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Irrational open surfaces of non-negative logarithmic
Kodaira dimension

Hideo Kojima

Abstract.

We study irrational open algebraic surfaces of non-negative loga-
rithmic Kodaira dimension in any characteristic. We give a structure
theorem for the irrational open surfaces of logarithmic Kodaira dimen-
sion zero. Then, by using this result and the results in [7], we prove
that, for an irrational ruled open surface, its logarithmic Kodaira di-
mension is non-negative if and only if its logarithmic bigenus is positive.

§0. Introduction

Let k be an algebraically closed field, which we fix as the ground
field.

In the case of char (k) = 0, classification theory for open algebraic
surfaces has been developed by Kawamata, Fujita, Miyanishi, Tsunoda,
etc. In particular, Kawamata [6] gave structure theorems for open al-
gebraic surfaces of non-negative logarithmic Kodaira dimension. For
more details, we refer to [9] and [11]. Some of the results on open al-
gebraic surfaces are valid also in the case of char (k) > 0. For example,
the minimal model theory for open algebraic surfaces due to Miyanishi
and Tsunoda [12] (see also [11, Chapter 2]) works in any characteristic.
Miyanishi [10] proved that every irrational open algebraic surface of log-
arithmic Kodaira dimension −∞ is affine ruled. Recently, the author
[7] gave a structure theorem for open algebraic surfaces of logarithmic
Kodaira dimension one in any characteristic.

Received September 3, 2015.
Revised March 5, 2016.
2010 Mathematics Subject Classification. Primary 14J26; Secondary 14R25.
Key words and phrases. Open algebraic surface, logarithmic Kodaira di-

mension, logarithmic plurigenus.
The author was supported by Grant-in-Aid for Scientific Research (No.

26400042 and 24340006) from JSPS.



190 H. Kojima

In the present article, we study irrational open algebraic surfaces of
non-negative logarithmic Kodaira dimension in any characteristic. After
recalling the minimal model theory for open algebraic surfaces (see, e.g.,
[11, Chapter 2] and [7, Section 1]), we classify the strongly minimal irra-
tional open algebraic surfaces of logairhtmic Kodaira dimension zero (cf.
Theorem 2.1). In the case of char (k) = 0, the irrational open algebraic
surfaces of logarithmic Kodaira dimension zero were studied in Iitaka
[3], Sakai [14, Section 2], Miyanishi [11, Theorem 2.6.4.1 (p. 184)], etc.
In particular, [11, (1) and (2) of Theorem 6.4.1 (p. 184)] is the same as
Theorem 2.1 in the case of char (k) = 0. In Section 3, by using the re-
sults in Section 2 and the structure theorem for open algebraic surfaces
of logarithmic Kodaira dimension one in [7], we study logarithmic pluri-
genera of irrational open algebraic surfaces of non-negative logarithmic
Kodaira dimension. We prove the following theorem.

Theorem 0.1. Let S be a smooth irrational open algebraic surface.
Then κ(S) ≥ 0 if and only if P 4(S) > 0 or P 6(S) > 0. Moreover, if S
is ruled, then κ(S) ≥ 0 if and only if P 2(S) > 0.

In the case of char (k) = 0, Theorem 0.1 follow from the results of
Kuramoto [8] and Tsunoda [15]. Kuramoto [ibid] and Tsunoda [ibid]
considered the problem finding the smallest positive integer m such that
Pm(S) > 0 for any smooth open algebraic surface S of κ(S) ≥ 0 and
gave various interesting results. However, the problem has not yet been
solved completely when S is a rational surface of κ(S) ≥ 1 even in the
case of char (k) = 0.

Terminology. A reduced effective divisor D is called an SNC-divisor if
it has only simple normal crossings. We employ the following notations.
For the definitions of Pm and κ, see [4] (see also [5] for the definitions
in any characteristic).

KV : the canonical divisor on V .
κ(V ): the Kodaira dimension of V .
Pm(S) (m ≥ 1): the logarithmic m-genus of S.
κ(S): the logarithmic Kodaira dimension of S.
�Q�: the integral part of a Q-divisor Q.
�Q� := −�−Q�: the roundup of a Q-divisor Q.
D1 ∼ D2: D1 and D2 are linearly equivalent.
D1 ≡ D2: D1 and D2 are numerically equivalent.

§1. Preliminary results

We recall some basic notions in the theory of peeling. For more
details, see [11, Chapter 2] or [12, Chapter 1]. Let X be a smooth



Irrational open surfaces of κ ≥ 0 191

projective surface and B an SNC-divisor on X. We call such a pair
(X,B) an SNC-pair. A connected curve consisting only of irreducible
components of B is called a connected curve in B for shortness. A
connected curve T in B is admissible (resp. rational) if there are no
(−1)-curves in Supp (T ) and the intersection matrix of T is negative
definite (resp. it consists only of rational curves). A connected curve T
in B is a twig if its dual graph is a linear chain and T meets B − T in
a single point at one of the end components of T . A connected curve R
(resp. F ) in B is a rational rod (resp. rational fork) if it is rational and
its dual graph is a linear chain (resp. the dual graph of the exceptional
curves of a minimal resolution of a log terminal singular point and is
not a linear chain). An admissible rational twig T in B is maximal if
it is not extended to an admissible rational twig with more irreducible
components of B. By a (−2)-rod (resp. a (−2)-fork), we mean a rational
rod (resp. a rational fork) consisting only of (−2)-curves.

Let {Tλ} (resp. {Rμ}, {Fν}) be the set of all admissible rational
maximal twigs (resp. all admissible rational rods, all admissible rational
forks). Then there exists a unique decomposition of B as a sum of
effective Q-divisors B = B#+Bk (B) such that the following conditions
are satisfied:

(a) Supp (Bk (B)) = (∪λTλ) ∪ (∪μRμ) ∪ (∪νFν).
(b) (B# + KX) · Z = 0 for every irreducible component Z of

Supp (Bk (B)).

We call the divisor Bk (B) the bark of B.

Lemma 1.1. With the same notations as above, each connected
component of B − �B#� is a (−2)-rod or a (−2)-fork.

Proof. See [11, p. 94]. Q.E.D.

Definition 1.2. An SNC-pair (X,B) is almost minimal if, for every
irreducible curve C on X, either (B#+KX)·C ≥ 0 or (B#+KX)·C < 0
and the intersection matrix of C +Bk (B) is not negative definite.

Lemma 1.3. Let (X,B) be an SNC-pair. Then there exists a bira-

tional morphism μ : X → X̃ onto a smooth projective surface X̃ such
that the following four conditions (i) – (iv) are satisfied:

(i) B̃ := μ∗(B) is an SNC-divisor.

(ii) μ∗(Bk (B)) ≤ Bk (B̃) and μ∗(B# +KX) ≥ B̃# +KX̃ .

(iii) Pn(X−B) = Pn(X̃−B̃) for every integer n ≥ 1. In particular,

κ(X −B) = κ(X̃ − B̃).

(iv) The pair (X̃, B̃) is almost minimal.
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Proof. See [11, Theorem 2.3.11.1 (p. 107)], which is the same as
[12, Theorem 1.11]. Q.E.D.

In Lemma 1.3, we call the pair (X̃, B̃) an almost minimal model of
(X,B).

Lemma 1.4. Let (X,B) be an almost minimal SNC-pair. Then the
following assertions hold true.

(1) κ(X −B) ≥ 0 if and only if B# +KX is nef.
(2) If κ(X −B) ≥ 0, then B# +KX is semiample. Moreover, we

have the following.
(2-1) κ(X −B) = 0 ⇐⇒ B# +KX ≡ 0.
(2-2) κ(X −B) = 1 ⇐⇒ (B# +KX)2 = 0 and B# +KX �≡ 0.
(2-3) κ(X −B) = 2 ⇐⇒ (B# +KX)2 > 0.

Proof. See [7, Lemma 1.4]. Q.E.D.

In order to study an SNC-pair (X,B) of κ(X −B) ≥ 0, it is con-
venient to consider its strongly minimal model. We recall the following
lemma.

Lemma 1.5. Let (X,B) be an almost minimal SNC-pair of κ(X −
B) ≥ 0. Assume that there exists a (−1)-curve E such that E · (B# +
KX) = 0, E �⊂ Supp (�B#�) and the intersection matrix of E + Bk (B)
is negative definite. Let σ : X → Y be a composite of the contraction
of E and the contractions of all subsequently contractible components of
Supp (Bk (B)). Set BY := σ∗(B). Then the following assertions hold.

(1) The divisor BY is an SNC-divisor and each connected com-
ponent of σ(Supp (Bk (B))) is an admissible rational twig, an
admissible rational rod or an admissible rational fork of BY .

(2) The pair (Y,BY ) is an almost minimal SNC-pair.
(3) For every integer n ≥ 1, Pn(X − B) = Pn(Y − BY ). In

particular, κ(Y −BY ) = κ(X −B).

Proof. All the assertions follow from [11, (4), (6) and (7) of Lemma
2.4.4.1 (p. 123)]. Q.E.D.

Let E be a (−1)-curve on X. Then E is called a superfluous excep-
tional component ofB if E ⊂ Supp (�B#�), E·(B−E) = E·(�B#�−E) =
2 and E meets two irreducible components of �B#� − E. Assume that
E is a superfluous exceptional component of B. Let μ : X → Y
be the contraction of E and set BY := μ∗(B). It is then clear that

(Y,BY ) is an SNC-pair and B# + KX ≡ μ∗(B#
Y + KY ). Further,

Pn(X − B) = Pn(Y − BY ) for every integer n ≥ 1. So, when we
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construct an almost minimal model, we assume that there exist no su-
perfluous exceptional components.

By using the argument as above and Lemmas 1.3 and 1.5, we have
the following result.

Lemma 1.6. Let (X,B) be an SNC-pair of κ(X −B) ≥ 0. Then
there exists a birational morphism f : X → V onto a smooth projective
surface V such that the following conditions are satisfied:

(1) Set D := f∗(B). Then (V,D) is an almost minimal SNC-pair
with Pn(V −D) = Pn(X −B) for every n ≥ 1. In particular,
κ(V −D) = κ(X −B).

(2) There exist no superfluous exceptional components of D.
(3) There exist no (−1)-curves E such that E · (D# + KV ) = 0,

E �⊂ Supp (�D#�) and the intersection matrix of E + Bk (D)
is negative definite.

Definition 1.7. (1) In Lemma 1.6, we call the pair (V,D) a
strongly minimal model of a given SNC-pair (X,B) of κ(X −B)
≥ 0. An SNC-pair (V,D) of κ(V −D) ≥ 0 is said to be strongly
minimal if (V,D) becomes a strongly minimal model of itself.

(2) Let S be a smooth open algebraic surface of κ(S) ≥ 0. It
is then clear that there exists an SNC-pair (V,D) such that
S ∼= V −D. Let (V ′, D′) (resp. (V ′′, D′′)) be an almost minimal
(resp. strongly minimal) model of (V,D). We call the surface
V ′ −D′ (resp. V ′′ −D′′) an almost minimal model of S (resp.
a strongly minimal model of S).

Here, we recall a structure theorem for open algebraic surfaces of
κ = 1.

Lemma 1.8. (cf. [7, Theorem 2.1]) Let (V,D) be a strongly minimal
SNC-pair of κ(V −D) = 1. Then, for a sufficiently large integer n, the
complete linear system |n(D#+KV )| defines a fibration ρ : V → B from
V onto a smooth projective curve B such that ρ is an elliptic fibration,
a quasi-elliptic fibration or a P1-fibration. Moreover, let h : V → W
be a birational morphism such that π := ρ ◦ h−1 is a relatively minimal
model of the fibration ρ, let C := h∗(D#) and let F be a general fiber of
π. Then the following assertions hold.

(1) Assume that π is an elliptic or quasi-elliptic fibration. Then
we have:

(1-1) C =
∑

i diFi, where 0 < di ≤ 1 and miFi is a scheme-
theoretic fiber for some integer mi ≥ 1.

(1-2) Write R1π∗OW = L ⊕ T , where L is a locally free OB-
module and T is a torsion OB-module. Then the divisor
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C +KW can be expressed as follows:

C +KW = π∗(KB + δ) +
∑
s

asEs +
∑
i

diFi,

where asEs ranges over all multiple fibers of π with mul-
tiplicity ms, 0 ≤ as < ms, as = ms − 1 if msEs is not
a wild fiber of π, and δ is a divisor on B with deg δ =
χ(OW ) + lengthT .

(2) Assume that π is a P1-fibration. Then we have:
(2-1) We set as C = H +

∑
i diFi, where H is the sum of the

horizontal components of C and the Fi’s are fibers of π.
Then H is an SNC-divisor and consists of either two sec-
tions or an irreducible 2-section of π.

(2-2) The divisor C +KW can be expressed as follows:

C +KW = π∗(KB + δ) +
∑
i

diFi,

where δ is a divisor on B such that deg δ equals H1 · H2

(resp. one half of the number of the branch points of π|H ,
1− g(B)) if H = H1+H2 with sections H1 and H2 (resp.
H is irreducible and π|H is not purely inseparable, H is
irreducible and π|H is purely inseparable) and

di =

{
1
2

(
1− 1

mi

)
if #(Fi ∩H) = 1,

1− 1
mi

if #(Fi ∩H) = 2,

where mi is a positive integer or +∞.

Proof. See [7, Section 2]. Q.E.D.

§2. Irrational open surfaces of κ = 0

In this section, we study smooth irrational open algebraic surfaces
of κ = 0. The main result of this section is the following theorem, which
contains [11, (1) and (2) of Theorem 2.6.4.1 (p. 184)].

Theorem 2.1. Let (V,D) be an SNC-pair of κ(V −D) = 0. Then
the following assertions hold.

(1) If κ(V ) ≥ 0 and (V,D) is almost minimal (see Section 1),
then V is a minimal surface of κ(V ) = 0 and each connected
component of D is a (−2)-rod or a (−2)-fork.
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(2) Assume that V is an irrational ruled surface. Then V is an
elliptic ruled surface and P 2(V −D) = 1. Furthermore, if the
pair (V,D) is strongly minimal (see Section 1), the following
assertions hold.

(2-1) If V is relatively minimal, then either (a) D + KV ∼ 0,
V = PB(OB ⊕ L), where B is an elliptic curve and L ∈
Pic (B), and D = D1+D2 is a sum of two disjoint sections
D1 and D2 of the ruling π : V → B, or (b) D is an elliptic
curve with D ≡ −KV and V = PB(E), where B is an
elliptic curve and E is an indecomposable vector bundle of
rank two over B.

(2-2) If V is not relatively minimal, then char(k) = 2 and the
pair (V,D) is one of the pairs constructed in Example 2.2.

Here we give the pairs as in (2-2) of Theorem 2.1.

Example 2.2. (cf. [10, 2.1 and 2.2]) Assume that char(k) = 2. Let
B be an elliptic curve and let F : B → B be the absolute Frobenius
morphism. Then we have an exact sequence

0 → OB → F∗OB → L → 0,

where F∗OB is a vector bundle of rank two over B and L is an invertible
sheaf of degL = 0. By [10, Lemmas 2.4 and 2.6], 2L ∼ 0. The vector
bundle F∗OB defines a P1-bundle π : VFrob := P(F∗OB) → B and
the surjection F∗OB → L defines a section M . Moreover, the OB-
algebra F∗OB defines a smooth projective curve DFrob on VFrob such
that π|DFrob

: DFrob → B is identified with F : B → B (cf. [10, 2.1]).
The pair (VFrob, DFrob) is called the Frobenius pair over B.

Let (V ′, D′) be the Frobenius pair (VFrob, DFrob) or the pair obtained
from the Frobenius pair (VFrob, DFrob) by an elementary transformation
at a point on DFrob. Let P1, . . . , Pr (r ≥ 0) be points on D′ and let Fi

(1 ≤ i ≤ r) be the fiber of the ruling, say π′, on V ′ passing through Pi.
Then Fi ·D′ = 2 and Fi ∩D′ = {Pi} for i = 1, . . . , r. Let f : V → V ′

be a composite of blowing-ups over the points P1, . . . , Pr such that the
fiber f∗Fi (i = 1, . . . , r) of π′ ◦ f : V → B has the dual graph in Figure
1, where f∗Fi = 2(Ei +Di

1 + · · · +Di
si−2) +Di

si−1 +Di
si (si ≥ 2) and

the integer is the self-intersection number of the corresponding curve.
Set D := f ′(D′) +

∑r
i=1(

∑si
j=1 D

i
j). Since P 2(V

′ − D′) = 1 by [10,

Lemmas 2.4 and 2.6], we have P 2(V − D) = 1. In fact, we know that
D# = f ′(D′) and 2(D# + KV ) ∼ 0 by [10, Lemmas 2.4 and 2.6]. We
can easily see that κ(V −D) = 0 and (V,D) is strongly minimal.
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Figure 1
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In what follows, we prove Theorem 2.1.
In Lemma 2.3, we consider the case κ(V ) ≥ 0. It is then clear that

κ(V ) = 0 because κ(V ) ≤ κ(V −D) = 0.

Lemma 2.3. Let (V,D) be an almost minimal pair of κ(V −D) =
κ(V ) = 0. Then the following assertions hold.

(1) V is minimal.
(2) If D �= 0, then each connected component of D is a (−2)-rod

or a (−2)-fork.

Proof. By (2) of Lemma 1.4, D# +KV ≡ 0. Let H be an ample
divisor on V . Then H · D# = H · KV = 0 since D# is effective and
κ(V ) = 0. Hence V is minimal, which proves the assertion (1). Since
D# = 0, the assertion (2) follows from Lemma 1.1. Q.E.D.

In the subsequent argument, we consider the case κ(V ) = −∞.
Then V is an irrational ruled surface and so there exists a ruling π : V →
B over a smooth projective curve B of genus g(B) = h1(V,OV ) ≥ 1.

Lemma 2.4. With the same notations and assumptions as above,
assume further that the pair (V,D) is strongly minimal. Let D1, . . . , Ds

be all the irrational components of D. Then the following assertions
hold.

(1) s = 1 or 2 and (
∑s

i=1 Di) · F = 2, where F is a general fiber
of π.

(2) Each Di (1 ≤ i ≤ s) is an elliptic curve and a connected
component of Supp (D). In particular, V is an elliptic ruled
surface.

Proof. (1) If s = 0, then each irreducible component of D is a
fiber component of π. Then κ(V −D) = −∞, which is a contradiction.
Hence s ≥ 1. Let F be a general fiber of π. Since D# +KV ≡ 0 by (2)
of Lemma 1.4 and (1) of Lemma 1.6, we have D# · F = −KV · F = 2.
The coefficient of Di (1 ≤ i ≤ s) in D# equals one (see the definition of
D# in Section 1). Hence s = 1 or 2 and (

∑s
i=1 Di) · F = 2.
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(2) Since D# +KV ≡ 0 and the coefficient of Di (1 ≤ i ≤ s) in D#

equals one, we have

0 = Di · (D# +KV ) = Di · (D# −Di) +Di · (Di +KV )

≥ Di · (Di +KV )

≥ 0

for i = 1, . . . , s. Then Di is an elliptic curve and Di · (D# −Di) = 0 for
i = 1, . . . , s. Hence the assertion (2) follows. Q.E.D.

Lemma 2.5. With the same notations and assumptions as in
Lemma 2.4, assume further that either s = 2 or s = 1 and the mor-
phism π|D1 : D1 → B is not purely inseparable. Then V is relatively
minimal and D = D1 + · · ·+Ds.

Proof. We prove that V is relatively minimal. Suppose to the con-
trary that V is not relatively minimal. Let G be a singular fiber (i.e., a
reducible fiber) of π. Since D1 ·G > 0, there exists an irreducible com-
ponent E of G meeting D1. By (2) of Lemma 2.4, E is not a component
of D. Then

0 = E · (D# +KV ) ≥ E ·D1 + E ·KV ≥ 0.

So, E is a (−1)-curve and E ·D1 = 1.
Let S := {D′

1, . . . , D
′
t} be the set of all connected components of

Supp (D − D1) meeting E. If S = ∅, then E · D = E · D1 = 1. This
implies that E �⊂ Supp (�D#�), E · (D# +KV ) = 0 and the intersection
matrix of E+Bk (D) is negative definite. This is a contradiction because
(V,D) is strongly minimal. So, S �= ∅.
Claim.

(1) t = 1.
(2) D′

1 is a (−2)-rod.
(3) E meets one of the terminal components of D′

1.

Proof. Let Di (i = 1, . . . , t) be an irreducible component of D′
i that

meets E. Let βi be the coefficient of Di in D#. Since D# + KV ≡ 0
and E ·D1 = 1, we have E · (D# −D1) = 0. So βi = 0 for 1 ≤ i ≤ t.
Lemma 1.1 then implies that each D′

i is a (−2)-rod or a (−2)-fork. Since

E +
∑t

i=1 D
′
i is connected, Supp (E +

∑t
i=1 D

′
i) ⊂ Supp (G).

Suppose that the intersection matrix of E+
∑t

i=1 D
′
i is not negative

definite. Then Supp (E +
∑t

i=1 D
′
i) = Supp (G). Let m(E) be the

coefficient of E in G. Since E · D1 = 1 and D1 is a section or a 2-
section of π by (1) of Lemma 2.4, we know that m(E) = 1 or 2. If



198 H. Kojima

m(E) = 1, then Supp (G) contains a (−1)-curve other than E, which
is a contradiction. So m(E) = 2. Then D1 is a 2-section of π and
so s = 1. Further, the morphism π|D1 of degree two is branching at
π(G). This is a contradiction because D1 and B are elliptic curves and
π|D1 is separable by the hypothesis. Hence the intersection matrix of

E +
∑t

i=1 D
′
i is negative definite. This proves the assertions (1) – (3) of

Claim. Q.E.D.

We infer from Claim that E �⊂ Supp (�D#�), E · (D# + KV ) = 0
and the intersection matrix of E +Bk (D) is negative definite. This is a
contradiction because (V,D) is strongly minimal. Thus, we know that
V is relatively minimal.

Suppose that D contains a rational curve F . Since V is relatively
minimal and D1 is a section or a 2-section, F · D1 = 1 or 2. This
contradicts (2) of Lemma 2.4. Hence D =

∑s
i=1 Di. Q.E.D.

We consider the cases s = 1 and s = 2 separately.

Lemma 2.6. With the same notations and the assumptions as in
Lemma 2.5, assume further that s = 2. Then the pair (V,D) is the one
(a) in (2-1) of Theorem 2.1.

Proof. Lemma 2.5 implies that D = D1 + D2. Moreover, by the
definition of D#, we have D# = D. By [9, Lemma 2.1.1 (p. 4)], we have

P 1(V −D) ≥ pa(D1) + pa(D2) + pg(V )− q(V ) = 1.

So P 1(V −D) = 1 because κ(V −D) = 0. SinceD#+KV = D+KV ≡ 0
and P 1(V −D) = h0(V,D+KV ) = 1, we have D+KV ∼ 0. Since V is
relatively minimal, we know that V ∼= PB(E), where E is a vector bundle
of rank two over B. Since V contains two disjoint sections, it follows
that E is decomposable (see [2, Chapter V, Section 2]). Hence, the pair
(V,D) is the one (a) in (2-1) of Theorem 2.1. Q.E.D.

Lemma 2.7. With the same assumptions as in Lemma 2.5, assume
further that s = 1 and α := π|D1 : D1 → B is not purely inseparable.
Then V = PB(E), where E is a vector bundle of rank two over B such
that deg(det E) ≥ 0, D = D1, and 2(D +KV ) ∼ 0.

Proof. (cf. Proof of [11, Lemma 2.6.4.3 (p. 186)]) Lemma 2.5 im-
plies that D = D1. Note that α := π|D1 : D1 → B is an étale covering of
degree two. Here we may assume that α is a homomorphism of abelian
varieties of dimension one. Let V ′ := V ×B D, let π′ : V ′ → D be the
base change of π, and let α′ : V ′ → V be the base change of α. Then V ′

is smooth, π′ is a P1-fibration, and α′ is a finite étale morphism. Further-
more, π′ has a section D′

1 := {(P, P );P ∈ D}, and α′∗(D) = D′
1 +D′

2,
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where D′
2 := {(P, P+Q);P ∈ D} is another section of π′ with Q ∈ Kerα

that is not the origin of D. In fact, V ′ has an involution ψ induced by
the involution P �→ P + Q on B, and V is the quotient V ′/ < ψ >.
Since D′

1 ∩D′
2 = ∅, we have D′

1 +D′
2 +KV ′ ∼ 0 by Lemma 2.6. Since

α′∗(D +KV ) = D′
1 +D′

2 +KV ′ , we conclude that 2(D +KV ) ∼ 0.
It follows from Lemma 2.5 that V is a P1-bundle over B, i.e.,

V = PB(E) for some vector bundle E of rank two over B. Set e :=
−deg(det E). Let F be a fiber of π : V → B and M a section of π with
M2 = −e. ThenD ≡ −KV ≡ 2M+eF . SinceM ·D = −2e+e = −e ≥ 0,
we have e ≤ 0. Q.E.D.

The pair (V,D) as in Lemma 2.7 is the one (b) in (2-1) of Theorem
2.1.

Lemma 2.8. With the same assumptions as in Lemma 2.4, assume
further that s = 1 and α := π|D1 : D1 → B is purely inseparable. Then
(V,D) is the one in Example 2.2. In particular, P 2(V −D) = 1.

Proof. Let F1, . . . , Ft (t ≥ 0) be all the singular fibers of π. Then,
by using the same argument as in the proof of Lemma 2.5, we know that
the weighted dual graph of Fi (i = 1, . . . , t) looks like that in Figure 1
and that

D = D1 +
t∑

i=1

((Fi)red − Ei),

where Ei is a unique (−1)-curve in Supp (Fi). Since each connected
component of D − D1 is a (−2)-rod or a (−2)-fork, D# = D1. So
Pn(V − D) = Pn(V − D1) for every positive integer n. In particular,
κ(V −D1) = κ(V −D) = 0.

Let g : V → V ′ be a birational morphism from V onto a relatively
minimal surface V ′ and set D′ := g(D1). Then D′ is an elliptic curve,
π ◦ g−1|D′ : D′ → B is a purely inseparable morphism of degree two,
and κ(V ′ −D′) = κ(V −D) = 0. Then [10, Theorem 2] implies that
(V ′, D′) is the Frobenius pair (VFrob, DFrob) over B or the pair obtained
from the Frobenius pair (VFrob, DFrob) by an elementary transformation
with center at a point on DFrob (see Example 2.2). Hence the assertions
follow. Q.E.D.

The proof of Theorem 2.1 is thus completed.
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§3. Logarithmic plurigenera of irrational open algebraic sur-
faces

In this section, we give some results on logarithmic plurigenera of
irrational open algebraic surfaces of κ ≥ 0 in any characteristic. The
main result of this section is the following:

Theorem 3.1. Let S be a smooth irrational ruled oepn algebraic
surface. Then κ(S) ≥ 0 if and only if P 2(S) > 0.

In what follows, we prove Theorem 3.1. The “if” part of Theorem
3.1 is clear. So we prove the “only if” part.

Let (V,D) be an SNC-pair with V −D ∼= S. By Lemmas 1.3 and 1.6,
we may assume that (V,D) is strongly minimal. Since V is an irrational
ruled surface, there exists a ruling p : V → B onto a smooth projective
curve B of genus g(B) = h1(V,OV ) > 0. Let D′ be the sum of the fiber
components of D. It is clear that Pn(S) ≥ Pn(V − (D −D′)) for every
positive integer n. Since κ(V −D) ≥ 0, by using [10, Theorem 1], we
konw that 2 ≤ F · D = F · (D − D′) for a fiber F of π. By using [10,
Theorem 1] again, we have κ(V − (D −D′)) ≥ 0. Therefore, in order to
prove Theorem 3.1, we may assume further that D′ = 0. We consider
the following three cases separately.

Case: κ(V −D) = 0. In this case, it follows from Theorem 2.1 that
P 2(V −D) = 1.

Case: κ(V −D) = 2. We note that D# = D because D contains no
rational curves. Since κ(V −D) = 2 and (V,D) is almost minimal, it
follows from (2-3) of Lemma 1.4 that D +KV is nef and big. Then we
have

h2(V, n(D +KV )) = h0(V,KV − n(D +KV )) = 0

for every positive integer n. By using the Riemann–Roch theorem, we
have

h0(V, n(D +KV )) ≥ n

2
(D +KV ) · (n(D +KV )−KV ) + χ(OV )

=
n(n− 1)

2
(D +KV )

2 +
n

2
(D +KV ) ·D

+1− g(B)

for every positive integer n. Since every component of D has genus
≥ g(B), we have

n

2
(D +KV ) ·D ≥ n(g(B)− 1).
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Then,

h0(V, n(D +KV )) ≥
n(n− 1)

2
(D +KV )

2 + (n− 1)(g(B)− 1).

Since (D + KV )
2 > 0 and g(B) ≥ 1, we conclude that Pn(S) ≥

h0(V, n(D +KV )) > 0 for every integer n ≥ 2.

Case: κ(V −D) = 1. We use Lemma 1.8. Let the assumptions and
notations be the same as in Lemma 1.8.

We consider the case where the fibration π is either an elliptic fibra-
tion or a quasi-elliptic fibration.

Lemma 3.2. With the same notations and assumptions as in (1) of
Lemma 1.8, assume further that V is an irrational ruled surface. Then
P 2(V −D) > 0.

Proof. Since V is an irrational ruled surface, W is an elliptic ruled
surface and π is an elliptic fibration. Moreover, since π is relatively
minimal, so is W .

Claim. With the same notations as above, the following assertions hold.

(1) B ∼= P1.
(2) t := deg δ = lengthT .
(3) For every i with di �= 0, di = 1.

Proof. Since W is an elliptic ruled surface and deg δ = lengthT ,
the assertions (1) and (2) are clear. Moreover, we see that every fiber
of π is a multiple of a smooth elliptic curve. Since di is the coefficient
of h′(Fi) in D#, the assertion (3) holds because h′(Fi) is not a rational
curve. Q.E.D.

By (1-2) of Theorem 1.8, we have

C +KW = (t− 2)π∗(P ) +

s∑
r=1

arEr +

j∑
i=1

Fi,

where P is a point of B ∼= P1, s, j ≥ 0, arEr ranges over all multiple
fibers of π with multiplicity mr, 0 ≤ ar < mr, and ar = mr − 1 if mrEr

is not a wild fiber of π. If t ≥ 2, then C+KW ≥ 0 and so P 1(V −D) > 0.
From now on, we assume t ≤ 1. Since κ(W ) = −∞ and κ(V −D) = 1,

we have C =
∑j

i=1 Fi > 0.
Since (C +KW ) ·A > 0 for any ample divisor A on W , we have

t− 2 +
s∑

r=1

ar
mr

+

j∑
i=1

1

ni
> 0, (3.1)
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where niFi is the scheme-theoretic fiber of π containing Fi.

Case 1: t = 1. We may assume that m1E1 is the unique wild fiber of
π. By (3.1), we have

a1
m1

+
s∑

r=2

mr − 1

mr
+

j∑
i=1

1

ni
> 1. (3.2)

We consider the following subcases separately.

Subcase 1-1: π has the unique multiple fiber, i.e., s = 1. Then we have

C +KW = −π∗(P ) + a1E1 +

j∑
i=1

Fi.

If ni = 1 for some i, 1 ≤ i ≤ j, then C+KW ≥ 0 and so P 1(V −D) > 0.
Suppose that ni ≥ 2 for any i = 1, . . . , j. By the assumption, we know
that j = 1, n1 = m1 and n1F1 = m1E1. So

a1
m1

+

j∑
i=1

1

ni
=

a1 + 1

m1
≤ 1.

This contradicts (3.2). Therefore, we know that P 1(V −D) > 0.

Subcase 1-2: π has just two multiple fibers. Then m1E1 and m2E2

exhaust the multiple fibers of π and a2 = m2 − 1. By (3.2), we have

a1
m1

+

j∑
i=1

1

ni
>

1

m2
.

By the canonical bundle formula (cf. [1, Theorem 2]), we know that
either a1 = m1 − 1 or a1 = m1 − ν1 − 1, where ν1 is a positive integer
satisfying ν1|m1. If a1 = m1 − 1, then

2KW = −2π∗(P ) + 2(m1 − 1)E1 + 2(m2 − 1)E2 ≥ 0.

This is a contradiction because κ(W ) = −∞. Hence, a1 = m1 − ν1 − 1
and ν1 ≥ 1.

If ni = 1 for some i, 1 ≤ i ≤ j, then C+KW ≥ −π∗(P )+
∑j

i=1 Fi ≥
0 and so P 1(V −D) > 0. So we may assume that ni ≥ 2 for i = 1, . . . , j.
Then (1 ≤)j ≤ 2 and {n1F1, . . . , njFj} ⊂ {m1E1,m2E2}. If niFi =
m2E2 for some i, 1 ≤ i ≤ j, then C+KW ≥ −π∗(P )+(m2−1)E2+Fi ≥ 0
and so P 1(V −D) > 0. Hence we may assume further that j = 1 and
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F1 = E1. Then C + KW = −π∗(P ) + (m1 − ν1)E1 + (m2 − 1)E2 and
ν1|m1. Since m1 − 2ν1,m2 − 2 ≥ 0, we have

2(C +KW ) = −2π∗(P ) + 2(m1 − ν1)E1 + 2(m2 − 1)E2

= (m1 − 2ν1)E1 + (m2 − 2)E2

≥ 0.

Therefore, we conclude that P 2(V −D) > 0.

Subcase 1-3: π has at least three multiple fibers. Then we see that
κ(W ) ≥ 0 by using the canonical bundle formula (cf. [1, Theorem 2]).
This is a contradiction. So this subcase does not take place.

Case 2: t = 0. In this case, π has no wild fibers. So as = ms − 1 for
any s = 1, . . . , t. By (3.1), we have

s∑
r=1

mr − 1

mr
+

j∑
i=1

1

ni
> 2. (3.3)

We consider the following subcases separately.

Subcase 2-1: π has no multiple fibers. By (3.3), ni = 1 for any i =

1, . . . , j and j > 2. Then C + KW = −2π∗(P ) +
∑j

i=1 Fi > 0 and so

P 1(V −D) > 0.

Subcase 2-2: π has the unique multiple fiber m1E1. By (3.3),

j∑
i=1

1

ni
> 1 +

1

m1
.

Since ni = 1 or m1 for i = 1, . . . , j, we may assume that j ≥ 2 and n1 =
n2 = 1. Then C+KW ≥ −2π∗(P )+F1+F2 ≥ 0 and so P 1(V −D) > 0.

Subcase 2-3: π has just two multiple fibers m1E1 and m2E2. By (3.3),

j∑
i=1

1

ni
>

1

m1
+

1

m2
.

Since ni ∈ {1,m1,m2} for i = 1, . . . , j, the above inequality implies that
ni = 1 for some i, 1 ≤ i ≤ j. We may assume that n1 = 1. Then

C +KW = −π∗(P ) + (m1 − 1)E1 + (m2 − 1)E2 +

j∑
i=2

Fi.
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Since m1,m2 ≥ 2, we obtain

2(C +KW ) = (m1 − 2)E1 + (m2 − 2)E2 +

j∑
i=2

2F2 ≥ 0.

Hence P 2(V −D) > 0.

Subcase 2-4: π has just three multiple fibers m1E1, m2E2, and m3E3.
If ni = 1 for some i, 1 ≤ i ≤ j, then, by using the same argument as in
Subcase 2-3, we see that P 2(V −D) > 0. Suppose that ni > 1 for every

i = 1, . . . , j. We note that
∑j

i=1 Fi �= 0, i.e., j ≥ 1. So we may assume
that F1 = E1. Then

C +KW = −π∗(P ) + (m2 − 1)E2 + (m3 − 1)E2 +

j∑
i=2

Fi.

Since m2,m3 ≥ 2, we obtain

2(C +KW ) = (m2 − 2)E2 + (m3 − 2)E2 +

j∑
i=2

2Fi ≥ 0.

Hence P 2(V −D) > 0.

Subcase 2-5: π has at least four multiple fibers. Then κ(W ) ≥ 0
by using the canonical bundle formula (cf. [1, Theorem 2]). This is a
contradiction.

The proof of Lemma 3.2 is thus completed. Q.E.D.

We consider the case where the fibration π is a P1-fibration.

Lemma 3.3. With the same notations and assumptions as in (2) of
Lemma 1.8, assume further that V is an irrational ruled surface. Then
P 2(V −D) > 0.

Proof. Since V is an irrational ruled surface, g(B) > 0. If g(B) ≥ 2,
then it follows from [7, Lemma 3.1] that Pn(V −D) > 0 for every integer
n ≥ 2.

Suppose that g(B) = 1. As seen from the proof of [7, Lemma 3.2]
in [7], we see that Pn(V − D) > 0 for every integer n ≥ 2 if either
H is reducible or H is irreducible and the morphism π|H : H → B is
separable.

Suppose further that H is irreducible and π|H : H → B is not
separable. Since deg π|H = 2, π|H is then a purely inseparable cover-
ing of degree two. Then we infer from [10, Lemma 2.5] that the pair
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(W,H) is isomorphic to either the Frobenius pair (VFrob, DFrob) or the
pair obtained from the Frobenius pair by an elementary transformation
with center at a point on DFrob (see Example 2.2). By [10, Lemma 2.6],
2(H + KW ) ∼ 0. Since C ≥ H, we have |2(�C� + KW )| �= ∅. Hence
P 2(V −D) > 0. Q.E.D.

The proof of Theorem 3.1 is thus completed.

Finally, we prove Theorem 0.1.

Proof of Theorem 0.1. The last assertion is Theorem 3.1. We prove
the first assertion. Let S be a smooth irrational open algebraic surface
and (V,D) be an SNC-pair with V − D ∼= S. The “if” part is clear.
We prove the “only if” part. If κ(V ) = −∞, then V is an irrational
ruled surface. So P 2(S) > 0 by Theorem 3.1. Assume that κ(V ) ≥ 0.
Since Pn(S) = h0(V, n(D +KV )) ≥ Pn(V ) for every positive integer n,
it follows from the structure theorems on smooth projective surfaces (cf.
[13]) that P 4(S) > 0 or P 6(S) > 0. Q.E.D.
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