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Introduction 

A Complex Frobenius Problem 

Sidney M. Webster 

Dedicated to Professor K uranishi 

A complex Frobenius structure on a smooth (real) manifold Mis a 
smooth complex vector sub-bundle E of the complexified tangent bundle 
T(M) ®C which satisfies the integrability condition [E, E] i;;; E (i.e. the 
set of local sections of E is closed under Lie bracket). Such a structure is 
also termed formally integrable, or involutive. The bracket of a section 
of E with a section of the complex conjugate bundle E, taken mod 
E + E, gives the Levi-form of the structure. If En E = 0, then E 
is a CR structure; it is an almost complex structure if also E + E = 
T(M) ® C. The integrability problem is to find independent functions, 
the differentials of which span the sub-bundle EJ_ of complex covectors 
annihilating E. The problem of local solvability is to establish a Poincare 
lemma in the natural de Rham-Dolbeault complex associated to the 
differential ideal generated by sections of EJ_. 

The case of identically vanishing Levi-form was already treated in 
works by Nirenberg [13] and Hormander [7]. The Mizohata operator 
[5], [12] on R 2 gives perhaps the simplest complex Frobenius structure 
for which local solvability fails (it is also important for the canonical 
transformation theory of partial differential equations [8]). Nirenberg 
[14] has shown that local integrability fails for small perturbations of 
this structure. Certain interesting higher dimensional analogues have 
been studied by Treves [18]. These are structures on Rn+l induced 
by (local) maps f : Rn+l --. C, df -=f. 0. The topology of the fibers 
1-1 (a) plays a key role in the questions of local solvability and of local 
integrability for small perturbations of these structures. In his recent 
book [19] Treves also treats the integrability and solvability problem for 
a variety of important structures. 
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Here we consider local structures which are modeled on those in
duced by generic folds F : M ----t en, where M is an open subset of 
R2n. The fiber is always a pair of points which coalesce along a smooth 
hypersurface N C M. For n = 1, F essentially induces the Mizohata 
structure [17]. For n 2: 2 the case where F(N) is part of the boundary 
of a strongly pseudoconvex domain D C en is of special interest. F is 
an interior fold if F(M) ~ D, and an exterior fold if F(M) n D = 0. 

Our main result implies that complex Probenius structures which 
are small perturbations of strongly pseudoconvex interior folds are locally 
integrable, if n 2: 2. It is false for n = 1 by Nirenberg's example. We 
show by counterexample ((1.7) below) that local integrability also fails 
for small perturbations of strongly pseudoconvex exterior folds (n = 2). 
Thus, fiber topology does not suffice to determine the main properties 
of fold-like structures. The integrability results given here for them are 
more similar to those known for CR structures of hypersurface type. We 
refer specifically to the positive embedding results of Kuranishi [11] and 
Akahori [1], and the counterexamples of Nirenberg [14] and Jacobowitz 
and Treves [10]. Though we point out that there is no unresolved di
mension as there is (presently) for CR structures. 

Originally we had hoped that the current problem would be more 
similar to the Kuranishi embedding problem and be amenable to the 
methods of [20]; but we were unable to construct an exact homotopy 
formula, i. e. one valid without shrinking the domain. However, it turned 
out that one could establish the above integrability result, and much 
more easily, by reducing it to a theorem of Ranges and Jacobowitz [6]. 
One drawback to this method is that it only yields C 00 regularity. Thus 
we were unable to address the question of Ck regularity, one of out 
original aims. However, we hope that the work will shed some further 
light of the integrability problem. 

The main result is proved also without the aid of the Poincare 
lemma. In fact we use our integrability theorem to reduce it to the 
case of an interior fold, which we carry out in section 1, for the admis
sible degrees. We are indebted to Cordaro and Treves [3] for a helpful 
remark in this respect. In section 2 we characterize intrinsically the var
ious formal generic fold-like structures and give a useful normalization 
for them. This is used in section 3 together with [6] to derive the main 
result. 
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§ 1. Generic folds 

Let z = (z', Zn = xn + iyn) be complex coordinates on en and 
consider a (local) domain with boundary 

(1.1) 

where h is a smooth real function with h(O) = O, dh(O) = 0. We also 
use ( z', t, s) as coordinates on R 2n f:::! en-l x R 2 and define a map 
F: M - en by 

(1.2) F(z', t, s) = (z', zn = t + i(~s2 + h(z', t))), 

where M is a suitable neighborhood of O in R 2n which is symmetric 
about N, 

(1.3) N=Mn{s=O}. 

Fis a generic fold of M onto D with F(N) = aD. 
The complex one-forms 

(1.4) 0° = dz 0 , 0n = dzn, 

dzn = (1 + iht)dt + i(sds + h0 dz0 + ha:az°), 

(ha = ah/az0 , etc. ) span an n-dimensional sub-bundle EJ_ of the 
complex cotangent bundle. (We use the index ranges 

(1.5) 1 ::; a, (3, 'Y ::; n - 1; 1 ::; i, j, k ::; n, 

and the summation convention for repeated indices). We let E be the 
sub-bundle of complex vectors annihilated by EJ_. With { 0°, 0n, az0 , ds} 
as a basis of complex covectors, we get dual complex complex vector 
fields Xa:, X,;; spanning E, for which 

df = Xa:f az0 + Xn:fds, mod (Bi), 

for any smooth function f. We readily compute 

(1.6) Xa: = c%: - i 1 ha:_h at, Xn: = as - i-1 
8 .h at. 

+it +it 

These vectors together with their complex conjugates, 
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are linearly independent except along N, where Xn: becomes real and 
transverse and spans En E. Along N we have the bracket relations 

[Xa, X:a] IN = -igaj38t, [Xa, X,,;;] IN = 0, [Xn, Xn:] IN = -ignn8t. 

Here 9nn = [2(1 + hn]-1 , and 9af3 corresponds to the Levi-form of 
8D under the equivalence FIN• The full matrix 9{], defined along N, 
represents the Levi-form of the complex Frobenius structure E. It is 
positive definite if D is strongly pseudoconvex, in which case F is an 
interior fold. F is an exterior fold relative to en - D if the latter domain 
is strongly pseudoconvex. 

Next we consider some abstractly defined structures Eon R 4 with 
coordinates (z = x + iy, t, s). Eis the span of the complex vector fields 

(1.7) X-1 = th, X2 = 8s - is (1 + se + z )8t , 

where e(t, s) is a smooth real valued function defined near 0. Clearly, 
[X1, X2] = 0, [X1, X1] = 0, and [X1, X2] = -i8t. Thus E is for
mally integrable, and E n E is non-zero only along the hypersurface 
N : X = -s - s2e(t, s), where it is spanned by the transverse vector 
X2 = Re(X2). The Levi-form is non-degenerate indefinite along N. In 
[14] Nirenberg has constructed a function e for which (X2lz=o)u = 0 
has no non-constant solution u(t, s). Thus, if X 3F = 0, j = 1, 2, then 
(dF I\ dz)(0) = 0, so that (dF1 I\ dF2 )(0) = 0. Hence, the structure E, 
which is a formally integrable strictly pseudo convex exterior fold is not 
actually integrable near 0 for this choice of f 

We return to the fold structure (1.2),(1.6) and consider the problem 
of local solvability. We assume that the smooth one-form 

(1.8) 

satisfies the compatibility condition aE'P = 0, or 

(1.9) X-{<py - Xy(f);[ = 0, 1 ~ i, j ~ n. 

The problem is to find a smooth function g with 8Eg = <p, i.e. 

(1.10) 

We assume, in addition, that <p satisfies 

(1.11) 'Pn = 0( s00 ) , 

along N. More intrinsically, <pn: is the interior product of <p with a 
smooth non-vanishing section of E which becomes real along N. Thus, 
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(1.11) says that r.p is fiat on the real characteristics of E. By a standard 
argument (see below) one can always achieve (1.11) by adding an exact 
form to r.p. Grushin's example shows that, even with this extra condition, 
(1.10) may not have a solution for n = 1. However, if n ~ 2 and F is a 
strongly pseudoconvex interior fold, we shall show that (1.9) is sufficient 
for the existence of a solution to (1.10). 

We define open sets and maps 

M± = {(z',t,s) EM: ±s > O},F± = FIM±, 

so that F± : M± --+ D are isomorphisms of Frobenius structures. We 
set r.p± = (F±1 )*r.p , so that 

r.p± 

(1.12) 

where by± = r.p1 o Fj/, and = is congruence mod dzJ. These forms will 

blow up along 8D, unless (f)n vanishes along N. This is the motivation 
for the condition (1.11). 

Lemma 1.1. If (1.9} and {1.11} hold, then the forms r.p± are 
smooth 8-closed (0,1)-forms on the closure D. 

proof By (1.9) they are closed, and the hf are clearly smooth on 
D and vanish to infinite order on 8D by (1.11). By the chain rule and 
(1.9) we have 

(1.13) 

But each Xa'Pn also vanishes to infinite order along N, so these functions 
are also smooth up to the boundary. For each fixed z' we apply the 
Cauchy formula to biJ" on the domain with counter-clockwise boundary 

(1.14) D(z') 

8D(z') 

a,,.(z') 

c,,.(z') 

{zn: lxnl::::; 8, h(z',xn)::::; yn::; h(z',xn) + p}, 

ao(z') - ap(z') + c,5(z') - c_,5(z') , 
{xn + i(h(z', xn) + a) : -8::::; xn ::; +8} , 
{a+iyn: h(z',a)::::;yn::;h(z',a)+p}, 

where 8 > 0, p > 0 are sufficiently small. We have ((n = 1;,n + iTJn) 
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In the double integral we extend the numerator of the integrand smoothly 
by zero across 8D. Then we may change the domain of integration D(z') 
to one whose boundary is independent of z', except for the upper curve 
ap(z'), which varies smoothly with z'. It's then clear that the double 
integral gives a function of (z', zn) which is smooth up to the boundary. 
In the line integral over c8(z'), we make the substitution a= 1/n -h(z', 8) 
to get 

1P cp0 ( z', 8, v'21r) "d 
---------z a. 

a=O 8 + i(a + h(z', 8)) - zn 

This is smooth in (z', zn), as zn crosses the boundary curve a0 (z'). Sim
ilarly for c_0 (z'). For the line integral over ap(z') we have 

1+8 'Pa(z',~n, y"[p) (1 + ih n(z' C))dC. 
{n=-8 ~n + i(h(z',~n) + p) - zn x , 

This is also clearly smooth in (z', zn) across the boundary. For the 
integral over a0 (z'), we set p = 0 in the above. Then cp0 (z 1,~n,o) is a 
smooth function. Thus we have a Cauchy integral of a smooth function 
over a smooth curve, both depending smoothly on the parameter z'. By 
a well-known argument this gives a function of (z', zn) which is smooth 
up to the boundary. The same argument for cp- completes the proof. 

To achieve (1.11) we replace cp by cp-8Eg, where g is chosen so that 
'Pn - Xng = O(s00 ). Formally, we set 

00 00 

'Pn = L wk(z', t)sk, g = L9k(z', t)sk, 
k=O k=l 

where k!wk = a:cpn(z', t, 0). We determine the functions 9k successively 
by 91 = wo, 2gz = w1, and 

-z 
l + iht 8tgk + (k + 2)9k+2 = Wk+l• 

By the theorem of E. Borel (see [8]) there is a smooth function g with 
these prescribed s-derivatives along s = 0. 

Now we assume that D is strongly pseudoconvex, so that we may 
invoke Kohn's solution of the &-problem [4]. Alternately, and in a more 
elementary vein, we may employ the local solution operators of Range 
and Lieb [15]. Thus, there exist functions g± smooth on D with EJg± = 
cp±. It follows that on 8D we have the tangential Cauchy-Riemann 
equations 8b(g+ - g-) = 0. By the H. Lewy extension theorem (smooth 
version), there is a function g0 , holomorphic on D and smooth on D, 
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with g0 = g+ - g- on 8D. We replace g- by g- + g0 , so that g+ = g
on 8D. Then we define g on M by: g = g+ o Fon Af+ and g = g- o F 
on M-. Clearly, g is continuous on M and smooth on Af+ UM-, where 
it satisfies (1.10). Also, all tangential derivatives afJ,t)g are continuous 

on Af+ UN and on M- UN. If we repeatedly differentiate the equation 
Xn:g = (f)n and use (1.6), we see that all derivatives of g are continuous 
across N. Thus, in contrast to the example of Grushin [5], [14] we have 
the following. 

Proposition 1.2 (Poincare lemma). Let the smooth one-form r_p 
( 1. 8) satisfy the compatibility condition ( 1. 9} relative to the fold struc
ture E induced by the map F (1.2}. If n 2:: 2 and if F is a strongly 
pseudoconvex interior fold, then there exists a smooth function g with 
8Eg= rp. 

The Poincare lemma also holds for (0, q)-forms (mod EJ_) for 2 :S 
q :S n - 1. (That it does not hold for top degree forms follows from 
a general result of Cordaro and Hounie [2]). We sketch the argument. 
Relative to the coframe (1.4) the (0, q)-form r_p has the representation 

r_p = rp' + ds I\ rp", 

where rp', rp" are q- and q - 1-forms in az' with coefficients in (z', t, s). 
In an obvious notation 

8Er_p = 8~r_p' + ds I\ (Xnr_p' - 8~rp"). 

By a change r_p - r_p - 8E'l/J', where 'lj;' is a (0,q-1)-form without ds, 
we can achieve rp" = O(s00 ) as above. Suppose that 8Er_p = 0. Then 
the analogue of lemma (1.1) shows that the transplanted forms r_p± are 
smooth on D and agree along 8D. There exist smooth (0, q - 1)-forms 
'lj;± on D with 8'lj;± = r_p±. We have 8('lj;+ - 'lj;-) = 0 along 8D. If we 
are below the Lewy unsolvability degree, i. e. q - 1 < n - 1, then there 
is a smooth (0, q - 2)-form rJ with 8ry = 'lj;+ - 'lj;- along 8D. We replace 
'lj;- by 'lj;- + 8ry. We patch together the forms F*'lj;± on M± as above 
to get a smooth form 'lj; satisfying 8E'l/J = r_p. 

§2. Local normalization 

We consider n independent smooth (C00 ) complex vector fields Xy, 
defined on an open set M of R 2n containing 0, and denote their complex 
conjugates by Xj as before. At each point x E M, Ex is the complex 
vector space spanned by the Xy(x). We assume that E0 n E0 is one
dimensional. After changing the frame, we may assume that Xn(0) = 
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Xn(0) spans Eon Eo, and that Xn:-(0), X,,-(0), X 0 (0) (see (1.5)) span 
Eo + Eo. We then choose coordinates (z°' = x°' + iy°', t, s) so that 
X,,-(0) = EJ,,, Xn = as, and at is transverse to E +Eat 0. Then we may 
write 

-- /3 n f3 X1 - A3 873 + A3 as + A3 af3 + Byat , 

where A~i(O) = 8). After changing the frame via the inverse matrix of 
- J J 

Ai, we get 
J 

(2.1) EJ,, + A.f a{3 + B,,at, 

as + A.f af3 + Bnat , 

where A/3(0) = 0, By(0) = 0. In this form (2.1) the frame is uniquely de
termined by the coordinate system (z, t, s), which we refer to as adapted 
to our structure at 0. 

The degeneracy locus, 

(2.2) N = {x EM: Ex n Ex# 0}, 

is the set of points where some non-trivial linear combination of the Xy 
is real, or equivalently, where the vectors Xy, Xj are dependent. If we 
write out the condition 0 = aj Xy + b3 Xj and first eliminate an, we get 

(2.3) 
-iA~ l 
iA~ . 

2Im(Bn) 

The shift in the bars over indices reflects complex conjugation, and a fac
tor of i has been inserted in the last column of the determinant to make 
r real. Our genericity assumption on the degeneracy is the transversality 
condition 

(2.4) 

It implies that N is a smooth hypersurface in M. Alternately, we may 
state it as follows: dr(0), extended to T0 (M) ® C and then restricted to 
E0 , is non-zero. It follows that En (T(N) ® C) gives a CR structure 
of real hypersurface type on N. If we additionally restrict the initially 
chosen frame above so that the X,, span the (0,1)-vectors of this CR 
structure, then EJ,,r(0) = 0. We then make the coordinate change 

z10 = z°' , t' = t, s1 = r(z, t, s) , 
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and the corresponding frame change 

x.;, =(rs+ A:r.a + Bn""t)-1 X;;;,X~ = Xa:- (ra: + A!r.a + Ba:rt)X.;,. 

After this we may assume that N has the form (1.3), and that the vectors 
Xy still have the form (2.1). 

To preserve these normalizations, we restrict our coordinate changes 
to the form 

(2.5) z'°' = z°' + J°' , t' = t + J0 , s1 = s + Jn , 

where 

!°' = 0(2) ,J0 = 0(2) ,r = sJn ,Jn = 0(1). 

In the prime system there is a unique adapted E-frarne 

(2.6) 

As in Section 1 of [20] we have the relations 

(2.7) 

A,f + Xa:J.B 

Ba:+ Xa:Jo 

(8-J + Xa:J7)A~ .B + Xa:r A~ .B, 

( 8-J + Xa:J7 )B~ + Xa:r ~' 

Af + Xn:J.B Xrrf7 A~ ,a+ (1 + Xrrr)A~ ,a, 

Brr+ XrrJ0 = XrrJ7 B~ + (1 + Xrrr)B.;,. 

Exactly as in [20] we may choose f°'(z, t), J0 (z, t) to achieve 

(2.8) [A.,f]IN = 0(l(z, t)l2), 

[Ba:]IN = -ib,0az.B + B¾(z, t), Bi= 0(l(z, t)l2), 

where the hermitian matrix b,aa represents the Levi-form at 0 of the CR 
structure on N. 

For all further normalizations, we restrict to changes (2.5) with J = 
s/, so that N and the functions (2.8) on it remain unchanged. The last 
two equations of (2. 7) give 



A Complex Frobenius Problem 415 

We can choose J!3(z, t), J0 (z, t) uniquely so that the left side of the first 
equation, and the real part of the left side of the second vanish. After 
this change we may assume 

f3 - A/3 - A A 

An - sAn, Bn - sBn, Im(Bn)-=/- 0, 

since r = 0 and 88 r-=/- 0 on N in (2.3). Now we restrict to changes (2.5) 
with 

(2.9) 

Substituting into (2.7), dividing bys, and lettings -t O gives 

Thus we can choose }(z, t) to make 

[A;/]IN = 0, [Re(.B~)]IN = 0, [Im(.B~)]IN = -1. 

After these preliminary normalizations we make the coordinate 
change (2.5),(2.9) with 

(2.10) ](z,t,s) = f {sig(s/si)Jj(z,t), 
j=l J· 

where j = (}!3,J0 ,Jn). Following [8], vol. I, p. 16, we choose g(s) to be 
a fixed smooth real valued function of suitably small compact support 
with g( s) - 1 vanishing to infinite order at s = 0. The functions Jj are 
successively chosen, depending on the previous choices, to achieve 

(2.11) 

This is independent of Ej > 0 which is then chosen so small that 

The transformation so constructed is smooth, and in the final coordinate 
system (2.11) holds for every j. Hence, we have established the following. 
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Lemma 2.1. There exists a smooth adapted coordinate system 
(z, t, s) and corresponding frame (2.1} so that (1.3}, (2.2} and (2.8} 
hold, and 

Af = O(s00 ) , Bn +is= O(s00 ) • 

For the case n = l, see Sjorstrand [16] and 'Ireves [17]. 

§3. Structures with positive definite Levi-form 

With the normalizations of lemma (2.1) we have the bracket rela
tions at 0 

(3.1) 

biJ represents the Levi-form of the structure E at 0. It will be positive 
definite precisely when b0 7J, which represents the Levi-form of the CR 
structure on N, is positive definite. 

Theorem 3.1. Let E be a complex Frobenius structure of rank 
n on a neighborhood of O in R 2n with n ~ 2. Suppose that E has a 
generic degeneracy with positive definite Levi-form at 0. Then there 
exists a neighborhood M of O and a strongly pseudoconvex interior fold 
F : M ---+ en inducing the structure E on M. 

For the proof we assume the normalizations of lemma (2.1) and 
consider the transformation 

1 2 T: (z,t,s) f--+ (z,t,y = 2s), 

and its restrictions T±to M±. On U = T±(M±) ~ {y ~ O} we have the 
vector fields 

Clearly X~ is smooth up to the boundary y = 0. 
By a Cauchy integral argument similar to the one given in the proof 

oflemma (1.1), it follows that the x;,'s are also smooth up to the bound
ary of U. In fact, we just set h = 0 in (1.13),(1.14), and replace 7J,i by 
A,f o (T+)- 1 , or Ba:o (T+)-1 in (1.15). Hence,we have a smooth almost 
complex structure with strongly pseudoconvex boundary on U. By the 
theorem of Hanges and Jacobowitz [6] there is a holomorphic coordinate 
system G + : U ---+ en which is smooth up to the boundary for a per
haps smaller U containing 0. Similarly, we have a smooth holomorphic 
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G _ : U ----, en for the almost complex structure induced by T _. The 
map 

G+1 o G_ : G_(8U)----, G+(8U) 

is a CR equivalence. By the smooth version of the H. Lewy extension the
orem, it extends to a biholomorphic equivalence H: G+(U)----, G_(U), 
which is smooth up to the boundary. We replace G _ by H o G _, and 
then define 

F= { G+ oT 
G_ oT on 

An argument strictly analogous to that given in the proof of proposition 
(1.2) shows that Fis smooth on M. Since Fis an embedding of N, its 
coordinate functions are independent on M also. Hence, F satisfies the 
requirements of the theorem. 

The hypotheses on the Levi-form can clearly be weakened, since 
they may be so in the Ranges-Jacobowitz theorem (Catlin), and in the 
H. Lewy extension theorem (Trepreau). 
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