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Prolongation Projection Commutativity Theorem 

Jose M. Veloso 

Abstract. 

If the symbol 9k of a SPDE Rk is 2-acyclic, then the operations 
of prolongation and projection on Rk commute 

We apply this to study contact of three-dimensional CR-manifolds. 

§1. Introduction 

S. Chern and J. Moser [2] proved that two real hypersurfaces of 
C2 have a contact of fifth order and in the non-umbilic case of sixth 
order. The G-structure associated to a real hypersurface is of order two 
but their definition involves fifth order derivatives. Studying these facts 
through the SPDE of jets of biholomorphic functions between the real 
hypersurfaces, we found the following theorem: 

Theorem 1.1 (Prolongation projection commutativity theorem). 
Let Rk C Jk(M, N, p) be a system of partial differential equations 
such that 

(i} a : Rk ---+ N is a submersion 
(ii} the symbol Yk of Rk is 2-acyclic 
(iii} Yk+l is a vector bundle on (pt+ 1 )-1(Rk) 

Then, for every l 2: 0, 

Pttlt~ ((Rkh1+2) = (Pttl+l((Rk)+1+1))+1 · 

Theorem 1.2 (Formal integrability theorem [4]). Under the hy­
pothesis of the above theorem and the assumption that 

pz+1((Rk)+1) = Rk, 
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we get that 

is a submersion for every l ~ l. 

The formal integrability theorem for linear PDE systems was first 
proved by Quillen [6] and with weak assumptions by Goldschmidt [3], 
who also proved it in the non-linear case [4]. A version of this theorem 
using involutivity is in Kuranishi [5]. All these publications used the 
set Rk of integral jets of the PDE system to prove the theorem. Ruiz 
[7, 8, 9] utilizes the sheaf h of functions which are null on Rk; this 
approach seems to us more natural and we follow this approach. 

In Section 2 we present the basic facts following [7, 8, 9]. Section 3 
contains the proof of Theorem 1.1. In Section 4 we apply the theorem to 
study contact of three-dimensional CR-manifolds. Corollary 4.1 shows 
that the G-structure associated to a CR-manifold M is the projection 
in order two of fifth order jets which have fifth-order contact with the 
hyperquadric Imw = zz. Theorem4.3 relates the normal form of M [2] 
with the invariants of Cartan [1]. 

I'd like to thank to A.M.Rodrigues and J.Verderesi for several dis­
cussions on this subject. I dedicate this paper to prof.M.Kuranishi, in 
occasion of his seventieth birthday. He was very kind to me and my 
contacts with him were always stimulating. 

§2. Basic definitions 

Let M, N be manifolds, T = TN the tangent bundle of N, p : M -+ 

N a submersion, and Jk = Jk(M, N, p) the manifold of k-jets of local 
sections of p: M----+ N. Denoting by pf : Jk -+ Ji, k > l, the canonical 
projections, and by p~ = f3k : Jk -+ M and p1:._ 1 = ak : Jk -+ N the 
projections to target and source respectively, the sheaf of algebras of C 00 -

functions on Jk will be denoted by Fk. If Zk E Jk, let be Z1 = pf (Zk), 
for l :S k. In particular, f3k(Zk) =Zand ak(Zk) = z. 

We identify Zk with the linear application (cf. [7]) 

given by 
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If 0 is a vector field on N, we define the formal derivative 

by 

where f E Fk. This derivative has the properties 
(i) 8a.0! = a.80! 

(ii) 8[0,.,,1 = [80, 8.,,] 
where a is a real function on N, and 1/ is a vector field on N. Let 
x = (x1,•·· ,xn) be a chart on UC N, (x,y) = (x1,··· ,xn,y1,··· ,ym) 
a chart on p-"- 1 (U), and (x,yfx,O :'.S j :'.S m,O :'.SI a l:'.S k) a chart on 
(p~)- 1(U), where 

and a= (a1, · · · , am) is a section of p on U. 
In this coordinate system 

and 

where f E Fk, and 8i denotes 80 when 0 = 8/8xi. 
Let Qk = Ker(pL1)* be the vector bundle on Jk of vertical tangent 

vectors with respect to PLi. The fiber of Qk on Zk is denoted by Qzk. 
The dual bundle of Qk is denoted by Q'io. If f E Fk, then d(80f) IQz 

k+l 

depends only on df IQzk and 0(z). So we have a map 

dK : TzN@ Q'zk ---+ Qt+i 

defined by 

dK(0z ® df IQz ) = d(80f) IQz • 
k k+l 

In coordinates 
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If Q'z°" = Lk?:O Q'zk, we define Koszul's complex (ATz ® Q'z00 , dK) by 

i=l 

Definition 2.1. A system of partial differential equations (SPDE} 
is a subsheaf of ideals h of Fk locally finitely generated. The subset Rk 
of Jk, 

is the set of integral jets of h- In case (Rk, N, ak) is a submersion, 
h ( or Rk} is said to be regular. The subsheaf of ideals of Fk+l generated 
by 

(p~+ 1)*h u {80f: f E Ik,e E r(TN)} 

is called the prolongation (Ik)+1 of h-

We shall write Ik+l instead of (h)+1• The subsheafs Ik+l, l ;::: 2 are 
defined inductively. Suppose (x1 , · · · , xn) is a chart on N, and fp, l :=:: 
p :=:: r a system of (local) generators of Ik, then a system of (local) 
generators of h+1 is given by {8afp: 1 :=:: p :=:: r,O :=::I a I:=:: l}, where 
a = ( 0:1' ... 'O:n) and 8af p = 8f1 ••• a~n fp• We will assume that Fk is 
contained in Fk+l, through the inclusion (p~+1)* : Fk - Fk+l· 

Definition 2.2. The symbol hzk at the integral jet Zk of h is the 
subset of Qt defined by 

The family of symbols on Rk is denoted by hk, i.e. (hk)zk = hzk. 

If zk+l E (p~+ 1)-1(Zk), with zk E Rk, put hzk+l = dK(Tz ® hzk), and 
hzk+z+i = dK(Tz ® hzk+z ), l ;::: 1 for every Zk+l+l E (p~+l+l )-1 (Zk), 
Also, we put 

In case Zk+l E Rk+l, hzk+ 1 coincides with the symbol of h+1 at Zk+l, i.e. 
hzk+l = dh+l IQzk+l. Let us put hz°" = L1;:,:o hzk+l. Then hzoo C Q'z°", 
and from dK(Tz ® hz°") C hz°" it follows that (ATz ® hz00 , dK) is a 
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subcomplex of Koszul's complex. The (j,k+l+1)-th homology group of 
this subcomplex is 

for l 2'. 0.We say that hzk is r-acyclic if HJ,k+l+i(Zk) = 0, for 0 :S j:::; r, 
l 2'. 0 and hk is r-acyclic if hzk is r-acyclic for every Zk E Rk. Clearly , 
hk is 0-acyclic. If gzk C Q zk is defined by gt = hzk, then gzk is also 
called the symbol of Rk at Zk. It is proved in [9] that hzk is I-acyclic if 
and only if gzk is 2-acyclic in the sense of [4]. 

§3. The prolongation projection commutativity theorem 

Let us put 

1ttf+1 = {f EA+!: (p~!i+ 1 )* f E h+1+1} 

for l 2'. 0. It is clear that h+l C 1ttf+1 . If R~!)+l denotes the set of 
. t 1 . f Jk+l+l h k+l+ 1 (R ) Rk+l+l I 1 h m egra Jets o k+l , t en Pk+l k+l+l C k+l . n genera t e 
equality doesn't hold. The following proposition gives a condition for 
this. 

Proposition 3.1. If h is a regular SPDE, and hk+l+l is a vector 
bundle on (p~+l+l)- 1 (Rk),then 

R k+l+l k+l+l(R ) 
k+l = Pk+l k+l+l · 

Furthermore, if fp, 1 :S p :S r are local independent generators of h, 
then Jk+l+l is generated by k+l 

{8afp, 1 :Sp :Sr, I a l:S l;gt, 1 :St :S s}, 

where gt= I:;=l (I:l/3l=l+l af'Pa,afp+bP fp) with af,P E Fk, bP E A+ZH · 

Proof: Let Uk be an open set in Jk, where fp, 1 :Sp :Sr are defined, 

and Uk+J = (p~+J)- 1 (Uk),j 2'. 1. By hypothesis, dfi, · · · , dfr are linearly 
independents at every Zk E Uk, then 

Let us put Vk+J = Uk+J n (p~+J)- 1 (Rk),j 2: 0. Since hk+l+l is a vector 
bundle on Vk+l+ 1, for every p, 1 :S p :S r, there exist AP C { a E Nn : 



Prolongation Projection Commutativity Theorem 391 

lal = l + 1} such that {d(8avfP) IQzk+z+i, 1::; p::; r,ap E Ap} is a basis 

of hzk+z+u Zk+z+1 E Vk+l+l (eventually shrinking Uk ). Then, given q 
and a , 1 ::; q ::; r, I a I= l + 1, there exist functions A~:~v on Vk, such 
that 

r 

d(8cxfq) IQzk+l+l + L L A~:~v(Zk)d(acxpfp) IQzk+1+1 = 0 
p=l CXpEAp 

for every Zk+l+1 E Vk+l+l· This is so since d(8afp) IQz depends k+l+l 
only on Zk. Let a~:~v be extensions to Uk of functions A~:~v. Then 
acxfp + L a~:~p acxpfp are constant on the fibers of the submersion 

PZ!)+1 lvk+i+i: Vk+l+1 - Vk+l· This implies that, given q and a,1 ::; 
q ::; r, lal = l + 1, there are functions gq,cx on Uk+l such that 8afq + 
L a~:~v 8av f p - gq,cx are identically zero on Vk+l+ 1, which is the zero set 
of functions (PZ!)+1 )* fp,1 ::; p ::; r. By implicit function theorem there 
are functions ~,ex E Uk+l+l such that 

8afq + L at~P8a.Jp - gq,cx + L b~,cxfP = 0 

in Uk+t+1-Then h+t+l is generated by 

{813fp, I /3 1::; l; gp,cx, I a I= l + 1; acxpfp, O'.p E Ap; 1::; p::; r} 

where gp,cx E Fk+l· So If!f+1 is generated by 

{ 813fp, l/31 ::; l; gp,cx, lal = l + 1; 1 ::; p ::; r} 
which proves the second part of Proposition. Since 8av f p are indepen­

dents, given Zk+t E RZ!)+1 n Uk+l, there exist Zk+l+l E Uk+l+l such 

that acxpfp(Zk+l+1) = 0. This implies Zk+l+l E RHl+l, so RZt)H C 

PZ!)+1(Rk+t+1), which completes the proof. 

Rk+l+l is not necessarily a manifold, nor RZ!)+l. To guarantee this, 
we need the following Proposition, which is dual of a result in [3]. 

Proposition 3.2. If h is a regular SPDE such that 
(i) hk is 1-acyclic; 
(ii) hk+l is a vector bundle on (pz+1 )-1 (Rk) 

then hk+t+l is a vector bundle on (PZ+z+1)-1(Rk) for every l ~ 0. 

Proof: By induction on l, suppose hk+l+l is a vector bundle . For 
every Zk+l+2 E (pz+z+ 2)-1(Rk) the sequence 
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is exact by (i), then dim(Tz © hzk+z+J = dimhzk+l+2 +dim(dK(A2Tz © 
hzk+J). If fk is generated by f1, · · · , fr, then hk+l is generated by the 
restrictions to (pz+1)- 1 (Rk) of d(8aJp) IQk+L> 1::; p::; r, Jal = l, and sim­
ilarly, dK(A2T © hk+l) and hk+l+Z are generated by a finite number of 
C 00-sections. Since the rank of a linear system with variables coefficients 
is a lower semicontinuous function, dimhk+l+Z and dim(A2T © hk+l) 
are lower semicontinuous functions, so by induction hypothesis and the 
above equality, it follows dimhk+l+Z and dimdK(A2T © hk+l) are con­
stant functions, which proves hk+l+Z is a vector bundle. 

Theorem 3.1 (Prolongation projection commutativity theorem). 
If Ik is a SPDE such that 

(i) hk is 1-acyclic; 

(ii) hk+l is a vector subbundle on (pz+1)-1 (Rk); 
then 

or equivalently 

for all l ~ 0. 

(Jk+l+l) Jk+l+2 
k+l +1 = k+l+l 

(Rk+l+l) Rk+l+2 
k+l +1 = k+l+l 

Proof: Let fp, l ::; p ::; r be a set of independent generators of h­
It follows from Proposition3.2 that hk+l+l is a vector bundle for every 
l ~ 0, and applying Proposition3.1, Ittft; is generated by 813fp, l ::; 
p::; r, I /3 I= l + l, and functions 

r r 

gt = L L L a~ft8i8j<Jafp + bf fp, 
p=l i,j=l lal=! 

where afft E Fk, bf E Fk+l+2, afft = ajtt and 1 ::; t ::; s. 
I k+l+2 ' '(Jk+l+l) ' ' h ' ' (Jk+l+l) k+l+l C k+l +1 , we must prove t at gt E k+l +1, 

1 ::; t ::; s. If Zk+l+2 E (pz+z+z)- 1 (Rk), then 

(3.1) 0 = dgt IQzk+z+a = L a~'J,td(8i8j8afp) 1Qzk+1+2 

by fp(Zk+l+2) = 0, 1 ::; p::; r. Put 

(wp,a)zk+l = d(8afp) IQzk+l, 

To show 

for every 
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and 

(w · ·)z =d(88-8 f) IQ p,a,J,'t k+l+2 'l, J a p Zk+l+2 . 

Th (3 1) b ·tt '°' a,p O ( k+l+2)-l(R ) en . can e wn en as w ai,j,twp,a.,j,i = on Pk k , 

which is equivalent to 

(" a,p a ) -dK ~ ai,j,t 8xi ® Wp,a,j - 0. 

From (i) there exist functions Bfft on Rk, with Bfft = -B'jft, such 
that '' '' '' 

Th ~ 8 (Q-, (B°',P a.,p) - 0 ~(B°',P a.,p) - 0 en -8 , "" • • t - a• • t Wp a. 1· - , so • • t - a • • t Wp a 1· - . X t,J, i,J, , , t,J, t,J, , , 

Let be bf'f',t extensions of Bf.ft to Uk so that 

(3.2) 

Then 

ba.,p = -ba.,p 
i,1,t J,i,t · 

L (b~'f',t - a~f,t)d(8j8a.fp) IQk+i+i = 0 
j,a,p 

on (pk+l+l)-1(Rk). This means'°'. (b°',P -aa.,p )8 8a.f is constant on 
k W1,a,p i,J,t i,J,t J P 

the fibers of (P~!(H)-1(Rk) over (p~+l)- 1 (Rk), so there exist functions 
Hi,t E Fk+l such that 

"(ba.,pt - aa.,pt)81·8a.fp - Hit = 0 
~ i,J, i,J, ' 
j,a,p 

on (p~+l+ 1 )- 1 ( Rk). This set is the null set of Ji, · · · , fr, then there exist 
functions cf t E Fk+l+l which satisfies 

j,o:,p p 

It follows that Hi,t E I!!J +1 and 

"8·H- t L.-Ji i, 

i,j,o:.,p 

i,j,a,p i,p 
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}:aiHi,t +gt= o, modh+1+1-Fk+l+2· 
i 

But the left side is in Fk+1+1 so Li 8iHi,t+gt E h+1+1, and consequently 
gt E (I;tf+1)+1, 1 ~ t ~ s, which completes the proof. 

Corollary 3.1. Under the hypothesis of the preceding Theorem 
and 1;+1 = lk we have 1ztf+l = h+l, for all l ~ 0. 

Proof of Theoreml.2: From Theorem 1.l(i) we have h = {f E 
Fk : f (Rk) = O} is regular, from (ii) hk = g-J; is I-acyclic [9], from (iii) 
hk+l is a vector bundle and 1;+1 = lk. Applying Corollary3.1, RZ![+1 = 
Rk+l, l ~ O, and from Proposition 3.1 we get PZ![H : Rk+l+1 -+ Rk+l is 
onto, for every l ~ 0. The gk+l+l are vector bundles, so these projections 
are submersions. 

§4. Contact of hypersurfaces of C2 

A three dimensional manifold M with a codimension one distribu­
tion A C TM, an operator Jon A such that J 2 = -1, and an one 
form 0 such that 0J_ = A and 0 I\ d0 =f. 0 is a Cauchy-Riemann mani­
fold. A real hypersurface of C2 has a natural structure of CR-manifold 
with A= TM n J(TM). From now on, Mand M' will denote CR­
manifolds. A diffeomorphism f : M -+ M' is a CR-diffeomorphism if 
f*(A) = A', and f*(J) = J'. If Ac is the complexification of A, then 
Ac = A l,O EB A 0,1, and f is a CR-diffeomorphism if and only if 

(4.3) 

Let Ube an open set of M, Z1 a no null section of A 1•0 /u, Zr = Z1, 
and 

(4.4) Zo = -i[Z1, Zr]-

Then Z 0 , Z1, Zr is a basis of TcM /u . If his a complex valued function 
on U, we will write hi= Zi(h),i = 0,1,I. Let a,b,c be the complex 
valued functions defined by 

(4.5) [Z1, Zo] = aZ1 + bZr + cZo, 

which satisfy, as a consequence of Jacobi's identity 

b1 - ar + ac - be = 0 
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c1 - c1 + i(a +a)= 0. 

Let U' be an open set of M', Zf, i = O, 1, I as above with the corre­
sponding functions a', b', c'. We denote by Dk the open set of Jk = 
Jk(M x M', M, 1r1 ) corresponding to k-jets oflocal diffeomorphisms of 
Min M', where 1r1 is the canonical projection of M x M' on M. Put 
Dk(U, U') = (f3k)- 1 (U x U') C Dk. On D1 (U, U') we introduce the 
coordinates system 

p; : D1 (U, U') -+ C, i, j = 0, 1, 1, 

defined by 

f*(Zj(x)) = L p;(j;,f)ZI(f(x)). 
i=0,1,1 

These coordinates are not independent, and satisfy the relations 

i - "i .. - -Pj - P], Z,J - 0, 1, 1, 

where O = 0, 1 = 1 by convention. The coordinates on D2(U, U') are 
defined by 

Again P}k = P}i.;· If [Zi, Zj] = I; afjZk, it follows from f* [Zi, Zj] 
[f*Zi, f*Zi] that 

L a7/x )pi:'(j;,f) = p7}(j;f) - p'jt(j;f) + LP; (j;,f)p1(j;,f)a'~ (f (x) ). 
k r,s 

For instance 

(4.6) 
o o •(po 1 I + 1 I) + '(pl o o 1) + -c-1( I o I 0) P11 - P11 = z o - P1Py PyP1 c 1P1 - P1Py c P1Py - P1P1 · 

Coordinates in D3(U, U') are defined by 

P~jk(j;f) = Zm(p;k(j2 J))(x), i,j, k = 0, l, 1, 

and successively. 
Equation ( 4.3) in coordinates is 
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or 

pf (jl f) = p~(jl f) = 0. 

Let 11 be the SPDE generated on D 1 (U, U') by 

11 : {pf = p~ = 0 and conjugated equations. 

The solutions of Ii are (local) CR-diffeomorphisms from M to M'. The 
prolongation 12 of Ji is generated by 

(4.7) { 
PI_po-0 1 - 1 -

. I_I_I_o_o_o_ h · Pu -P11 -P01 -Pu -P11 -Poi -0 
and conjugated equations. 

It follows from ( 4.6) and ( 4. 7) that 

(4.8) pg- PiPf = 0. 

If tf = 11 , then 11 is generated as 

Pi = P~ = pg - PiPf = 0 
and conjugated equations. 

Proposition 4.1. h1 is 1-acyclic. 

Proof: Put a= (a0,a1,a1) E N3, and write~ = P~ ... 01 ... 11 ... 1, 

where the index i appears ai -times. Then hk is generated by 

hk = [dp~, dpl, a 1 =/= O; dp~, a1 + a 1 =/= O; I a I= k] 
and 

_ d. h _ { (k + 2)! _ (k + 1)!} { (k + 2)! _ 1} _ 3k2 + 5k 
nk - Im k - 2 k!2! k!l! + k!2! - 2 · 

We will show that the sequence 

( ) A3 h dK A2 h dK h dK h 
4.9 0 - T 0 k-2 - 0 k-1 - T 0 k - k+l - 0 

is exact in T 0 hk, for k 2 2. As we know dK(T 0 hk) = hk+l, it is 
enough to show that dimdK(A2T0hk-i) = 3nk -nk+l, fork 2 2. But 

0-. A3T 0 Qk-2 ~ A2T 0 Qk-l ~ T 0 Qk ~ Qk+l-. 0 

is exact, so if w E A 2T 0 hk-l is such that dKw = 0, then there exists 
'r/ E A3T 0 Qk- 2 such that dK'rf = w. If 'r/ = Z0 I\ Z1 I\ Z1 0 0, with 



Prolongation Projection Commutativity Theorem 397 

0 E Qk-2, thendK7/ = Z1!\Z1 08o0-Zo!\Z1 0810+Zo!\Z10810,where 
8i0 = dK(Zi00). Consequently, 8i0 E hk-l, for i = 0, 1, I, so 0 E hk-2· 

Then 7/ E A3T 0 hk-2, and this shows (4.9) is exact at A2T 0 hk-l, so 

dimdK(A2T 0 hk-1) 

= dimA2T 0 hk-l - dimA3 T 0 hk-2 = 3nk-l - nk-2· 

The equality 3nk - nk+l = 3nk-l - nk-2 is a simple verification, which 
shows (4.9) is exact. 

Proposition 4.2. For every k ~ l, 

I k+l - I­
k - k 

Proof:This follows from Theorem3. l and Proposition4.1 
The same way as above, we verify f 2 is generated by 

(4.10) ! equations( 4. 7)( 4.8) 
o Il 11_0 _ Poo - PrP01 - P1Por -

I2: vh 2 -P~ (- -,) I_ o ~ - i~ - C - C p- -
1 pl 1 

Pr 1 
and conjugated equations. 

Then 

and if we define 

then 12 is generated [10] by 

( 4.11) { 

equations( 4.10) 

J . P6J _ Pgo+3iP6P5 + i (d _ d'po) _ l (cpl _ c'pI) = 0 
2 · 1 2p0 2 0 2 0 0 Pr oo 

and conjugated equations 

where 

(4.12) 
1 

d = 2(cr + i(a - 2a). 

It follows from (4.11) that 
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Proposition 4.3. h2 is 1-acyclic. 

Proof: It is easy to see that hk is generated by 

hk [dp~, dp1, a=/= (k - 1, 1, 0), (k, 0, 0); dp~, a=/= (k, 0, 0); 

dp(k,0,0) - PidP(k-l,l,0) - dp~l,k-l,O)] 

and iik = dimhk = 3(kki2~)! - 4. As in the proof of Proposition4.1, 
3iik - iik+l = 3iik-l - iik-2 for k 2'. 3. Observe that equality doesn't 
hold for k = 2, so h 1 is not 2-acyclic. 

Proposition 4.4. For every k 2'. 2, 

Proof: The same as Proposition4.2. 
Let be now 

A V3 
I2 = I2· 

Then ( cf. [10]) 12 is generated by 

equations (4.11) 

(4.13) 

with 

(4.14) 

I 1 o . 1 (pl)2 
Poo _PQPoo + (11; - 11;'PiP8) - •Po 0 

Pf PfP8 PfP8 
1 I -

-c' Po]!o - b' PiPB + ( id' - a')PiPB = 0 
Pf 

and conjugated equations 

i -
11; = - 3(co - id1 + icd + ac - be). 

Proposition 4.5. h2 is 1-acyclic. 

Proof: The fiber bundle hk, k 2'. 2 is generated by 

hk [dp~, dp1, a=/= (k - 1, 1, 0), (k, 0, 0); dp~, a=/= (k, 0, 0); 

2pfdP(k-1,1,o) - dp(k,o,o); 2pidP~k-1,o,1) - dp(k,o,o)] · 

Define h1, doing k = 1 above. If nk = dim hk = 3(z~~)! - 3, then 
3nk - nk+l = 3nk-l - nk-2 for k 2'. 3, and the proof are in the same 
lines of Proposition4.l. 
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Proposition 4.6. For every k ~ 2 

Proof: As in Proposition4.2. 

Proposition 4. 7. h2 is 1-acyclic. 

Proof: We have 

dp51 - --;-dp80 ; and conjugated elements] 
2pI 

and hk = Qk, fork~ 3. It is enough to show dK(A2T®h2) = dK(A2T® 
Q;), or, dK(A2T® [dp80 ]) C dK(A2T®h2), and this is consequence of 

dK(e1 I\ e1 ® dp80 ) = dK(eo I\ e1 ® dpg 1 - ea I\ e1 ® dpg1 ) 

and 

2 d [ (d I P5 d o ) 1 K ea I\ eI ® P01 - o Poi 
P1 Po 

(d I 1 1 d o P5 d o ) +e1 /\ ea PoI - 2P1 Pao - pg PoI 

-e1 /\ e1 ( dP6o - :~ dpgo) l · 
The SPDE n is generated by (cf[lO]) 

{ 
equations (4.13) 

f3. pir _ p1(po)2r' _ 0 2· I 1 o -
and conjugated equations 

(4.15) 

where 

(4.16) r = /\;1 - bo - 2ch; - b( a + a - id); 

If we define 

R lu= rzr I\ z; ® zi ® Z1 + rz; I\ z; ® z; ® Z1 

then Risa tensor on M,i.e., RE f(A2T* ® T* ® T). 
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Definition 4.1. The tensor R is the curvature tensor of the CR­
manifold M. We say Mis umbilic at x E M if R(x) = 0, otherwise M 
is said non-umbilic at x E M; Mis said umbilic(non-umbilic) if Mis 
umbilic (non-umbilic) at every x EM 

Example: The quadric Q is defined by Q = { ( z, w) E C 2 : w - w = 
2izz}. If Z1 = ½ tz -z8~ then Zo = -½( 8~ + atJ. Then a= b = c = 0 
and R = O, so Q is umbilic. 

Proposition 4.8. The diagram 

16 -t J5 -t 14 -t 13 -t 
A3 I2 

l l l l l 
h -t J4 -t 13 -t 12 -t i1 
l l l l 
l4 -t J3 -t 12 -t i1 

( 4.17) l l l 
l3 -t i2 -t i1 
l l 
I2 -t i1 
l 
I1 

is commutative, with horizontal arrows surjective and the arrows repre­
senting the projection of projectable functions. 

Proof: It is a consequence of the above propositions. 

Theorem 4.1. Given CR-manifolds Mand M' and points x EM 
and x' E M' there exist a fifth order jet of CR-diffeomorphism doing a 
fifth order contact between Mand M' at points x and x'. 

Proof: Proposition4.8 says that /35 : 15 -t M x M' is surjective, 
then there exists X E J5 such that f35 (X) = (x, x'). 

Theorem 4.2. If M' is umbilic, then it is locally CR-diffeomorphic 
to the hyperquadric Q. 

Proof:Let be M = Q; then rand r' are 0, and from (4.15) we get 13 
is onto 12. As h2 is I-acyclic, Corollary3.l says 12 is formally integrable. 
But h3 = Q3 , then 12 is completely integrable (cf[5]), so there exists a 
neighborhood U of x E Q and a CR-diffeomorphism f: U -t f(U) CM' 
solution of 12 • 
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Corollary 4.1. If M'=Q, then i2 n ,821 (M,O) is a G-structure 
associated to M, where the group G is the group of CR-automorphisms 
of Q. 

Suppose now that M and M' are non-umbilic. Then i? is a regular 
SEDP , and in (4.15) we can replace the new equation by 

A 
Pi = E A' , E = ± 1 

where 

(4.18) 

( -::/if taken as positive root) and A' defined similarly. Then 

(4.19) 

Defining 

we can verify 

(4.20) 

where 

(4.21) 

and 

(4.22) 

{ 
equations (4.13) 

i]: Pi= EA/A1,E = ±1 
and conjugated equations 

equations (4.19) 
a =a' 
,8 = ,8' 
and conjugated equations 
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As li2 = h2 , we obtain in non-umbilic case an extension of (4.17): 

h - j6 - ]5 - ]4 - /3 - p 
2 

! ! ! ! ! 
16 - 15 - ]4 - ]3 - l2 
! ! ! ! 
h - j4 - ]3 - i2 
! ! ! ! 

(4.23) [4 - 13 - 12 - i1 
! ! ! 
/3 - i2 - i1 
! ! 
12 - i1 
! 
11 

where all horizontal arrows are onto. 

Proposition 4.9. There exists a sixth order contact between two 
CR-manifolds at two non-umbilic points. 

Proof: It follows from p~(I6) = l2 
The following theorem is in [2]: 

Theorem 4.3. There exists a seventh order contact between a real 
hypersurface of C2 at a non-umbilic point and the hypersurface defined 
by 

where a, /3 are the functions defined in (4.21}, (4.22} 

Proof:Let be M = {(z,w) E C 2 : v = F(z,z,u),withw = u+iv}. 
Choosing coordinates (z, u) on M, take 

(4.24) 

then from (4.4) 

(4.25) 

a a 
Z1=--A-; az au 

z _ 2B a 
o - (1 + f~) au 
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where A= fz/(fu +i) and B = - fzz + A.fuz + Af uz -AA.f uu . It follows 
from (4.5) 

(4.26) = b = 0 = A _ 2 fufuz -Afufuu + Bz - ABu 
a ,c u 1 + f~ B 

with ajkl = 0, j + k + l ~ 5, (j, k, l) =I= (1, 1, O); a1,1,o = 1; akjl = ajkl . 

From ( 4.12),( 4.14),( 4.16),( 4.24),( 4.26) 

From (4.24), (4.25), (4.27), (4.28) 

a a 
Z1 (0) = az; Zo(0) = -2 au 

c(O) = c1(0) = q(O) = eo(O) = c11 (0) = c10(0) = 0 

cn1 (0) = 4!2!a420 

r(0) = a420-

As r(0) =I= 0, by Proposition4.9, we can choose a420 = a240 = 1, and all 
others coefficients of sixtieth-order nulls, so r(0) = 1, and 

( 4.29) v = zz + 2Re(z4 z2 ) + o(7) 

Again from (4.24),(4.25),(4.28),(4.29) 

(4.30) cm1(0) = 5!2!a520; CJ:n1(0) = 4!3!a43oi con1(0) = -4!2!2a421 

and from (4.28);(4.30) 

(4.31) r 1(0) = 5a52o;r1(0) = 3a43o;ro(0) = -2a421. 

From (4.17) 

(4.32) ,X ( r1 r1 ) . ->- · = - 3- - - J = 0 1 1 
1 8 r r ' ' ' 
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and from (4.18),(4.31) 

1 1 
.>.1(0) = -(9a430 - 5as20); .>.o(O) = -(a241 - a421). 

. 8 4 

From (4.20), (4.21), (4.32) 

5 
a(O) = 16 (3a340 + as20) 

,B(O) 
9 

128 (5a(O) - l6a340)(5a(O) - 16a430) 

1 + 64 (5a(O) - 24a340)(5a(O) - 24a430 + Im(a241 ). 

Therefore we can choose 

16 275 
as20 = 5 a(O); a421 = -i(,B(O) - 128 a(O)a(O)) 

aH the others coefficients nulls, and the theorem follows. 
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