g3 + h5)z + y20y

2
1 + y0f6 + y1g6 + h8.

Let Z ′ be the weighted hypersurface in P(1, 1, 2, 2, 5) with homogeneous
coordinates x0, x1, y0, y1, t, where deg t = 5, defined by the equation

t2 + (y0f3 + y1g3 + h5)t+ (y0 + y1 + h2)(y
2
0y

2
1 + y0f6 + y1g6 + h8) = 0.

This equation is obtained by multiplying F ′ by y0 + y1 + h2 and then
identifying t with (y0 + y1 + h2)z. This identification gives rise to a
birational map X ′ ��� Z ′. Let ϕ′ : Y ′ → X ′ be the Kawamata blowup
of X ′ at p′3. Then ϕ′ resolves the indeterminacy of X ′ ��� Z ′ and
the induced birational morphism ψ′ : Y ′ → Z ′ is a flopping contraction
contracting the proper transform of the closed subscheme

(y0 + y1 + h2 = y0f3 + y1g3 + h5 = y20y
2
1 + y0f6 + y1g6 + h8 = 0)

in P(1, 1, 2, 2, 3), which consists of finitely many curves by the argument
of [9, Section 4.4] using quasismoothness. Let ιZ′ : Z ′ → Z ′ be the
biregular involution interchanging the fibers of the double cover Z ′ →
P(1, 1, 2, 2). Then ιY ′ := ψ′−1 ◦ ιZ′ ◦ ψ′ : Y ′ ��� Y ′ is the flop and we

have a Sarkisov link ι′ = ϕ′−1 ◦ ιY ′ ◦ ϕ′ : X ′ ��� X ′. In summary, we
have

Proposition 4.1. The diagram

Y ′

ϕ′

��

ιY ′ ����� Y ′

ϕ′

��
X ′

ι′
����� X ′

is a Sarkisov link centered at p′3 that is a birational involution.

4.2. Link between X1 and X2

For i = 1, 2, let ϕi : Yi → Xi be the weighted blowup of Xi at the
cAx/2 point p3 with wt(x0, x1, z, s0, s1) =

1
2 (1, 1, 3, 4, 4) and πi : Xi ���

P(1, 1, 3, 4, 4) the projection with coordinates x0, x1, z, s0 and s1. The
images of π1 and π2 are the same and it is the weighted hypersurface

Z := ((s0 + s1)(s0s1 − c8) + a6b6 = 0) ⊂ P(1, 1, 3, 4, 4).

The sections x0, x1, z, s0 and s1 on Xi lift to plurianticanonical sections
on Yi and they define the morphism ψi : Yi → Z such that ψi = ϕi ◦ πi.
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It follows that ψi is a KYi -trivial contraction. We see that ψi contracts
the proper transform on Yi of

Δ := (s0 + s1 = s0s1 − c8 = a6 = b6 = 0) ⊂ P(1, 1, 2, 3, 4, 4).

We see that dimΔ = 2 if and only if a6 ∼ b6 since the projection
Δ → P(1, 1, 2, 3) is a finite morphism (of degree 2) onto (a6 = b6 = 0) ⊂
P(1, 1, 2, 3). Here, a6 ∼ b6 means that a6 is proportional to b6, that is,
there is a non-zero λ ∈ C such that a6 = λb6.

Lemma 4.2. If a6 ∼ b6, then the cAx/2 point of Xi is not a max-
imal center for i = 1, 2.

Proof. Since ϕi is a unique divisorial extraction centered at the
cAx/2 point of Xi by Lemma 3.11 (2), it is enough to show that ϕi is
not a maximal extraction. We have KYi = ϕ∗

iKXi+(1/2)Ei, where Ei is
the exceptional divisor of ϕi. Note that Δ is a surface since a6 ∼ b6. It
follows that ψi contracts a divisor. Let C be an irreducible and reduced
curve on Yi contracted by ψi. Then, (−KYi · C) = 0 and

(Ei · C) = 2(KYi · C)− 2(ϕ∗
iKXi · C) = −2(ϕ∗

iKXi · C) > 0

since C is not contracted by ϕi. This shows that there are infinitely many
curves on Yi which intersect −KYi non-positively and Ei positively. It
follows from [19, Lemma 2.20] that ϕi is not a maximal extraction.

Q.E.D.

Proposition 4.3. Assume that a6 �∼ b6. Then the diagram

Y1

ϕ1

��

ψ−1
2 ◦ψ1 ���������

ψ1

���
��

��
��

� Y2

ψ2

����
��
��
��

ϕ2

��
X1 Z X2

gives a Sarkisov link θ : X1 ��� X2 centered at the cAx/2 point of X1.
The inverse θ−1 : X2 ��� X1 is a Sarkisov link centered at the cAx/2
point of X2.

Proof. By the assumption, dimΔ = 1 and thus ψi is a flopping
contraction since ψi is a KYi -trivial contraction whose exceptional locus
is the proper transform of Δ ⊂ Xi. The birational map θ = π−1

2 ◦
π1 : X1 ��� X2 is given by

(x0 :x1 :y :z :s0 :s1) 
→ (x0 :x1 :
b6
a6

y :z :s0 :s1).
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We claim that θ is not biregular. For i = 1, 2, let Ei be the exceptional
divisor ϕi. We see that E1 is isomorphic to the weighted complete
intersection

(s0 + s1 = b6 = 0) ⊂ P(1, 1, 3, 4, 4)

and ψ1|E1 : E1 → Z can be identified with the restriction of the identity
mapping of P(1, 1, 3, 4, 4). It follows that ψ1(E1) = (s0 + s1 = b6 =
0) and, similarly, ψ2(E2) = (s0 + s1 = a6 = 0). Since a6 �∼ b6, we
have ψ1(E1) �= ψ2(E2). This implies that θ (resp. θ−1) contracts the
birational transform on X1 (resp. X2) of ψ2(E2) (resp. ψ1(E1)). Thus θ
is not biregular. It follows that ψ−1

2 ◦ ψ1 : Y1 ��� Y2 is a flop and thus
θ : X1 ��� X2 is a Sarkisov link. Q.E.D.

Remark 4.4. We make explicit the description of the proper trans-
form of E2 on X1 for the later use. By the proof of Proposition 4.3, it is
the divisor on X1 which maps onto ψ2(E2) = (s0 + s1 = a6 = 0) via the
projection π2 : X2 ��� Z, which must be the divisor (s0 + s1 = 0)X1 ⊂
X1.

Remark 4.5. Note that a6 ∼ b6 implies that (a6, b6, c8) is sym-
metric (we do not know whether or not the converse holds). It follows
that X1 and X2 are connected by a Sarkisov link whenever X1 is not
isomorphic to X2.

Note that if (a6, b6, c8) is asymmetric, then θ : X1 ��� X2 is a Sark-
isov link between non-biregularly equivalent Q-Fano threefolds, but if
(a6, b6, c8) is symmetric and a6 �∼ b6, then θ is a birational involution of
X = X1

∼= X2.

4.3. Links between X ′ and Xi

We construct Sarkisov links between X ′ and Xi for i = 1, 2. Recall
that

p′1 = (0:0 :1 :0 :0) and p′2 = (0:0 :0 :1 :0)

are the cAx/2 points of X ′ and

p1 = (0:0 :0 :0 :1 :0) and p2 = (0:0 :0 :0 :0 :1)

are the 1
4 (1, 1, 3) points of Xi. Let P := P(1, 1, 2, 3, 4) be the weighted

projective space with homogeneous coordinates x0, x1, y, z, s and let
π′
1 : X

′ ��� P be the rational map defined by

(x0 :x1 :y0 :y1 :z) 
→ (x0 :x1 :y1 :z :y0y1).

By multiplying the defining polynomial of X ′ by y1 and then replacing
y1 with y and y0y1 with s, we see that the image of π′

1 is the weighted
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hypersurface

Z1 = (s2y + sa6 + y2b6 + yc8 = 0) ⊂ P(1, 1, 2, 3, 4),

and π′
1 : X

′ ��� Z1 is a birational map defined outside p′1.
Let π1 : X1 ��� P be the projection defined by

(x0 :x1 :y :z :s0 :s1) 
→ (x0 :x1 :y :z :s1),

which is defined outside p1. By considering the ratio

s0 = −s1y + a6
y

=
yb6 + c8

s1
,

we see that the image of π1 is Z1 and π1 : X1 ��� Z1 is birational. We
define σ11 := π−1

1 ◦ π′
1 : X

′ ��� X1.
Let η1 : X1 → X1 be the automorphism of X1 which interchanges

s0 and s1 and we define σ12 := η1 ◦ σ11 : X
′ ��� X1. By the symme-

try between y0 and y1, the same construction gives a birational map
σ21 : X

′ ��� X2 and σ22 := η2 ◦ σ21 : X
′ ��� X2, where η2 is the auto-

morphism of X2 which interchanges s0 and s1.

Proposition 4.6. For i = 1, 2 and j = 1, 2, the birational map
σij : X

′ ��� Xi is a Sarkisov link centered at the cAx/2 point p′i and the

inverse σ−1
ij : Xi ��� X ′ is a Sarkisov link centered at the 1

4 (1, 1, 3) point
pj.

Proof. We prove the assertion for σ11. The rest follows by symme-
try.

Let ϕ′
1 : Y

′
1 → X ′ be the weighted blowup of X ′ at p′1 with

wt(x0, x1, y1, z) = 1
2 (1, 1, 4, 3). Note that ϕ′

1 is a unique divisorial ex-
traction of centered at p′1. We see that x0, x1, y1, z and y0y1 lift to
plurianticanonical sections on Y ′ and ϕ′

1 resolves the indeterminacy
of π′

1. Thus we have a KY ′ -trivial birational morphism ψ′
1 : Y

′ → Z.
Let ϕ1 : Y1 → X1 the Kawamata blowup of X1 at p1. We see that
x0, x1, y, z, s1 lift to plurianticanonical sections on Y1 and ϕ1 resolves
the indeterminacy of π1. Thus we have a KY1-trivial birational mor-
phism ψ1 : Y1 → Z and the diagram

Y ′
1

ϕ′
1

��

���������

ψ′
1

���
��

��
��

�
Y1

ϕ1

��

ψ1

����
��
��
��

X ′ Z X1

We will show that ψ′
1 and ψ1 are small contractions. Then Y ′

1 ��� Y1 is
the flop since ρ(Y ′

1) = ρ(Y1) = 2 and Y ′
1 and Y1 are not isomorphic over
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Z (if Y ′
1 and Y1 are isomorphic over Z, then X ′

1
∼= X1. This is absurd

since they have different singularities).
We see that ψ′

1 contracts the proper transform of (y1 = a6 = c8 =
0) ⊂ X ′ to S := (y = a6 = c8 = s = 0) ⊂ Z, and ψ1 contracts the
proper transform of (y = s1 = a6 = c8 = 0) ⊂ X1 to S. Therefore ψ′

1 is
divisorial if and only if ψ1 is so, and this is equivalent to the assertion
that a6 and c8 share a common component. Assume that a6 and c8
have a component d ∈ C[x0, x1, z]. Then, since (a6 = 0) ⊂ P(1, 1, 3)
is quasismooth, the polynomial a6 is irreducible and we may assume
d = a6. Hence c8 = a6e2 for some e2 ∈ C[x0, x1, z]. Let C = (y = s0 =
s1 = a6 = 0) be a curve. We see that C ⊂ X1 and the restriction of the
Jacobian matrix of the affine cone of X1 to C is of the form

JCX1
|C =

(
∂a6

∂x0

∂a6

∂x1
0 ∂a6

∂z 0 0

− ∂a6

∂x0
e2 − ∂a6

∂x1
e2 −b6 −∂a6

∂z e2 0 0

)
.

This shows that X1 is not quasismooth along C ∩ (b6 = 0). This is a
contradiction and thus Y ′

1 ��� Y1 is a flop. Q.E.D.

Remark 4.7. In the above proof, the fact that ψ′
1 and ψ are small

contractions follows from the following more conceptual argument. Both
Y ′
1 and Y1 are crepant Q-factorial terminalizations of Z. Hence, by a

general fact, they are either isomorphic or connected by a sequence of
flops. But they cannot be isomorphic as is explained in the above proof.
It follows that Y ′

1 and Y1 admit at least one flopping contraction. But
since they have Picard number 2, ψ′

1 and ψ1 must be flopping contrac-
tions.

§5. Excluding maximal centers on X ′

In this section let (a6, b6, c8) be a triplet satisfying Condition 3.8.
We exclude all the nonsingular points and curves on X ′ as maximal
singularity.

5.1. Nonsingular points

Definition 5.1. Let X be a normal projective variety embedded in
a weighted projective space P(a0, . . . , an) with homogeneous coordinates
x0, . . . , xn and p ∈ X a nonsingular point. We say that a set {gi}
of homogeneous polynomials in x0, . . . , xn isolates p if p is an isolated
component of

X ∩
⋂

i
(gi = 0).
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We say that a Weil divisor L isolates p if there is an integer s > 0
such that p is an isolated component of the base locus of the linear
system

Ls
p :=

∣∣Is
p(sL)

∣∣ .
Lemma 5.2 ([9]). Let X be a Q-Fano 3-fold with Picard number

one and p ∈ X a nonsingular point. If −lKX isolates p for some l ≤
4/(−KX)3, then p is not a maximal center.

Proof. We refer the reader to [9, Proof of (A)] and also to [19,
Lemma 2.14] for a proof. Q.E.D.

The following enables us to find a divisor which isolates a nonsingu-
lar point.

Lemma 5.3 ([9, Lemma 5.6.4]). Let X be a normal projective va-
riety embedded in P(a0, . . . , an) and {gi} a set of homogeneous polyno-
mials of deg gi = li. If a set {gi} of polynomials isolates p, then lA
isolates p, where l = max{li} and A is a Weil divisor on X such that
OX(A) ∼= OX(1).

Proposition 5.4. No nonsingular point on X ′ is a maximal center.

Proof. Let p = (ξ0 : ξ1 : η0 : η1 : ζ) be a nonsingular point of X ′. If
ξ0 �= 0, then the set

{ξ0x1 − ξ0x0, ξ
2
0y0 − η0x

2
0, ξ

2
0y1 − η1x

2
0, ξ

3
0z − ζx3

0}
isolates p and thus −3KX′ isolates p. Similarly, −3KX′ isolates p if
ξ1 �= 0. Assume that ξ0 = ξ1 = 0. In this case, at least one of η0 and
η1 is non-zero since p is not a singular point. Without loss of generality,
we may assume η0 �= 0. Then the set

{x0, x1, η0y1 − η1y0, η
3
0z

2 − ζ2y30}
isolates p and thus −6KX′ isolates p. Therefore Lemma 5.2 shows that
p is not a maximal center since 3 < 6 ≤ 4/(−KX′)3 = 6. Q.E.D.

5.2. Curves

The aim of this subsection is to show that no curve on X ′ is a
maximal center. The following excludes most of the curves on X ′ as
maximal centers.

Lemma 5.5. No curve on X ′ is a maximal center except possibly
for a curve of degree 1/2 which does not pass through the 1

3 (1, 1, 2) point
p′3.
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Proof. Let Γ ⊂ X ′ be a curve. By [19, Lemma 2.9], Γ can be
a maximal center only if (−KX′ · Γ) < (−KX′)3 = 2/3. If Γ passes
through the 1

3 (1, 1, 2) point p′3, then it is not a maximal singularity
since there is no divisorial extraction centered along a curve passing
through a terminal quotient singular point ([17]). If Γ does not pass
through p′3, then (−KX′ · Γ) ∈ 1

2Z. This follows since the divisor (y0 +
y1 = 0)X′ ∼Q −2KX′ intersects Γ at nonsingular points of X ′ and thus
(−2KX′ · Γ) ∈ Z. Combining the above arguments, Γ is not a maximal
center unless it satisfies (−KX′ · Γ) = 1/2 and p′3 �∈ Γ. Q.E.D.

Let Γ be a curve of degree 1/2 onX ′ which does not pass through p′3.
Since Γ passes through a cAx/2 point, we may assume p′1 ∈ Γ without
loss of generality. The defining polynomial of X ′ is F ′ := y20y

2
1 + y0a6 +

y1b6 + c8. After re-scaling y0, y1, z, we may assume that the coefficients
of z2 in a6 and b6 are both 1.

Lemma 5.6. We have Γ = (x1 = y1 = z = 0) after replacing
x0, x1, z.

Proof. The restriction π|Γ : Γ → π(Γ) of the projection π : X ′ ���
P(1, 1, 2, 2) from p′3 is a finite morphism since p′3 /∈ Γ. We have 1/2 =
deg(π|Γ) deg(π(Γ)) and deg π(Γ) ∈ 1

4Z. We claim that deg π(Γ) = 1/2.
Indeed, if deg π(Γ) = 1/4, then π(Γ) = (x0 = x1 = 0). It follows that

Γ ⊂ (x0 = x1 = 0)X′ = (x0 = x1 = y20y
2
1 + y0z

2 + y1z
2 = 0).

We see that (x0 = x1 = 0)X′ is an irreducible and reduced curve of
degree 2/3. This is a contradiction and the claim is proved.

After replacing x0, x1, we may assume that π(Γ) = (x1 = θ0y0 +
θ1y1−λx2

0 = 0) for some θ0, θ1, λ ∈ C. Since p′1 ∈ Γ, π(Γ) passes through
(0 : 0 : 1 : 0) ∈ P(1, 1, 2, 2). This implies that θ0 = 0 and then we may
assume that θ1 = 1. Since deg Γ = 1/2 and Γ ⊂ (x0 = y1 − λx2

0 = 0)X′ ,
we have Γ = (x1 = y1 − λx2

0 = z − μy0x0 − νx3
0 = 0) for some μ, ν ∈ C.

Replacing z 
→ z + νx3
0, we assume ν = 0. Now it is straightforward to

see that Γ is indeed contained in X ′ if and only if λ = μ = 0, x6
0 /∈ a6

and x8
0 /∈ c8. This completes the proof. Q.E.D.

We write a6 = z2 + zf3(x0, x1) + f6(x0, x1). Then, by the proof of
Lemma 5.6, we have f6(x0, 0) = c8(x0, 0, 0) = 0 since Γ = (x1 = y1 =
z = 0) is contained in X ′. We write f6 = x1f5.

Lemma 5.7. At least one of f3 and f5 is not divisible by x1.

Proof. Let F1 := s0y + s1y + a6 be the defining polynomial of
X1 of degree 6. If both f3 and f5 are divisible by x1, then ∂F1/∂x0,
∂F1/∂x1, ∂F1/∂y, ∂F1/∂z, ∂F1/∂s0 and ∂F1/∂s1 vanish at the point
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(1 : 0 : 0 : 0 : 0 : 0) ∈ X1. This is a contradiction since X1 is quasismooth
outside its cAx/2 point. Q.E.D.

Let M ⊂ |−3KX′ | be the linear system spanned by the cubic
monomials vanishing along Γ other than y0x1, namely, the sections
x2
0x1, x0x

2
1, x3

1, y1x0, y1x1, z, and let S be a general member of
M. We have BsM = Γ ∪ {p′2}, BsMy1 = (x0 = x1 = 0)X′ �⊃ Γ,
BsMx1 = (x0 = x1 = y1 = 0)X′ . Thus, by Proposition 3.5, S is
nonsingular along Γ \ {p′1}.

Lemma 5.8. We have (Γ2) ≤ −3/2.

Proof. The section which cuts out S on X ′ can be written as z +
x1q+α0y1x0+α1y1x1, where q = q(x0, x1) is a quadric and α0, α1 ∈ C.
We work on the open subset on which y0 �= 0. Let ϕ : T → S be the
weighted blowup of S at p′1 with wt(x0, x1, y1, z) = 1

2 (1, 1, 4, 3), E its

exceptional divisor and Γ̃ the proper transform of Γ on T . We claim
that E = E1 + E′, where E1 is a prime divisor, E′ does not contain E1

as a component, (Γ̃ · E1) = 1 and Γ̃ is disjoint from the support of E′.
Indeed we have the isomorphisms

E ∼= (z2 + zf3 + x1f5 = z + x1q = 0) ⊂ P(1, 1, 4, 3)

∼= (x2
1q

2 − x1qf3 + x1f5 = 0) ⊂ P(1, 1, 4).

We set E1 = (x1 = 0) and E′ = (x1q
2−qf3+f5 = 0). Since at least one

of f3 and f5 is not divisible by x1 and q is general, we see that E′ does
not contain E1 as a component and E′ is disjoint from Γ̃. Moreover, E1

intersects Γ̃ transversally at a nonsingular point. This proves the claim.
We write ϕ∗Γ = Γ̃ + rE1 + F for some rational number r and an

effective Q-divisor F whose support is contained in SuppE′. We have
r ≤ 1/2 since the section x1 cuts out on S the union of the curve Γ
and another curve, and x1 vanishes along E1 to order 1/2. An explicit

computation shows that KT = ϕ∗KS − E and we see that Γ̃ ∼= P1. We
have

(Γ2) = (ϕ∗Γ · Γ̃) = (Γ̃2) + (rE1 + F · Γ̃) = (Γ̃2) + r

and
(Γ̃2) = −(KT · Γ̃)− 2 = −(KS · Γ)− 1.

Combining these with (KS · Γ) = 2deg Γ = 1, we get (Γ2) = −2 + r ≤
−3/2. Q.E.D.

Proposition 5.9. No curve on X ′ is a maximal center.
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Proof. By Lemma 5.5, it is enough to exclude a curve Γ of degree
1/2 which does not pass through p′3. We keep the above notation. We
assume that Γ is a maximal center. An extremal divisorial extraction
(between terminal 3-folds) centered along a curve is unique, if it exists,
and it is generically the blowup along Γ. Hence there is a movable linear
system H ⊂ |−nKX′ | on X ′ such that multΓ H > n. Let S be a general
member of M so that we have

(−KX′)|S ∼Q

1

n
H|S =

1

n
L+ γΓ,

where L is the movable part of H|S and γ ≥ multΓ H/n > 1. This is
possible since the base locus of M does not contain a curve other than
Γ. Let L be a Q-divisor on S such that nL ∈ L. Note that (L2) ≥ 0
since L is nef. We get

(L2)=(−KX′ |S−γΓ)2 = 3(−KX′)3−2(deg Γ)γ+(Γ2)γ2 = 2−γ+(Γ2)γ2.

Since (Γ2) < −3/2 by Lemma 5.8 and γ > 1, we have

(L2) < 2− 1 + (Γ2) ≤ −1/2.

This is a contradiction and Γ is not a maximal center. Q.E.D.

§6. Excluding maximal centers on X1 and X2

In this section let (a6, b6, c8) be a triplet satisfying Condition 3.8.
We exclude nonsingular points and curves on X, where X is either X1

or X2.

6.1. Nonsingular points

Proposition 6.1. No nonsingular point on X is a maximal center.

Proof. We show that −4KX isolates p. Let p = (ξ0 :ξ1 :η :ζ :σ0 :σ1)
be a nonsingular point of X. If ξ0 �= 0, then the set

{ξ1x0 − ξ0x1, ξ
2
0y − ηx2

0, ξ
3
0z − ζx3

0, ξ
4
0s0 − σ0x

4
0, ξ

4
0s1 − σ1x

4
0}

isolates p and thus −4KX isolates p. Similarly, if ξ1 �= 0, then −4KX

isolates p. Assume that ξ0 = ξ1 = 0. If further η = 0, then p is a
singular point of type 1

4 (1, 1, 3). Hence η �= 0 and the set

Λ := {x0, x1, η
2s0 − σ0y

2, η2s1 − σ1y
2}

isolates p. It follows that −4KX isolates p. By Lemma 5.2, p is not a
maximal center since 4 < 4/(−KX)3 = 8. Q.E.D.
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6.2. Curves

Proposition 6.2. No curve on X is a maximal center.

Proof. Let Γ be an irreducible curve on X. If Γ passes through
a singular point of type 1

4 (1, 1, 3), then there is no divisorial extraction
centered along Γ ([17]), hence Γ cannot be a maximal center. If Γ does
not pass through a 1

4 (1, 1, 3) point, then (−2KX ·Γ) is a positive integer
and thus (−KX · Γ) ≥ 1/2. By [19, Lemma 2.9], p is not a maximal
center since (−KX)3 = 1/2. This completes the proof. Q.E.D.

§7. Sarkisov links and the birational automorphism group of
X ′

Throughout this section, we assume that (a6, b6, c8) satisfies Con-
dition 3.8. We state a classification result of Sarkisov links and give a
description of the birational automorphism group of X ′.

By the construction given in Section 4, explicit descriptions of links
σij and θ between X ′, X1 and X2 are given as follows:

σ11 : X
′ ��� X1, (x0 :x1 :y0 :y1 :z) 
→ (x0 :x1 :y1 :z :−y0y1 − a6

y1
:y0y1),

σ−1
11 : X1 ��� X ′, (x0 :x1 :y :z :s0 :s1) 
→ (x0 :x1 :

s1
y
:y :z),

σ21 : X
′ ��� X2, (x0 :x1 :y0 :y1 :z) 
→ (x0 :x1 :y0 :z :−y0y1 − b6

y0
:y0y1),

σ−1
21 : X2 ��� X ′, (x0 :x1 :y :z :s0 :s1) 
→ (x0 :x1 :y :

s1
y
:z),

θ : X1 ��� X2, (x0 :x1 :y :z :s0 :s1) 
→ (x0 :x1 :
b6
a6

y :z :s0 :s1),

ι′: X ′ ��� X ′,(x0 :x1 :y0 :y1 :z) 
→(x0 :x1 :y0 :y1 :−z− y0f3+y1g3+h5

y0+y1+h2
),

where f3, g3, h2, h5 are the polynomials defined in Section 4.1. See Sec-
tion 4.3 (resp. the proof of Proposition 4.3, resp. Section 4.1) for the de-
scriptions of σ11, . . . , σ

−1
21 (resp. θ, resp. ι′). We also defined σi2 = ηi◦σi1

and σ−1
i2 = σ−1

i1 ◦ ηi for i = 1, 2, where ηi is the biregular involution of
Xi interchanging s0 and s1.

Definition 7.1. In the case where (a6, b6, c8) is symmetric, we set
X := X1

∼= X2 and σj := σ1j for j = 1, 2. We define the set of Sarkisov
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links as

Σ :=

⎧⎪⎨
⎪⎩
{σ±

11, σ
±
12, σ

±
21, σ

±
22, θ

±, ι′}, if (a6,b6,c8) is asymmetric,

{σ±
1 , σ

±
2 , θ

±, ι′}, if (a6, b6, c8) is symmetric and a6 �∼b6,

{σ±
1 , σ

±
2 , ι

′}, if a6 ∼ b6.

Theorem 7.2. The links in Σ are all the Sarkisov links between the
birational Mori fiber structures of X ′.

Proof. This follows from Theorem 3.18. Q.E.D.

We have the following relations

η′i := σ−1
i2 ◦ σi1 = σ−1

i1 ◦ σi2,

θ′ := σ−1
21 ◦ θ ◦ σ11 = σ−1

22 ◦ θ ◦ σ12 = σ−1
11 ◦ θ−1 ◦ σ21 = σ−1

12 ◦ θ−1 ◦ σ22,

where η′i, i = 1, 2, and θ′ are birational involutions of X ′ whose explicit
descriptions are given as follows:

η′1 : (x0 :x1 :y0 :y1 :z) 
→ (x0 :x1 :−y0 − a6
y21

:y1 :z),

η′2 : (x0 :x1 :y0 :y1 :z) 
→ (x0 :x1 :y0 :−y1 − b6
y20

:z),

θ′ : (x0 :x1 :y0 :y1 :z) 
→ (x0 :x1 :
b6
a6

y1 :
a6
b6

y0 :z).

Furthermore, we have the following relations

η′2 = θ′ ◦ η′1 ◦ θ′,
η′1 ◦ θ′ = σ−1

12 ◦ θ−1σ21 = σ−1
11 ◦ θ−1 ◦ σ22,

θ′ ◦ η′1 = η′2 ◦ θ′ = σ−1
22 ◦ θ ◦ σ11 = σ−1

21 ◦ θ ◦ σ12.

We refer the readers to [15] for a general and theoretical treatment of
relations of Sarkisov links.

Theorem 7.3. The birational automorphism group Bir(X ′) of X ′

is generated by Aut(X ′) and the birational involutions η′1, θ′ and ι′.
Moreover, θ′ is biregular if and only if a6 is proportional to b6.

Proof. By the Sarkisov program (see [7]), any birational automor-
phism ν of X ′ is the composite of Sarkisov links νi : Vi ��� Vi+1 and an
automorphism μ of X ′:

ν : X ′ = V0
ν0��� V1

ν1��� · · · νn−1��� Vn = X ′ μ→ X ′.
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Note that Vi ∈ {X ′,X1,X2} (or Vi ∈ {X ′,X}) and νi ∈ Σ. Let k ≥ 1
be the minimum number such that Vk = X ′. By considering all the
combinations of links ν0, . . . , νk−1, the birational map X ′ = V0 ���
V1 ��� · · · ��� Vk = X ′ is one of η′1, η′2 = θ′ ◦ η′1 ◦ θ′, θ′, η′1 ◦ θ′,
η′2 ◦ θ′ = θ′ ◦ η′1 and ι′. It follows that ν is the composite of η′1, θ

′, ι′ and
an automorphism of X ′.

We prove the remaining part. It follows immediately from the ex-
plicit description of θ′ that if a6 ∼ b6, then θ′ is biregular. Suppose that
a6 �∼ b6. Let Y2 → X2 be the divisorial extraction of X2 centered at
the cAx/2 point p3 and E2 its exceptional divisor. Then, by the proof
of Proposition 4.3 and Remark 4.4, E2 is not contracted by the induced
birational map Y2 ��� X1 and its proper transform on X1 is the divisor
D := (s0 + s1 = 0)X1 . Since the link σ−1

11 is centered at p1 ∈ X1 and
D does not pass through p1, we see that D cannot be contracted by
σ−1
11 , and we denote by D′ the proper transform of D via σ−1

11 . By the
construction of D′, it is contracted to p3 ∈ X2 via θ ◦ σ11. Now, by the
explicit description of σ21 and σ−1

21 , the link σ21 induces an isomorphism
between open neighborhoods of p3 ∈ X2 and p′1 ∈ X ′. This shows that
D′ is contracted to p′1 ∈ X ′ via θ′. Therefore θ′ is not biregular and the
proof is completed. Q.E.D.

Remark 7.4. Assume that a6 is general. Here, as a generality con-
dition, we require that there is no non-trivial automorphism of P(1, 1, 3)
which leaves (a6 = 0) invariant. In this case, we describe Aut(X ′)
in detail without giving a proof. If (a6, b6, c8) is asymmetric, then
Aut(X ′) = {id}. This can be proved by a similar way as in the proof of
Proposition 3.16. We keep the same generality of a6 and consider the
symmetric triplet (a6, a6, c8). In this case, the birational involution θ′

is a biregular automorphism interchanging y0 and y1, and Aut(X ′) is
generated by θ′. In both of the above two cases, Bir(X ′) is generated by
η′1, ι

′, θ′ and the only difference is whether θ′ is biregular or not. Now we
fix a general a6 and c8 and let e6 ∈ C[x0, x1] be a general homogeneous
polynomial of degree 6. For t ∈ C, let X ′

t be the weighted hypersurface
corresponding to the triplet (a6, a6 + te6, c8). Then, the above observa-
tion shows that Bir(X ′

t) remains the same as a group for t belonging to
a small open disk Δ � 0 while Aut(X ′

0)
∼= Z/2Z and Aut(X ′

t) = {id} for
t ∈ Δ \ {0}.
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