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Special Polynomials and 
Generalized Painleve Equations 

Yasuhiko Yamada 

Abstract. 

We will review recent developments on the special polynomials 
arising in Painleve equations and their generalizations. 

§1. Introduction 

The following six equations are called Painleve equations; 

(P1) y" = 6y2 + t, 
(Pu) 

y" = 2y3 + ty + o:, 

1 2 1 1 . Ii 
y" = -y' _ -y' + -(o:y2 + /3) +"/Ya+-, 

y t t y 

1 2 33 2 2 /3 y" = -y' + -y + 4ty + 2(t - o:)y + -, 
2y 2 y 

(Pv) 

II ( 1 1 ) 12 Y1 
y = -+--y --

2y y - l t 

+ (y - 1)2 (o:y + (!_) + 'YY + liy(y + 1), 
t 2 y t y- l 

(Pv1) 
// 1 ( 1 1 1 ) 12 ( 1 1 1 ) t y =- -+--+-- y - -+--+-- y 

2 y y-l y-t t t-1 y-t 

y(y-l)(y-t) t t-1 t(t-1) 
+ t2(t-1)2 [o:+f3y2 +'Y(y-1)2 +li(y-t)2], 

Received February 6, 1999. 
I would like to thank Professor Masatoshi Noumi for collaboration. 



392 Y. Yamada 

where y = y(t) is the unknown function,'= d/dt and a,/3,'Y,6 are com­
plex parameters. These equations have the Painleve property i.e. any 
movable singularity (depending on initial data) is a pole. This property 
is known as a practical method to test the integrability of differential 
equations. 

By the work of K. Okamoto, the following facts are known for the 
Painleve equations PJ J =II,III,IV,V or Vl (see (1,2] for example). 

(1) PJ has affine Weyl group symmetry of type (II) AP), (III) d 1l, 

(IV) A~l), (V) Ai1l or (Vl) ni1l. 
(2) For special values of the parameters, PJ is solved by hyperge­

ometric functions such as (II) Airy, (III) Bessel, (IV) Hermite, 
(V) Laguerre or (VI) Gauss. 

(3) There are also other rational (or algebraic) solutions such as (II) 
Yablonskii-Vorob'ev, (IV) Okamoto or (III,V,Vl) Umemura. 

We will study the polynomials in (3) from the points of view of 
combinatorial structure and determinant formula. 

These polynomials arise as the r-functions for the special solutions 
of the Painleve equations, and defined by some recurrence relations. The 
origin of such recurrence relations (Toda equations) is the Backlund sym­
metry of the Painleve equations. We shall explain these in the simplest 
example of Pu. 

The second Painleve equation P11 is a hamiltonian system 

I fJH 
q = fJp, 

where 
1 2 2 t 

H=2p -(q +2)p-bq, 

The r-function is defined as 

r = exp(/ Hdt), H = (logr)'. 

The P11 equation has the symmetry given by the Backlund transforma­
tion such as 

b 
s1(q) = q + -, s1(p) = p, s1(b) = -b. 

p 

r(q) = -q, r(p) = -p + 2q2 - t, r(b) = 1 - b. 

These transformations s1, r and s0 = rs1r generate the affine Weyl 

group w = (s1,so,r I sr = s5 = r2 = 1, sor = rs1) of type A?). There 
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is an translation T = rs1 such as 

T- 1(q) = -q - ~' T(p) = -p + 2q2 + t, T(b) = b - 1. 
p 
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These transformations commute with the derivation. Given a solu­
tion (p, q, b) for P1 I, one obtains a sequence of solutions 

(Pn,qn,bn) = Tn(p,q,b), n E Z. 

K. Okamoto proved that the corresponding T-functions Tn satisfy the 
Toda equation 

(1 )11 Tn-lTn+l 
ogTn = Cn 2 , 

Tn 

where Cn is a nonzero constant. 

§2. Special polynomials 

2.1. Yablonskii-Vorob'ev polynomials for Pu 

Recurrence relation : (' = ft) 
(2.1) 

Initial condition : To = T1 = 1. 

Examples. 

T2 = t, 
T3 = 4 + t3 , 

T4 = -80 + 20t3 + t6 , 

T5 = 11200t + 60t4 + t 10 , 

T6 = -6272000 - 3136000t3 + 78400t6 + 2800t9 + 140t12 + t 15 . 

Tm is a monic polynomial of deg(Tm) = m(m - 1)/2. The rational 
function 

y(t) = ! (log T;:1) 

solves the second Painleve equation P1 I with parameter a = -m. 
We denote by S>.(t) the Schur function in terms of power sum vari­

ables tm = l/mExf', 
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It is known that the polynomials Tm are certain specialization of the 
Schur function [3), 

Theorem 1. We have 

Tn = CnS(n-i, ... ,2,i){ti, t2, ta, ... ), 

where Cn is a constant and ti = t, t2 = 0, ta = -4/3, t4 = · · · = 0. 

t 6 t3 ts 2 i ( 6 a ) Example. S(a,2,i) = rs - T + ts - ta ---+ 45 t + 20t - 80 . 

Tm is also a similarity reduction of a special solution of the KdV 
equation 4ut = Uxxx + 6uux, u = 2(logr)xx such that r(zx, zat) = 
zm(m-i)f2r(x, t) and Tm(x) = cr(x, t = -j). 

2.2. Okamoto polynomials for Prv 

Recurrence relation: (' = d~) 

{2.2) Qn+1Qn-i = (x2 + 2n - l)Q! + Q:Qn - Q~ 2. 

Initial condition: Qo = Qi = 1. 

Example. 

Q2 = x 2 + 1, 

Qa = x6 + 5x4 + 5x2 + 5, 

Q4 = xi2 + 14x10 + 65x8 + 140x6 + 175x4 + 350x2 + 175. 

These are also specialization of the Schur functions. [4,5) 

Theorem 2. We have 

Qn(x) = CnS(2n-2, ... ,6,4,2){li, t2, • • .) 

where Cn is a constant and ti= x, t2 = ½, ta= t4 = · · · = 0. 

Remark. The constant term of Qm can be obtained by the formula 

kkl 
1T.\(rk)=± r . 

Ilh::O(mod r) h 

2.3. Umemura polynomials for Pv 
Recurrence relation: (' = -1,,) 

{or 0). 

{2.3) Tn+1Tn-i = ( ¼ - v + ¾n) T~ + T~Tn + t ( T::Tn - T~ 2) , 
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Initial conditions: To = Ti = 1. 
The rational function 

y(t) = Tn(t,v + ½)Tn+1(t,v + ¼) 
Tn(t,v)Tn+1(t,v+ ¾) 
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solves the equation Pv with parameters o: = 2v2 , f3 = -2( v - ~ )2 , 'Y = n 
and 8 = -½- The Umemura polynomial Tm is also a specialization of 
the Schur function as follows, (6] 

Theorem 3. We have 

where Cn is a constant and tm = t/2 + (-4v + n + 2)/m. 

Example. 

22T2 = X + l3, 

26T3 = x 3 + 3l4x2 + 31Jl5x + 1Jl4l5, 

212T4 = x 6 + 6l5x5 + l5l4l6x4 + (l0l4lsl6 + lOiJl5l1) x 3 + 
l5l3l~l1x2 + 6l3l4l5l6l1x + lJl4l~l6h, 

where lk = k - 4v, x = t/2. 

The polynomial Tm can be represented as a Wronskian determinant 
of Laguerre polynomials. It is interesting to note that the polynomial 
Tm is also a r-function for discrete Pn, if the parameter vis regarded 
as discrete time. [7] 

Theorem 4. Put T;;' = Tn+1(t, v = (n + 1 - m)/4), then the 
rational function 

solves the second discrete Painleve equation 

(dPn) 
4 (m + l)ym + (n + 1) 

Ym+l + Ym- l = t y;,, _ l 
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2.4. Umemura Polynomials for Pv1 

Recurrence relation: (' = lv) 

(2.4) 

Initial condition: Uo = Ui = l. 
The following is conjectured in [2] and proved in [8]. 

Theorem 5. 

Tn(n-l)un = L dim(V>.~Ln) II Ci II dj, 

JC[n-1] iEJ jE(n-1]-J 

where [n-1] = {1,2, ... ,n-1}, 

IIi ( 2 2 2 - V) 
Ci= k=l ( - 4b1 + (2k - 1) )-4- , 

i ( ) 
2 2 2 +v 

di= II (-4b2+(2k-1) )-4- , 
k=l 

and >.1 = (III) {Probenius symbol). 

Example. 

22T2 = C1 + di, 

26T3 = c1c2 + 3c1d2 + 3d1c2 + d1d2, 

212T4 = c1c2c3 + 6d1c2c3 + 15c1d2c3 + (l0d1d2c3 + l0c1c2d3)+ 

15d1c2d3 + 6c1d2d3 + d1d2d3. 

Remark. Note that the same coefficients appear in the Umemura 
polynomials Um for Pv1 and Tm for Pv. Such a relation was also ob­
served for polynomials arising in the third Painleve equation Pu1 .[2,14] 

§3. Generalization for the root systems 

We shall generalize the story above for other Painleve type equations 
with affine Weyl group symmetry besides A (l) A (l) A (l) d 1l or D(l) 1,2,3,2 4· 
To do this, first we generalize the representations of the affine Weyl 
groups in terms of root system data (Cartan matrix). 
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3.1. A representation of Weyl groups 

Let A= (aij)i,jEI be a generalized Cartan Matrix such as 

aii = 2, aij E Z~o, aij = 0 t----t aji = 0 (i #- j). 

The corresponding Weyl group W = W(A) is defined as 

W = (si(i EI) I s; = 1, (sisj)m;; = 1), 

where mij = 2, 3, 4, 6 or oo when aijaji = 0, 1, 2, 3 or 2': 4. We introduce 
additional data U = ( Uij )i,jEI such that Uii = 0, Uij = 0 t----t aij = 0 and 
Uijllij = -ujiaji, (i ,j:. j). Let R = C(o:i ; Ji ; i E I) be the field of 
rational functions. Then we have [9] 

Theorem 6. There is a representation of W on R such that 

This representation has the following applications 

(1) Backlund transformations of known Painleve equations. 
(2) Discrete integrable dynamical systems 
(3) Generalized Painleve equations for root systems. 

We shall explain these in the next subsections. 

3.2. Symmetric Form 

For the Painleve equations P1v, Pv and Pv 1, the Backlund transfor­
mations take the universal form as above by suitable choice of dependent 
variables. 

Example. Symmetric form of P1v [4] 

f~ = foU1 - h) + o:o, 

(3.1) f{ = h(h - Jo)+ a1, 

f~ = hUo - Ji) + 0:2. 

3.3. Discrete integrable systems 

(Extended) affine Weyl group is a semi-direct product of Lattice 
M and finite Weyl group W0 . Let {Ti} be the generators of M. In 
the above representation, these are non trivially commuting bi-rational 
mapping. [9] 
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Example. A= A~1). Put T1 = 1rs3s2s1, then 

_ f _ ao 0:2 + 0:3 + o:o 
- 3 f + f _ aa+go 

JO 2 Ja--1l 
lo 

The commuting family of rational mappings are considered as discrete 
analogue of the Painleve equations (see section 4). 

3.4. Higher Painleve equations 

Next problem is to find differential equations for which the Weyl 
groups act as the Backlund transformation. 

There exist a series of such equations for A}1). These series contain 
P1v (for l = 2) and Pv (for l = 3) as simplest examples and expected 
to have the Painleve property. 

Case l = 2n: 

(3.2) d/j - f· ~ dt - J L..,, (/i+2r-1 - /i+2r) + O:j. 

1:::;r:::;n 

Case l = 2n + 1 : 

dfi -f- ~ (3.3) dt - J L..,, (fj+2r-1/i+2s - /j+2r/i+2s+1) 
1:::;r:::;s:::;n 

For each case, fi = fi(t) are the unknown functions and O:j are constants 
such as o:o + · · · + 0:1 = k (0 ~ j ~ l). 

Remark. 

(1) These equations can be obtained as a continuum limit of the 
discrete system previously discussed. 

(2) These equations admit a hamiltonian formulation.[10] 
(3) These systems also have a Lax formalism and can be considered 

as a similarity reduction of (modified) KP equations. 
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§4. Special polynomials arising from the representation 

In A}1) case, for any w E W, w(fi) is always factorized into four 
polynomials as 

PQ 
w(fi) = Rs· 

Example. For A~1), we see 

Ti(h) = (hfo - ao)(hhfo + ado - aoh). 
fo(hhfo - aoh - (a3 + ao)fo) 

These polynomials can be interpreted as the T-function of our dis­
crete system. Their polynomiality is closely related with the singularity 
confinement property, which is a discrete analog of the Painleve prop­
erty. 

Remark. The following property of the difference system is called 
singularity confinement: "Any singularity depending on initial data will 
disappear after finite iteration of mapping and the initial data can be 
recovered after such iteration". (11]. 

Theorem 7. The representation of Weyl groups can be extended 
to C(ai ; Ji ; Ti ; i E I) in such a way that 

For any w E W, w(Ti) is factorized as w(Ti) = </>i,w I]jEI Tjm;, where 
mi= (a·j, w(Ai)) E Zand </>i,w E C(ai ; Ji ; i E J). We observe that (9] 

Conjecture. </>i,w is a polynomial. 

We have a proof of this conjecture in Af1) case, by using explicit 
determinant formulas.(12] 

Theorem 8. For any w E W, the polynomial </>o,w is given by the 
following determinant of Jacobi-Trudi type 

1 [ 1 . ] </>o,w = Nw det 7f -J(h.>..,-i+j) l'.£i,j'.£l(.>..). 
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Where Nw E Z[ai; i E I], hi E Z[ai, /ii i E J] and .X is a partition 
determined by w E W. 

Note that the determinant structure of polynomial</> is the same as 
the 9th variation of the Schur function.[13] 
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