A Recursion Formula of the Weighted Parabolic Kazhdan-Lusztig Polynomials

Hiroyuki Tagawa

Abstract

. In this article, we give a recursion formula of the weighted parabolic Kazhdan-Lusztig polynomials and describe a relationship between those polynomials and weighted Kazhdan-Lusztig polynomials introduced by G.Lusztig ([4]).

§1. Introduction

Our aim in this article is to give a recursion formula of the weighted parabolic Kazhdan-Lusztig polynomials introduced by H. Tagawa [5] as an extension of the parabolic Kazhdan-Lusztig polynomials and the weighted Kazhdan-Lusztig polynomials. Also, we describe a relationship between those polynomials and weighted Kazhdan-Lusztig polynomials, which is an extension of Deodhar's result on the parabolic KazhdanLusztig polynomials and the Kazhdan-Lusztig polynomials (cf.[1]).

Let us give a brief review of known results. In 1982, G. Lusztig introduced the weighted Kazhdan-Lusztig polynomials, the special case of which has a representation theoretic interpretation (cf.[4]). Also, in 1987, V. Deodhar introduced two kinds of parabolic Kazhdan-Lusztig polynomials, one of which gives the dimensions of the intersection cohomology modules of Schubert varieties in G / P, where G is a Kac-Moody group and P is a "standard" parabolic subgroup of G (cf.[1]). Recently, H. Tagawa introduced the weighted parabolic Kazhdan-Lusztig polynomials and he obtained combinatorial formulas which were extensions of Deodhar's results on the parabolic Kazhdan-Lusztig polynomials (cf.[2]). But, unfortunately, the coefficients of the weighted parabolic KazhdanLusztig polynomials are not always non-negative.

[^0]This paper is organized as follows: In the next section, we recall the definition of the weighted parabolic R-polynomials and the weighted parabolic Kazhdan-Lusztig polynomials. Moreover, we show some interesting equalities used in the sequel. In Section 3, we give a recursion formula of the weighted parabolic Kazhdan-Lusztig polynomials which is an extension of Lusztig's result on the weighted Kazhdan-Lusztig polynomials (cf.[4]). In Section 4, we describe a relationship between weighted parabolic Kazhdan-Lusztig polynomials and weighted Kazhdan-Lusztig polynomials.

§2. Preliminaries and Notations

The purpose of this section is to define the weighted parabolic R polynomials and the weighted parabolic Kazhdan-Lusztig polynomials. Throughout this article, (W, S) is an arbitrary Coxeter system, e is the unit element of W. Let \mathbf{Z} be the set of integers, \mathbf{N} the set of non-negative integers, and \mathbf{P} the set of natural numbers.

First, we recall the definition of the Bruhat order.
Definition 2.1. We put $T:=\left\{w s w^{-1} ; s \in S, w \in W\right\}$. For $y, z \in W$, we denote $y<^{\prime} z$ if and only if there exists an element t of T such that $\ell(t z)<\ell(z)$ and $y=t z$, where ℓ is the length function. Then the Bruhat order denoted by \leq is defined as follows: For $x, w \in W$, $x \leq w$ if and only if there exists a sequence $x_{0}, x_{1}, \ldots, x_{r}$ in W such that $x=x_{0}<^{\prime} x_{1}<^{\prime} \cdots<^{\prime} x_{r}=w$. We also use the notation $x \lessdot w$ if $x<w$ and $\ell(x)=\ell(w)-1$.

The following is well known as the subword property. For $w \in W$, let $s_{1} s_{2} \cdots s_{m}$ be a reduced expression of w, i.e. $w=s_{1} s_{2} \cdots s_{m}, s_{i} \in S$ for all $i \in\{1,2, \ldots, m\}$ and $\ell(w)=m$. For $x \in W, x \leq w$ if and only if there exists a sequence of natural numbers $i_{1}, i_{2}, \ldots, i_{t}$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq m$ and $x=s_{i_{1}} s_{i_{2}} \cdots s_{i_{t}}$. This expression of x is not reduced in general, i.e. it may happen that $\ell(x)<t$. However it is known that one can find a sequence of natural numbers $j_{1}, j_{2}, \ldots, j_{k}$ such that $1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq m, x=s_{j_{1}} s_{j_{2}} \cdots s_{j_{k}}$ and $\ell(x)=k$.

From now on, the order on W is the Bruhat order. Next, we recall the definition of weights (cf.[4]).

Definition 2.2. Let Γ be an abelian group or a Z-algebra of an abelian group with the unit element e. φ is called a weight of W into Γ if and only if φ is a map of W into Γ satisfying the following conditions:
(i) $\varphi(e)=\mathbf{e}$,
(ii) $\varphi\left(s_{1} s_{2} \ldots s_{m}\right)=\varphi\left(s_{1}\right) \varphi\left(s_{2}\right) \ldots \varphi\left(s_{m}\right)$ for any reduced expression $s_{1} s_{2} \ldots s_{m}$ in W.
(iii) $\varphi(s)$ is an invertible element in Γ for any $s \in S$.

In particular, any weight φ satisfies the following.
(ii)' For $s, t \in S$, if the order of $s t$ is odd, then $\varphi(s)=\varphi(t)$.

Conversely, a map $\tilde{\varphi}$ of S into Γ satisfying (i), (ii)' and (iii) is uniquely extended to a weight of W into Γ.

From now on, Γ is an abelian group, \mathbf{e} is the unit element of Γ, φ is a weight of W into Γ and we put $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. For $w \in W$, we denote $\varphi(w)$ by $q_{w}^{\frac{1}{2}}$ and $\left(q_{s_{1}}^{\frac{1}{2}}, q_{s_{2}}^{\frac{1}{2}}, \ldots, q_{s_{n}}^{\frac{1}{2}}\right)$ by q. Next, we recall the definition of the weighted Hecke algebras and the weighted R-polynomials (cf.[4]).

Definition 2.3. Let $\mathcal{H}_{\varphi}(W)$ be the free $\mathbf{Z}[\Gamma]$-module having the set $\left\{T_{w}^{\prime} ; w \in W\right\}$ as a basis and multiplication such that

$$
T_{s}^{\prime} T_{w}^{\prime}= \begin{cases}T_{s w}^{\prime} & \text { if } w<s w \\ q_{s} T_{s w}^{\prime}+\left(q_{s}-\mathbf{e}\right) T_{w}^{\prime} & \text { if } s w<w\end{cases}
$$

for $w \in W$ and $s \in S$. We call $\mathcal{H}_{\varphi}(W)$ the weighted Hecke algebra (of W with respect to φ).

It is known that $\mathcal{H}_{\varphi}(W)$ is an associative algebra (see [3] Chapter 7 for more general theory). For $s \in S$, we can easily see that $\left(T_{s}^{\prime}\right)^{-1}=$ $\left(q_{s}^{-1}-\mathbf{e}\right) T_{e}^{\prime}+q_{s}^{-1} T_{s}^{\prime}$.

Then, the weighted R-polynomial is defined as follows:
Definition 2.4. There exists a unique family of polynomials $\left\{R_{x, w}^{\prime}(\mathbf{q})\right.$ $\in \mathbf{Z}[\Gamma] ; x, w \in W\}$ satisfying

$$
\overline{T_{w}^{\prime}}=q_{w}^{-1} \sum_{x \in W}(-1)^{\ell(x)+\ell(w)} R_{x, w}^{\prime}(\mathbf{q}) T_{x}^{\prime} \text { for } w \in W
$$

where we put $\overline{T_{w}^{\prime}}:=T_{w^{-1}}^{\prime-1}$ for $w \in W$. We call these polynomials $R_{x, w}^{\prime}(\mathbf{q})$ weighted R-polynomials of W.

Let J be a subset of S, W_{J} the subgroup of W generated by J and $W^{J}:=\left\{y \in W ; \ell(y z)=\ell(y)+\ell(z)\right.$ for any $\left.z \in W_{J}\right\}$. Then, it is well known that, for $w \in W$, there exist a unique element w^{J} in W^{J} and a unique element w_{J} in W_{J} such that $w=w^{J} w_{J}$ (cf.[3]).

Now, we can define weighted parabolic Hecke modules.

Definition 2.5. Let $A(\varphi)$ be the \mathbf{Z}-algebra of $\mathbf{Z}[\Gamma]$ generated by $\left\{q_{s}^{\frac{1}{2}} ; s\right.$ $\in S\}$ and ψ a weight of W into $A(\varphi)$ with $\psi(s)=-\mathbf{e}$ or $\psi(s)=q_{s}$ for each $s \in S$. In the same way, for $w \in W$, we denote $\psi(w)$ by u_{w}. After this, for convenience, we denote e by 1 . Also, for $s \in S$, we put $\widetilde{u}_{s}:=q_{s}$ if $u_{s}=-1$ and $\widetilde{u}_{s}:=-1$ if $u_{s}=q_{s}$. Note that the map $\widetilde{\psi}$ of W into $A(\varphi)$ defined as follows is also a weight.

$$
\widetilde{\psi}(w):= \begin{cases}\mathbf{e} & \text { if } w=\mathrm{e}, \\ \widetilde{u}_{s_{1}} \widetilde{u}_{s_{2}} \cdots \widetilde{u}_{s_{m}} & \text { if } s_{1} s_{2} \ldots s_{m} \text { is a reduced expression of } w .\end{cases}
$$

Let $M_{\varphi, \psi}^{J}(W)$ be the free $\mathbf{Z}[\Gamma]$-module with basis $\left\{m_{w}^{\prime J} ; w \in W^{J}\right\}$. For $s \in S$, we define $L^{\prime}(s) \in \operatorname{Hom}_{\mathbf{Z}[\Gamma]}\left(M_{\varphi, \psi}^{J}(W)\right)$ as follows:

$$
L^{\prime}(s) m_{w}^{\prime J}:= \begin{cases}q_{s} m_{s w}^{\prime J}+\left(q_{s}-1\right) m_{w}^{\prime J} & \text { if } s w<w, \\ m_{s w}^{\prime J} & \text { if } w<s w \in W^{J}, \\ u_{s} m_{w}^{\prime J} & \text { if } w<s w \notin W^{J},\end{cases}
$$

and linear extension.
Then, we call $M_{\varphi, \psi}^{J}(W)$ the weighted parabolic Hecke module (of W^{J} with respect to φ and ψ).

Let ρ_{J}^{\prime} be a map from $\mathcal{H}_{\varphi}(W)$ to $M_{\varphi, \psi}^{J}(W)$ defined by

$$
\rho_{J}^{\prime}\left(\sum_{x \in W} a_{x} T_{x}^{\prime}\right):=\sum_{x \in W} a_{x} u_{x_{J}} m_{x^{J}}^{\prime J}
$$

where x^{J} and x_{J} are unique elements satisfying $x=x^{J} x_{J}, x^{J} \in W^{J}$ and $x_{J} \in W_{J}$. Then, the following is known (see [5]).

Lemma 2.6. ([5, Lemma 2.5])
(i) ρ_{J}^{\prime} is onto.
(ii) For $s \in S$ and $x \in W, L^{\prime}(s)\left(\rho_{J}^{\prime}\left(T_{x}^{\prime}\right)\right)=\rho_{J}^{\prime}\left(T_{s}^{\prime} T_{x}^{\prime}\right)$.
(iii) For $s \in S, L^{\prime}(s)^{2}=q_{s} L^{\prime}(e)+\left(q_{s}-1\right) L^{\prime}(s)$, where $L^{\prime}(e)$ is the identity map on $M_{\varphi, \psi}^{J}(W)$.
(iv) For $w \in W$ and $x \in W^{J}$, we can define

$$
T_{w}^{\prime} \cdot m_{x}^{\prime J}:=\left\{\begin{array}{l}
m_{x}^{\prime J} \text { if } w=e \\
\left(L^{\prime}\left(s_{1}\right) L^{\prime}\left(s_{2}\right) \ldots L^{\prime}\left(s_{m}\right)\right) m_{x}^{\prime J} \\
\text { if } s_{1} s_{2} \ldots s_{m} \text { is a reduced expression of } w .
\end{array}\right.
$$

Namely, $M_{\varphi, \psi}^{J}(W)$ has an $\mathcal{H}_{\varphi}(W)$-module structure.
(v) For $w \in W, \rho_{J}^{\prime}\left(T_{w}^{\prime}\right)=T_{w}^{\prime} \cdot m_{e}^{\prime J}$.

We define an operation ${ }^{-}$on $M_{\varphi, \psi}^{J}(W)$ as follows:

$$
\begin{aligned}
& \overline{\sum_{\gamma \in \Gamma} b_{\gamma} \gamma}:=\sum_{\gamma \in \Gamma} b_{\gamma} \gamma^{-1} \text { for } \sum_{\gamma \in \Gamma} b_{\gamma} \gamma \in \mathbf{Z}[\Gamma], \\
& \overline{m_{w}^{\prime J}}:=T_{w^{-1}}^{\prime-1} \cdot m_{e}^{\prime J} \text { for } w \in W^{J} \\
& \overline{\sum_{w \in W^{J}} a_{w} m_{w}^{\prime J}}:=\sum_{w \in W^{J}} \overline{a_{w}} \overline{m_{w}^{\prime J}} \text { for } \sum_{w \in W^{J}} a_{w} m_{w}^{\prime J} \in M_{\varphi, \psi}^{J}(W) .
\end{aligned}
$$

We can see that the operation ${ }^{-}$is an involution on $M_{\varphi, \psi}^{J}(W)$ by the following.

Lemma 2.7. ([5, Lemma 2.6]) Let $x \in W^{J}$ and $s \in S$. Then, we have

$$
\overline{m_{x}^{\prime J}}=\rho_{J}^{\prime}\left(\overline{T_{x}^{\prime}}\right), \quad \overline{T_{s}^{\prime} \cdot m_{x}^{\prime J}}=\overline{T_{s}^{\prime}} \cdot \overline{m_{x}^{\prime J}}, \quad \overline{\overline{m_{x}^{\prime J}}}=m_{x}^{{ }^{J}}
$$

Here, we describe the following interesting formula.
Proposition 2.8. For $w \in W$,

$$
\begin{equation*}
q_{w}^{-1} \sum_{x \in W}(-1)^{\ell(x)+\ell(w)} u_{x} R_{x, w}^{\prime}(\mathbf{q})=u_{w}^{-1} \tag{1}
\end{equation*}
$$

Proof. By the definition of the weighted R-polynomials, we can easily find a recursion formula of those polynomials. So, by direct calculation and the recursion formula, we can show this proposition by induction on $\ell(w)$. q.e.d

As a corollary of Proposition 2.8, we see the following.
Corollary 2.9. For $X \in \mathcal{H}_{\varphi}(W)$,

$$
\overline{\rho_{J}^{\prime}(X)}=\rho_{J}^{\prime}(\bar{X}) .
$$

Proof. First, for $w \in W_{J}$, by Proposition 2.8, we have

$$
\rho_{J}^{\prime}\left(\overline{T_{w}^{\prime}}\right)=q_{w}^{-1} \sum_{x \in W_{J}}(-1)^{\ell(x)+\ell(w)} R_{x, w}^{\prime}(\mathbf{q}) u_{x} m_{e}^{J}=u_{w}^{-1} m_{e}^{\prime J}
$$

Hence, for $w \in W$, by Lemma 2.6 and Lemma 2.7,

$$
\overline{\rho_{J}^{\prime}\left(T_{w}^{\prime}\right)}=\overline{u_{w_{J}} m_{w^{J}}^{\prime J}}=u_{w_{J}}^{-1}\left(\overline{T_{w^{J}}^{\prime}} \cdot m_{e}^{\prime J}\right)=\overline{T_{w^{J}}^{\prime}} \cdot\left(\rho_{J}^{\prime}\left(\overline{T_{w_{J}}^{\prime}}\right)\right)=\rho_{J}^{\prime}\left(\overline{T_{w}^{\prime}}\right)
$$

where w^{J} and w_{J} are unique elements satisfying $w=w^{J} w_{J}, w^{J} \in W^{J}$ and $w_{J} \in W_{J}$. Hence, by definitions of the operation and ρ_{J}^{\prime}, Corollary 2.9 holds. q.e.d

From now on, we denote $\left(u_{s_{1}}, u_{s_{2}}, \ldots, u_{s_{n}}\right)$ by \mathbf{u} and $\left(\widetilde{u}_{s_{1}}, \widetilde{u}_{s_{2}}, \ldots\right.$, $\widetilde{u}_{s_{n}}$) by $\widetilde{\mathbf{u}}$. By using this operation, we can define the weighted parabolic R-polynomials as follows:

Definition 2.10. There exists a unique family of polynomials $\left\{R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} \in \mathbf{Z}[\Gamma] ; x, w \in W^{J}\right\}$ satisfying

$$
\overline{m_{w}^{\prime J}}=q_{w}^{-1} \sum_{x \in W^{J}}(-1)^{\ell(x)+\ell(w)} R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} m_{x}^{\prime J} \text { for } w \in W^{J}
$$

We call these polynomials $R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}$ weighted parabolic R-polynomials of W^{J}. For convenience, we put $R_{x, w}^{J}(\mathbf{q})_{\mathbf{u}}:=0$ if $x \notin W^{J}$ or $w \notin W^{J}$.

For example, the following equalities are known.
Proposition 2.11. ([5, Lemma 3.4, Proposition 3.9])
Let $x, w \in W^{J}$.
(i) $(-1)^{\ell(x)+\ell(w)} q_{w} q_{x}^{-1} \overline{R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}}=R_{x, w}^{\prime J}(\mathbf{q})_{\widetilde{\mathbf{u}}}$.
(ii) $\sum_{x \leq y \leq w}(-1)^{\ell(y)+\ell(w)} R_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}} R_{y, w}^{J}(\mathbf{q})_{\tilde{\mathbf{u}}}=\delta_{x, w}$,
where $\delta_{x, w}$ is Kronecker delta.
(iii) Let $s \in S$ with $s w<w$.

$$
R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}= \begin{cases}R_{s x, s w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } s x<x \\ q_{s} R_{s x, s w}^{\prime J}(\mathbf{q})_{\mathbf{u}}+\left(q_{s}-1\right) R_{x, s w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } x<s x \in W^{J} \\ \widetilde{u}_{s} R_{x, s w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } x<s x \notin W^{J}\end{cases}
$$

A relationship between the weighted parabolic R-polynomials and the weighted R-polynomials is the following.

Proposition 2.12. ([5, Proposition 3.11, Lemma 3.12])
(i) $R_{x, w}^{\prime \phi}(\mathbf{q})_{\mathbf{u}}=R_{x, w}^{\prime}(\mathbf{q})$ for $x, w \in W$.
(ii) $R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=\sum_{y \in W_{J}}(-1)^{\ell(y)} u_{y} R_{x y, w}^{\prime}(\mathbf{q})$ for $x, w \in W^{J}$.

We define some more notations.

Notation 2.13.

(i) Let r be the number of the different elements in $\left\{q_{s} ; s \in S\right\}$, i.e. $r=\sharp\left\{q_{s} ; s \in S\right\}$, and we put $\left\{q_{s_{1}}, q_{s_{2}}, \ldots, q_{s_{r}}\right\}=\left\{q_{s} ; s \in S\right\}$, where $\sharp A$ is the cardinality of a set A. Put

$$
\begin{aligned}
\Gamma^{\prime} & :=\left\{q_{s_{1}}^{\frac{n_{1}}{2}} q_{s_{2}}^{\frac{n_{2}}{2}} \cdots q_{s_{r}}^{\frac{n_{r}}{2}} ; n_{i} \in \mathbf{Z} \text { for } i \in[r]\right\} \\
\Gamma^{\prime \prime} & :=\Gamma^{\prime 2}\left(=\left\{\gamma^{2} ; \gamma \in \Gamma^{\prime}\right\}\right)
\end{aligned}
$$

where $[r]:=\{1,2, \ldots, r\}$.
(ii) For $\mu, \gamma \in \Gamma^{\prime \prime}$, we denote $\mu \triangleleft \gamma$ if and only if there exist integers h_{i} and k_{i} with $h_{i} \leq k_{i}, \mu=q_{s_{1}}^{h_{1}} q_{s_{2}}^{h_{2}} \cdots q_{s_{r}}^{h_{r}}$ and $\gamma=q_{s_{1}}^{k_{1}} q_{s_{2}}^{k_{2}} \cdots q_{s_{r}}^{k_{r}}$.

In order to define the weighted parabolic Kazhdan-Lusztig polynomials, we define a total order on Γ^{\prime} called a strong order.

Definition 2.14. We define a "strong order" on Γ^{\prime} as a total order $<$ which satisfies the following conditions:
(i) For $\alpha, \beta, \gamma \in \Gamma^{\prime}$, if $\alpha \leq \beta$, then $\alpha \gamma \leq \beta \gamma$.
(ii) For any $s \in S, \mathbf{e}<q_{s}^{\frac{1}{2}}$.

Example 2.15. If a weight φ of W into Γ satisfies that

$$
q_{s_{1}}^{\frac{k_{1}}{2}} q_{s_{2}}^{\frac{k_{2}}{2}} \ldots q_{s_{r}}^{\frac{k_{r}}{2}}=\mathbf{e} \Leftrightarrow k_{i}=0 \text { for all } i \in[r] .
$$

Then, the lexicographic order with respect to $k_{1}, k_{2}, \ldots, k_{r}$ is a strong order on Γ^{\prime}.

From now on, we assume that φ has a strong order on Γ^{\prime} and we fix a strong order on Γ^{\prime}. Put $\Gamma_{+}^{\prime}:=\left\{\gamma \in \Gamma^{\prime} ; \mathbf{e}<\gamma\right\}, \Gamma_{-}^{\prime}:=\left\{\gamma \in \Gamma^{\prime} ; \gamma<\right.$ $\mathbf{e}\}\left(=\left(\Gamma_{+}^{\prime}\right)^{-1}\right)$ and $\Gamma_{+}^{\prime \prime}:=\left\{\gamma \in \Gamma^{\prime \prime} ; \mathbf{e} \triangleleft \gamma\right\}$. Then, we can define weighted parabolic Kazhdan-Lusztig polynomials as follows:

Proposition 2.16. ([5, Proposition 4.4]) There exists a unique family of polynomials $\left\{P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} \in \mathbf{Z}\left[\Gamma_{+}^{\prime \prime}\right] ; x, w \in W^{J}\right\}$ satisfying the following conditions:
(i) $P_{x, x}^{\prime J}(\mathbf{q})_{\mathbf{u}}=1$ for all $x \in W^{J}$.
(ii) $P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=0$ if $x \not \leq w$.
(iii) $q_{w}^{-\frac{1}{2}} q_{x}^{\frac{1}{2}} P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} \in \mathbf{Z}\left[\Gamma_{-}^{\prime}\right]$ if $x<w$.
(iv)

$$
q_{w} q_{x}^{-1} \overline{P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}}=\sum_{x \leq y \leq w, y \in W^{J}} R_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}} P_{y, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}
$$

We define the "uniquely" determined polynomials from Proposition 2.16 as the weighted parabolic Kazhdan-Lusztig polynomials with respect to the strong order $<$. Note that we can easily see that $P_{x, w}^{\prime} \phi(\mathbf{q})_{\mathbf{u}}=$ $P_{x, w}^{\prime}(\mathbf{q})$ for $x, w \in W$, here $P_{x, w}^{\prime}(\mathbf{q})$ is the weighted Kazhdan-Lusztig polynomials defined in Section 4. From now on, for convenience, we put $P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}:=0$ if $x \notin W^{J}$ or $w \notin W^{J}$.

§3. A recursion formula

In this section, we define an extension of $\mu(x, w)$, which is the coefficient of $q^{\frac{\ell(w)-\ell(x)-1}{2}}$ in the Kazhdan-Lusztig polynomial $P_{x, w}(q)$, and get a recursion formula of the weighted parabolic Kazhdan-Lusztig polynomials.

Definition-Proposition 3.1. Let $s \in S$ and we put

$$
c(s, \mathbf{u}):=\left\{x \in W^{J} ;\left\{\begin{array}{ll}
s x<x \text { or } s x \notin W^{J} & \text { if } u_{s}=q_{s} \\
s x<x & \text { if } u_{s}=-1
\end{array}\right\} .\right.
$$

Then, there exists a unique family of polynomials

$$
\left\{M_{x, w}^{J s} \in \mathbf{Z}\left[\Gamma^{\prime}\right] ; x, w \in W^{J}, x<w<s w, x \in c(s, \mathbf{u})\right\}
$$

satisfying

$$
\sum_{x \leq y<w, y \in c(s, \mathbf{u})} P_{x, y}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}} M_{y, w}^{J s}-q_{s}^{\frac{1}{2}} P_{x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}} \in \mathbf{Z}\left[\Gamma_{-}^{\prime}\right], \quad \overline{M_{x, w}^{J s}}=M_{x, w}^{J s},
$$

where $P_{x, w}^{* J}(\mathbf{q})_{\mathbf{u}}:=q_{w}^{-\frac{1}{2}} q_{x}^{\frac{1}{2}} P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}$ for $x, w \in W^{J}$.
This is easily obtained by direct calculation and induction on $\ell(w)-$ $\ell(x)$ and the proof is therefore omitted. Then, a recursion formula of the weighted parabolic Kazhdan-Lusztig polynomials is described as follows:

Theorem 3.2.

(i) Let $x, w \in W^{J}$ and $s \in S$ with $s w<w$. Then, we have

$$
\begin{aligned}
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & = \begin{cases}q_{s} P_{x, s w}^{\prime J}(\mathbf{q})_{\mathbf{u}}+P_{s x, s w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } s x<x \\
P_{x, s w}^{\prime J}(\mathbf{q})_{\mathbf{u}}+q_{s} P_{s x, s w}^{\prime}(\mathbf{q})_{\mathbf{u}} & \text { if } x<s x \in W^{J} \\
\left(\widetilde{u}_{s}+1\right) P_{x, s w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } x<s x \notin W^{J}\end{cases} \\
& -\sum_{x \leq y<s w, y \in c(s, \widetilde{\mathbf{u}})} q_{y}^{-\frac{1}{2}} q_{w}^{\frac{1}{2}} P_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}} M_{y, s w}^{J s} .
\end{aligned}
$$

(ii) Let $x, w \in W^{J}$. If there exists $s \in S$ such that $s w<w$ and $s x \in W^{J}$, then we have

$$
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=P_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}
$$

Note that if $s w<w$, then $x \leq w \Leftrightarrow s x \leq w$.
(iii) Let $x, w \in W^{J}$. If there exists $s \in S$ such that $s w<w, x<s x \notin$ W^{J} and $u_{s}=q_{s}$, then we have

$$
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=0
$$

Before the proof of this theorem, we show some lemmas and propositions.

Lemma 3.3. Let $x, w \in W^{J}$ and $s \in S$ with $w<s w \notin W^{J}$ and $s x \in W^{J}$. Then, we have

$$
R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}= \begin{cases}\widetilde{u}_{s}^{-1} R_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } s x<x \\ \widetilde{u}_{s} R_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } x<s x\end{cases}
$$

Proof. First, by Lemma 2.6 and Lemma 2.7, we can easily see that

$$
\begin{equation*}
\overline{q_{s}^{-\frac{1}{2}}\left(L^{\prime}(s)+L^{\prime}(e)\right) m_{w}^{\prime J}}=q_{s}^{-\frac{1}{2}}\left(L^{\prime}(s)+L^{\prime}(e)\right) \overline{m_{w}^{\prime J}} \tag{2}
\end{equation*}
$$

Hence, by (2) and our assumption that $w<s w \notin W^{J}$,

$$
u_{s}^{-1} \overline{m_{w}^{\prime J}}+\overline{m_{w}^{\prime J}}=q_{s}^{-1} L^{\prime}(s) \overline{m_{w}^{\prime J}}+q_{s}^{-1} \overline{m_{w}^{\prime J}}
$$

Hence, we have

$$
L^{\prime}(s) \overline{m_{w}^{\prime J}}=\sum_{x \in W^{J}} q_{w}^{-1}(-1)^{\ell(w)+\ell(x)} u_{s} R_{x, w}^{J}(\mathbf{q})_{\mathbf{u}} m_{x}^{J}
$$

On the other hand, by the definition of $R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}$, we can see

$$
\begin{aligned}
& L^{\prime}(s) \overline{m_{w}^{\prime J}} \\
& =\sum_{s y<y \in W^{J}} q_{w}^{-1}(-1)^{\ell(w)+\ell(y)}\left(\left(q_{s}-1\right) R_{y, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}-R_{s y, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}\right) m_{y}^{\prime J} \\
& \quad-\sum_{y<s y \in W^{J}} q_{w}^{-1}(-1)^{\ell(w)+\ell(y)} q_{s} R_{s y, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} m_{y}^{\prime J} \\
& \quad+\sum_{y<s y \notin W^{J}} q_{w}^{-1}(-1)^{\ell(w)+\ell(y)} u_{s} R_{y, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} m_{y}^{\prime J}
\end{aligned}
$$

Thus, we have

$$
u_{s} R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}= \begin{cases}\left(q_{s}-1\right) R_{x, w}^{J}(\mathbf{q})_{\mathbf{u}}-R_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } s x<x \\ -q_{s} R_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } x<s x \in W^{J} \\ u_{s} R_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} & \text { if } x<s x \notin W^{J}\end{cases}
$$

By using this equality, we can obtain this lemma. q.e.d.
Lemma 3.4. Let $x, y, w \in W^{J}$ and $s \in S$. If $s x<x \lessdot w<s w \notin W^{J}$, $s x<y<w$ and $x \neq y$, then $y \notin W^{J}$.

We can easily obtain this lemma by the subword property and the proof is therefore omitted.

Then, we can show the following.
Proposition 3.5. Let $x, w \in W^{J}, s \in S, w<s w \notin W^{J}, s x \in W^{J}$ and $u_{s}=-1$. Then, we have

$$
\begin{equation*}
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=P_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} \tag{3}
\end{equation*}
$$

Note that the above equality does not always hold in case $u_{s}=q_{s}$.
Proof. We may assume that $s x<x$. Case 1. $x \not \leq w$. In this case, we can easily see that $s x \not \leq w$. So, both sides of (3) are equal to 0 . Case 2. $x \leq w$. In this case, we show this theorem by induction on $\ell(w)-\ell(x)$. In case $\ell(w)-\ell(x)=1$. Note that we may not consider the case that $\ell(w)-\ell(x)=0$ by our assumption in this proposition. Let $q_{w} q_{x}^{-1}=q_{t}(t \in S)$ and $y \in W-\{x\}$ with $s x \lessdot y \lessdot w$. Then, by Lemma 3.4, $y \notin W^{J}$. So, by the fact that $R_{x, w}^{J}(\mathbf{q})_{\mathbf{u}}=q_{s}-1$ if $x \lessdot w$ and $q_{w} q_{x}^{-1}=q_{s}, P_{x, w}^{\prime J_{w}}(\mathbf{q})_{\mathbf{u}}=1$ if $x \lessdot w$, we have

$$
q_{w} q_{s x}^{-1} \overline{P_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}}-P_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=q_{s} q_{t}-1
$$

Hence,

$$
\begin{equation*}
\overline{P_{s x, w}^{* J}(\mathbf{q})_{\mathbf{u}}}-q_{s}^{\frac{1}{2}} q_{t}^{\frac{1}{2}}=P_{s x, w}^{* J}(\mathbf{q})_{\mathbf{u}}-q_{s}^{-\frac{1}{2}} q_{t}^{-\frac{1}{2}} \tag{4}
\end{equation*}
$$

Then, the left hand side of (4) is an element in $\mathbf{Z}\left[\Gamma_{+}^{\prime}\right]$ and the right hand side of (4) is an element in $\mathbf{Z}\left[\Gamma_{-}^{\prime}\right]$. So, by the fact that $\mathbf{Z}\left[\Gamma_{+}^{\prime}\right] \cap \mathbf{Z}\left[\Gamma_{-}^{\prime}\right]=$ $\{0\}$, we have

$$
P_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=1
$$

On the other hand, since $\ell(w)-\ell(x)=1$,

$$
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=1
$$

We suppose that (3) holds when $\ell(w)-\ell(x)<k(k \geq 2)$ and we will show this one in case $\ell(w)-\ell(x)=k$. For $y \in W^{J}$ with $s y<y$, by Proposition 2.11-(iii), we have

$$
q_{s} R_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}-R_{s x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}=R_{s x, s y}^{\prime J}(\mathbf{q})_{\mathbf{u}}-q_{s} R_{x, s y}^{\prime J}(\mathbf{q})_{\mathbf{u}} .
$$

Hence, by our inductive hypothesis, we have

$$
\begin{aligned}
& \sum_{s y<y \in W^{J}}\left(q_{s} R_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}-R_{s x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}\right) P_{y, w}^{\prime} J(\mathbf{q})_{\mathbf{u}} \\
&=P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}-P_{s x, w}^{\prime} J(\mathbf{q})_{\mathbf{u}} \\
&- \sum_{z<s z \in W^{J}}\left(q_{s} R_{x, z}^{\prime}(\mathbf{q})_{\mathbf{u}}-R_{s x, z}^{\prime J}(\mathbf{q})_{\mathbf{u}}\right) P_{z, w}^{\prime} J(\mathbf{q})_{\mathbf{u}} .
\end{aligned}
$$

So, we have

$$
\sum_{\substack{s y<y \in W^{J} \\=\text { or }_{y<s y \in W^{J}}^{\prime} \\=P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}-P_{s x, w}^{\prime} J \\(\mathbf{q})_{\mathbf{u}} .}}\left(q_{s} R_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}-R_{s x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}\right) P_{y, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}
$$

On the other hand, by Lemma 3.3,

$$
\sum_{y \in W^{J}, y<s y \notin W^{J}}\left(q_{s} R_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}-R_{s x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}\right) P_{y, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=0 .
$$

Thus, by the above equalities,

$$
\sum_{y \in W^{J}}\left(q_{s} R_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}-R_{s x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}}\right) P_{y, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}-P_{s x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}} .
$$

Hence, by Proposition 2.16-(iv), we have

$$
q_{s}^{\frac{1}{2}} \overline{P_{x, w}^{* J}(\mathbf{q})_{\mathbf{u}}}-\overline{P_{s x, w}^{* J}(\mathbf{q})_{\mathbf{u}}}=q_{s}^{-\frac{1}{2}} P_{x, w}^{* J}(\mathbf{q})_{\mathbf{u}}-P_{s x, w}^{* J}(\mathbf{q})_{\mathbf{u}}
$$

So, we can see

$$
q_{s}^{-\frac{1}{2}} P_{x, w}^{* J}(\mathbf{q})_{\mathbf{u}}-P_{s x, w}^{* J}(\mathbf{q})_{\mathbf{u}}=0 .
$$

This completes the proof of Proposition 3.5. q.e.d
By Proposition 2.11, we can easily obtain the following.
Definition-Proposition 3.6. For $w \in W^{J}$, we put

$$
\begin{aligned}
C_{w}^{\prime J} & :=q_{w}^{-\frac{1}{2}} \sum_{x \leq w} P_{x, w}^{\prime J}(\mathbf{q}) \tilde{\mathbf{u}} m_{x}^{\prime J}, \\
D_{w}^{\prime J} & :=\sum_{x \in W^{J}}(-1)^{\ell(x)+\ell(w)} q_{w}^{\frac{1}{2}} q_{x}^{-1} \overline{P_{x, w}^{\prime J}(\mathbf{q})}{ }_{\mathbf{u}} m_{x}^{\prime J} .
\end{aligned}
$$

Then, we have

$$
\overline{C_{w}^{\prime J}}=C_{w}^{\prime J}, \quad \overline{D_{w}^{\prime J}}=D_{w}^{\prime J}
$$

Then, as a corollary of Proposition 3.5, we can see the following.
Corollary 3.7. Let $w \in W^{J}, s \in S, w<s w \notin W^{J}$ and $u_{s}=q_{s}$. Then, we have

$$
L^{\prime}(s) C_{w}^{\prime J}=q_{s} C_{w}^{\prime J}
$$

The following lemma is easily obtained by direct calculation.
Lemma 3.8. Let $w \in W^{J}$ and $s \in S$.
(i) If $w<s w$, we put

$$
q_{s}^{-\frac{1}{2}}\left(L^{\prime}(s)+L^{\prime}(e)\right) C_{w}^{\prime J}-C_{s w}^{\prime J}-\sum_{y<w, y \in c(s, \mathbf{u})} M_{y, w}^{J s} C_{y}^{\prime J}=\sum_{x \in W^{J}}{f_{x}}^{\widetilde{m}^{\prime}}{ }_{x}^{J}
$$

where ${\widetilde{m^{\prime}}}^{\prime}{ }_{x}:=q_{x}^{-\frac{1}{2}} m_{x}^{\prime J}$ for $x \in W^{J}$. Then, we have

$$
\begin{aligned}
& f_{x}= \begin{cases}q_{s}^{\frac{1}{2}} P_{x, w}^{* J}(\mathbf{q})_{\tilde{\mathbf{u}}}+P_{s x, w}^{* J}(\mathbf{q})_{\tilde{\mathbf{u}}} & \text { if } s x<x \\
q_{s}^{-\frac{1}{2}} P_{x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}}+P_{s x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}} & \text { if } x<s x \in W^{J} \\
q_{s}^{-\frac{1}{2}}\left(u_{s}+1\right) P_{x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}} & \text { if } x<s x \notin W^{J}\end{cases} \\
&-P_{x, s w}^{* J J}(\mathbf{q})_{\widetilde{\mathbf{u}}}-\sum_{x \leq y<w, y \in c(s, \mathbf{u})} P_{x, y}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}} M_{y, w}^{J s} .
\end{aligned}
$$

(ii) If $s w<w$, we put

$$
\left(q_{s}^{-\frac{1}{2}} L^{\prime}(s)-q_{s}^{\frac{1}{2}} L^{\prime}(e)\right) C_{w}^{\prime J}=\sum_{x \in W^{J}} g_{x}{\widetilde{m^{\prime}}}_{x}^{J}
$$

Then, we have

$$
g_{x}= \begin{cases}P_{s x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}}-q_{s}^{-\frac{1}{2}} P_{x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}} & \text { if } s x<x \\ P_{s x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}}-q_{s}^{\frac{1}{2}} P_{x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}} & \text { if } x<s x \in W^{J} \\ q_{s}^{-\frac{1}{2}}\left(u_{s}-q_{s}\right) P_{x, w}^{* J}(\mathbf{q})_{\widetilde{\mathbf{u}}} & \text { if } x<s x \notin W^{J}\end{cases}
$$

Then, we have the following.
Proposition 3.9. For $w \in W^{J}$ and $s \in S$, we have

$$
\begin{aligned}
& q_{s}^{-\frac{1}{2}} L^{\prime}(s) C_{w}^{\prime J} \\
& = \begin{cases}-q_{s}^{-\frac{1}{2}} C_{w}^{\prime J}+C_{s w}^{\prime J}+\sum_{y<w, y \in c(s, \mathbf{u})} M_{y, w}^{J s} C_{y}^{\prime J} & \text { if } w<s w \in W^{J} \\
q_{s}^{\frac{1}{2}} C_{w}^{\prime J} & \text { if } s w<w .\end{cases}
\end{aligned}
$$

Proof. We show this proposition by induction on $\ell(w)$. We can easily see that Proposition 3.9 holds in case $\ell(w)=0$. So, we suppose that Proposition 3.9 holds when $\ell(w)<k(k \geq 1)$ and we will show this one in case $\ell(w)=k$. Case 1. $w<s w \in W^{J}$. We put

$$
q_{s}^{-\frac{1}{2}}\left(L^{\prime}(s)+L^{\prime}(e)\right) C_{w}^{\prime J}-C_{s w}^{\prime J}-\sum_{y<w, y \in c(s, \mathbf{u})} M_{y, w}^{J s} C_{y}^{\prime J}=\sum_{x \in W^{J}} f_{x}{\widetilde{m^{\prime}}}_{x}^{J}
$$

Note that $f_{x}=0$ if $\ell(x)>\ell(s w)$. First, by Lemma 3.8, DefinitionProposition 3.1 and Corollary 3.7, we can see that $f_{x} \in \mathbf{Z}\left[\Gamma_{-}^{\prime}\right]$. Next, we show that $f_{x}=0$ for all $x \in W^{J}$. By Proposition 3.6 and the equality that $\overline{M_{y, w}^{J s}}=M_{y, w}^{J s}$, we can obtain

$$
\begin{aligned}
& q_{s}^{-\frac{1}{2}} L^{\prime}(s) C_{w}^{\prime J}+q_{s}^{-\frac{1}{2}} C_{w}^{\prime J}-C_{s w}^{\prime J}-\sum_{y<w, y \in c(s, \mathbf{u})} M_{y, w}^{J s} C_{y}^{\prime J} \\
& =q_{s}^{-\frac{1}{2}}\left(L^{\prime}(s)+L^{\prime}(e)\right) C_{w}^{\prime J}-C_{s w}^{\prime J}-\sum_{y<w, y \in c(s, \mathbf{u})} M_{y, w}^{J s} C_{y}^{\prime J} .
\end{aligned}
$$

So, we have

$$
\begin{equation*}
\sum_{x \in W^{J}} f_{x}{\widetilde{m^{\prime}}}_{x}^{J}=\sum_{x, y \in W^{J}, y \leq x} \overline{f_{x}} q_{x}^{-\frac{1}{2}} q_{y}^{\frac{1}{2}}(-1)^{\ell(x)+\ell(y)} R_{y, x}^{J}(\mathbf{q}) \widetilde{\mathbf{m}}_{y}^{J} \tag{5}
\end{equation*}
$$

We suppose that there exists $x \in W^{J}$ satisfying $f_{x} \neq 0$. Let x_{0} be an element in W^{J} such that $f_{x_{0}} \neq 0$ and $f_{x}=0$ for any $x \in W^{J}$ with $\ell(x)>\ell\left(x_{0}\right)$. Then, we see that the coefficient of ${\widetilde{m^{\prime}}}_{x_{0}}^{J}$ in the right hand side of (5) is $\overline{f_{x_{0}}}$. Hence, we have $f_{x_{0}}=\overline{f_{x_{0}}} \neq 0$. This contradicts that $f_{x_{0}} \in \mathbf{Z}\left[\Gamma_{-}\right]$. So, we have

$$
f_{x}=0 \text { for } \forall x \in W^{J}
$$

and we obtain

$$
q_{s}^{-\frac{1}{2}} L^{\prime}(s) C_{w}^{\prime J}=-q_{s}^{-\frac{1}{2}} C_{w}^{\prime J}+C_{s w}^{\prime J}+\sum_{y<w, y \in c(s, \mathbf{u})} M_{y, w}^{J s} C_{y}^{\prime J}
$$

Case 2. $s w<w$. By our inductive hypothesis, we can use

$$
C_{w}^{\prime J}=q_{s}^{-\frac{1}{2}}\left(L^{\prime}(s)+L^{\prime}(e)\right) C_{s w}^{\prime J}-\sum_{y<s w, y \in c(s, \mathbf{u})} M_{y, s w}^{J s} C_{y}^{\prime J}
$$

So, by Proposition 3.7, Lemma 2.6 and our inductive hypothesis, we can see that

$$
q_{s}^{-\frac{1}{2}} L^{\prime}(s) C_{w}^{\prime J}=q_{s}^{\frac{1}{2}} C_{w}^{\prime J}
$$

Therefore, this completes the proof of Proposition $3.9 \quad \underline{\text { q.e.d }}$
At last, we can prove our main theorem.
Proof of Theorem 3.2. By Proposition 3.9 and Lemma 3.8-(i), we can easily see (i). Also, (ii) and (iii) are easily obtained by Proposition 3.9 and Lemma 3.8-(ii). q.e.d

§4. A relationship with weighted K-L polynomials

The purpose of this section is to show a relationship between weighted parabolic Kazhdan-Lusztig polynomials and weighted KazhdanLusztig polynomials, which is an extension of Deodhar's result on a relationship between parabolic Kazhdan-Lusztig polynomials and KazhdanLusztig polynomials ([1]). First, we recall the definition of the weighted Kazhdan-Lusztig polynomials.

Definition-Proposition 4.1. ([4]) There exists a unique family of polynomials $\left\{P_{x, w}^{\prime}(\mathbf{q}) \in \mathbf{Z}\left[\Gamma_{+}^{\prime \prime}\right] ; x, w \in W\right\}$ satisfying the following conditions:
(i) $P_{x, x}^{\prime}(\mathbf{q})=1$ for all $x \in W$.
(ii) $P_{x, w}^{\prime}(\mathbf{q})=0$ if $x \not \leq w$.
(iii) $q_{w}^{-\frac{1}{2}} q_{x}^{\frac{1}{2}} P_{x, w}^{\prime}(\mathbf{q}) \in \mathbf{Z}\left[\Gamma_{-}^{\prime}\right]$ if $x<w$.
(iv)

$$
q_{w} q_{x}^{-1} \overline{P_{x, w}^{\prime}(\mathbf{q})}=\sum_{x \leq y \leq w} R_{x, y}^{\prime}(\mathbf{q}) P_{y, w}^{\prime}(\mathbf{q})
$$

As the beginning of this section, we show the following.
Lemma 4.2. Let $w \in W$. We put

$$
D_{w}^{\prime}=\sum_{x \leq w}(-1)^{\ell(x)+\ell(w)} q_{w}^{\frac{1}{2}} q_{x}^{-1} \overline{P_{x, w}^{\prime}(\mathbf{q})} T_{x}^{\prime}
$$

(i) $\overline{D_{w}^{\prime}}=D_{w}^{\prime}$.
(ii) $\rho_{J}^{\prime}\left(D_{w}^{\prime}\right)=\sum_{x \in W^{J}}(-1)^{\ell(x)+\ell(w)} q_{w}^{\frac{1}{2}} q_{x}^{-1}\left(\sum_{y \in W_{J}} \widetilde{u}_{y}^{-1} \overline{P_{x y, w}^{\prime}(\mathbf{q})}\right) m_{x}^{{ }^{J}}$.

Proof. We can easily obtain this lemma by the direct calculation and the definition of the weighted Kazhdan-Lusztig polynomials. Note that $(-1)^{\ell(x)} q_{x}^{-1} u_{y}=\widetilde{u}_{y}^{-1} . \quad \underline{q . e . d}$

Then, we have the following.

Theorem 4.3. Let $x, w \in W^{J}$.
(i) If $\widetilde{u}_{y} q_{y}^{-\frac{1}{2}} \in \mathbf{Z}\left[\Gamma_{-}^{\prime}\right]$ for all $y \in W_{J}$ satisfying $x y \leq w$,

$$
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=\sum_{y \in W_{J}} \widetilde{u}_{y} P_{x y, w}^{\prime}(\mathbf{q})
$$

In particular, if $u_{s}=q_{s}$ for $\forall s \in S$,

$$
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=\sum_{y \in W_{J}}(-1)^{\ell(y)} P_{x y, w}^{\prime}(\mathbf{q})
$$

(ii) If $u_{s}=-1$ for all $s \in S$ and $\sharp W_{J}<+\infty$,

$$
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=P_{x z_{0}, w z_{0}}^{\prime}(\mathbf{q})
$$

where z_{0} is the longest element in W_{J}.
Proof. (i) For $x, w \in W^{J}$, we put

$$
G_{x, w}:=\sum_{y \in W_{J}} \widetilde{u}_{y} P_{x y, w}^{\prime}(\mathbf{q}) \in \mathbf{Z}\left[\Gamma_{+}^{\prime \prime}\right]
$$

Then, we will show that a family of polynomials $\left\{G_{x, w} ; x, w \in W^{J}\right\}$ satisfies conditions (i), (ii), (iii) and (iv) in Proposition 2.16. Let $x, w \in$ W^{J}. By the fact that $\widetilde{u}_{e}^{-1}=1$ and $P_{x, x}^{\prime}(\mathbf{q})=1$, we have $G_{x, x}=1$. So, (i) holds. If $x \not \leq w$, for $y \in W_{J}$, we can easily see that $x y \not \leq w$ by the subword property. Hence, (ii) holds. If $x<w$, by our assumption that $\widetilde{u}_{y} q_{y}^{-\frac{1}{2}} \in \mathbf{Z}\left[\Gamma_{-}^{\prime}\right]$ for all $y \in W_{J}$ satisfying $x y \leq w$, we have

$$
q_{w}^{-\frac{1}{2}} q_{x}^{\frac{1}{2}} G_{x, w}=\sum_{y \in W_{J}} \tilde{u}_{y} q_{y}^{-\frac{1}{2}} q_{w}^{-\frac{1}{2}} q_{x y}^{\frac{1}{2}} P_{x y, w}^{\prime}(\mathbf{q}) \in \mathbf{Z}\left[\Gamma_{-}^{\prime}\right]
$$

Hence, (iii) holds. By Lemma 4.2-(ii), we can see

$$
\overline{\rho_{J}^{\prime}\left(D_{w}^{\prime}\right)}=\sum_{y \in W^{J}}(-1)^{\ell(y)+\ell(w)} q_{w}^{-\frac{1}{2}}\left(\sum_{x \in W^{J}} R_{y, x}^{\prime J}(\mathbf{q})_{\mathbf{u}} G_{x, w}\right) m_{y}^{\prime J}
$$

On the other hand, by Corollary 2.9 and Lemma 4.2-(i), we have

$$
\overline{\rho_{J}^{\prime}\left(D_{w}^{\prime}\right)}=\rho_{J}^{\prime}\left(D_{w}^{\prime}\right)
$$

Hence, we have

$$
\begin{aligned}
& \sum_{x \in W^{J}}(-1)^{\ell(x)+\ell(w)} q_{w}^{\frac{1}{2}} q_{x}^{-1} \overline{G_{x, w}} m_{x}^{\prime J} \\
= & \sum_{x \in W^{J}}(-1)^{\ell(x)+\ell(w)} q_{w}^{-\frac{1}{2}}\left(\sum_{y \in W^{J}} R_{x, y}^{\prime J}(\mathbf{q})_{\mathbf{u}} G_{y, w}\right) m_{x}^{\prime J}
\end{aligned}
$$

Thus, we obtain

$$
q_{w} q_{x}^{-1} \overline{G_{x, w}}=\sum_{y \in W^{J}} R_{x, y}^{J J}(\mathbf{q})_{\mathbf{u}} G_{y, w}
$$

and (iv) holds. Therefore, by the uniqueness of the weighted parabolic Kazhdan-Lusztig polynomials, we have

$$
P_{x, w}^{\prime J}(\mathbf{q})_{\mathbf{u}}=G_{x, w}=\sum_{y \in W_{J}} \tilde{u}_{y} P_{x y, w}^{\prime}(\mathbf{q})
$$

(ii) First, we can easily see that $P_{x, w}^{\prime}(\mathbf{q})=P_{x^{-1}, w^{-1}}^{\prime}(\mathbf{q})$ for $x, w \in W$. Moreover, it is shown by Lusztig [4] that $P_{x, w}^{\prime}(\mathbf{q})=P_{s x, w}^{\prime}(\mathbf{q})$ for $x, w \in$ W and $s \in S$ satisfying $x \leq w, s x<x, s w<w$. So, we have

$$
P_{x y, w z_{0}}^{\prime}(\mathbf{q})=P_{x z_{0}, w z_{0}}^{\prime}(\mathbf{q}) \text { for } \forall x, w \in W^{J} \text { and } \forall y \in W_{J}
$$

Hence, by Lemma 4.2-(ii), we have

$$
\begin{aligned}
& \rho_{J}^{\prime}\left(D_{w z_{0}}^{\prime}\right) \\
& =(-1)^{\ell\left(z_{0}\right)} q_{z_{0}}^{\frac{1}{2}} \sum_{y \in W_{J}} \tilde{u}_{y}^{-1} \sum_{x \in W^{J}}(-1)^{\ell(x)+\ell(w)} q_{w}^{\frac{1}{2}} q_{x}^{-1} \overline{P_{x z_{0}, w z_{0}}^{\prime}(\mathbf{q})} m_{x}^{\prime J}
\end{aligned}
$$

Hence, by almost the same method to (i), we can obtain (ii). Note that $\overline{q_{z_{0}}^{\frac{1}{2}} \sum_{y \in W_{J}} q_{y}^{-1}}=q_{z_{0}}^{\frac{1}{2}} \sum_{y \in W_{J}} q_{y}^{-1}$. q.e.d.

References

[1] V. V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), 483-506.
[2] V. V. Deodhar, J-Chains and Multichains, Duality of Hecke Modules, and Formulas for Parabolic Kazhdan-Lusztig Polynomials, J. Algebra 190 (1997), 214-225.
[3] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Univ. Press, 1990.
[4] G. Lusztig, Left Cells in Weyl Groups, Lecture Notes in Mathematics 1024 (1982), 99-111.
[5] H. Tagawa, A construction of weighted parabolic Kazhdan-Lusztig polynomials, J. Algebra 216 (1999), 566-599.

Department of Mathematics
Wakayama University
930 Sakaedani, Wakayama 640-8510
Japan

[^0]: Received February 11, 1999.
 Partially supported by Grant-in-Aid for Encouragement of Young Scientists 09740024, The Ministry of Education, Science, Sports and Culture, Japan.

