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Prolongation Projection Commutativity Theorem

Jose M. Veloso

Abstract.

If the symbol gi of a SPDE Ry is 2-acyclic, then the operations
of prolongation and projection on Ry commute

prtis (Ri)4i2) = (pﬁif"Ll((Rk)HH))H-

We apply this to study contact of three-dimensional CR-manifolds.

§1. Introduction

S. Chern and J. Moser [2] proved that two real hypersurfaces of
C? have a contact of fifth order and in the non-umbilic case of sixth
order. The G-structure associated to a real hypersurface is of order two
but their definition involves fifth order derivatives. Studying these facts
through the SPDE of jets of biholomorphic functions between the real
hypersurfaces, we found the following theorem:

Theorem 1.1 (Prolongation projection commutativity theorem).
Let Ry, C Jp (M, N, p) be a system of partial differential equations
such that

(i) o:Rr— N is a submersion
(i) the symbol gi of Ry is 2-acyclic
(ii3) gry1 is a vector bundle on (pF™1)~1(Ry)

Then, for every 1 > 0,
PZ:[%I% (Bk)+142) = (Pﬁﬂ“((Rk)HH))H ’

Theorem 1.2 (Formal integrability theorem [4]). Under the hy-
pothesis of the above theorem and the assumption that

PR ((Rk)+1) = R,
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we get that
k1
PR (Ri) 441 — (Ri) 4
is a submersion for everyl > 1.

The formal integrability theorem for linear PDE systems was first
proved by Quillen [6] and with weak assumptions by Goldschmidt [3],
who also proved it in the non-linear case [4]. A version of this theorem
using involutivity is in Kuranishi [5]. All these publications used the
set Ry of integral jets of the PDE system to prove the theorem. Ruiz
[7, 8, 9] utilizes the sheaf I of functions which are null on Ry; this
approach seems to us more natural and we follow this approach.

In Section 2 we present the basic facts following [7, 8, 9]. Section 3
contains the proof of Theorem 1.1. In Section 4 we apply the theorem to
study contact of three-dimensional CR-manifolds. Corollary 4.1 shows
that the G-structure associated to a CR-manifold M is the projection
in order two of fifth order jets which have fifth-order contact with the
hyperquadric Imw = 2Z. Theorem4.3 relates the normal form of M [2]
with the invariants of Cartan [1].

I'd like to thank to A.M.Rodrigues and J.Verderesi for several dis-
cussions on this subject. I dedicate this paper to prof.M.Kuranishi, in
occasion of his seventieth birthday. He was very kind to me and my
contacts with him were always stimulating.

§2. Basic definitions

Let M, N be manifolds, T = T'N the tangent bundle of N, p : M —
N a submersion, and J;, = Ji(M, N, p) the manifold of k-jets of local
sections of p : M — N. Denoting by pF : Jy — Ji, k > [, the canonical
projections, and by pf = B¢ : Jy — M and p*; = o : Jy — N the
projections to target and source respectively, the sheaf of algebras of C*°-
functions on J; will be denoted by Fy. If Z, € Ji, let be Z; = pf(Zk),
for | < k. In particular, Bx(Zx) = Z and ag(Z;) = .

We identify Zj with the linear application (cf. [7])

Zx=(Zk)s : TN > Tz, Ji—1
given by
(Zk)x = (5" F0)sv

where Z;, = jko.
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If 6 is a vector field on N, we define the formal derivative
Og: Fyy — Fp
by
(00 f)(Z+1) = df (Zk+1)+(62))

where f € Fj. This derivative has the properties

(i) Oasf=a.0sf

(ll) 8[9,7]] = [89787]]
where a is a real function on N, and 7 is a vector field on N. Let
z = (z,--- ,z") beacharton U C N, (z,y) = (z*,--- ,z", 9}, - -+ ,y™)
a chart on p~!(U), and (z,%%,0 < 7 < m,0 <| a |< k) a chart on
(pk)~2(U), where

) olel i
v (ko) = 5o (2)

and o = (¢o},--- ,0™) is a section of p on U.

In this coordinate system

0 0 i 0
Z =)= - J —_—
( k+1) (8.’1?1) ot + Z Ya+1; (Zk'l’l)ayj

la|<k *

and

d af
Oif = i Z —_'—yja-f-li
ozt 2k 0%

where f € Fy, and 8; denotes 8y when § = §/0z".
Let Qi = Ker(pf_,). be the vector bundle on Jj, of vertical tangent

vectors with respect to p’,ﬁ_l. The fiber of Qi on Zj is denoted by Qz, -
The dual bundle of Q. is denoted by Q5. If f € Fj, then d(dyf) |o Zein
depends only on df |g,, and 6(z). So we have a map

dK : TZN ® Q*Zk - Q*Zk+1
defined by
dx (0= ® df |qz,) = d(0ef) laz,,, -

In coordinates

0
ozt

di (

® dy, ‘sz) = dyfx—',—l,— Qzpyy *
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If Q% =2 k>0 @7, we define Koszul’s complez (AT, ® Q}_,dx) by

dK(vl/\"'/\vl®H’) =
!
S (D) op A Av Ay A Ay @ dic(v; ® ).
i=1
Definition 2.1. A system of partial differential equations (SPDE)

is a subsheaf of ideals I, of F} locally finitely generated. The subset Ry
Of Jk}

Ry = {Zk € Jg: f(Zk) = O,Vf S Ik}

is the set of integral jets of I. In case (Rg,N,ax) is a submersion,
I, (or Ry) is said to be regular. The subsheaf of ideals of Fi1 generated

by
(PFT)* I, U{Bsf : f € I;,,0 € T(TN)}

is called the prolongation (Ix)+1 of I.

We shall write Iy, instead of (I;);1. The subsheafs Iy, > 2 are
defined inductively. Suppose (z',---,z") is a chart on N, and f,,1 <
p < 7 a system of (local) generators of Ij, then a system of (local)
generators of Ix4s is given by {afp : 1 < p £ 7,0 <| & |< [}, where
a= (o, ,a,) and Oy fp = 07 - -- 83" f,. We will assume that Fj is
contained in Fy, through the inclusion (pZH)* : Fy — Fiyy.

Definition 2.2. The symbol hz, at the integral jet Z;, of I}, is the
subset of Q7 defined by

hz, = {df | Qz,  f € I}
The family of symbols on Ry, is denoted by hy, i.e. (hg)z, = hz, -

If Zit1 € (pf)~H(Zk), with Zx € Ry, put hz,,, = dx(T. ® hz,), and

hzesss = Ax(Te ® bz, ,),l > 1 for every Zpyip1 € (o)1 (Zk).
Also, we put

hiyi ={hz : Zrpy1 € (Pﬁ”)_l(Rk)}'

In case Zyy; € Riyi, bz, coincides with the symbol of Iy, ; at Zx, i.e.
hz,,, = dlkq IQZ;CH' Letusput hz = leo hz..- Thenhz,  C Q% ,
and from dg (T, ® hz ) C hz, it follows that (AT, ® hz__,dk) is a
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subcomplex of Koszul’s complex. The (j,k+I+1)-th homology group of
this subcomplex is

I 7y = ker(dK : Asz ® th+l+1 - Aj_sz ® th+l+2)
Gt () = dx (M HT, ® hz,,,) ,

for | > 0.We say that hy, is r-acyclicif Hj p4141(Z;) =0 ,for0 < j <r,
1 > 0 and hy, is r-acyclic if hz, is r-acyclic for every Zy € Ry. Clearly ,
hi is O-acyclic. If gz, C Qz, is defined by gék = hg,, then gz, is also
called the symbol of Ry at Zi. It is proved in [9] that hz, is l-acyclic if
and only if gz, is 2-acyclic in the sense of [4].

§3. The prolongation projection commutativity theorem

Let us put
k I
L™ ={f € Fe s (o547 f € Teqgn}

for I > 0. It is clear that Iy, C I,’jjr'l”l. If RZﬂ"’l denotes the set of

integral jets of I, ,’jﬂ“, then p,’jﬂ“(RkHH) C R,’:ﬂJrl. In general the

equality doesn’t hold. The following proposition gives a condition for
this.

Proposition 3.1. If I, is a reqular SPDE, and hx4i+1 s a vector
bundle on (pF 1) =1(Ry),then

k+i+1 _ k+i+1
R = prq (Rrkt141)-

Furthermore, if fp,1 < p < 1 are local independent generators of I,
then I ,ICCLH'I is generated by

804 alfpf"'ya’Shgt’lStSsa
P

where g; = Z;—_-I(Z|ﬂ|=l+1 af”’aﬂprerf,,) with af’p € Fi,b? € Frqy41.

Proof: Let Uy be an open set in Ji, where fp,,1 < p < r are defined,
and Ug4; = (pzﬂ)_l(Uk),j > 1. By hypothesis, dfy, - - - , df are linearly
independents at every Zy € Uy, then

UkﬂRk={ZkEJk:fp(Zk)ZO,lﬁpS'l‘}.

Let us put Viyj = Ugy; N (p,’:+j)_1(Rk),j > 0. Since hg4141 is a vector
bundle on V141, for every p,1 < p < r, there exist A, C {a € N™ :
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la| =1+ 1} such that {d(0a, fp) lQzyy1,,0 1 SPST,0p € Ay} is a basis
of hz, 11 Zkti41 € Viiy1 (eventually shrinking Uy ). Then, given ¢

and o, 1 < ¢ <r|al|=1+1, there exist functions A5a” on V4, such
that

d(9afq) lek_HJrl +Z Z AP (Zk)d(Oa, fp) lQZk+l+1

p=lap,€A,

for every Ziii41 € Vigyi41. This is so since d(0qfp) depends

lsz+z+1
only on Zi. Let afa® be extensions to Uy of functions A5a?. Then
Oafp+ Y afa?Oa, fp are constant on the fibers of the submersion
pkif"'l [Visis:: Vetitr1 — Vi This implies that, given ¢ and o,1 <
q < r,|al =1+ 1, there are functions gq o on Uy such that 8, fy +
S apa? Oa, fp — 9g,a are identically zero on Vi1 1, which is the zero set
of functions (pllziﬁl) fp,1 < p <r. By implicit function theorem there

are functions b”, € Ug4141 such that

Bafq+ Y a7 0u, fp — Gga+ D V0 fp=0
in Ug4i4+1.Then Ipyi41 is generated by
{08fp: | BIS L gpas| @ [= 14100, fp,0p € Ap; 1 <p <}
where g, o € Fiy1. So I kLlH is generated by

{aﬂfpa 18] < L 9p,as o =1+151<p<r}

which proves the second part of Proposition. Since 8,, f, are indepen-
dents, given Zx4+; € R’,ﬁﬂ"’l N Ug41, there exist Zxt+i1+1 € Ug4i+1 such
that Oy, fp(Zkti41) = 0. This implies Zii111 € Ryyi41, so REFITY C
p,’jil"' (Rk+i+1), which completes the proof.

Ry+1+1 is not necessarily a manifold, nor Rkilﬂ To guarantee this,

we need the following Proposition, which is dual of a result in [3].

Proposition 3.2. If I is a regular SPDE such that
(i) hi is 1-acyclic;
(i) h41 s a vector bundle on (pf™)~1(Ry)
then hgyi+1 s a vector bundle on (pf+1)~1(Ry) for every > 0.

Proof: By induction on [, suppose hxti+1 is a vector bundle . For

every Ziii42 € (pF12)~1(RF) the sequence

2 dx di
A Tz ® hzk+l — Tz ® th+l+l - th:+l+2
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is exact by (i), then dim(T, @ hz,,,,,) =dimhg,,,,, +dim(dx (A?T, ®
hz...)). If Iy is generated by f1,---, fr, then hjy; is generated by the
restrictions to (of ™)=Y (Ry) of d(8afp) lQrs,1 < p < 1, ]a| = I, and sim-
ilarly, dg (A%T ® hgy1) and kg2 are generated by a finite number of
C*°-sections. Since the rank of a linear system with variables coefficients
is a lower semicontinuous function, dimhg4;42 and dim(A?T ® hgy)
are lower semicontinuous functions, so by induction hypothesis and the
above equality, it follows dim hyy;12 and dimdg (AT ® hy,;) are con-
stant functions, which proves hyi;12 is a vector bundle.

Theorem 3.1 (Prolongation projection commutativity theorem).
If Iy, is a SPDE such that

(i) hy is 1-acyclic;

(i) hi+1 is a vector subbundle on (pF+)~1(Ry);
then

k4141 _ k4142
(Ik+l )+1_Ik+l+1

or equivalently

k+1+1 _ pk+i42
(Rk-‘rl )+1“‘Rk+l+1

forall1 > 0.

Proof: Let f,,1 < p < r be a set of independent generators of .

It follows from Proposition3.2 that hx4i1+1 is a vector bundle for every

!l > 0, and applying Proposition3.1, I ,’;Illj_‘lz is generated by Jgfp,1 <

p <r|pB|=1+1, and functions
90=2_ > D aifi0:0,0ufp + 1y,
p=11¢,5=1|a|=l

where a;f, € Fi, b € Fryi2,0;f = a5, and 1 < ¢ < 5. To show

j)i’t
I ,’:Illjrrlz C (I,’:j_'ll“)ﬂ, we must prove that g, € (I,fj_"f“)“, for every

1<t < s If Zyiipa € (0FT2)"1(Ry), then
(3.1) 0=dgilaz,,,,,= 2 4 5d00;0ufs) las,...,
by fp(Zk+1+2) =0,1<p < 7. Put

(Wp,a) Ziyr = d(Oa fp) |sz+l7

(Wp,a,) Ziri41 = 4050 fp) |sz+l+1
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and

(Wp,0,5i) Zisrva = A(0:050afp) 1@z, ., , -

Then (3.1) can be written as Y- ag 7 wpa,4: = 0 on (PET2) =1 (Ry),
which is equivalent to

0
dK(Za,]taz(nga 1.7) 0.

From (i) there exist functions B;", on Ry, with B}, = — B}, such
that

7] 7]
7p 9.
dK( Z 7.77t5:17 No— 8:3’& ® wp’ Z é_m_z ® a’ia,‘]?twpyayj'

Then Z 97 &® (Bih — ai; g t)wp, aj = 0,80 Z(B?jpt -0, ,gpt)wp, aj =0.

T .7’
Let be b;"; extensions of B; ", to Uy so that

%7, t
(3.2) bEP — _poP

%,5,t 7,5t

Then
Z (bg;pt ,g t)d(a a fp) IQk+l+1 0

J,a,p
on (pfT*1)~1(R¥). This means P p(bojft i 1)0;0a fp is constant on

the fibers of (pFTit")~1(Ry) over (o ™) ~1(R4), so there exist functions
H;; € Fy4 such that

Z(b?;pt zgt)aafp t—O
Jso,p

on (pZHH)_l(Rk). This set is the null set of f1,- -, f., then there exist
functions ¢}, € Fy4i41 which satisfies

Z (b?,ft a; ;. t)a Oafp— Hiz = Zcf,tfp-
Jrop P
It follows that H,; € I} 1" and

ZaiHivt = Z (b?ft - 1,] t)aa 8 fp

7.77 P

+ Z 8 bft}pt a; ;. t)a 128 fp Z(Cztaifp‘ai(cﬁt)fp)

7.77 7p Z?p
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From (3.2), >, . b7F,8,0,04 fp = 0, so

1,J “5,5,t

ZaiHi’t +g1= 0, modIk+l+1.Fk+l+2.

But the left side is in Fg4141 50 Y, ;H; t+g: € Ipyi41, and consequently
gt € (I,’:LHI)H, 1 <t < s, which completes the proof.

Corollary 3.1. Under the hypothesis of the preceding Theorem

and I,’:"H = I, we have I,’jﬂ“ = Iy, for alll > 0.

Proof of Theorem1.2: From Theorem 1.1(i) we have Iy = {f €
Fy : f(Ry) = 0} is regular, from (ii) hy = gp is l-acyclic [9], from (iii

hg+1 is a vector bundle and I ,’j‘H = It. Applying Corollary3.1, RZﬂ—H =

Ry41,1 >0, and from Proposition 3.1 we get p’,jﬂ‘“ : Riqip1 — Rpyq is
onto, for every [ > 0. The gr4i41 are vector bundles, so these projections

are submersions.

§¢4. Contact of hypersurfaces of C2

A three dimensional manifold M with a codimension one distribu-
tion A C TM, an operator J on A such that J2 = —I, and an one
form 6 such that 6+ = A and 0 A df # 0 is a Cauchy-Riemann mani-
fold. A real hypersurface of C? has a natural structure of CR-manifold
with A = TM N J(T'M). From now on, M and M’ will denote CR-
manifolds. A diffeomorphism f : M — M’ is a CR-diffeomorphism if
f«(A) = A’y and fi(J) = J'. If Ac is the complexification of A, then
Ac = A0 @ A%, and fis a CR-diffeomorphism if and only if

(4.3) Fu(A0) = (A,

Let U be an open set of M, Z; a no null section of A0 |7, Z; = 71,
and

(4.4) Zo = —i[Z4, Z3).

Then Zy, Z1, Z7 is a basis of Tc M |y . If h is a complex valued function
on U, we will write h; = Z;(h),i = 0,1,1. Let a,b,c be the complex
valued functions defined by

(45) [Zl, Zo] =aZy + BZT + ¢Zy,
which satisfy, as a consequence of Jacobi’s identity

by —aj+ac—bc=0
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¢1—ci+i(a+a)=0.

Let U’ be an open set of M’, Z!,i = 0,1,1 as above with the corre-
sponding functions a’,b’,c’. We denote by Dy the open set of J, =
Ju(M x M', M, m) corresponding to k-jets of local diffeomorphisms of
M in M’, where 7 is the canonical projection of M x M’ on M. Put
D(U,U") = (Bx) Y (U x U’") C Dy. On Dy(U,U’) we introduce the
coordinates system

pj- :D1(U,U") - C,i,7=0,1,1,

defined by

F(Zi(@) = Y B0 Zi(f(x)).

i=0,1,1

These coordinates are not independent, and satisfy the relations

pi=p,,4,5=0,1,1,

where 0 = 0,1 = 1 by convention. The coordinates on Dy(U,U’) are
defined by

Pix(G2f) = Z;(pi(G* ))(2),4, 5,k = 0,1, 1.
Again pl, = p%,_c. If [Z;,Z;] = Y. a2y, it follows from f.(Z;, Z;] =
[f«Zs, f«Z;] that

> af@)pR (i f) = PR Gaf) — pRGES) + D Pi(Ga i (s f)a' e (f (2)).
k

s
For instance
(4.6)

i — % = i(®§ — pipl + pipl) + ¢ (p1p? — pOp}) + & (P1r? — pp?).
Coordinates in D3(U,U’) are defined by

p:njk:(-jgf) = ZM(p;k(]zf))(w)v i7ja k= 07 17 ia

and successively.
Equation (4.3) in coordinates is

f*Zl = p{(]lf)Zi
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or
piG ) =G =0
Let I, be the SPDE generated on D;(U,U’) by
I : {p} = p? = 0 and conjugated equations.

The solutions of I are (local) CR-diffeomorphisms from M to M’. The
prolongation I5 of I; is generated by

pl=m =0 _
- (47) Iy :  piy =Py, =Poy =P =3, =P =0
and conjugated equations.
It follows from (4.6) and (4.7) that
(4.8) p§ —pip} = 0.
If I? = I, then I; is generated as
. [ pi=pl=p0—pipj =0
" | and conjugated equations.
Proposition 4.1. h; is I-acyclic.

Proof: Put a = (ag,1,a7) € N3, and write p/, = Pé...m...ﬂ...i,
where the index ¢ appears a;—times. Then hy is generated by

hic = [dpl, dpk, o1 # 0;dpl, a1 + o1 # 0] @ |= k]

and

nkzdimhk=2{(k+2)! (k+1)!} {(k+2)!_}:§£2_+_5£

k12t Kl k12! 2
We will show that the sequence
(4.9) 0> AT ®@hi2 BA2@ho1 BT @R %S hiyy — 0

is exact in T ® hyg, for k > 2. As we know dg (T ® hg) = hgt1, it is
enough to show that dim dx (AT ® hy_1) = 3ng — Ny, for k > 2. But

0> AT® Q2B ATOQu 1 BTOQr % Qrr — 0

is exact, so if w € AT ® hi_1 is such that dxw = 0, then there exists
n € A3T ® Qr_o such that dgn = w. If n = Zy A Z1 A Z7 ® 0, with
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0 e Qk_g, then dK’l] = Zl /\Zi ®300—Zo/\Zi®810+Z0/\Z1®816,Where
0;0 = dx(Z;®0). Consequently , 8;6 € hy_1,fori=0,1,1,500 € hy_o.

Then 1 € A3T ® hj_2, and this shows (4.9) is exact at AT ® hy_1, so
diIIldK(AzT ® hk—l)

=dimA?’T @ hy_1 — dim AT ® hgx_o = 3ng_1 — NEk_o.
The equality 3ng — ng41 = 3ng_1 — ng—2 is a simple verification, which
shows (4.9) is exact.

Proposition 4.2. For every k > 1,

=1

Proof:This follows from Theorem3.1 and Proposition4.1
The same way as above, we verify I is generated by

equations(4.7)(4.8)
_ | PG — Pipg1 — Pipgy =0
(4.10) I;:{ p! 5

Py _ 2P0 _(z-2)pl =0
pt P !

and conjugated equations.
Then

Poi
and if we define

L=13
then I, is generated [10] by

equations(4.10)

o) ek ploreiplpd | 100y _ (ol _ T
(411)  Ip:q P8 — 2055050 + 5(d — d'pg) — 3(epp — ¢'pp) = 0
1
and conjugated equations
where
(4.12)

1
d= 5(01 +z(a - 2&)
It follows from (4.11) that

9

Z=I.
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Proposition 4.3. hs is I-acyclic.

Proof: It is easy to see that hy, is generated by

he = [dpi,dp:é,a # (k —1,1,0), (k,0,0);dpgy, o # (k,0,0);
dp?k,o,o) - p%dp%k——m,o) - dp%1,k—1,o)]

and 7y = dimh, = 3(’::'22,)' — 4. As in the proof of Proposition4.1,

30y — Ngy1 = 3Ng_1 — Ng—o for £ > 3. Observe that equality doesn’t
hold for k = 2, so h; is not 2-acyclic.

Proposition 4.4. For every k > 2,

=1,

Proof: The same as Propositiond4.2.
Let be now

=B
Then (cf. [10]) I, is generated by

equations (4 11)

i 1, T2
@ pQPoo + (5 — k'plpd) — zPQI(PQO
413)  f:{ P plp P1Po
—cPolo pf — ¥'pipg + (id' —@)pips =0
1
and conjugated equations

with
(4.14) K= —%(co—idl +icd + ac — bé).

Proposition 4.5. 712 is 1-acyclic.

Proof: The fiber bundle kg, k > 2 is generated by

he = [dpl,dpl,a+# (k—1,1,0),(k,0,0);dpd,a # (k,0,0);

2p%dp%k—1,1,o) - dp?k,o,o)§ 2p%dp%k—1,0,1) - dp(()k,o,o)} :

Define Ry, doing k = 1 above. If %, = dimh; = 3(:,;,2)' — 3, then
37 — Nigt1 = 3Ng_1 — fig—o for £ > 3, and the proof are in the same

lines of Proposition4.1.
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Proposition 4.6. For every k > 2
g,

Proof: As in Proposition4.2.

Proposition 4.7. h, is 1-acyclic.

Proof:We have

1
A .. .. b,
h2 = dp?j) (Za]) # (07 0)7 dp'}ja (7’7]) # (Oa 0)’ (1) 0)9 dp(l)O - p'—gdpgm
0
1 L .0 :
dpo; — deom and conjugated elements
P1

and hy = QF, for k > 3. It is enough to show dg (A2T®hy) = dx (A2T'®
Q3), or, dx (A’T ® [dpd,]) C dx (A’T ® hs), and this is consequence of

drx(es Ne; ® dpgo) =dg(eg Ne1 ® dpgl —eNer ® dpgi)

and
0 _ 2 _ i P(i) 0
di(eo Ne1 ®dpyy) = ;IdK eo Neg ® | dpg; — }“)adpm
1 0

- 1 pi
+e1 Aeo (dpéi — 5Pidpgo — ;g"dpgi>
0

1
i D

—e1 Aeg (dpcl)o - p—gdpgo)] .
0

The SPDE I3 is generated by (cf[10])
equations (4.13)
(4.15) I3 q pir—pl(p))*r' =0
and conjugated equations
where
(4.16) r =Ky — by — 2ck — b(a + @ — id);
If we define
Rlu=rZiNZ§QZi @ Z1 +TZT] NZ5 ® Zy ® Z1
then R is a tensor on M i.e., RET(A2T*QT*®T).
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Definition 4.1. The tensor R is the curvature tensor of the CR-
manifold M. We say M is umbilic at x € M if R(z) = 0, otherwise M
is said non-umbilic at x € M; M is said umbilic(non-umbilic) if M is
umbilic (non-umbilic) at every x € M

Example: The quadric Q is defined by Q = {(z,w) € C?: w—1w =
2izz}. £ 727 = EE'Za?u then Zo = —1(&+2). Thena=b=c=0
and R = 0, so Q is umbilic.

Proposition 4.8. The diagram

I6 — j5 - f4 - jg — 123
T
I5 - I4 - Ig - I2 - Il
Loy L
I4 — I3 — IQ - Il
(4.17) ! | ]
Iy - I, - I,
L L
L, — L
l
I

is commutative, with horizontal arrows surjective and the arrows repre-
senting the projection of projectable functions.

Proof: It is a consequence of the above propositions.

Theorem 4.1. Given CR-manifolds M and M’ and points x € M
and &' € M’ there exist a fifth order jet of CR-diffeomorphism doing a
fifth order contact between M and M’ at points x and z’.

Proof: Proposition4.8 says that 85 : Is — M x M’ is surjective,
then there exists X € I5 such that 85(X) = (z, 2').

Theorem 4.2. If M’ is umbilic, then it is locally CR-diffeomorphic
to the hyperquadric Q.

Proof:Let be M = Q; then r and ' are 0, and from (4.15) we get I3
is onto Io. As hy is 1- acycllc Corollary3.1 says I is formally integrable.
But h3 = Q% , then I is completely integrable (cf[5]), so there exists a
neighborhood U of z € @ and a CR-diffeomorphism f: U — f(U) C M’
solution of Iy .
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Corollary 4.1. If M’=Q , then I, N ﬂz_l(M, 0) is a G-structure
associated to M, where the group G is the group of CR-automorphisms
of Q.

Suppose now that M and M’ are non-umbilic. Then fg’ is a regular
SEDP , and in (4.15) we can replace the new equation by

A
p} =ey,e=:l:1

where

VT

8/ —

(4.18) A=
Tr

(+/r7 taken as positive root) and X’ defined similarly. Then
. equations (4.13)
(4.19) 3:¢ pl=eN/N,e==1

and conjugated equations

Defining

we can verify

equations (4.19)

/
a=qa
(4.20) I B=g
and conjugated equations
where
_ /—\1 Al C
(4.21) oz—7+2—)‘—2
and

X A1 Ad (A
(4.22) ﬂ:z(a—%)@—f)ﬁu;‘;\1—2<7"—7)_d.
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As hy = hy, we obtain in non-umbilic case an extension of (4.17):

I7—af6—+i5—>f4—af3~+f_23
! ! ! ! !
Ifg — Is —» Iy — Iz — I
! ! ! !
I5 i I4 — Ig — I2
Loorb

(4.23) L - s - L - L
! } !
13 — Ig — Il
l 4
L - I,
!
L

where all horizontal arrows are onto.

Proposition 4.9. There exists a sizth order contact between two
CR-manifolds at two non-umbilic points.

Proof: It follows from p$(I) = I,
The following theorem is in [2]:

Theorem 4.3. There exists a seventh order contact between a real
hypersurface of C? at a non-umbilic point and the hypersurface defined

by

v =2z +2Re {z422[l + Fa0)+ i(%a(o)a(o) - ﬂ(O))u]}

where a, B are the functions defined in (4.21),(4.22)

Proof:Let be M = {(z,w) € C? : v = F(z, %,u), withw = u + iv}.
Choosing coordinates (z,u) on M, take

3} 0
4.24 = — —A—:
( ) Zl 9z Aau)
then from (4.4)
2B 9

(4.25) %= T A
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where A = f,/(fu+1) and B = —f.z+ Afy, + Afuz — AAfy, . It follows
from (4.5)

fufuz _Afufuu + Bz - ABu
1+ f2 B

(4.26) a=b=0,c=A4,—2

(4.27) f(z,z,u)= Zajklzjikul

with ajp = 0,7 +k+1 < 5,(4,k,1) # (1,1,0);a1,10 = 1; akji = Gy -
From (4.12),(4.14),(4.16),(4.24),(4.26)

1 ) 2, ) 1 1
(4.28) r=-—glni ~ 30 +c (gzc() + et gcci) + geci-

From (4.24), (4.25), (4.27), (4.28)

0 o

¢(0) = c1(0) = ¢1(0) = co(0) = €11(0) = ¢10(0) =0
6111(0) = 4!2!(1420

7"(0) = Q420-

As r(0) # 0, by Proposition4.9, we can choose a0 = agqo = 1, and all
others coefficients of sixtieth-order nulls, so 7(0) = 1, and

(4.29) v = 2Z + 2Re(2*2%) + o(7)

Again from (4.24),(4.25),(4.28),(4.29)

(4.30)  ¢1111(0) = 5'2!as20; c11117(0) = 413laqso; cp111(0) = —412!2a421
and from (4.28);(4.30)

(4.31) r1(0) = Basag; r1{0) = 3aas0; r0(0) = —2a42:.

From (4.17)

A/ory 7 _
(4.32) Aj= 3 (3ﬁ - T—J) ,7=0,1,1
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and from (4.18),(4.31)

1
)\(0) = ].; )\1(0) = *(15(1520 —_ 3a430);
8

1 1
A1(0) = '8-(90430 — 5asz0); Ao(0) = Z(a241 — Q421).
From (4.20), (4.21), (4.32)

5
a(0) = —(3ags0 + as20)

16
BO) = 5 (5a(0) ~ 16031) (5a(0) — 16ass0)
+é(5a(0) — 24a340)(56(0) — 24a.430 + Tm(asar ).
Therefore we can choose
as20 = 1?601(0);0421 = —4(B(0) — %a(o)&(o))

G250 = G520, @241 = G421

all the others coefficients nulls, and the theorem follows.

References

[1] E. Cartan,Sur la géométrie pseudo-conforme des hypersurfaces de l’espa-
ce de deuz variables complexes, Oeuvres Complétes, partiell, Editions

du CNRS, 1984, 1231-1304

[2] S.S.Chern;J.Moser, Real hypersurfaces in complex manifolds,Acta Math.-

133(1974)219-271

[ 3] H.Goldschmidt,Existence theorems for analytic linear partial differential

equations,Ann. of Math.86(1967)246-270

[ 4] H.Goldschmidt,Integrability criteria for systems of non-linear partial dif-

ferential equations,].Differential Geometry1(1967)269-307

[5] M.Kuranishi, Lectures on Involutive Systems of Partial Differential Equa-

tions,Publ. Soc. Matematica Sdo Paulo,1967

[6] D.G.Quillen, Formal properties of over-determined systems of linear par-

tial differential equations ,Ph.D.Thesis,Harvard University,1964

[ 7] C.Ruiz,Prolongement formel des systémes différentiels extérieur d’ordre

supérieur,C.R.Acad.Sc.Paris285(1977)1077-1080



Prolongation Projection Commutativity Theorem 405

[8] C.Ruiz,Compleze de Koszul du symbole d’un systéme différentiel exté-
rieur,C.R.Acad.Sc.Paris286(1978)55-58

[9] C.Ruiz,Propriététes de dualité du prolongement formel des systémes dif-
férentiels extérieurs286 (1978)99-101

[10] J.M.Veloso;J.Verderesi, Three- dimensional Cauchy-Riemann manifolds,
Dinamical Systems and Partial Differential Equations: Proceedings VII
ELAM,Equinoccio, 1986

Departamento de Matemdtica
Universidade Federal do Pard
CEP 66075-110 Belém-PA
Brasil

veloso@marajo.ufpa.br





