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§1. Introduction 

This is based on [A]. In [A], I explained several theorems which 
focused on a famous theorem of [KL] that two elements of the symmetric 
group belong to a same left cell if and only if they share a common Q­
symbol. The first half of [A] was about a direct proof of this theorem 
(Theorem A), and the second half was about relation between primitive 
ideals and left cells, and I explained another proof of this theorem. 

The reason why I gave a direct proof which was different from the 
proof in (KL] was that the proof in (KL] was hard to read: It relied 
on [Vl, 6], which in turn relied on [Jol], the full paper of which is not 
yet available even today. Note also that the theorem itself is not stated 
in [KL]. But the beginning part of the proof of (KL, Theorem 1.4] 
gives some explanation on the relation between left cells in the sense of 
Kazhdan and Lusztig and Vogan's generalized T-invariants in the theory 
of primitive ideals. In this picture, Theorem A is derived from Joseph's 
theorem. 

Lack of a clear proof in the literature lead Garsia and McLarnan 
to the publication of [GM]. 1 The proof given in [GM] is close to 
[A], but the line of the proof in [GM] is interrupted with combinatorics 
of tableaux, which is not necessary. In fact, after we read to the fourth 
section of (KL], which is the section for some preliminaries to the proof of 
(KL, Theorem 1.4], we can give a short and elementary proof of Theorem 
A in a direct way, as I will show below. 

I rush to say that my proof was not so original: It copied argument 
in [Jal, Satz 5.25] for Joseph's theorem. This was the reason why I 
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1lt is worth mentioning that Garsia and McLarnan wrote in [GM] that 

they were benefitted by A.Bjorner's lecture notes and R.King's lecture notes. 
Both of these notes are still not available, and it seems that preliminary version 
of them were circulated in a very restricted group of people around the time. 
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did not publish it in English. But after a decade has passed, we still 
have no suitable literature which includes the direct proof. Further, we 
have new development in the last decade. For example, we have better 
understanding of this theorem in jeu de taquin context (see [H],[BSS]); 
the study of solvable lattice models in Kyoto school lead to the theory of 
crystal bases and canonical bases, by which we can understand Theorem 
A in the crystal base theory context. 

I have therefore decided to add this short note to this volume in 
order to explain this proof and new development. I also prepare enough 
papers in the references for reader's convenience. I note that there is 
a sketch of proof of Theorem A in [BV, p.172]. It involves the notion 
of wave front sets. I do not recommend [BV] for knowing the proof of 
Theorem A. One reason is that we do not need wave front sets for the 
proof of Theorem A itself. 

The non-direct proof! explained in the second half of [A] is the proof 
which is indicated in [KL], and the proof was taken from Jantzen's lec­
ture notes [Jal]. Thus I do not reproduce it, and I only give statements 
of several theorems (Theorem B,C,D) which concludes Theorem A. 

I give some bibliographical comments on the second proof. It is 
obtained by combining two theorems; one known as Joseph's theorem, 
which states that two primitive ideals with a same integral regular cen­
tral character coincide if and only if their Q-symbol coincide (Theorem 
B), and another theorem due to Joseph and Vogan, which relates the 
inclusion relation of primitive ideals to non-vanishing condition of cer­
tain multiplicities (Theorem C), and thus to order relation of left cells 
of the symmetric group (Theorem D). 

In a survey [Bo], it is stated that Theorem A was proved in [Jol], 
and simple proof could be found in [Vl] and [Jal]. But as I stated, [Jol] 
is not published, and [Vl] is based on [Jol]. Thus to read [Vl], one has 
to reproduce arguments by oneself. Nevertheless, it is Joseph's theorem, 
and his idea came from the explicit form of Goldie rank representations 
in type A case [Jo2, Proposition 8.4], which makes the number of primi­
tive ideals with a common regular central character equal to the number 
of involutions. That is, Duflo's map is bijective, which proves Theorem 
B. The proof of Theorem Bis given in [Jo3, Corollary 5.3]. We do not 
follow his line and I refer to [Jal, Satz 5.25]. 

Theorem C is proved in [V2, Theorem 3.2]. One implication is due 
to [Jo5, Theorem 5.3], which is reformulated in [V2, Proposition 3.1]. It 
is not difficult to derive Theorem D: That Theorem C implies Theorem 
D (see also [Jo5, Conjecture Cl) is stated in the introduction of [V2]. 
The proof here is based on [Jal, Corollar 7.13] and [Jal, Lemma 14.9]. 
Since the Kazhdan-Lusztig conjecture proved by Brylinski-Kashiwara 
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and Beilinson-Berstein is very well known, I take it for granted when I 
explain Theorem D. But it is of cource a very deep result. 

Joseph's Goldie rank representation was related to Springer repre­
sentation and the theory evolved into a beautiful geometric representa­
tion theory. Since this part is not at all combinatorial, I do not mention 
it. I only refer to [BB3] for this development. There is also new direction 
for the generalization of the Robinson-Schensted correspondence related 
to the primitive ideal theory. I refer [Ga] and [Tr]. 2 

§2. Preliminaries 

2.1. P-symbols and Q-symbols 

Let Sn be the symmetric group of degree n. Namely, its underlying 
set is the set of bijective maps from {1, ... , n} to itself, and the group 
structure is given by composition of maps. Let w be an element in 
Sn, and denote the image of i E { 1, ... , n} under the map w by w;. 
Throughout the paper, we identify w with the sequence w1 • • • Wn, which 
is a permutation of 1, ... , n. 

Let N = {1, 2, ... } be the set of natural numbers. A Young dia­
gram ,\ is a finite subset of N x N which satisfies the condition that if 
(x,y) E .\, then {(x-1,y),(x,y-l)}nN x NE.\. (x,y) E ,\ is called a 
node of ,\. x is called the row number of the node, and y is called the 
column number of the node. 

A tableau T of shape,\ is a map from,\ to N. The image of a node 
(x, y) of,\ under the map is called the entry of the node, and is denoted 
by T(x, y). We only consider the tableaux satisfying 

T(x,y)::; T(x',y') (x::; x',y::; y'). 

If it also satisfies T(x,y) < T(x',y) (x < x') (resp. T(x,y) < T(x,y') 
(y < y')), T is called a column strict (resp. row strict) semi­
standard tableau. If the entries of T are precisely { 1, ... , n}, we call 
T a standard tableau. 

Let T be a column strict semi-standard tableau, k be a natural 
number. We denote the set of nodes in the i th row by R; (T), and denote 
the maximal column number of the nodes in R;(T) by c;. Assume that 
we are given a natural number k;. If k; is equal or greater than all entries 
of R; (T), we add the node ( i, c; + 1) to R; (T) and make its entry be k;. 

2There is one more dirction: generalization of the Steinberg's theorem 
[St) is given by M. van Leeuwen. This is the direction to the geometry of flag 
varieties. 
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If it is not the case, we consider the nodes of Ri (T) whose entries are 
greater than ki, and pick up the node of minimal column number among 
them. We then change its entry to ki, and we make ki+ 1 be the original 
entry of the node. This latter procedure is called bumping procedure. 
We set k1 = k, and continue the bumping procedure until no bumping 
occurs. This is called a row insertion algorithm, and it results in a 
new column strict semi-standard tableau, which we denote by T .- k. 
In the similar way, we can define a column insertion algorithm k-+ T. 

Definition 2.1. Let w = w1 · · · Wn be a permutation. Two standard 
tableaux P(w) and Q(w) defined by 

P(w) = 0.-wi .- · · · .-wn, 
Q(w) = P(w- 1 ) 

are called the P-symbol of w and the Q-symbol of w respectively. 
The correspondence between w and the pair (P(w), Q(w)) is called the 
Robinson-Schensted correspondence. We often write P(w) = 0.­
wi · · · Wn for short. 

It is known that P(w) = W1-+ ···-+Wk-+ 0 .- Wk+I .- · · · .- Wn 
holds for any k. 

Example 2.2. If w = 31524, then we have 

P(w) = I 2 4 
3 5 

Q(w) = 1 3 5 
2 4 

More familiar definition of the Q-symbol is by the "recording" tableau, 
which records the node added by each insertion procedure. It is a well 
known theorem that it coincides with P( w- 1 ). 

Remark We have a two dimensional pictorial algorithm to compute P­
symbols and Q-symbols due to S.V.Fomin [Fo3, 4.2.4]. In his picture, 
we know at a glance that Q(w) equals P(w- 1 ). 

Remark If two elements in Sn have a common P-symbol, we say that 
these belong to a same left Knuth class. Similarly, if these have a com­
mon Q-symbol, we say that these belong to a same right Knuth class. 

Although we do not go into the combinatorial structures of the 
Robinson-Schensted correspondence, it is worth referring to the relation 
of the Robinson-Schensted correspondence to the jeu de taquin sliding 
algorithm. Namely, the insertion algorithm may be viewed as jeu de 
taquin moves, and jeu de taquin equivalence classes are the same as left 
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Knuth classes. On the other hand, right Knuth classes are the same as 
Haiman's dual equivalence classes. 

To be more precise, let An be the staircase Young diagram of size 
n(n -1)/2. Then An+1/ An consists of n one-node components. The 
tableaux of shape An+1/ An are called permutation tableaux. By 
reading entries from left to right, we identify permutation tableaux with 
permutations of 1, ... , n. This rule extends to more general tableaux. 
We read entries of such a tableau row by row from left to right starting 
with the node on the south-west end and ending up with the node on 
the north-east end. Then the corresponding permutation tableau is jeu 
de taquin equivalent to the original tableau. 

We take a tableau T of shape An, and compute switching of a 
permutation tableau w and T [BSS]. Since all tableaux of a same non 
skew shape are dual equivalent [BSS, Proposition 4.2], the non skew 
tableau produced by the switching is independent of the choice of T 
[BSS, Theorem 4.3], and it is jeu de taquin equivalent to the permutation 
tableau w [BSS, Theorem 3.1]. This is the P-symbol of w. Further, two 
permutation tableaux are in a same dual equivalence class if and only 
if they have a common Q-symbol [H, Theorem 2.12]. These give the 
Robinson-Schensted corespondence in the jeu de taquin context. In fact, 
this view point also appears in the crystal base theory [BKK]. 

2.2. KL polynomials 
Let q be a variable, and let 1tn be the Hecke algebra of the symmetric 

group Sn, Namely, 1tn is the algebra over Q(q) defined by generators 
T1, ... , Tn-1 and relations 

(Ti - q)(Ti + 1) = 0, TiTi+1Ti = Ti+1TiTi+1, TiTi = T;Ti (j ~ i + 2). 

Let Si = ( i, i + 1) be the transposition of i and i + 1. We set Ts. = Ti. 
For general w E Sn, we find a reduced expression w =sit··· Sir and set 
Tw = Ti1 • • • Tir· The length r of reduced expressions is constant on the 
set of reduced expressions of w, which is denoted by l(w). It is also well 
known that Tw does not depend on the choice of the reduced expression, 
and {Twlw E Sn} is a basis of 1tn, If y is obtained by the product of 
a subword of a reduced expression of w, we write y :$ w. This order is 
called Bruhat order. 

Definition 2.3. The following two conditions uniquely define the poly­
nomials Py,w(q) E Z[q] (y :$ w), which are called Kazhdan-Lusztig 
polynomials: 

Cw = Ly<w(-l)l(w)-l(y)/¥·-l(y)py,w(q-l)Ty 

= ~ - (-l)l(w)-l(y)q· -!.¥-+l(y)R (q)T-1 L..Jy:5,w y,w y-1, 
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d p ( ) 1 de p ( ) < l(w)-l(y)-1 an w,w q = , g y,w q _ 2 (y < w). 

We call the first property the bar invariance property, and the second 
property the degree property. For the definition, we can use the following 
element instead of Cw. 

l(w) l( ) 1 l(w)-l(y)-1 
If - 2 Y - is an integer, we denote the coefficient of q 2 

in Py,w(q) by µ(y, w). If µ(y, w) # 0 for y < w or µ(w, y) # 0 for 
y > w occurs, we write µ(ylw) # 0. Note that if we write µ(ylw) # 0, it 
particularly implies that y > w or y < w holds. 

The welldefinedness of Py,w(q) is non trivial, and in fact is one of the 
main theorems [KL, Theorem 1.1]. The uniqueness of Py,w(q) is easy to 
prove, but for the existence of these polynomials, we need to construct 
Cw (w E Sn)- In [KL, 2.2], these Cw are inductively constructed by 
setting Ce = 1 and 

Cw= Cs;Cs;w - L µ(z, Siw)C2 

z<w,siz<z 
µ(z,w)#O 

for Si E .C(w) = {sil SjW < w}. Since Cs;= q-½ri -q½, we can give an 
inductive definition of Kazhdan-Lusztig polynoimals as follows. 

Definition 2.4. 

Py,w(q) = ql-c Ps;y,s;w(q) + qc Py,s;w(q) 
l(w)-l(z) L µ(z, siw)q 2 Py,z(q) 

y~z~SiW,SiZ<z 

µ(z,s;w)#O 

where c = I if SiY < y and c = 0 if SiY > y. 

That the right hand side does not depend on the choice of Si comes 
from the welldefinedness result. We can also construct Cw by Ce = 1 
and 

Cw = Cws;Cs; - L µ(z, Siw)C2 

z<w,zsi<z 
µ(z,w)#O 

for si E 'R(w) = {sil wsi < w}, which leads to a similar inductive 
definition of Kazhdan-Lusztig polynomials. Note that 'R(w) = .C(w- 1). 
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Lemma 2.5. {1} Py,w(O) = l. 
{2} Y < w, SiY > Y, SiW < W imply Py,w(q) = Ps;y,w(q). 
{3} Py-1,w-t(q) = Py,w(q). 

7 

(1) follows from the inductive definition 2.4. (2) is proved by induc­
tion on l(y), which also uses 2.4. (3) follows from the first definition of 
Kazhdan-Lusztig polynomials: If we replace Py,w(q) by Py-1,w-1(q) in 
the definition of Cw and apply the anti-involution defined by Ti ~ Ti, 
we have Cw-1. Thus we have the bar invariance property. The degree 
property is obvious. Hence Py,w(q) and Py-1,w-1(q) must coincide. 

Another corollary of this construction of Cw is the Kazhdan-Lusztig 
representation of the regular representation, which is the matrix rep­
resentation with respect to the basis {Cw}. For the left regular repre­
sentation, we have 

(if SiW < w) 
(if SiW > w). 

We have the same formula for the right regular representation. We can 
now introduce the notion of left cells and right cells. 

Definition 2.6. If there exists a sequence y = xi, x2, ... , Xr = w such 
that .C(xi) ct .C(xi+1), µ(xilXi+1) -:f O for 1::::; i < r, we write y::; w. 

L 
If there exists a sequence y = xi, x2, ... , Xr = w such that R( Xi) ct 

R(xi+i), µ(xilXi+1) -:f O for 1::::; i < r, we write y::; w. 
R 

Note that y ::; w if and only if y- 1 ::::; w- 1 . If bothy::; w and w ::; y 
R L L L 

hold, we write y ~ w. Similarly, if both y ::; w and w ::; y hold, we write 
L R R 

y~w. 
R 

These relations partition Sn into equivalence classes, which are called 
left cells and right cells respectively. 

At a first look, the definition of the relation y ::; w seems to be 
L 

very artificial. To understand it in a more natural way, we set q = 1 
and denote Cw lq=l by a( w). (The specialization to q = 1 is only for 
simplifying the situation to more familiar setting of the symmetric group, 
and is not at all essential.) Then we have the following lemma by using 
Lemma 2.5 and the Kazhdan-Lusztig representation specialized to q = l. 
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Lemma 2.7. Lety -I w be two elements of Sn. Then we have (1}{=;>(2} 
where 

(1) Si E .C(y) \ .C(w) and µ(ylw) -I 0. 

(2) a(y) appears in sia(w). 

Hence, the left regular representation of the symmetric group with 
the specific basis { a( w)} gives a natural meaning of the relation y ~ w 

L 
as follows. 

Let Vw L be the left ideal uniquely defined by the following three 
conditions. 

-L 
(1) a(w) E Vw . 

-L 
(2) Vw is spanned by a subset of {a(x)}. 

( 3) If a left ideal satisfies ( 1) and ( 2), it contains Vw L. 

Then we have y i w {=;> Vy L C Vw L. Similar formula exists for 

y ~w. 
R 

§3. The RS correspondence and the left cell 

3.1. The Kazhdan-Lusztig theorem 

The following theorem is the theorem of Kazhdan and Lusztig which 
we are going to prove. 

Theorem A For y,w E Sn, we have y ~ w {=;> Q(y) = Q(w). 
L 

Example 3.1 (The S3 case). Left cells are {123}, {213,312}, {132,231} 
and {321}. Their Q-symbols are 

1 3 1 2 
1 2 3, 

2 3 

For the S4 case, see [Shi, p.20]. 

1 

2. 

3 
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3.2. A theorem of Knuth 

We write y = w if P(y) = P(w). To describe this equivalence 
relation, we introduce Knuth relations. 

Definition 3.2. Let Yi·•• Yn be a permutation of 1, ... , n. We set w 
as follows. 

If Yi+l < Yi < Yi+2, we set w =Yi··· YiYi+2Yi+l · · · Yn· 

If Yi+l < Yi+2 < Yi, we set w =Yi··· Yi+1YiYi+2 · · · Yn· 

We have y = w, and we say that y and w are in Knuth relation. 

The following theorem is due to Knuth [K, Theorem 6]. 

Theorem 3.3. Let y, w E Sn. Then y = w if and only if these per­
mutations are connected by a chain of Knuth relations. 

Let Dij := { w I wsi < w,wsj > w} where j = i±l. If y E Dij, 
we consider the right coset y < si, SJ > and take the distinguished coset 
representative y0 . Then we have either y = y0 si or y0 sJSi- We set 
KiJ(Y) = y0 siSJ in the former case, and KiJ(Y) = y0sJ in the latter case. 
Note that KiJ is a bijective map from Dij to Dji· If j = i + 1, this is 
the rule to obtain w from y in the Knuth relation, and if j = i-1, this 
is the rule to obtain y from w in the Knuth relation. This description 
of Knuth relations is convenient for our purpose. The following lemma 
shows that two elements in Knuth relation are in a right cell. 

Lemma 3.4. If w E DiJ, we have KiJ(w) ~ w. 
R 

(Proof) Since w E Dij, we have w = w 0 si or w = w 0 sJSi where w 0 

is the distinguished coset representative of w(si, SJ)- By the same proof 
as in Lemma 2. 7 we have µ( w 0 Si, w 0 Si SJ) = 1, and µ( w 0 SJ, w 0 s1si) = l. 
In either cases, we have µ(w1Ki1(w)) -I 0. Since Si E R(w) \ R(Kij(w)) 
and SJ E R(Ki1(w)) \ R(w), we have R(w) <t. R(KiJ(w)) and R(w) 1J 
R(KiJ(w)). We have the result. Q.E.D 

Remark We have another way to describe the Knuth relation as follows. 

If w < siw and .C(w) <t. .C(siw), then we have w- 1 = w- 1si. 

In fact, ifwe take SJ E .C(w) \.C(siw), the choice of si,Sj leads to 
SJW < w and s1siw > siw. These Si and s1 can not be commutable 
elements. Thus w- 1 E Dji and we are in the latter case in the definition 
of Kij• If we consider the case that y < s1y and .C(y) <t. .C(sJy), where 
we take Si E .C(y) \.C(sjy) such that y- 1 E Dij, we meet the former case 
in the definition of Kij, and we have y-1 = y- 1 s1. But this statement 
is the same as the previous case. 
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3.3. Preparatory results for the proof of Theorem A 

The following three propositions are proved in [KL]. I avoid repeti­
tion as long as the readability of the proof is guaranteed. 

Proposition 3.5 ([KL, Proposition 2.4]). 

R(y) :J R(w). 

If y::;: w, then we have 
L 

(Proof) It is enough to prove it for the case that .C(y) </.. .C(w) and 
µ(yjw) # 0. By Lemma 2.7, we have y = siw > w for some i or 
y < w and µ(y,w) # 0. In the former case, we consider the double 
coset (si)w(sJ) for each SJ E R(w). Then we can easily conclude that 
Sj E R(siw). Thus we have R(y) :) R(w). In the latter case, we 
assume to the contrary that there is SJ E R(w) \ R(y). By Lemma 
2.5(3), our assumption µ(ylw) # 0 is equal to µ(y- 11w-1) # 0. We 
also have SJ E .C(w- 1) \ .C(y- 1 ). By Lemma 2.7, we know that a(w- 1 ) 

appears in SJa(y- 1 ). Since y < w, we have w- 1 > y-1 and thus we have 
w- 1 = sjy- 1. By the same argument in the former case, w = ysJ > y 
implies .C(y) C .C(w). It contradicts our assumption that .C(y) </.. .C(w). 
Q.E.D 

Proposition 3.6 ([KL, Theorem 4.2]). If y # w E Dij and µ(ylw) # 
0, then we have µ(KiJ(Y)IKij(w)) # 0. 

Remark By the definition of Dij, there are two possibilities for y and 
w respectively. Namely, 

ysi < y = KiJ(y)sJ < ysJ = KiJ(Y) < KiJ(y)si, 
YSJ > y = Kij(y)si > ysi = KiJ(Y) > Kij(y)sj, 

wsi < w = Kij(w)sJ < WSJ = KiJ(w) < KiJ(w)si, 
wsJ > w = KiJ(w)si > wsi = KiJ(w) > KiJ(w)sJ. 

Let Yi,wi, (i = 1,2) and s,t be as follows. 
(a) If both y and w are in the former case, we set 

Yi = KiJ(Y), Y2 = Y, s = SJ, t = si, w1 = KiJ(w), w2 = w. 

(b) If both y and w are in the latter case, we set 

Yi= Y, Y2 = KiJ(Y), s = si, t = SJ, w1 = w, W2 = KiJ(w). 

( c) If y is in the latter case and w is in the former case, we set 
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Then we are reduced to the following two cases. 

(1) Y2t < Y2 = y1s <Yi< Yit, 
(2) y2t < Y2 = Y1S < Yi < yit, 

W2t < W2 = W1S < W1 < W1t, 
W1S < W1 < W1t = W2 < W2S. 

We have to show µ(y1lw1) = µ(y2lw2) for these two cases. Then we have 
come to the beginning of the proof in [KL, Theorem 4.2(i)]. 

Proposition 3.7 ((KL, Corollary 4.3]). 

implies Kij (y) ~ Kij ( w). 
L 

Let y,w E Dij· Then y ~ w 
L 

(Proof) We can assume that £(y) (/_ £(w) (£(y) "jJ £(w)), and 
µ(ylw) -=/- 0. By Lemma 3.4 and Proposition 3.5, we have £(Kij(y)) = 
£(y), £(Kij(w)) = £(w). Hence we have £(Kij(y)) (/_ £(Kij(w)) 
((£(Kii(Y)) "jJ £(Kii(w))). We also have µ(Kii(Y)IKii(w)) -=/- 0 by 
Proposition 3.6. We are through. Q.E.D 

3.4. Proof of Theorem A 
One implication is easy. 

Proposition 3.8. If Q(y) = Q(w), then y ~ w. 
L 

(Proof) Since Q(y) = P(y- 1) and Q(w) = P( w-1 ), y- 1 is connected 
to w- 1 by a chain of Knuth relations. Thus it is enough to prove that 
w-1 = Kij(y-1) (y-1 E Dij) implies y ~ w. But Lemma 3.4 shows that 

L 
y- 1 ~ w- 1 , which is y ~ w. Q.E.D 

R L 

It remains to prove that y ~ w implies Q(y) = Q(w). For each 
L 

partition 71", we define a standard tableau Prr by setting the entries of 
the i th column of P1r to be I:;:~ lj + 1, ... , I:~=1 lj from top to bottom, 
where li, l2, ... are column lengths of 71". We denote the shapes of Q(y) 
and Q(w) by 71"1 and 11"2 respectively. We define fj, w by (P(fj), Q(fj)) = 
(P1ruQ(y)) and (P(w),Q(w)) = (P1r2 ,Q(w)). By Proposition 3.8, we 
have y ~ '[) and w ~ w. Thus we have fj ~ w. To prove that Q(fj) = 

L L L 
Q(w), we define y' and w" by 

By the theorem of Knuth, we can write 

y' = Kid1 O ••• O Kirir (y) 
w" = K-, ., o ... o K·, ·, (w) 

t1J1 'l,sJs 
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We shall define w' and y" by 

w' 
y" 

= K· · o. · · o K· · (w) 'tlJl ir]r 

= K-, ., 0 • • • 0 K·, ., (yA) 
21J1 1,sJs 

Recall that Proposition 3.5 tells that R(fj) = R(w). Hence fj E Dirir 
implies w E Dirir· We then have welldefined Kiri)w), which satisfies 
Kirir(fj) ';; Kirir(w) by Proposition 3.7. We continue the argument and 

conclude that these y" and w' are welldefined. y' and w' satisfy R(y') = 
R(w'), P(y') = Q(y') = P1r 1 and P(w') = P1r2 • Similarly, y" and w" 
satisfy R(y") = R(w"), P(y") = P1r1 and P(w") = Q(w") = P1r2 • Note 
that y' is the permutation 

li,li-1,··· ,1,li+h,··· ,li+l,···. 

Similarly, w" is the permutation 

l~A-1,··· ,1,l~+l~,--· ,l~+l,••·. 

where we denote column lengths of 1r2 by l~, l~, .... Since R(y') = R( w'), 
the first Li letters of w' are in the decreasing order, the next l2 letters 
are in the decreasing order, etc. Similarly, the first l~ letters of y" are in 
the decreasing order, the next l~ letters are in the decreasing order, etc. 

By inserting the first Li letters of w' to 0, we know that the first 
column of 1r2 must have the length equal or greater than Li. By using 
y", we have the opposite inequality. We have Li = l~. It also implies 
that the next l2 decreasing letters of w' do not produce bumping, since if 
otherwise we have l~ > li- Thus we have that l~ 2: l2. We use y" to have 
the opposite inequality. Continuing the same argument, we conclude 
that 1r1 = 1r2 and Q(w') = P1r2 • (We also have Q(y") = P1r1 .) Therefore, 
we have y' = w', which implies fj = w. We have proved Q(y) = Q(w). 
Q.E.D 

3.5. Theorem A in the crystal base theory context 

An occurence of the Robinson-Schensted algorithm in the tensor 
product representation of the vector representation of Uq(gln) was first 
observed in [DJM]. The tensor product representation itself can be 
viewed as an example of Demazure modules [KMOTU, Theorem 3.1], 
and we may consider generalization into this direction, but we restrict 
ourselves to the original case. Then the crystal base is induced by the 
canonical base and we now have a good understanding of the base (see 
[SV]) and of the Robinson-Schensted algorithm in the crystal base theory 
context. 
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Let Uq be the quantum algebra of glr, and~ be Lusztig's coproduct: 

~(ei) = ei 0 1 + qc,-c;+i 0 ei (i = 1, ... , r-1), 
~(f;) = 1 0 Ji+ Ji 0 q-c,+c,+i (i = 1, ... , r-1), 
~(qh) = qh 0 qh ( h E Zt1 + · · · + Ztn)-

Let V = Q( q) r be its vector representation given by 

ei = Ei,i+l, Ji= Ei+l,i, qc; = qEii + L Ejj 
#i 

where Eij are matrix units. Natural base elements v1 = (1, 0, ... , 0)T, 
v2 = (0, 1, ... , 0)T, ... induce a base at q = oo in the sense of Kashiwara­
Lusztig. In the following, we exclusively work with bases at infinity, 
and call them crystal bases instead of bases at q = oo. We set L = 
EBi=1Q[q-1](q-1)Vi, B = { Vi mod q- 1L} C L/q-1L. Then (L,B) is the 
crystal base of V stated above, and V®n has ( L ®n, B®n) as its crystal 
base. To describe the tensor structure on B®n, we introduce 'Pi(b), ti(b) 
by 

'Pi(b) = max{ kl H(b) =/= 0}, ti(b) = max{ kl e7(b) =/= 0} 

where ei and Ji are Kashiwara operators. Then 

={ 
={ 

b1 0 ei(b2) 
ei(b1)0b2 
b1 0 h(b2) 
h(bi) 0 b2 

(ti(b1):::; 'Pi(b2)), 
(ti(b1) > 'Pi(b2)), 
(ti(b1) < 'Pi(b2)), 
(ti(b1) 2'. 'Pi(b2)). 

Let Vq(>.) be the irreducible highest weight module of Uq associated 
with>.= E AiEi- We identify>. with the corresponding Young diagram. 
Then it is well known that Vq(>.) 0 V is multiplicity free. Hence, we 
can uniquely define the submodule of V®n for each increasing sequence 
of Young diagrams. We identify the increasing sequence with a stan­
dard tableau Q, which we call the recording tableau. We denote the 
submodule by Vq(Q). If the shape of Q is>., we have Vq(Q) '.:::' Vq(>.). 

Proposition 3.9. (1) Let Q be a standard tableau of size n-1, and TQ 
be the set of tableaux obtained from Q by adding~- Let (L(Q), B(Q)) 
be a crystal base of Vq(Q). We set L(T) = (L(Q) 0 L) n Vq(T). Then 
we have 

L(Q) 0 L = EB L(T). 
TETq 
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We nextly set B(T) = (B(Q) 0 B) n (L(T)/q- 1L(T)). Then we have 

(L(Q) 0 L, B(Q) 0 B) = EB (L(T), B(T)). 
TETQ 

(2) Let L(Q) = L®n n Vq(Q). Then we have L®n = EBL(Q). If we 
further set B(Q) = B®n n (L(Q)/q- 1L(Q)), we have (L®n,B®n) = 
EB(L(Q), B(Q)). 

(Proof) (1) Let VT be the highest weight vector which generates 
the highest weight space of L(T). Since L(T) and the lattice generated 
by Ji1 • • • Ji. VT are crystal lattices of Vq (T), the uniqueness theorem of 
crystal bases concludes that they coincide. The uniqueness theorem also 
guarantees that there exists an automorphism of Vq(Q) 0 V such that 
it maps L(Q) 0 L to EBL(T). Since Vq(Q) 0 V is multiplicity free, the 
automorphism is scalar multiplication on each Vq(T). Thus by looking 
at highest weight spaces, we have that the automorphism is the identity. 
By descending induction on weights, we can prove B(Q) 0 B = UB(T). 
(2) We prove it by induction on n. Assume that it holds for n. Then we 
have (L(Q) 0 L, B(Q) 0 B) = EB(L(T),B(T)) by (1) where 

L(T) = (L(Q) 0 L) n Vq(T) = ((L®n n Vq(Q)) 0 L) n Vq(T) 
= (L®n+i n Vq(Q) 0 L) n Vq(T) 
= (L®n-t-1 n Vq(Q) 0 V) n Vq(T) 
= L®n+l n Vq(T). 

Q.E.D 

The crystal graph of Vq(.X) has description in terms of semistandard 
tableaux as follows [KN]. 

We write m for Vi mod q-1 E B. Let B(.X) be the set of column 
strict semi-standard tableaux of shape .X. For each T E B(.X), we read 
its entries row by row, starting from the bottom row. This reading gives 
an injection from B(.X) to B®n. For example, we have 

1 1 2 4 
2 3 
4 

We induce the crystal structure on B(.X) through this inclusion: the 
Kashiwara operators ei, Ji act on these monomial tensors by changing 
the leftmost I i+l I or the rightmost m of the sequence which is obtained 

by removing consecutive I i+l I 0 mas many as possible. Thus if eiT =I 
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O(f,;T =I= 0), then eiT E B(>..)(hT E B(>..)). This embedding is in fact 
the embedding of B(>..) into the set of permutation tableaux by jeu de 
taquin moves, and the inverse is given by taking P-symbols, namely by 
the insertion algorithm. See [Fo3] for example. 

Let Q be a standard tableau of shape >... We identify B(Q) with 
B(>..). Note that there exists a unique isomorphism of the crystals 
(L(Q), B(Q)) and (L(>..), B(>..)). The following is the modern version 
of the Date-Jimbo-Miwa theorem. We refer [BKK] for its generalization 
to superalgebras. 

Theorem 3.10. We identify B(Q) with B(>..) as above. Then the fol­
lowing hold. 

(1) If b = GJ ®···®I in IE B(Q), then the Q-symbol of 0 t- i1i2 ···in 
is Q. 
(2) Let P(b) be the P-symbol of 0 t- i1i2 .. · in, Then the identification 
of B(Q) with B(>..) is given by the map b I----) P(b). 

(Proof) We first recall that the bumping procedure (T, i) I----) (T t-- i) 
gives the isomorphism of crystals between B(>..) ®Band LJlµ/.\l=lB(µ). 
(As I have explained, we can think of the insertion via jeu de taquin 
moves. Hence it is enough to establish the isomorphism for a jeu de 
taquin move, which is easy.) 

This isomorphism leads to a crystal automorphism on B( Q) ® B as 
follows. 

B(Q) ® B .:'.t B(>..) ® B .:'.t lJ B(µ) ~ lJ B(T) = B(Q) ® B 
lµ/.\l=l TE'Tq 

where the second isomorphism is given by the insertion algorithm. Since 
Vq(Q) ®Vis multiplicity free, the automorphism must be the identity. 
Hence the isomorphism B(T) .:'.t B(µ) for T E TQ of shape µ is given 
by restricting the following isomorphism to B(T). Note again that the 
second isomorphism is given by the insertion algorithm. 

B(Q) ® B .:'.t B(>..) ® B .:'.t lJ B(µ) 
lµ/.\l=l 

Thus if the Robinson-Schensted algorithm gives the isomorphism B( Q) .:'.t 
B(>..) such that the Q-symbols of the elements in its image are con­
stant Q, then the Robinson-Schensted algorithm gives the isomorphism 
B(T) .:'.t B(µ), and the Q-symbols of the elements in its image are con­
stant T. Therefore the induction proceeds. Q.E.D 
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We now turn to the q2-Schur algebra. We refer [Du] for the details. 
We consider the Hecke algebra whose deformation parameter q is re­
placed by q2 . We also denote it by 'Hn by abuse of notion. V®n has 'Hn 
action given by 

v 0···0V Tk= { i1 in 

qVi1 Q9 · · · Q9 Vik+l Q9 Vik Q9 · · · Q9 Vin 
q2 Vi 1 Q9 · · · Q9 Vin 
qVi1 Q9 · · · Q9 Vik+l Q9 Vik Q9 · .. Q9 Vin 

+(q2 - l)vii 0 · · · 0 Vin 

(ik > ik+l) 
(ik = ik+1) 

It commutes with Uq action. The endomorphism ring End1tn (V®n) is 
called the q-Schur algebra, which is denoted by Sr,n· It is well known 
that it is a quotient algebra of Uq. If we denote the µ-weight space of 
V®n by Vµ, then we obviously have Sr,n = EBµ,vEnd1tn (Vv, Vµ)-

We now assume r = n and set w = t1 +···+En· Then 'Hn c::c 

End1tn (Vw, Vw), and we can identify 'Hn with the subalgebra of Sn,n· 
On the other hand, if we set xµ = I::wES Tw where Sµ is the Young 

µ. 

subgroup associated withµ, the weight space Vµ is isomorphic to xµ'Hn. 
Hence we can also identify Vw with 'Hn. This identification is given by 

V ""' ... ""'V ~ (q2)-l(ww0 )/2T 
Wt '<Y \(Y Wn WWo• 

In particular, the Kazhdan-Lusztig basis element c:,, is identified with 

~ p (q2)ql(y)-l(w)v 0 ... 0 V . 
~ y,w Yn Yl 

The tensor space and the q2-Schur algebra have bar operations, 
which satisfy xv = xv (x E Sn,n, V E v®n), and Vn 0 ... 0 V1 = 
Vn 0 · · · 0 v1. The bar operation on the tensor space coincides with 
the bar operation introduced in 2.2 if restricted to 1i = Vw c V®n. 

By these reasons, we conclude that these are canonical basis el­
ements arising from the crystal base we have considered above. We 
also remark that the canonical basis of the q2-Schur algebra is the im­
age of the canonical basis of the modified quantized enveloping alge­
bra by the work [SV]. In fact, because of (V®n)w = EBSq(Q) where 
Sq(Q) = Vq(Q)w, these Kazhdan-Lusztig basis elements are partitioned 
into the disjoint union LJB(Q)w at q = oo. 

Recall that these c:,, are obtained from Cw by applying a Q-algebra 
automorphism of 'Hn. Thus the vector spaces S<w, S<w generated by 

L L 



Robinson-Schensted Correspondence and Left Cells 17 

{C~IY ::C::: w}, {C~IY < w} respectively are 'Hn-modules. It is known 
L L 

that the factor module S-s_wf S<w is irreducible. We now take the Uq-
L L 

submodules V<w, V<w of V®n generated by S<w, S<w respectively. By 
L L L L 

applying compositions of ei,h to {C~IY ::C::: w}, {C~IY < w}, we also 
L L 

have crystal bases of V-s_w and V<w, which we denote by (L-s_w, B-s_w), 
L L L L 

(L<w, B<w)- B<w is a union of connected components of B<w· Since 
L L L L 

V-s_w/V<w is irreducible, B-s_w \B<w coincides with one of B(Q)w, There-
£ L L L 

fore, we have Theorem A again. 

3.6. Theorem A derived from the primitive ideal theory 

Definition 3.11. The annihilator ideal of L(>.) in U(g) is denoted by 
J(>.) := Ann(L(>.)), and is called a primitive ideal. 

The following is a theorem of Joseph. 

Theorem B Q(y) = Q(w) ~ I(y • 0) = I(w • 0). 

By the translation principle, 0 can be replaced by any dominant 
integral weight. 

The proof of this theorem depends on the following proposition. 

Proposition 3.12. (1) Let y, w E Dij and assume I(y • 0) C I(w • 
0). Then we have I(KiJ(Y) · 0) c I(KiJ(w) · 0). 

(2) If Q(y) = Q(w), we have I(y · 0) = I(w · 0). 

(1) is proved in [Jal, Satz 5.9]. (2) is proved in [Jal, Satz 5.18]. Once 
this proposition is established, the proof of Theorem B goes precisely the 
same as the proof of Theorem A. 

By [Jal, Corollar 6.26], [Jal, Satz 7.9], [Jal, Satz 7.12], we have 
the following theorem of Vogan. We state it in weaker form since it is 
enough for our purpose. 

Theorem C Let>., µ 1 , µ 2 be dominant integral weights. Then we have 
that I (y • >.) C I ( w · >.) holds if and only if there exists a finite dimensional 
module E such that 
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This theorem leads to Theorem D below. Recall that Kazhdan­
Lusztig conjecture states that if we define a(y, w) by 

L(y · 0) = L a(y, w)M(w • 0), 
y-5,w 

we have a(y, w) = (-l)l(w)-l(y) Pwow,woy(l). This is proved by Brylin­
ski and Kashiwara, Beilinson and Bernstein. Thus, there is a linear 
isomorphism between K0 (00 ) and ZW which sends M(w0w- 1 · 0) to 
w and L(w0w- 1 • 0) to a(w). By introducing W-action on K0 (00 ) by 
TM(w0w- 1 • 0) = M(w0w- 1T-I • 0), we can make it into a W-module 
isomorphism. Hence it is possible to translate statements for K0 (0o) 
to those for the Weyl group. The following theorem is due to Joseph 
and Vogan. The formulation is due to Joseph [Jo5], and Vogan gives the 
proof in proving Theorem C. See [Jal, Lemma 14.9] for the proof. 

-L 
Theorem D I(ywo • 0) C I(wwo · 0) ¢? a(w) E Vy . 

This theorem shows that y ~ w ¢? I(ywo · 0) = I(wwo · 0). We 
L 

then use Theorem B to conclude that y ~ w ¢? Q(ywo) = Q(ww0 ). 
L 

Schiitzenberger's theorem [Sehl] tells that if we apply evacuation proce-
dure to Q(w), we obtain the transpose of Q(ww0 ) [S, Theorem 3.114]. 
Thus we have established Theorem A again. 
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