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Locally nilpotent derivations of rings graded
by an abelian group

Daniel Daigle, Gene Freudenburg and Lucy Moser-Jauslin

§1. Introduction

Among the most important tools in the study of locally nilpotent
derivations (LNDs) of commutative rings are its Z-gradings and the
homogeneous derivations associated to them. Gradings which involve
other totally ordered abelian groups have also been used to study LNDs,
though to a lesser extent. Gradings which involve non-totally ordered
abelian groups have been largely ignored in this context, since it is no
longer possible to associate a highest-degree homogeneous derivation to
a given derivation in this case. However, it turns out that one can
still get valuable information about LNDs from such gradings. In [7],
the second and third authors studied LNDs of certain rings graded by a
finite cyclic group. Their results were applied to show that some families
of Pham-Brieskorn threefolds are rigid, i.e., their coordinate rings have
no nonzero LNDs.

In the present work, we generalize the theory developed in that
paper to the case of rings graded by arbitrary abelian groups. Let B be
a domain of characteristic zero graded by an abelian group G. For any
subgroup H of G, let BH be the subring of B generated by the nonzero
homogeneous elements of B whose degrees belong to H. An element x
of B is G-critical if it is homogeneous and nonzero, and if there exists a
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subgroup H of G such that deg x /∈ H and B = BH [x]. Our main result
is Theorem 6.2, which states thatD2x = 0 wheneverD is a homogeneous
LND of B and x ∈ B is a G-critical element. Moreover, if y is a second
G-critical element and xB �= yB, then either Dx = 0 or Dy = 0. As
an application of this theorem, we settle some of the cases of Pham-
Brieskorn threefolds which were out of the reach of the earlier paper. As
a second application, we give a short proof of the fact that the Derksen
invariant of Russell’s cubic threefold is nontrivial.

We assume throughout that rings are commutative with identity.
Given the ring B, the units of B are denoted by B∗. Given the integer
n ≥ 0, the polynomial ring in n variables over B is denoted B[n]. If B
is a domain, the field of fractions of B is denoted frac(B). The cyclic
group of order n is indicated by Zn.

§2. Locally Nilpotent Derivations

We first recall a few basic definitions and facts concerning locally
nilpotent derivations.

Let B be an integral domain containing Q. The set of derivations
of B is denoted by Der(B). If D ∈ Der(B), we write

ker(D) = {f ∈ B|D(f) = 0} and Nil(D) = {f ∈ B|Dnf = 0 forn � 0};
note that these are two subrings of B. We say that D ∈ Der(B) is locally
nilpotent if Nil(D) = B. The set of locally nilpotent derivations of B is
denoted by LND(B). We say that B is rigid if LND(B) = {0}.

GivenD ∈ LND(B), kerD is factorially closed in B and B∗ ⊂ kerD.
Each nonzero D ∈ LND(B) determines a degree function degD : B →
N ∪ {−∞}, defined by

degD f = min{n ∈ N |Dn+1f = 0} if f �= 0, and degD 0 = −∞.

(See Def. 3.3.) Any t ∈ B with degD t = 1 is called a local slice or
preslice for D. If t is a local slice of D and A = kerD, then:

(1) BDt = ADt[t] = A
[1]
Dt

In this case, degD f for f ∈ B is equal to the degree of f as a polynomial
in t.

We make use of the following properties (see [6], Princ. 5 and Lemma
9.3).

Lemma 2.1. Suppose that D ∈ LND(B).
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(a) If f ∈ B and the integer n ≥ 1 are such that Dnf ∈ fB, then
Dnf = 0.

(b) If f, g ∈ B are such that Df ∈ gB and Dg ∈ fB, then Df = 0
or Dg = 0.

(c) Suppose u, v ∈ kerD and x, y ∈ B are nonzero, and a and b
are integers with a, b ≥ 2. Assume uxa + vyb �= 0. If D(uxa +
vyb) = 0, then Dx = Dy = 0.

Definition 2.2. Given a derivation D : B → B, let δ : R → R be a
derivation of a subring R ⊂ B. Then D is a quasi-extension of δ if there
exists a nonzero t ∈ B such that Ds = t · δs for all s ∈ R.

One of the main tools we use to study locally nilpotent derivations
for rings graded by Zn is the following.

Lemma 2.3. ([6], Lemma 5.38) Let B be an integral domain con-
taining Z, and let D : B → B be a derivation which is a quasi-extension
of a derivation δ : R → R for some subring R. If D ∈ LND(B), then
δ ∈ LND(R).

For a more extensive treatment of locally nilpotent derivations, the
reader is referred to [6].

§3. G-Gradings of Rings

Definition 3.1. An abelian group G is totally ordered if G has a
total order ≤ which is translation invariant: For all x, y, z ∈ G, x+ z ≤
y + z whenever x ≤ y.

Remark 3.2. One says that an abelian group is orderable if there
exists a total order that makes it a totally ordered abelian group in the
sense of Def. 3.1. It is well known that an abelian group is orderable if
and only if it is torsion-free.

If G is a totally ordered abelian group, then G∪{−∞} is the totally
ordered set which extends the order of G by setting −∞ < g for all
g ∈ G.

Definition 3.3. Let B be an integral domain and let G be a totally
ordered abelian group. A function deg : B → G ∪ {−∞} is a degree
function if:

(i) deg−1(−∞) = {0}
(ii) deg(fg) = deg f + deg g for each nonzero f, g ∈ B

(iii) deg(f + g) ≤ max{deg f,deg g} for all f, g ∈ B
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Definition 3.4. Let G be an abelian group, and let B be a ring. A
G-grading of B is a family {Bg}g∈G of subgroups of (B,+) such that:

(i) B = ⊕g∈GBg

(ii) BgBh ⊂ Bg+h for all g, h ∈ G

If M is a submonoid of G then by an M -grading of B we mean a
G-grading {Bg}g∈G of B satisfying Bg = 0 for all g ∈ G \M .

3.5. Definitions and Observations. Assume that G is an abelian
group, B = ⊕g∈GBg is a G-graded ring, H ⊂ G is a subgroup, and A is
a subring of B.

1. B0 is a subring of B, 1 ∈ B0, each Bg is a B0-module, and
B = ⊕g∈GBg as B0-modules. If R is a subring of B, then B is
G-graded over R if R ⊂ B0.

2. f ∈ B is G-homogeneous if and only if f ∈ Bg for some g ∈ G.
If f �= 0 then g is unique, we say that f is of degree g, and we
write degG f = g.

3. Given f ∈ B, there exists a unique family (fg)g∈G such that
(i) fg ∈ Bg for every g ∈ G, (ii)

{
g ∈ G | fg �= 0

}
is a finite

set, and (iii) f =
∑

g∈G fg.

4. If G is totally ordered, then degG (defined in 2.) extends to a
function degG : B → G ∪ {−∞} by defining:

degG(f) = max
{
g ∈ G | fg �= 0

}
(if f �= 0) and degG(0) = −∞.

If B is a domain then this map is a degree function on B; we
refer to it as the degree function determined by the grading.

5. Given g ∈ G, define Ag = A∩Bg. We say that A is a G-graded
subring of B if the family {Ag}g∈G defines a G-grading of A,
or equivalently, if A is generated by G-homogeneous elements
as an algebra over A0.

6. If A is a G-graded subring of B then we write G(A) for the
subgroup of G generated by

{
g ∈ G | Ag �= 0

}
. Note that

G(A) is a subgroup of G(B).

7. The subring BH ⊂ B defined by BH = ⊕g∈HBg is G-graded.
Note that G(BH) ⊂ H and A ⊂ BG(A). If K is a subgroup of
H, then BK ⊂ BH .

8. D ∈ Der(B) is G-homogeneous if and only if there exists d ∈ G
such that DBg ⊂ Bg+d for all g ∈ G. If D �= 0, then d is
unique, is called the degree of D, and is denoted by degG D.
The kernel of a G-homogeneous derivation of B is a G-graded
subring of B.
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9. Any group homomorphism α : G → G′ induces a G′-grading
of B, namely:

B = ⊕γ∈G′B′
γ where B′

γ = ⊕α(g)=γBg.

In this case, eachG-homogeneous element ofB isG′-homogene-
ous, and each G-homogeneous derivation of B is G′-homogene-
ous.

10. Suppose that B is an integral domain and let a, b ∈ B \ {0}. If
ab and b are G-homogeneous, then a is also G-homogeneous.
If G is torsion free, then ab G-homogeneous implies that a and
b are G-homogeneous.

11. Suppose that G is totally ordered. Given nonzero b ∈ B, b̄
denotes the highest-degree homogeneous summand of b. For
any subring R ⊂ B, R̄ denotes the subring of B generated by
the set {r̄ | r ∈ R, r �= 0}.

3.6. Associated Graded Rings. Suppose that R is an integral
domain with a degree function deg : R → G ∪ {−∞}, where G is a
totally ordered abelian group.

1. The pair (R,deg) determines the G-graded integral domain
Gr(R) = ⊕g∈GR≤g/R<g, called the associated graded ring,
where for each g ∈ G we set

R≤g =
{
f ∈ R | deg(f) ≤ g

}
and R<g =

{
f ∈ R | deg(f) < g

}
.

One also defines the map gr : R → Gr(R) by stipulating that
gr(0) = 0 and that, given x ∈ R \ {0}, gr(x) is the nonzero
element x+R<g of R≤g/R<g, where g = deg(x). The map gr
preserves multiplication but in general not addition.

2. Given a derivation D : R → R, let U(D) =
{
deg(Dx) −

deg(x) | x ∈ R \ {0}}. Then U(D) is a nonempty subset
of the totally ordered set G ∪ {−∞}. If U(D) has a greatest
element, we define deg(D) to be that element; if U(D) does not
have a greatest element, we say that deg(D) is not defined. So
the phrase “deg(D) is defined” is equivalent to U(D) having a
greatest element. Note that if deg(D) is defined then deg(D) ∈
G ∪ {−∞}. Also note that if D is the zero derivation then
deg(D) is defined and is equal to −∞; conversely, deg(D) =
−∞ implies D = 0.

3. It is well known that if D : R → R is a derivation such that
deg(D) is defined then there is an associated G-homogeneous
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derivation gr(D) : Gr(R) → Gr(R) satisfying:
for each x ∈ R \ {0},

(grD)(grx) =

{
gr(Dx), if deg(Dx)− deg x = degD,

0, if deg(Dx)− deg x < degD.

Moreover, gr(D) satisfies deg(gr(D)) = deg(D) and hence
gr(D) = 0 ⇔ D = 0. It is also easy to see that gr maps ker(D)
into ker(grD) and that

if D is locally nilpotent then so is gr(D).

Remark. Parts 2. and 3. of paragraph 3.6 follow [5]. We stress that
the condition “deg(D) is defined” (i.e., “U(D) has a greatest element”)
is exactly what is needed for the existence of gr(D). In the special
case G = Z, the condition “U(D) has a greatest element” is equivalent
to “U(D) has an upper bound in G”, in which case one says that D
respects the filtration (see [6, Sec. 1.1.5]).

In general, the ring Gr(R) can be difficult to work with. However,
we are mainly interested in the case where the degree function comes
from a G-grading, and the situation is easier to handle in this case.

Suppose that B is a G-graded integral domain, where G is totally
ordered, and let degG be the degree function on B determined by the
grading (cf. part 4. of paragraph 3.5). Then the associated graded ring
Gr(B) determined by (B,degG) is naturally isomorphic to B. If R ⊂ B
is a (not necessarily graded) subring, then the restriction of degG to R
gives rise to an associated graded ring Gr(R) which is easy to describe:
Gr(R) = R̄ (cf. part 11. of paragraph 3.5).

The following two results are needed in Section 8.

Lemma 3.7. Let G be a totally ordered abelian group and B =
⊕g∈GBg a G-graded integral domain. Let A = ⊕g≤0Bg, x ∈ B, and
R = A[x]. Then R̄ = A[x̄].

Proof. If x ∈ A this is clear, since A is a G-graded subring of
B. So assume x �∈ A. Given nonzero r ∈ R, suppose that r =∑

1≤i≤n aix
ei for nonzero a1, ..., an ∈ A and distinct e1, ..., en ∈ N (n ≥

2). If degG(aix
ei) = degG(ajx

ej ) for ei > ej , then degG(aix
ei−ej ) =

degG(aj) ≤ 0, which implies that aix
ei−ej ∈ A. We may therefore write

r as a sum of n − 1 terms of the form axe (a ∈ A, e ∈ N). Since this
kind of reduction can be carried out only a finite number of times, we
can assume that:

r =
∑

1≤i≤n

aix
ei and degG(aix

ei) �= degG(ajx
ej ) when i �= j
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Letm (1 ≤ m ≤ n) be such that degG(amxem) = max1≤i≤n degG(aix
ei).

Then r̄ = āmx̄em . Since ām ∈ A, we see that r̄ ∈ A[x̄]. Q.E.D.

Theorem 3.8. ([5], Thm 1.7(a) and L. 1.8) Let k be a field of
characteristic zero, G a totally ordered abelian group, B a G-graded k-
affine integral domain, and R ⊂ B a k-subalgebra such that B is a
localization of R. Let deg : R → G ∪ {−∞} be the restriction of the
degree function on B determined by the grading. Then deg(D) is defined
for every D ∈ Derk(R).

Remark. Let notations and assumptions be as in Thm 3.8. Then
(R,deg) determines Gr(R), and Thm 3.8 (together with part 3. of para-
graph 3.6) implies:

gr(D) : Gr(R) → Gr(R) is defined for every D ∈ Derk(R).

Definition 3.9. We shall say that a 4-tuple (B,R, t, n) is pericyclic
if B is a ring, R is a subring of B, n is a positive integer, and t ∈ B \{0}
is such that tn ∈ R and B =

⊕
0≤i≤n−1 Rti.

Remarks 3.10. The notion of a pericyclic 4-tuple is convenient for
avoiding repetitions in the text below. The reader should keep in mind
that these 4-tuples have the following properties.

(1) If (R,B, t, n) is pericyclic, then the sum B =
⊕

0≤i≤n−1 Rti

can be interpreted as a Zn-grading, B =
⊕

g∈Zn
Bg, by choos-

ing a generator ξ of the group Zn and defining Biξ = Rti for
all i such that 0 ≤ i < n. Then B0 = R, t is homogeneous of
degree ξ, and Zn(B) = Zn.

Conversely, if B =
⊕

g∈Zn
Bg is a Zn-graded ring such that

Zn(B) = Zn and B = B0[t] for some homogeneous t ∈ B \ {0},
then (B,B0, t, n) is a pericyclic 4-tuple.

(2) If (R,B, t, n) is a pericyclic 4-tuple and B is a domain, then
B ∼= R[T ]/(Tn − f) as an R-algebra, where T is an indetermi-
nate over R and f = tn ∈ R \ {0}.

Conversely, if R is a domain, f ∈ R \ {0}, and n ≥ 1 are
such that B = R[T ]/(Tn−f) is a domain, then (B, π(R), π(T ),
n) is a pericyclic 4-tuple, where π : R[T ] → B is the canonical
homomorphism of the quotient ring.

Definition 3.11. Let (B,R, t, n) be a pericyclic 4-tuple, where B
is a domain of characteristic zero. Then Der(B,R, t, n) denotes the set
of all D ∈ Der(B) satisfying the following equivalent conditions (where
we define I = {0, 1, . . . , n− 1}):

(i) for each i ∈ I, there exists j ∈ I such that D
(
Rti

) ⊆ Rtj ;
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(ii) D is homogeneous with respect to the Zn-grading defined in
Remarks 3.10(1).

In addition, LND(B,R, t, n) = LND(B) ∩Der(B,R, t, n).

Note that, in the definition above, (ii) clearly implies (i); the con-
verse is an exercise left to the reader.

Theorem 3.12. ([7], Thm. 3.1) Consider a pericyclic 4-tuple (B,R,
t, n) where B is a domain of characteristic zero. Given D ∈ LND(B,R, t,
n), there exist δ ∈ LND(R) and m ∈ Z, 0 ≤ m ≤ n − 1, such that the
following conditions hold.

(a) D is the quasi-extension of δ given by D|R = tmδ.

(b) Dt, δf ∈ ker δ = R ∩ kerD, where f = tn ∈ R.

(c) If Dt �= 0, then m = n− 1 and kerD = ker δ.

§4. A Result on Homogeneous Prime Local Slices

An earlier version of the following result was given by the first author
in [3, Prop. 2.1].

Proposition 4.1. Let B =
⊕

g∈G Bg be a G-graded Q-domain,

where G is an abelian group. Suppose that D ∈ LND(B) is G-homogene
ous and that p is a G-homogeneous prime element of B satisfying deg(p)
/∈ G(kerD). Then the following hold.

(a) p is a local slice of D that divides every G-homogeneous local
slice of D.

(b) The ideal ker(D) ∩D(B) of ker(D) is the principal ideal gen-
erated by D(p).

(c) If B is a UFD and G is torsion-free then B = BH [p], where
H = G(kerD).

Proof. Let A = kerD and H = G(A), and note that deg(p) /∈ H
and p /∈ A (in particular D �= 0). Since D is homogeneous, locally
nilpotent and nonzero, there exists a homogeneous local slice of D, i.e.,
a homogeneous element v ∈ B such that Dv �= 0 and D2v = 0. Let
α = Dv ∈ A \ {0}, then B[α−1] = A[α−1][v] = A[α−1] [1]. In particular
there exists an integer m ≥ 0 such that αmp ∈ A[v]. So we may write
αmp =

∑
i∈I aiv

i, where I is a nonempty finite subset of N and, for each

i ∈ I, ai ∈ A \ {0} is homogeneous and deg(aiv
i) = deg(αmp). Since

deg(ai),deg(α) ∈ H and deg(p) /∈ H, we get ideg(v) /∈ H and hence
i > 0 for each i ∈ I. It follows that

(2) αmp = bv,
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for some b ∈ B \ {0}. We claim that p | v (in B). Indeed, if p � v then
p | b (because p is a prime element of B), so equation (2) gives v | αm,
so v ∈ A since A is factorially closed in B, contradicting Dv �= 0. Hence
p | v (showing that p divides every homogeneous local slice of D). Now
degD(p) ≤ degD(v) = 1 and p /∈ A imply that p is a local slice of D.
Assertion (a) is proved, and (b) immediately follows.

To prove (c), we assume that G is torsion-free; then G is orderable
and consequently the grading of B has the following property: every
factor of a nonzero homogeneous element of B is itself homogeneous
(observe in particular that all units of B are homogeneous). We also
assume that B is a UFD, so every nonzero homogeneous element of
B is a finite product of homogeneous elements that are either units or
prime. So it will suffice to show that all units and all homogeneous
prime elements belong to BH [p]. Each unit belongs to A and hence to
BH . If q is a homogeneous prime such that q /∈ BH then deg q /∈ H,
so, by applying (a) to q, we obtain that q is a homogeneous local slice
that divides every homogeneous local slice. This implies that p, q are
associates, and since we already know that all units are in BH we obtain
q ∈ BH [p]. Q.E.D.

Corollary 4.2. Let B be a G-graded Q-domain, where G is an
abelian group. Let n ≥ 2 and suppose that x1, . . . , xn are homogeneous
prime elements of B satisfying:

(i) for each subset I ⊂ {1, . . . , n} of cardinality n− 1,
{
deg(xi) |

i ∈ I
}
generates G(B);

(ii) for any choice of distinct i, j ∈ {1, . . . , n}, xi, xj are not asso-
ciates.

Then G(kerD) = G(B) for all G-homogeneous D ∈ LND(B).

Proof. IfG(kerD) �= G(B) then there exist distinct i, j ∈ {1, . . . , n}
such that deg(xi),deg(xj) /∈ G(kerD); then Prop. 4.1(a) implies that
xi | xj and xj | xi, a contradiction. Q.E.D.

The next two results follow immediately from Cor. 4.2.

Corollary 4.3. Let B = k[x1, . . . , xn] = k[n] where k is a field of
characteristic zero and n ≥ 2, and let B be graded by an abelian group
G in such a way that each xi is G-homogeneous and

for each subset I ⊂ {1, . . . , n} of cardinality n− 1,{
deg(xi) | i ∈ I

}
generates G(B).

Then G(kerD) = G(B) for all G-homogeneous D ∈ LND(B).
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Corollary 4.4. Suppose that k is a field of characteristic zero.
Given the integer n ≥ 4, let k[X1, ...,Xn] = k[n] and define

B = k[X1, . . . ,Xn]/(X
a1
1 + · · ·+Xan

n )

where a1, . . . , an ∈ Z are positive. Let π : k[X1, ...,Xn] → B be the
standard surjection and set xi = π(Xi), 1 ≤ i ≤ n. Define a Z-grading
on B by declaring that xi is homogeneous of degree L/ai, 1 ≤ i ≤ n,
where L = LCM(a1, . . . , an). Assume that the following property holds.

For every prime number p, every positive integer e
and every i ∈ {1, . . . , n}, if pe | ai then pe | aj for
some j ∈ {1, . . . , n} \ {i}.

Then Z(kerD) = Z(B) = Z for all Z-homogeneous D ∈ LND(B).

Proof. To prove Cor. 4.4, first note that the hypothesis that n ≥ 4
implies that each xi is a prime element in B. Also, if i and j are distinct,
then xi and xj are not associates. Finally, for any prime number p, let e
be maximal such that pe divides the least common multiple of a1, . . . , an.
Then, by the hypothesis, it divides at least two distinct integers ai and
aj . Thus p divides neither the degree of xi nor the degree of xj . Thus
the result follows from Cor. 4.2. Q.E.D.

§5. G-Critical Elements

Definition 5.1. Let G be an abelian group and let B be a G-graded
ring. A nonzero homogeneous element x of B is G-critical if it satisfies
the following equivalent conditions:

(i) there exists a graded subring A of B such that G(A) �= G(B)
and B = A[x],

(ii) there exists a subgroup H of G(B) such that deg x /∈ H and
B = BH [x],

(iii) there exists a subgroup H of G such that deg x /∈ H and B =
BH [x].

Definition 5.2. Let B be a G-graded ring, where G is an abelian
group, and let x be a G-critical element of B. Any subgroup H ⊂ G(B)
satisfying

B = BH [x], degG(x) /∈ H, and pdegG(x) ∈ H for some prime p

is called a G-critical subgroup associated to x.

Remark 5.3. The prime number p that appears in the above def-
inition satisfies G(B)/H ∼= Zp, and so is uniquely determined by H.
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(Proof: Let τ = degG(x); then B = BH [x] implies that G(B) = H+〈τ〉,
and we also have τ /∈ H and pτ ∈ H.)

Theorem 5.4. Let B =
⊕

g∈G Bg be a G-graded ring, where G is
an abelian group, and let x be a G-critical element of B.

(a) If H0 is any subgroup of G(B) satisfying deg(x) /∈ H0 and B =
BH0 [x], then there exists a G-critical subgroup H associated to
x and satisfying H0 ⊂ H.

In particular, there exists a G-critical subgroup associated
to x.

(b) Let H be a G-critical subgroup associated to x and consider
the prime number p = |G(B)/H|. Then (B,BH , x, p) is a per-
icyclic 4-tuple.

Remark 5.5. Assertion (b) entails in particular thatB=
⊕p−1

i=0 BH ·xi.
It follows from Remarks 3.10 that (i) this direct sum can be interpreted
as a Zp-grading of B over BH in which x is homogeneous of nonzero
degree, and (ii) if B is a domain then B ∼= BH [T ]/(T p − xp) as BH -
algebras, where T is an indeterminate over BH .

Proof of Thm 5.4. Let τ = degG x ∈ G. There exists a subgroup
H0 of G(B) satisfying deg(x) /∈ H0 and B = BH0 [x]. Consider any such
H0 and note that G(B) is generated by H0∪{τ} (because B = BH0 [x]).
As Γ = {n ∈ Z |nτ ∈ H0} is a proper subgroup of Z, we may choose a
prime number p > 0 such that Γ ⊂ pZ. Define the subgroup H ⊂ G(B)
by

H = H0 + 〈pτ〉
and note that pτ ∈ H and that τ /∈ H (since Γ ⊂ pZ). Since H0 ⊂ H, we
have BH0 ⊂ BH and hence B = BH [x]. So H is a G-critical subgroup
associated to x and satisfying H0 ⊂ H, proving part (a).

To prove (b), consider a G-critical subgroup H associated to x,
let p = |G(B)/H|, and let τ̄ = τ + H ∈ G(B)/H. Then G(B)/H is
generated by τ̄ and τ̄ has order p. It is clear that a G(B)/H-grading B =
⊕k∈G(B)/HSk of B is defined by setting Sk = ⊕g∈π−1(k)Bg for all k ∈
G(B)/H, where π : G(B) → G(B)/H is the canonical homomorphism
of the quotient group. We have BHxi ⊆ Siτ̄ for i = 0, . . . , p − 1, and
B =

∑p−1
i=0 BH · xi because B = BH [x] and xp ∈ BH ; so BHxi = Siτ̄ for

all i = 0, . . . , p − 1 and consequently B =
⊕p−1

i=0 BH · xi. Assertion (b)
follows. Q.E.D.

Lemma 5.6. Let G be an abelian group, and let B be a G-graded
integral domain. Assume that there exists a pair x, y ∈ B of G-critical
elements such that x and y are not associates and x, y �∈ B∗. Let H ⊂
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G(B) be a G-critical subgroup associated to x, and let K ⊂ G(B) be a
G-critical subgroup associated to y. Then x ∈ BK and y ∈ BH .

Proof. By Thm 5.4(b), there exist prime integers p and q such that
the decompositions

B =
⊕

0≤i<p

BH · xi =
⊕

0≤j<q

BK · yj

define gradings of B by Zp and Zq, respectively. Let a ∈ BH , b ∈ BK

and non-negative integers i, j be such that y = axi and x = byj . By
observation 3.5(11), a and b are G-homogeneous. We have:

y = a(byj)i = abiyij

Since y �∈ B∗, it follows that either ij = 0, or i = j = 1 and ab = 1.
However, the latter case cannot occur, since x and y are not associates.
Therefore, ij = 0.

Suppose that i = 0. Then y = a �∈ B∗. Since b is G-homogeneous,
there exist c ∈ BH and l ≥ 0 with b = cxl. So x = ajcxl, which implies
that either l = 0 or l = 1 (since x �∈ B∗). If l = 0, then x ∈ BH , a
contradiction. Therefore, l = 1 and ajc = 1, which implies that j = 0
(since y = a �∈ B∗).

On the other hand, if j = 0, then the symmetric argument shows
i = 0. Therefore, i = j = 0 in all cases. Q.E.D.

If the hypotheses of Lemma 5.6 are weakened to allow x to be a unit,
then one can find examples where x and y are not associates (so y is
not a unit) and x ∈ BK , but y �∈ BH . For example, let B = C[x, x−1, y]
be graded by G = Z2, where x and y are homogeneous of degrees (1, 0)
and (0, 1), respectively. Let H be the subgroup generated by (2, 0) and
(1, 1) and K be the subgroup generated by (1, 0) and (0, 2). Then:

G/H ∼= Z/2Z, G/K ∼= Z/2Z, BH = C[x2, x−2, xy], BK = C[x, x−1, y2]

We have that BH [x] = BK [y] = B, and y �∈ BH . Note that, in this
example, xy, which is an associate of y, belongs to BH .

§6. LNDs of G-Graded Domains

The following is a consequence of Thm. 5.4 and Thm. 3.12.

Corollary 6.1. Let G be an abelian group and B a G-graded in-
tegral domain of characteristic zero. Suppose that D ∈ LND(B) is G-
homogeneous and x ∈ B is a G-critical element with Dx �= 0. For every
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G-critical subgroup H ⊂ G(B) associated to x, we have:

D(x) ∈ kerD ⊂ BH and D
(
BH

) ⊂ BHxp−1

where p = |G(B)/H|.
Proof. By Thm 5.4, (B,BH , x, p) is a pericyclic 4-tuple. The re-

sult follows by applying Thm. 3.12 to (B,BH , x, p): part (b) implies
that D(x) ∈ ker(D) and part (c) implies that D

(
BH

) ⊂ BHxp−1 and
ker(D) ⊂ BH . Q.E.D.

Theorem 6.2. Let G be an abelian group, let B be a G-graded
integral domain containing Z, and let D ∈ LND(B) be G-homogeneous.

(a) For every G-critical element x ∈ B, D2x = 0.

(b) For every pair x, y ∈ B of non-associated G-critical elements,
either Dx = 0 or Dy = 0.

Proof. Assertion (a) follows from Cor. 6.1.
Note that assertion (b) is trivial if x or y is a unit. Assume that x, y

are not units and let H (resp. K) be a G-critical subgroup associated to
x (resp. to y). Let p = |G(B)/H| and q = |G(B)/K|. Lemma 5.6 implies
that x ∈ BK and y ∈ BH . Now if Dx �= 0, then Cor. 6.1 gives that
D(BH) ⊂ BHxp−1. Thus xp−1 divides Dy. Also, by part (a), D2y = 0,
and thus Dy is in the kernel of D. Since xp−1 is not in the kernel of D,
the only possibility is that Dy = 0. This proves part (b). Q.E.D.

The next result generalizes Thm. 5.1 of [7] and Thm. 2.6.3 of [8].

Corollary 6.3. Let G be an abelian group, B = ⊕g∈GBg a G-
graded integral domain containing Z, where B is finitely generated as a
B0-algebra. Then we can write

B = B0[x1, ..., xn]

where xi �= 0 is homogeneous of degree di �= 0 for each i. Let Hi =

〈d1, . . . , d̂i, . . . , dn〉 for each i ∈ {1, . . . , n}. Then for every G-homogene
ous D ∈ LND(B) the following conditions hold.

(a) For each i ∈ {1, . . . , n} such that Hi �= G(B), xi is a G-critical
element of B and D2xi = 0.

(b) For every choice of distinct i, j ∈ {1, . . . , n} such that Hi �=
G(B) and Hj �= G(B), we have Dxi = 0 or Dxj = 0.

Observe that, in the statement of this corollary, the subgroup 〈d1, . . . ,
dn〉 of G generated by d1, . . . , dn is equal to G(B).
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Proof. If i ∈ {1, . . . , n} is such that Hi �= G(B) then deg xi /∈ Hi

and B = BHi [xi], so xi is a G-critical element of B and assertion (a)
follows from Thm 6.2(a).

Consider distinct i, j ∈ {1, . . . , n} such that Hi �= G(B) and Hj �=
G(B). Then xi and xj are G-critical elements of B. By Thm 5.4(a),
we may choose a G-critical subgroup H associated to xi and satisfying
Hi ⊂ H, and a G-critical subgroup K associated to xj and satisfying
Hj ⊂ K. Then di ∈ Hj ⊂ K and dj ∈ Hi ⊂ H, so

(3) di ∈ K \H and dj ∈ H \K.

By contradiction, assume that Dxi �= 0 and Dxj �= 0. Then Cor 6.1
implies that kerD ⊂ BH ∩ BK . If xj = uxi for some u ∈ B∗, then
u ∈ kerD, so dj − di = degG u ∈ H ∩ K, which contradicts (3); so xi

and xj are not associates. Now Thm 6.2(b) implies that Dxi = 0 or
Dxj = 0, a contradiction. Q.E.D.

Example 6.4. (See [7], Example 4.1) Let k be a field of character-
istic zero. Given the integer n ≥ 1, suppose that ei ∈ Z, 0 ≤ i ≤ n, is a
sequence with ei ≥ 2 for each i and gcd(ei, ej) = 1 for each pair i �= j.
Set e = e0 · · · en. Define a Z-grading over k of the ring

B = k[x0, ..., xn]/(x
e0
0 + · · ·+ xen

n )

such that, for each i, xi is homogeneous and deg xi = e/ei. Suppose that
D ∈ LND(B) is homogeneous. By Cor. 6.3(b), it follows that Dxi = 0
or Dxj = 0 for every pair i �= j. But then Dxi �= 0 for at most one
i, 0 ≤ i ≤ n. Since xi is algebraically dependent on x0, ..., x̂i, ..., xn, it
must also be the case that Dxi = 0. Therefore, D = 0, and this implies
that B is rigid (by Thm 3.8, if there exists a nonzero lnd of B then there
exists a nonzero homogeneous lnd of B). The ring B is the coordinate
ring of a Pham-Brieskorn variety; see Section 7.

Rings without Homogeneous LNDs

As noted earlier, when B is an affine k-domain over a field k of
characteristic zero, and B is graded by a totally ordered abelian group,
then any nonzero D ∈ LND(B) induces a nonzero homogeneous element
D̄ ∈ LND(B). However, for a grading which uses an abelian group G
that is not orderable (see 3.2), it can happen that there are no nonzero
G-homogeneous elements of LND(B), even though LND(B) �= {0}. We
give the following two examples, with the same non-rigid ring B in the
two cases.
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Proposition 6.5. If B = C[x, y, z]/(x2+ y2+ z3), then LND(B) �=
{0}. Define a Z2-grading of B by declaring that x, y, z, are homoge-
neous with deg x = deg z = 0 and deg y = 1. If D ∈ LND(B) is
Z2-homogeneous, then D = 0.

Proof. B is the coordinate ring of a Danielewski surface over C, and
the locally nilpotent derivations of B are well-known; see for example
[4, 9]. In particular, LND(B) �= {0}, and the kernel of any nonzero
locally nilpotent derivation of B is isomorphic to a univariate polynomial
ring C[1].

Let G = Z2. By contradiction, suppose that D ∈ LND(B) is G-
homogeneous and nonzero. Then kerD = C[t] forG-homogeneous t ∈ B.
If H = {0} ⊂ G, then:

BH = C[x, z] = C[2] and B = BH [y] = BH ⊕BH · y
So y is a G-critical element and H is a G-critical subgroup associated to
y.

If Dy = 0 then D(x2 + z3) = 0, so Lemma 2.1(c) implies Dx =
Dz = 0 and hence D = 0, contradicting our assumption. So Dy �= 0.

Let S ⊂ C[t] be the set of nonzero elements of C[t] and F = C(t).
Since Dy �= 0, Cor. 6.1 gives S ⊂ C[t] ⊂ BH , and we have:

S−1B = S−1BH ⊕ S−1BH · y
On the other hand, we see from equation (1) (just before 2.1) that:

S−1B = F [y] = F [y2]⊕ F [y2] · y
Since S−1BH ⊃ F [y2] it follows that S−1BH = F [y2], and consequently:

C(x, z) = frac(BH) = frac(S−1BH) = frac(F [y2])

= F (y2) = F (x2 + z3) = C(t, x2 + z3)

But this is a contradiction, since x2 + z3 is not a field generator of
C(x, z) = C(2). Q.E.D.

Proposition 6.6. Let B = C[x, y, z]/(x2 + y2 + z3) and G =
Z2 ×Z2 ×Z3. Define a G-grading of B by declaring that x, y, z, are ho-
mogeneous with deg x = (1, 0, 0), deg y = (0, 1, 0) and deg z = (0, 0, 1).
If D ∈ LND(B) is G-homogeneous, then D = 0.

Proof. Since 〈deg(y),deg(z)〉, 〈deg(x),deg(z)〉 and 〈deg(x),deg(y)〉
are proper subgroups of G(B), Cor. 6.3 implies that if D ∈ LND(B) is
G-homogeneous then at least two of Dx,Dy,Dz equal 0. Since each of
x, y, z is algebraic over the subring generated by the other two, it follows
that Dx = Dy = Dz = 0. Q.E.D.
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Note that we could also have proved Prop. 6.6 by using Prop. 6.5:
Since the Z2-grading of B used in Prop. 6.5 is induced by the projection
G → Z2 mapping (a, b, c) to b, any D which is G-homogeneous is also
Z2-homogeneous, hence D = 0.

§7. Pham-Brieskorn Threefolds

In this section, we assume that the field k is algebraically closed and
of characteristic zero.

Given n ≥ 1 and positive integers ai, 0 ≤ i ≤ n, the corresponding
Pham-Brieskorn variety over k is the hypersurface V ⊂ An+1

k defined
by:

xa0
0 + xa1

1 + · · ·+ xan
n = 0

These hypersurfaces have been of interest in topology and algebraic ge-
ometry for decades. See [11] for a survey of these varieties.

It is known that V is non-rigid in the following two cases: ai = 1
for some i, or ai, aj ≤ 2 for some pair i, j with i �= j. For the Pham-
Brieskorn surface S defined by xa0

0 + xa1
1 + xa2

2 = 0, these are the only
cases in which S is non-rigid. See [7], Thm. 7.1. The expectation is that
this condition extends to all Pham-Brieskorn varieties, i.e., that V is
non-rigid if and only if ai = 1 for some i or ai, aj ≤ 2 for some pair i, j
with i �= j. The following result confirms this expectation for certain
families of Pham-Brieskorn threefolds. 1,2

Theorem 7.1. ([7], Thm8.1; [2], Cor. 1.9) Given integers a, b, c, d ≥
2 such that at most one of a, b, c, d is equal to 2, the ring

B = k[x0, x1, x2, x3]/(x
a
0 + xb

1 + xc
2 + xd

3)

is rigid in each of the following cases.

(a)
1

a
+

1

b
+

1

c
+

1

d
≤ 1

2

(b) gcd(abc, d) = 1

(c) (a, b, c, d) = (a, 3, 3, 3)

1Part (a) is slightly more general than what is presented in [7], where the
case min{a, b, c, d} ≥ 8 is given. This more general case is implied by Theorem
8 of [1], arguing as we did in the proof of [7], Thm8.1(b).

2The case a = 3 in part (c) is especially important. It is due to Cheltsov,
Park and Won, whose proof uses geometric techniques quite different from the
algebraic approach taken herein.
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(d) (a, b, c, d) = (2, b, c, d), where b, c, d ≥ 3; b is even; gcd(b, c) ≥
3; and gcd(d, lcm(b, c)) = 2.

Our next result uses Cor. 6.3 to capture many cases not included in
this theorem, for example, (a, b, c, d) = (4, 9, 6, 6).

Let B be as in Thm. 7.1, with a, b, c, d ≥ 2 and at most one of
a, b, c, d equal to 2. Set L = lcm(a, b, c, d), and define a Z-grading of B
over k by declaring that each xi is homogeneous and:

deg
Z
x0 = L/a , deg

Z
x1 = L/b , deg

Z
x2 = L/c , deg

Z
x3 = L/d

If di = deg xi for each i, then gcd(d0, d1, d2, d3) = 1.

Theorem 7.2. Let B be the Z-graded Pham-Brieskorn threefold
defined as above.

(a) Suppose that there exists a prime integer p and a positive inte-
ger r such that:

a ≡ 0 (mod pr) and b, c, d �≡ 0 (mod pr)

Then D2x0 = 0 for every homogeneous D ∈ LND(B).

(b) Suppose that there exist distinct primes p and q, and positive
integers r and s, such that:

a ≡ 0 (mod pr) and b, c, d �≡ 0 (mod pr)

and

b ≡ 0 (mod qs) and a, c, d �≡ 0 (mod qs)

Then B is rigid.

Proof. Part (a) Under the given hypotheses, we see that p divides
gcd(d1, d2, d3). Therefore, the conclusion follows from Cor. 6.3(a).

Part (b): Note that, because B is affine and has a Z-grading, it will
suffice to show that D = 0 for every homogeneous D ∈ LND(B). Let
homogeneous D ∈ LND(B) be given.

Under the given hypotheses, we see that p divides gcd(d1, d2, d3) and
q divides gcd(d0, d2, d3). Therefore, Cor. 6.3(b) implies that Dx0 = 0 or
Dx1 = 0.

Assume that Dx0 = 0. If D �= 0, then we may assume that D is
irreducible. In this case, the quotient derivation D̄ ∈ LND(B/x0B) is
nonzero, where:

B/x0B = k[x1, x2, x3]/(x
b
1 + xc

2 + xd
3)
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But this is a contradiction, since B/x0B is a rigid ring. By symmetry,
we also arrive at a contradiction if we assume that Dx1 = 0 and D �= 0.

Therefore, D = 0 in either case. Q.E.D.

Although these results cover multiple cases, there are still many
open cases for small exponents. For example, are the rings

k[x0, x1, x2, x3]/(x
2
0+x3

1+x3
2+x4

3) and k[x0, x1, x2, x3]/(x
2
0+x3

1+x3
2+x6

3)

rigid? Note that, for the first ring, Thm. 7.2(a) implies that D2x3 = 0
for any Z-homogeneous LND D.

In attempting to settle some of these cases, the following type of
question comes up: The ring

B = k[x0, x1, x2, x3]/(x
2
0 + x2

1 + x3
2 + x3

3)

is non-rigid. Does there exist D ∈ LND(B) with degD x0 = 1?

§8. The Russell Cubic Threefold

The coordinate ring R0 of the Russell cubic threefold over the field
k is defined by:

R0 = k[x, y, z, t]/(x+ x2y + z2 + t3)

In this section, we use Cor. 6.3 to show that D(R0) �= R0 under the
assumption that the characteristic of k is zero (recall that the Derksen
invariant D(R) of a k-algebra R is the subalgebra of R generated by the
set

{
f ∈ R | D(f) = 0 for some D ∈ LND(R) \ {0}}). Our proof of

this fact can be viewed as a more concise version of Makar-Limanov’s
original proof given in [10]. The main implication is that R0 �= k[3].
Since the proof is identical for all Koras-Russell threefolds of the first
kind, we treat this more general case:

R = k[x, y, z, t]/(x+ xdy + zk + tl)

where d, k, l ≥ 2 and k and l are relatively prime.

Lemma 8.1. Let k, l and d be integers greater than or equal to two,
and suppose that k and l are relatively prime. Let Q be the ring:

Q = k[x, y, z, t]/(xdy + zk + tl).

Let G = Z2 and put a G-grading on Q by declaring that x, y, z, t are
G-homogeneous and:

degG(x, y, z, t) = ((−1, 0), (d,−kl), (0,−l), (0,−k)).
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Then for every nonzero G-homogeneous D ∈ LND(Q), either kerD =
k[x, z] or kerD = k[x, t].

Proof. Since 〈(d,−kl), (0,−l), (0,−k)〉, 〈(−1, 0), (d,−kl), (0,−k)〉
and 〈(−1, 0), (d,−kl), (0,−l)〉 are proper subgroups of G(Q) = Z2, Cor.
6.3(b) implies that at least two of Dx,Dz,Dt must be 0.

Suppose that Dz = Dt = 0. Then D(xdy) = 0 implies D = 0.
Therefore, if D �= 0, then either Dx = Dz = 0 or Dx = Dt = 0. Since
there exist D1, D2 ∈ LND(Q) with kerD1 = k[x, z] and kerD2 = k[x, t],
it follows that either kerD = k[x, z] or kerD = k[x, t]. Q.E.D.

Theorem 8.2. Let R be the ring

R = k[x, y, z, t]/(x+ xdy + zk + tl)

where d, k, l ≥ 2 and k and l are relatively prime. Then D(R) = k[x, z, t].

Proof. Let G = Z2 and define a total order � on G by lexicograph-
ical ordering.

Let A = k[x, z, t] ∼= k[3] and define a G-grading on the ring B =
k[x, x−1, z, t] such that x, z, t are homogeneous and:

degG(x, z, t) = ((−1, 0), (0,−l), (0,−k))

Then A =
{
f ∈ B | deg(f) � (0, 0)

}
. The degree function degG on B

restricts to R, where degG y = (d,−lk). According to Lemma 3.7, we
have:

Gr(R) = R̄ = A[ȳ] = k[x, z, t, ȳ]

Since y = −x−d(x + zk + tl) in B, we see that ȳ = −x−d(zk + tl), i.e.,
xdȳ + zk + tl = 0.

Let D ∈ LND(R) be a nonzero locally nilpotent derivation of R, and
let f ∈ kerD be given. By Thm. 3.8, the induced homogeneous deriva-
tion D̄ of R̄ is nonzero and locally nilpotent. Therefore, by Lemma 8.1,
ker D̄ ⊂ A. Since f̄ ∈ ker D̄, we see that:

degG f = degG f̄ � (0, 0)

Therefore, f ∈ A, and D(R) ⊂ A.
The reverse inclusion follows from the observation that the deriva-

tions
kzk−1 ∂

∂y − xd ∂
∂z and ltl−1 ∂

∂y − xd ∂
∂t

are elements of LND(R).
Q.E.D.
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9, avenue Alain Savary-B.P. 47 870, 21078 Dijon
France
E-mail address : lucy.moser-jauslin@u-bourgogne.fr


