Advanced Studies in Pure Mathematics 25, 1997 CR-Geometry and Overdetermined Systems pp. 355–363

Infinitesimal CR Automorphisms

Nancy K. Stanton

To Masatake Kuranishi on his seventieth birthday

Let M be a real hypersurface through the origin in \mathbb{C}^n or, more generally, an integrable CR manifold of hypersurface type. A smooth vector field X on M is called an *infinitesimal CR automorphism* of Mif the local one-parameter group it generates is a local group of CR automorphisms of M. Fix $p \in M$ and let $\operatorname{aut}(M, p)$ denote the space of infinitesimal CR automorphisms of M which are defined in a neighborhood of p.

Throughout this paper, M will denote a connected analytic real hypersurface in \mathbb{C}^n . For $p \in M$, there is a distinguished subspace hol $(M, p) \subset \operatorname{aut}(M, p)$ defined as follows. If Z is a holomorphic vector field defined in a neighborhood of $p \in \mathbb{C}^n$ and $X = \operatorname{Re} Z$, then the local one-parameter group of X is a group of biholomorphic transformations [KN, remarks preceding Proposition IX.2.10]. Here, by holomorphic vector field, I mean a vector field of type (1, 0) with holomorphic coefficients. Hence, if X is tangent to M, then $X \in \operatorname{aut}(M, p)$. Let hol(M, p) denote the space of all infinitesimal CR automorphisms X of M defined in some neighborhood of p which are of the form $X = \operatorname{Re} Z$ for some holomorphic vector field Z, hol $(M, p) \subset \operatorname{aut}(M, p)$. Let hol $(M) = \operatorname{hol}(M, 0)$ and aut $(M) = \operatorname{aut}(M, 0)$.

Infinitesimal CR automorphisms are useful in the study of hypersurfaces with degenerate Levi form. I will survey some recent results about hol(M) and aut(M) and their applications. In Section 1, I use infinitesimal CR automorphisms to characterize homogeneous hypersurfaces. Section 2 describes applications of holomorphic nondegeneracy to finite dimensionality of hol(M) and to mappings of algebraic hypersurfaces. I will discuss some conditions for equality of hol(M) and aut(M)in Section 3.

Received October 2, 1995

Research supported in part by NSF grant DMS 93-01345

N. Stanton

1. Homogeneous hypersurfaces Following the terminology of Baouendi, Rothschild and Trèves ([BRT]), a real hypersurface in \mathbb{C}^n is called *rigid* if there are coordinates $(z_1, \ldots, z_{n-1}, w = u + iv)$ such that M is given by an equation of the form

$$v = F(z,\overline{z}),$$

a rigid equation. Tanaka [T] called these regular and D'Angelo [DA] called them *T*-regular.

Among rigid hypersurfaces, the simplest ones are the homogeneous hypersurfaces. A rigid hypersurface is *homogeneous* if it is locally biholomorphically equivalent to

(1.1)
$$v = p(z, \overline{z})$$

with p a homogeneous polynomial. This terminology comes from the fact that (1.1) is invariant under the nonisotropic dilations

(1.2)
$$(z,w) \to (tz,t^m w) = \delta_t(z,w)$$

where m is the degree of the polynomial p.

How can you tell if a rigid hypersurface is homogeneous? This problem was first posed by Linda Rothschild. The problem is local, so I will assume that $0 \in M$ and will work locally in a neighborhood of 0. Equivalences will preserve the origin. I can make a biholomorphic change of coordinates so that either M is the hyperplane v = 0 or M is given by an equation of the form

$$v = p(z,\overline{z}) + O(m+1)$$

where p is a nontrivial homogeneous polynomial of degree m with no pure terms in z or \overline{z} . In this case, m is an invariant, the *type* of M at the origin, and M is of *finite type* at the origin. Suppose that the origin is a point of type m. A vector field Y is *homogeneous* of weight j if

$$Y(f \circ \delta_t) = t^{-j}(Yf) \circ \delta_t$$

where δ_t is the nonisotropic dilation (1.2).

If M is homogeneous, given by

$$v = p(z, \overline{z})$$

with p homogeneous of degree m, then

$$Y_0 = 2 \operatorname{Re}\left(\sum_{j=1}^{n-1} z_j \frac{\partial}{\partial z_j} + mw \frac{\partial}{\partial w}\right)$$

356

is in $\operatorname{hol}(M)$ and is homogeneous of weight 0. It is the infinitesimal generator of the dilations δ_{e^t} . Call a vector field $Y \in \operatorname{hol}(M)$ an approximate infinitesimal dilation if

$$Y = Y_0 + \text{terms of weight} \ge 1.$$

Theorem 1.3 ([S5, Theorem 4.1]). Let M be a rigid analytic real hypersurface through the origin in \mathbb{C}^n . Suppose M is given by a rigid equation of the form

$$v = p(z,\overline{z}) + O(m+1)$$

with p a nontrivial polynomial homogeneous of degree m having no pure terms. Then M is homogeneous if and only if M has an approximate infinitesimal dilation.

This theorem was first proved in \mathbb{C}^2 ([S1], [S2], [S3]), then in \mathbb{C}^n under the additional hypothesis that dim $hol(M) < \infty$ ([S4]).

Theorem 1.3 can be generalized to characterize weighted homogeneous hypersurfaces. Fix positive integers m_1, \ldots, m_n . Now I will use (z_1, \ldots, z_n) as coordinates. The non-isotropic group of dilations determined by (m_1, \ldots, m_n) is the group $\{\delta_t : t > 0\}$ where

$$\delta_t(z) = (t^{m_1} z_1, \dots, t^{m_n} z_n).$$

A function h is homogeneous of weight j if $h \circ \delta_t = t^j h$. A vector field Y is homogeneous of weight j if

$$Y(f \circ \delta_t) = t^{-j}(Yf) \circ \delta_t.$$

Let

$$Y_0 = 2 \operatorname{Re} \sum_{j=1}^n m_j z_j \frac{\partial}{\partial z_j}.$$

The one-parameter group generated by Y_0 is the group of non-isotropic dilations $\{\delta_{e^t} : t \in \mathbf{R}\}$. An analytic real hypersurface M is weighted homogeneous (with respect to the non-isotropic group of dilations) if it is locally equivalent, via a biholomorphic map which preserves the origin, to a hypersurface given by an equation of the form

$$P(z,\overline{z})=0$$

where P a polynomial which is homogeneous with respect to the nonisotropic group of dilations.

As before, call a vector field $Y \in hol(M)$ an approximate infinitesimal dilation if

$$Y = Y_0 + \text{terms of weight} \ge 1.$$

Theorem 1.4 ([S5, Theorem 4.1]). Let M be an analytic real hypersurface through the origin in \mathbb{C}^n and suppose there is an approximate infinitesimal dilation $Y \in hol(M)$. Then M is weighted homogeneous.

This theorem does not require the hypothesis that M be rigid and there is no nondegeneracy hypothesis or finite type hypothesis on M.

The theorem can be proved by a technique used by Poincaré in his thesis [P] and generalized by Dulac [Du]. One linearizes Y, that is, one finds a change of coordinates so that in the new coordinates \tilde{z} ,

$$Y = 2 \operatorname{Re} \sum_{j=1}^{n} m_{j} \widetilde{z}_{j} \frac{\partial}{\partial \widetilde{z}_{j}}.$$

To do this, one first finds a formal change of variables, then one applies Poincaré's by now standard domination argument to prove that the formal change converges.

Now, after reordering the coordinates and multiplying \tilde{z}_n by *i* if necessary, I can assume *M* is given by an equation of the form

(1.5)
$$\operatorname{Im} \widetilde{z}_n = \widetilde{F}(\widetilde{z}', \overline{\widetilde{z}'}, \operatorname{Re} \widetilde{z}_n)$$

where $\tilde{z}' = (\tilde{z}_1, \ldots, \tilde{z}_{n-1})$. Applying Y to this equation shows that the right side of this equation is a weighted homogeneous polynomial and hence M is homogeneous.

By replacing \tilde{z}_n with $a\tilde{z}_n$ for an appropriate $a \in \mathbf{C}$, one may assume that (1.5) is a rigid equation. This yields the following proposition.

Proposition 1.6 ([S5, Proposition 4.3]). If M is weighted homogeneous then M is rigid.

2. Holomorphic nondegeneracy How can one tell whether hol(M) is finite dimensional? In \mathbb{C}^2 it is for any hypersurface M of finite type. The example

$$v = |z_1|^2$$

in \mathbb{C}^n , $n \geq 3$, shows that some stronger nondegeneracy hypothesis is required in higher dimensions. In this example, $\operatorname{Re} f(z, w) \frac{\partial}{\partial z_2} \in \operatorname{hol}(M)$ for any holomorphic function f.

Definition. Let M be an analytic real hypersurface in \mathbb{C}^n . A nontrivial holomorphic vector field W is called a holomorphic tangent to M at p if W is defined in a neighborhood of p and $W|_M$ is tangent to M. The hypersurface M is holomorphically nondegenerate at p if M

358

has no holomorphic tangent at p. If M has a holomorphic tangent at p, M is holomorphically degenerate at p.

Theorem 2.1 ([S4, Theorem 4.3]). Let M be an analytic real hypersurface through the origin in \mathbb{C}^2 . The following are equivalent.

- (1) hol(M) is finite dimensional;
- (2) M is not flat;
- (3) the Levi form of M is somewhere nondegenerate;

(4) M is holomorphically nondegenerate at the origin.

In higher dimensions holomorphic nondegeneracy is not the same as nonflat, finite type, essentially finite or somewhere Levi nondegenerate. (See [BJT] for the definition of essentially finite.)

Theorem 2.2 ([BR2, Theorem 2, Proposition 4.2], [S6, Corollaries 3.3, 3.4]). Let M be an analytic real hypersurface through the origin in \mathbb{C}^n . The following are equivalent.

- (1) M is holomorphically nondegenerate at the origin.
- (2) *M* is everywhere holomorphically nondegenerate.
- (3) M is essentially finite on an open dense set.

In general, and even for many simple examples of hypersurfaces with polynomial defining equations, it is very difficult to compute hol(M). If M is rigid with a rigid defining equation which is a polynomial, in principle—and often in fact—it is easy to check whether M is holomorphically nondegenerate at the origin.

Holomorphic nondegeneracy is a natural condition to introduce in connection with finite dimensionality of hol(M). Suppose M is a holomorphically degenerate real hypersurface, with holomorphic tangent Z. Then for all multi-indices α , $X_{\alpha} = \operatorname{Re} z^{\alpha} Z \in hol(M)$ so dim $hol(M) = \infty$. This gives one direction of the following theorem.

Theorem 2.3 ([S4, Theorem 4.16], [S6, Theorem 1.7]). Let M be an analytic real hypersurface through the origin in \mathbb{C}^n . Then the space hol(M) is finite dimensional if and only if M is holomorphically nondegenerate.

In \mathbb{C}^2 the theorem follows easily from Theorem 2.1. Theorem 2.3 was first proved in the case of rigid hypersurfaces [S4]. In the rigid case the proof is long and technical; much of the work goes into proving an approximate version of the theorem, which requires a polynomial hypersurface to approximate M and an approximate version of hol(M). In dimensions greater than 2, the approximating hypersurface must include

N. Stanton

some higher order terms; the homogeneous part may not give a good approximation. The proof gives a bound on dim hol(M) which depends on the type at the origin and the defining equation. To prove the theorem in the general case, one shows that if M is holomorphically nondegenerate and dim $hol(M) \ge 1$, then there is an open dense set $U \subset M$ and an integer ℓ (computable in terms of an appropriate defining function for M) such that if $p \in U$, then M is rigid, essentially finite and of type 2 at p, and dim $hol(M, p) \le \ell$.

The following theorem of Baouendi and Rothschild gives an application of holomorphic nondegeneracy to mappings of algebraic hypersurfaces. A real hypersurface is *algebraic* if it is contained in the zero set of a nontrivial real valued polynomial. A holomorphic map is *algebraic* if its components satisfy polynomial equations with polynomial coefficients.

Theorem 2.4 ([BR2, Theorem 1]). Let M be a holomorphically nondegenerate algebraic real hypersurface in \mathbb{C}^n and let M' be an algebraic real hypersurface in \mathbb{C}^n . If f is a biholomorphic map taking Mto M' then f is algebraic. Conversely, if M is a holomorphically degenerate algebraic real hypersurface which contains the origin, then there is a nonalgebraic biholomorphic map f defined in a neighborhood of the origin, with f(0) = 0, which takes M to itself.

3. Analyticity of infinitesimal CR automorphisms For any analytic real hypersurface M and any $p \in M$, $hol(M, p) \subset aut(M, p)$. The two spaces are not always equal.

Example 3.1 ([S4, Example 7.11]). Let $M = \{v = 0\} \subset \mathbb{C}^2$. Then

$$X = e^{-1/u^2} \frac{\partial}{\partial u} \in \operatorname{aut}(M).$$

However, $X \notin \operatorname{hol}(M)$ so $\operatorname{hol}(M) \subsetneq \operatorname{aut}(M)$.

There is a sufficient condition for equality of hol(M) and aut(M).

Proposition 3.2 ([S3, Remark 2.5]). Let M be an analytic real hypersurface through the origin in \mathbb{C}^n . Suppose every CR diffeomorphism on M is analytic. Then hol(M) = aut(M).

The next theorem summarizes what is known about equality of hol(M) and aut(M) in the case that hol(M) is finite dimensional.

Theorem 3.3. Let M be an analytic real hypersurface through the origin in \mathbb{C}^n . Suppose that one of the following holds.

(1) M is essentially finite;

360

- (2) *M* is rigid and every neighborhood *U* of 0 contains a point $p \in M$ such that the Levi form of *M* is nondegenerate at *p*;
- (3) *M* is algebraic and holomorphically nondegenerate.

Then $\operatorname{aut}(M)$ is finite dimensional and $\operatorname{aut}(M) = \operatorname{hol}(M)$.

Theorem 3.3 was proved for hypersurfaces satisfying (1) and (2) in [S4, Theorem 6.1]. For hypersurfaces satisfying (3) it follows from Proposition 3.2 and the following theorem of Baouendi, Huang and Rothschild.

Theorem 3.4 [BHR, Theorem 1]. Let M and M' be algebraic real hypersurfaces in \mathbb{C}^n and suppose that M is holomorphically nondegenerate. If H is a smooth CR map from M to M' and the Jacobian determinant of H is not everywhere 0, then H extends holomorphically to a neighborhood of M.

To describe additional results on the question of when hol(M) = aut(M), I need a characterization of infinitesimal CR automorphisms analogous to the definition of hol(M).

Proposition 3.5. Let M be a real hypersurface through the origin in \mathbb{C}^n and let X be a smooth tangent vector field defined in a neighborhood of the origin on M. Then $X \in \operatorname{aut}(M)$ if and only if

(3.6)
$$X = \operatorname{Re}\sum_{j=1}^{n} f_j \frac{\partial}{\partial z_j}$$

where each f_i is a CR function on a neighborhood of the origin in M.

Proof. Let X be a \mathcal{C}^{∞} real vector field tangent to M. By Theorem 1 of [BR1], it suffices to show that X is of the form (3.6) if and only if for every smooth section Y of $T^{0,1}(M)$ on a neighborhood of the origin,

$$[X,Y] \in T^{0,1}(M).$$

Now $X = (Z + \overline{Z})|_M$ for some smooth vector field $Z = \sum_{j=1}^n f_j \frac{\partial}{\partial z_j}$ defined in a neighborhood of the origin. Let $Y = \sum_{j=1}^n g_j \frac{\partial}{\partial \overline{z_j}} \in \mathcal{C}^{\infty}(T^{0,1}(M))$. Then Y extends to a \mathcal{C}^{∞} vector field \widetilde{Y} of type (0,1) defined in a neighborhood of the origin. Now

$$[X,Y] = ([Z,\widetilde{Y}] + [\overline{Z},\widetilde{Y}])\Big|_{M}$$

= $\left(\sum_{j=1}^{n} (Zg_{j}) \frac{\partial}{\partial \overline{z}_{j}} - \sum_{j=1}^{n} (Yf_{j}) \frac{\partial}{\partial z_{j}} + [\overline{Z},\widetilde{Y}]\right)\Big|_{M}.$

The first and last terms are of type (0,1). Hence (3.7) holds for all Y if and only if $Yf_j \equiv 0$ for all smooth sections Y of $T^{0,1}(M)$, so if and only if f_j is a CR function for each j.

Baouendi, Huang and Rothschild proved the following theorem about failure of analyticity of CR diffeomorphisms for holomorphically degenerate hypersurfaces.

Theorem 3.8 ([BHR, Theorem 4]). Let M be an analytic holomorphically degenerate real hypersurface through the origin in \mathbb{C}^n . If there is a germ at 0 of a smooth CR function on M which does not extend to be holomorphic in any neighborhood of 0, then there is a germ of a smooth CR diffeomorphism from M to itself, fixing 0, which does not extend holomorphically to any neighborhood of 0.

This result is closely related to the question of when hol(M) = aut(M) in the holomorphically degenerate case.

Theorem 3.9. Let M be a holomorphically degenerate analytic real hypersurface through the origin in \mathbb{C}^n . Then $\operatorname{hol}(M) = \operatorname{aut}(M)$ if and only if every CR function defined on a neighborhood of the origin in M extends to be holomorphic on a neighborhood of the origin in \mathbb{C}^n .

Proof. Suppose every CR function on a neighborhood of the origin in M extends to be holomorphic. Let $X \in \operatorname{aut}(M)$. Then X is given by (3.6) for some CR functions f_j . There is a neighborhood U of the origin in \mathbb{C}^n such that f_j , $j = 1, \ldots, n$, extends to a holomorphic function F_j on U. Hence, $X = \operatorname{Re} Z|_M$ where $Z = \sum F_j \frac{\partial}{\partial z_j}$, and $X \in \operatorname{hol}(M)$.

Suppose hol $(M) = \operatorname{aut}(M)$. Let Z be a holomorphic tangent to M at the origin, $Z = \sum f_j \frac{\partial}{\partial z_j}$, for some holomorphic functions f_j . Let f be a CR function defined on a neighborhood of the origin in M. Then, by Proposition 3.5,

$$X = \operatorname{Re}\sum_{j=1}^{n} ff_j \frac{\partial}{\partial z_j}$$

is in $\operatorname{aut}(M)$, so $X \in \operatorname{hol}(M)$. Because $X \in \operatorname{hol}(M)$, the proof of Theorem 3.8 shows that f extends to be holomorphic in a neighborhood of the origin, so every CR function extends.

References

[BHR]	M. S. Baouendi, X. Huang and L. Rothschild, Regularity of CR map- pings between algebraic hypersurfaces, preprint.
[BJT]	M. S. Baouendi, H. Jacobowitz and F. Trèves, On the analyticity of CR mapping, Annals of Math., 122 (1985), 365-400.
[BR1]	M. S. Baouendi and L. P. Rothschild, Transversal Lie group actions on abstract CR manifolds, Math. Annalen, 287 (1990), 19-33.
[BR2]	, Mappings of real algebraic hypersurfaces, preprint.
[BRT]	 M. S. Baouendi, L. P. Rothschild and F. Trèves, CR structures with group action and extendability of CR functions, Inventiones Math., 82 (1985), 359-396.
[DA]	J. P. D'Angelo, Defining equations for real analytic real hypersurfaces in C^n , Trans. A.M.S., 294 (1986), 71-84.
[Du]	H. Dulac, Solutions d'un système d'équations différentielles dans le voisinage de valeurs singulières, Bull. Soc. Math. de France, 40 (1912), 324-383.
[KN]	S. Kobayashi and K. Nomizu, "Foundations of Differential Geome- try", II, Wiley Interscience, New York, 1969.
[P]	H. Poincaré, Sur les propriétés des fonctions définies par les équations aux différences partielles, Première Thèse (1879); "Œuvres", I, IL- CXXIX, Gauthier-Villars, Paris, 1928.
[S1]	N. K. Stanton, Rigid hypersurfaces in C^2 , in "Proc. Symposia Pure Math.", Vol. 52, Part 3, Amer. Math. Soc., Providence, 1991, pp. 347-354.
[S2]	, A normal form for rigid hypersurfaces in C^2 , Amer. J. Math., 113 (1991), 877-910.
[S3]	, Infinitesimal CR automorphisms of rigid hypersurfaces in \mathbb{C}^2 , J. Geometric Analysis, 1 (1991), 231-267.
[S4]	, Infinitesimal CR automorphisms of rigid hypersurfaces, Amer. J. Math., 117 (1995), 141-167.
[S5]	, Homogeneous real hypersurfaces, Mathematical Research Letters, 2 (1995), 311-319.
[S6]	, Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math., to appear.
[T]	N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan, 14 (1962), 397-429.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556 U.S.A.Nancy.K.Stanton@nd.edu