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Let E(k, n; a) be the hypergeometric system of differential equations 
of type ( k, n) defined on the configuration space X ( k, n) of n hyperplanes 
in general position of the projective space JP>k-l, where a is a system of 
parameters: 

a=(a1, ... ,an), a1+···+an=n-k. 

The space X(k, n) is an affine set of dimension 

m = (n - k - l)(k - 1), 

and the rank ( the dimension of the linear space of solutions at a generic · 
point) of the system E(k, n; a) is 

= (n-2) r k- l . 

A projective solution r.p: X(k,n)----+ wr-l is defined by x f-+ u 1 (x): • • •: 
ur(x), where the u/s are linearly independent solutions of the system. 
Note that r.p is multi-valued. 

When k = 2, we have 
r =m+l; 

so the dimension of the source space and that of the target space of the 
map r.p agree. 
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When (k,n) = (3,6), we have 

r=m+2(=6); 

so the image of cp is a hypersurface of P5 . 

These exhaust all the cases when the codimension of the image 
Im( cp) of the projective solution cp does not exceed 1. 

Consider the following integral 

where lj(x, t) are defining equations of then hyperplanes (ln is the hy
perplane at infinity) of pk-l representing x E X(k, n), and ~ is a real 
( k - 1 )-dimensional twisted cycle. If aj ¢. Z, there are r cycles ~v such 
that the u.o.., 's are linearly independent solutions. 

Notice that when n = 2k, the most symmetric system of parameters 
is given by 

When (k, n; a) = (2, 4; {1/2} ), the following facts are classical: The 
integrals above are elliptic integrals, i.e., periods of elliptic curv,es, the 
equation describes the family of elliptic curves ( double covers of P 1 -

{ 4 points}), the image Im( cp) of the projective solution cp is the upper 
half plane H c P 1 , and the map cp has a single.-valued inverse so that 
we have the isomorphism 

X(2, 4) ~ H/r(2), 

where r(2) C S£(2, Z) is the principal congruence subgroup of level 2. 

When (k, n; a) = (3, 6; {1/2} ), the following is known ([MSYl]): 
The integrals above give periods of K3 surfaces ( double covers of P2 -

{ 6 lines}), the equation describe~ a 4-dimensional family of such K3 
surfaces, the image Im( cp) of the projective solution cp lies in a non
singular quadratic hypersurface Q of P5 ; indeed it is an open dense 
subset of the non-compact dual D C Q of Q, and that cp has a single
valued inverse map so that we have an isomorphism 

X(3, 6) ~ (D - {fixed points of r} )/r, 

where r is an arithmetic subgroup of the group of automorphisms of D. 
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Since Q can be regarded as the Grassmannian variety Gr2,4, and 
since the Grassmannian Grk-l,n-2 can be equivariantly and minimally 
embedded in pr-1, we are very happy iflm(cp) might lie in Grk-1,n-2 C 
pr-1_ 

Especially when (k, n; o:) = (4, 8; {1/2} ), many mathematicians are 
expecting that Im( cp) would lie in Gr3,6 C JP>20- 1, and that we get a 
nice isomorphism like the examples above. Because the system de
scribes a 9-dimensional family of Calabi-Yau 3-folds ( double covers of 
JP>3 - {8 planes}), it is a hot topic now. Notice that the integral above 
gives periods of such 3-folds. 

We are very sorry to declare the following 

Theorem 1. If k ~ 3, n - k ~ 3 and (k, n) -1- (3, 6), then the 
image Im(cp) of the projective solution of the system E(k, n; o:) does not 
lie in Grk-1,n-2 C pr-l for any O:j-

The proof is given by showing that the system E(k, n) is not equiv
alent to the system of differential equations defining the Plucker em
bedding of Grk,l,n-2, The actual key to proving inequivalence is the 
computation of certain Lie algebra cohomology, which due to Se-ashi 
reduces the problem to the comparison of the symbols of both systems. 

In Sections 1 and 2 we review the equivalence problem of differen
tial systems and prove a general result on rigidity of differential systems 
modelled on equivariant projective embedding of the hermitian symmet
ric spaces ( Corollary 3). The comparison of the symbols will be given in 
Section 3. In Section 4 we provide a much simpler proof of inequivalence 
valid for E(4,8). 
Acknowledgment: When the first and the third authors were preparing 
the paper [MSYl], they dreamed about the story of E(4, 8; {1/2}) anal
ogous to E(3, 6; {1/2} ). It was disproved soon; they were disappointed 
and had no idea to publish this negative fact. After Professor Y. Se-ashi's 
unexpected death, his notes were completed by the second author, who 
pointed out that the conjecture could be disproved generally by follow
ing the line of the completed note. Meanwhile several mathematicians 
asked the third author whether the image of the projective solution of 
E(4, 8; {1/2}) is in Gr3 ,6 , moreover some of them showed him (sketchy) 
proofs. So we decided to publish this negative result. 

1. Projective embedding of hermitian symmetric spaces 

As we explained in [MSY2], it is classically well known that a system R 
in m variables of rank r is nothing but an m-dimensional submanifold 
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Min pr-l ; more precisely, two such systems are said to be equivalent if 
one is transformed into the other by a change of independent variables 
and by the replacement of the unknown by its product with a non-zero 
function and we have the bijective correspondence 

{germs of systems in m variables of rank r} / equivalence 

+-+ {germs of m-dimensional submanifolds in pr-l} / PGL(r) 

by associating to a system R the image M of its projective solution. 
As for the system E(3, 6; {1/2} ), we checked in [MSYl] that the 

image of the projective solution lies in a non-singular quadratic hyper
surface Q by utilizing the projective hypersurface theory in 1F5 • 

Our concern in this paper is the Grassmannian variety Grk-l,n-z 
in pr-l embedded as the image of the Plucker embedding, on the lower 
side of the above correspondence. Hence, in this section, we would like 
to construct group-theoretically a system R(k, n) in m variables of rank 
r, which corresponds to Grk-l,n-z in pr-l in the above diagram, where 

m = ( n- k-1) (k-1) and r = (~=~), and we discuss the inequivalence of 
E(k, n) and R(k, n) in §3 by virtue of Se-ashi's theory for the equivalence 
of integrable linear differential equations of finite type. 

For this purpose and also as a motivation to introduce Se-ashi's 
theory in §2, which in fact enables us to construct R(k, n) a little gener
ally, we will consider here projective embedding of hermitian symmetric 
spaces. 

Group-theoretically, a compact irreducible hermitian symmetric 
space M corresponds to a simple graded Lie algebra of the first kind 
as follows: Let l = l_1 EB l0 EB l1 be a simple graded Lie algebra of the 
first kind, i.e., 

(i) l is a simple Lie algebra over (C. 

(ii) l = l_1 EB lo EB l1 is a vector space direct sum such that 
l_1 # {O}. 

(iii) [lp, lq] C lp+q, where lp = {O} for JpJ ~ 2. 

Let L be the simply connected Lie group with Lie algebra land L' be the 
analytic subgroup of L with Lie algebra l' = l0 EB l1 . Then M = L/L' is 
a compact (irreducible) hermitian symmetric space and every compact 
irreducible hermitian symmetric space is obtained in this manner from a 
simple graded Lie algebra of the first kind. M is called the model space 
associated with l = l-1 EB lo EB [i. For example, when M = Grk-l,n-2, 
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we have l = .sl(n - 2, q and the gradation l = L1 EB lo EB [1 is given by 
subdividing matrices as follows: 

(1.1) 

L1 = { ( ~ ~) ICE M(p,i)}, l1 = { (~ ~) IDE M(i,p)}, 

lo= { ( i ~) I A E M(i, i), BE M(p,p) and trA + trB = 0}. 
where i = k -1, p = n - k -1 and M(a,b) denotes the set of ax b 
matrices. 

An equivariant projective embedding of the model space M = L/ L' 
can be obtained from an irreducible representation of L as follows: Let 
T : L -+ GL(T) be an irreducible representation of L with the highest 
weight A. Let tA be a maximal vector in T of the highest weight A. 
Then a stabilizer of the line [tA] spanned by VA in T is a parabolic 
subgroup of L. When this stabilizer coincides with L', we obtain an 
equivariant projective embedding of M = L/ L' by taking the L-orbit 
passing through [tA] in the projective space P(T) consisting of all lines 
in T passing through the origin. For example, when M = Grk-1,n-2, 
we take the exterior representation To of L = SL(n - 2, C) on T = 
Ak-1 cn-2: 

To: SL(n - 2, C)-+ GL(Ak-lcn-2), 

where To(a)(v1 A··· AVk-1) = a(v1) A··· A a(vk-1) for a E SL(n - 2, q 
and Vi E cn-2 (i = 1, 2, ... 'n - 1). Let {e1, ... 'en-2} be the natural 
basis of cn-2. Then To is an irreducible representation of SL(n - 2, q 
with the maximal vector e1 A··· A ek-l for a suitable choice of a Cartan 
subalgebra and a simple root system of .s[(n - 2, q. From (1.1), we see 
that the stabilizer of the line [e1 A··· A ek-l] coincides with L'. Thus 
we see that the Plucker embedding of Grk-1,n-2 is obtained from the 
irreducible representation To of SL(n - 2, q. 

Next, for an irreducible representation T : L -+ GL(T), we will 
construct a (positive) line bundle F over M such that the above orbit 
is obtained as an embedding of M by global sections of F. To construct 
F, let us take the dual representation p: L-+ GL(S) of T, i.e., S = T* 
is the dual space of T and p = T* is defined by 

(p(g)(e),t) = (e,T(g-1)(t)), 

for g E L, t E T, e E T* and ( , ) is the canonical pairing between T* and 
T. Then, when Tis an irreducible representation with the highest weight 
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A (for a fixed choice of a Cartan subalgebra and a simple root system of 
( ), p is the irreducible representation with the lowest weight -A. Let 
us take a basis { t1 , ... , tr} of T consisting of weight vectors of T such 
that t1 = tA. Then the dual basis { s1, ... , Br} of { t1, ... , tr} in S = T* 
consists of weight vectors of p and s1 is a weight vector corresponding 
to -A. Let W and W' be the subspaces of S spanned by a vector s 1 

and by vectors s2 , ... , sr, respectively. Since L' is the stabilizer of the 
line [t1 ], W' is preserved by L'. Hence we get the representation pw of 
L': 

Pw: L' -t GL(W), 

through the projection n0 : S = W EEl W' --, W. 
Relative to the representation pw, L' acts on L x W on the right by 

(g,w)g' = (gg',pw(g')- 1 (w)), 

for g E L,w E Wand g' EL'. Then F = L x W/L' is the line bundle 
over M = L/ L'. 

As is well known, the space f(F) of global sections of Fis identified 
with the space F(L, W)u of all W-valued functions f on L satisfying 

f(gg') = Pw(g')- 1 f(g), 

for g E L and g' E L', via the correspondence f E F( L, W) u f---+ CJ f E 
r(F) given by 

where n 1 : L --, M = L/ L' and n2 : L x W --, F denote the natural 
projections. Then each s E S defines an element CJ8 E f(F) via the 
above correspondence by 

for g EL. 
Now let us check that global sections of F give the desired embedding 

of Minto P(T). We utilize the above basis { t1, ... , tr} and { s1, ... , Br} 
of T and S = T*. Let us consider a map (p of L into T defined by 

r 

(1.2) (p(g) = LUs,(g),t1)ti 
i=l 

for g E L. Then, from Us, (g), t1) = (p(g- 1 )si, t1), rp induces a map r.p 
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of M into P(T) satisfying the commutative diagram 

L ~ T\ { 0} 

1 1 
M=L/L' ~ P(T). 

For g E L, if we represent r(g) as a matrix A with respect to the basis 
{ t1 , ... , tr}, p(g- 1 ) is represented by the transposed matrix t A of A 
with respect to the basis { s1 , ... , Sr }.From (1.2), cp(g) corresponds to 
the first row vector of t A. Hence we obtain 

cp(g) = r(g)(ti). 

Thus the image of cp coincides with the £-orbit passing through [t1] in 
P(T). 

Owing to Se-ashi's theory, which will be discussed in the next sec
tion, we can construct a system Rp of linear differential equations of 
rank r on F such that every local solution of Rp is a restriction of as 
for some s E S as in the following: Let JP(F) be the bundle of p-jets 
of F. The fiber J~(F) of JP(F) over a point x of Mis the quotient of 
the space of germs of sections of F at x by the subspace of germs which 
vanish to order p + 1 at x. Let 1r~ : JP(F)--+ Jq(F) denote the natural 
projection for p > q. At each point x EM= L/L', let (R;)x be the 
subspace of J~(F) defined by 

where j~(as) is the p-jet at x of the section a8 • Let R; be the subbundle 
of JP ( F) defined by 

R; = LJ (R;)x-
xEM 

Then there exists a natural number p0 such that 1r;_1 induces a bundle 
isomorphism of R; onto R;_1 for every p ~ p0 (for more detail, see §2.2). 
Putting RP = R;0 , we see that RP has the desired property. In fact, RP 
is the model equation for the typical symbol of type ((, p) in Se-ashi's 
theory (see Proposition in §2.3). 

We denote by R(k, n) the system constructed as above from the 

exterior representation p0 of L = SL(n - 2, C) on S = I\ n-k-l cn-2 , 

which is dual to the representation r0 . Then, from the construction, 
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the projective solution of R(k, n) coincides with the Plucker embedding 
of M = Grk-l,n-2 , Thus we obtain the system in m variables of rank 
r corresponding to Grk-l,n-2 in lPr-l in the bijective correspondence 
given at the beginning of this section. We shall examine the symbol of 
R(k, n) in detail and discuss the inequivalence of E(k, n) and R(k, n) in 
§3. 

2. Se-ashi's Theorem 

Se-ashi's theory on the equivalence of integrable linear differential equa
tions of finite type deals with the special classes of equations character
ized by their symbols, namely, with those equations having the typical 
symbol of type ( [, p), where p is an irreducible representation of a ( semi
)simple graded Lie algebra [ of the first kind. We will briefly review 
his theory and also prove a theorem on the Lie algebra cohomology, 
which was left unpublished in his note. We will confine ourselves in the 
holomorphic category and take ( to be a simple Lie algebra over (C in 
the following argument, although his theory applies also in the real C 00 

category and for semi-simple Lie algebras over R 

2.1. Linear differential equations of finite type. Let us begin 
with recalling some generalities on jet bundles. Let M be a manifold of 
dimension m. We denote by T and T* the tangent and the cotangent 
bundle of M respectively. For a vector bundle E over M, we denote by 
JP(E) the bundle of p-jets of E. The fibre of JP(E) over a point x of 
M is the quotient of the space of germs of sections of E at x by the 
subspace of germs which vanish to order p + 1 at x. We identify J 0 (E) 
with E and put J-1 (E) = M for convention. Let 7r~ denote the natural 

projection of JP(E) onto Jq(E) for p > q. For a section s of E, its 
p-th jet at x is denoted by jf ( s). There exist the natural vector bundle 
morphism Ep: SPT* ® E - JP(E) and the exact sequence 

1[p 

0---+ SPT* ® E ~ JP(E) ~ JP-1 (E)---+ o, 

where SPT* denotes the p-th symmetric product of T*. 

A subbundle R of JP(E) is called a system of (homogeneous) linear 
differential equations of order p on E. A solution of Risa (local) section 
s of E satisfying jf(s) E Rx at each x E M. Let Rr = 1rf(R) be the 
image of the projection of R into Jr(E) and put 9r = Rrn(SrT*®E) for 
r ~ p, which is called the r-th symbol of R. We have an exact sequence 
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The direct sum Sx = E0~=0(gr)x is called the (total) symbol of R at 
x EM, where (gr)x c srr; 0 Ex denotes the fibre of 9r over X. 

A system R of order p is said to be of finite type if gP = 0, i.e., if 
1r;_1 : R -+ Rp-1 is an isomorphism. A system R of finite type is said 
to be integrable if, for each 77 E R, there is a (local) solution s for which 
j~(s) = 77, where x = 1r~ 1 (77). In this case, such a solutions is uniquely 
determined by the initial condition 7J E Rx. Thus, by a continuation of 
solutions along a curve Xt, t E [O, 1] on M, we get a parallel displacement 
T : Rx0 -+ Rx1 • Namely, for each 7]o E Rx0 , we take a local solution s 

of R such that j~0 ( s) = 770 , continue this solution along Xt and put 
T(rJo) = 7]1 = j~1 (s) E Rx1 - In this manner, we obtain a connection 'v 
in the vector bundle R over M. Since the above parallel displacement is 
independent of curves joining x 0 and x 1 in a neighborhood of x 0 , 'v is a 
flat connection. In fact, 'v is induced from the Spencer operator acting 
on JP(E) (Proposition 1.5.1 [S]). 

Let E and E' be vector bundles over M. Let R and R' be systems 
of order p on E and E', respectively. Then a bundle isomorphism ¢ : 
E -+ E' is called an isomorphism of R onto R' if JP ( ¢) maps R onto R', 
where JP(cp) : JP(E) -+ JP(E') is the lift of¢. In this case we denote 
by RP(cp) the restriction of JP(¢) to R. Obviously, RP(cp) is a vector 
bundle isomorphism of R onto R', which preserves the flat connections 
in Rand R'. 

2.2. Typical symbol of type ((, p). Let R be a system of linear 
differential equations of order p on E and let 9r be the r-th symbol of 
R for r = 0, ... , p. We fix vector spaces V and W over C such that dim 
V = dim M and dim W = rankE, respectively. Let S = E0~=0 Sr be 
a graded vector subspace of E9~=o srV* 0 W. Then the system R is 
said to be of type S if, for each x E M, there exist linear isomorphisms 
zr : V ~ Tx and ZE : W ~ Ex such that the induced isomorphism 
(tzr1 ) 0 ZE: srv* 0 W ~ srr; 0 Ex sends Sr onto (gr)x for every r. 
In this case, S is called the typical symbol of R. 

Now we introduce the important classes of typical symbols for in
tegrable systems of linear differential equations of finite type in the fol
lowing. 

Let ( = [_1 EB to EB [1 be a simple graded Lie algebra over C of the 
first kind and p: [-+ g[(S) an irreducible representation of [ on a vector 
space S. 

As is well-known, there exists a unique element Z E (0 (Lemma 
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4.1.1. [S]) such that 

lp ={XE [ I [Z,X] =pX} (p=-1,0,1). 

Z is called the characteristic element of [ = (_1 EB [0 EB [1. Since ad(Z) is a 
semi-simple endomorphism with eigenvalues -1, 0 and 1, p(Z) is a semi
simple endomorphism of S (Corollary 6.4 [Hu]) with real eigenvalues (see 
the arguments in §2.5). Moreover, putting S(µ) = { s E S I p(Z)(s) = 
µs }, we have 

for p = -1, 0, 1. 

Let >.0 be the minimum eigenvalue of p(Z) and put Sr = S(>-o+r) for 
r ;; 0. Then, since p is irreducible, there exists a natural number p0 

(Proposition 4.2.1 [S]) such that Sr #- {0} for r = 0, 1, ... , p0 - 1 and 

r=O 

For each integer q (0 ;£ q < po) put Sq(q) = { s E Sq I p(l-1)(s) = 0 }. 
Then S0 (0) = S0 and Sq(q) is a p([0 )-invariant subspace of Sq, We define 
a linear subspace S(q) = ffiq:S:r<po Sr(q) of S inductively by 

One can easily check that Sr(q) is p([0 )-invariant and p(L1)(Sr+i(q)) C 

Sr(q) by induction on r;; q. Thus S(q) is a p([)-submodule of S. Since 
pis irreducible, we get S(0) =Sand S(q) = 0 for q > 0. Hence, putting 
Sr = {0} for r ;; Po, we obtain 

(2.1) So= {s ES I p(L1)(s) = 0}, 

and 

(2.2) for r;; 0. 

Now we put V = L 1 and W = S0 . Then we have a linear isomor
phism lr of Sr into srv* ® W (r = 1, ... ,Po - 1) defined by 

Since [_1 is abelian, lr is well-defined. In this manner, S = EBr~o Sr 

is regarded as a graded vector subspace of EBr~o srv* ® W, which is 

called the typical symbol of type([, p). 



328 T. Sasaki, K. Yamaguchi and M. Yoshida 

As an example, we construct the typical symbol of type([, p), when 
[ = s((n - 2, q is endowed with the gradation given in (1.1) and p = Po 
. h . . S A n-k-1 ,r,n 2 1s t e exterior representation on = 1 \ ,.,.. - : 

n-k-1 
p: s[(n - 2, q -+ g[( /\ c,n-2), 

where 

n-k-1 

p(X)(v1 I\··· I\ Vn-k-1) = E V1 I\··· I\ X(vi) I\··· I\ Vn-k-1 
i=l 

for X E s[( n - 2, q and vi E c,n-2 ( i = 1, 2, ... , n - k - 1). 
Let { e1, ... , en-2} be the natural basis of c,n-2. Then [' = [o EB [1 is 

the isotropy (stabilizer) algebra of the line [eu'\ · • • /\ek-i] in A k-l c,n-2. 
We denote by Eab E g[(n - 2, q (1 ~ a, b ~ n - 2) the matrix whose 
( a, b )-component is 1 and all of whose other components are 0. From 
( 1. 1), we have the following basis for V = [_ 1 and [ 1 : 

V = L1 =(Epi 11 ~ i ~ k - 1, k ~ p ~ n - 2) 

[1 =(Eip 11 ~ i ~ k - 1, k ~ p ~ n - 2) 

Since Epi(ej) = 8ijep for 1 ~ j ~ k-1 and, Epi(eq) = 0 fork~ q ~ n-2, 
we have from (2.1) 

For 1 ~ i1 < · · · < ir ~ k - 1 and k ~ PI < · · · < Pr ~ n - 2, we put 

n-k-r-1 

e(p1, ··,,Pr)= ek I\··· I\ ePl /\ · · · /\ ePr I\··· I\ en-2 E /\ c,n-2, 

and consider the following element of S: 

n-k-1 

s(i1, · · · ,ir,P1, ···,Pr)= ei1 /\· · ·/\eir /\e(p1, ... ,Pr) ES= I\ c,n-2. 

Then, from (2.2) and Eip(ej) = 0, Eip(eq) = 8pqei for 1 ~ j ~ k-1, k ~ 
q ~ n - 2, we get 

Sr= (s(i1, ... ,ir,Pl,···,Pr) I 
1 ~ i1 < · · · < ir ~ k-:-- 1, k ~ P1 < · · · < Pr ~ n - 2 ), 
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for r = 1, 2, ... ,Po - 1 and 

Sr= {O}, 

for r ~Po= min{k,n - k}. Moreover, for X = L-ipXipEpi EV, we 
have 

lr(s(i1, ... , ir, Pl, ... ,Pr ))(X, ... , X) 

=r!(-lr X(eii) A··· A X(ed A e(p1, ... ,Pr) 

=r!( -lr(L sgn 0" xi1P"(l) "" "xirP"(r)) ePl fl"·· fl ePr fl e(p1, ... , Pr). 
a 

Thus, by fixing a basis of W and identifying SV* with the ring of poly
nomials on V, we see that S1 = V* and Sr c srV* is spanned by the 
minor determinants of degree r of the matrix ( Xip), which are the linear 
coordinates of V. 

2.3. Model systems. Starting from the typical symbol S = 
EB~=O Sr C EB~=O srv* ® W with the properties So= Wand Sp= 0, 
we now explain a recipe to construct an integrable system of differential 
equations of finite type of order p modeled after S. 

The construction of the model system Rs is preceded by the con
sideration of the Lie algebra g of infinitesimal automorphisms of the 
constant coefficient differential equations modeled after S. 

Let E 0 = V x W be the trivial bundle over the vector space V. 
Then the fibre J'f;(Eo) of JP(Eo) at the origin O E V is identified with 
EB~=O srV*®W, where srV*®W can be regarded as the set of W-valued 
homogeneous polynomials of degree r on V. Thus, starting from the 
typical symbol S = EB~=O Sr C EB~=O srv* ® W, our first (local) model 
is the constant coefficient differential equations given as the subbundle 

Rs= V x S of JP(E0 ), whose solutions consist of W-valued polynomials 
contained in Sc SV* ® W. 

Let us consider an infinitesimal bundle automorphism of E0 preserv
ing Rs. An infinitesimal bundle automorphism of E0 has a form 

L i a L 13 a ~ (x)-8 . + Aa 13(x)y -8 , 
x' ' y°' 

i a,/3 

where (xi) and (y°') are linear coordinates of V and W, respectively. 
Thus the Lie algebra a of (formal) infinitesimal bundle automorphisms 
of Ea can be expressed as a graded Lie algebra a= EBr~-l Or by putting 
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where a_ 1 = V corresponds to constant coefficient vector fields on V. 
The bracket operation in a is given by 

[f ® v, g ® w] = -J(i(v)g) ® w + g(i(w)f) ® v, 

[f ® A,g ® w] = g(i(w)f) ® A, 

[f ® A, g ® B] = f g ® [A, Bl, 

where f,g E SV*, v,w EV and A,B E f1((W); i(v) denotes the inner 
multiplication. The Lie algebra a acts naturally on the space SV* ® W 
that is regarded as the space of cross sections of E0 : 

(f ® v + g ® A)(h ® w) = -f(i(v)h) ® w + gh ® A(w), 

where f,g,h E SV*, v,w EV and A E fl[(W). 

Then the Lie algebra fl of infinitesimal automorphisms of Rs is given 
by 

fl = { X E a I X ( S) c S } . 

fl is a graded subalgebra of a = EBr;;;-i ar, i.e., fl = EBr;;;-i fir, where 

fir = fl n ar, The Lie algebra fl[(S) has also the gradation given by 

fl[(S)r = {XE fl[(S) I X(S1) C Sl+r for any l }. 

Referring the action above we have a restriction homomorphism: fl ---, 
fl[(S), which sends fir into fl((S)r, Assume here the following two condi
tions for S, which are satisfied by the typical symbol of type ((, p): 

(Al) The action of n-1 = V leave S invariant. 

(A2) The action of a_ 1 = V on S is faithful. 

Then this homomorphism turns out to be injective and we can charac
terize fir as a subspace of fl[(S)r as follows: 

(2.3) 
fl-1 = V, 

fir= {XE fl((S)r I [fl-1, X] C flr-1} for r :2: 0. 

Put Ur = srv* ® fl((W) C ar, Then u = EBr;;;o Ur is an ideal of a and 

n = u n fl is an ideal of fl. We can see 

(2.4) fir = {XE fl[(S)r I [fl-1, X] C Ilr-1} for r ~ 0, 

where we put n_1 = {0} for convention. 
In the case of the typical symbol of type ([, p), we have the follow

ing: We identify [ with its image p([) in fl[(S) as follows. Let c denote 
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the centralizer of [ in 9[(S) and 91- the orthogonal complement of 9 
in 9[(S) with respect to the non-degenerate bilinear form Tr given by 
Tr(X, Y) = trace XY for X, YE 9[(S). Then, from (2.3) and (2.4), we 
have (Proposition 4.4.1 [S]) 

(2.5) 9 = [ EB c, n = c, 9[(S) = [ EB n EB 91- (Tr-orthogonal). 

In fact, since pis irreducible, c coincides with the center of 9[(S) in our 
case. 

Now let S = EB~=O Sr be a typical symbol satisfying So = W, 
SP = 0, and the above conditions (A.1) and (A.2). Then the model 
system Rs is constructed as follows: We filtrate the space S by subspaces 
sr = EBf=r Sz. Notice that the group GL(V) x GL(W) acts on a by the 
adjoint action: for a E GL(V) x GL(W) and X E a, the action is 
(aX)(s) =(a• X • a- 1 )(s) for s ES. Let us define groups 

Go= {a E GL(V) x GL(W) I a(S) CS}, 

GL<0 l(s) = { g E GL(S) I g(Sr) C sr for any r }. 

Let G be the analytic subgroup of GL(S) with Lie algebra fl E 9[(S) and 
put 

G= G·Go, 

G' = G n GL<0l(s). 

We see that the groups G0 and G' are Lie subgroups of GL(S) with 
Lie algebras flo and 9' = EBr;;;o fir respectively. Since G' preserves the 

filtration { sr}r;;;o of S, we get the representation PW of G': 

Pw : G' - GL(W), 

through the projection no : S = EB~=O Sr - So= W. 
Let Es be the vector bundle over M = G/G' associated with the 

representation PW: G' - GL(W) ; G' acts on G x Won the right by 

(g,w)g' = (gg',pw(g')- 1 (w)), 

for g E G, w E Wand g' E G'. Then Es is the vector bundle over M = 
G / G' defined by Es = G x W / G'. As in § 1, each s E S defines an element 
as E I'(Es) by considering the equivalence class of (g,pw(g- 1 )(s)) E 
GxW. 
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At each point x EM= G/G', let (Rs)x be the subspace of Jf(Es) 
defined by 

(Rs)x = {j~(o-s) I s ES}. 

Let Rs be the subbundle of JP(Es) defined by 

Rs= LJ (Rs)x. 
xEM 

Then we have 

Proposition. (Proposition 2.4.1 [S].) Rs is an integrable system 
of linear differential equations of finite type of order p of type S and 
every local solution of Rs is a restriction of 0-8 for some s ES. 

We call Rs the system of equations modeled after S. In the case 
when S is the typical symbol of type ([, p), it follows from (2.5) that 
G / G' = L / L'. Moreover, when p is the irreducible representation of 
[ given in §1, we see that RP coincides with the system of equations 
modeled after S. 

2.4. Normal reduction. Let R be an integrable system of linear 
differential equations of finite type of order p of type Son E. Then R is 
a vector bundle over the base manifold M with typical fibre S. A frame 
z of Rat x EM is a linear isomorphism of S onto Rx. Let F(R) be the 
frame bundle of R: 

F(R) = LJ Fx(R), 
xEM 

where Fx(R) denotes the set of all frames of R at x E M. F(R) is a 
principal GL(S)-bundle over M. The flat connection 'v in R induces the 
connection and the connection form won F(R) is a g[(S)-valued 1-form. 
Se-ashi's theorem (Theorem A below) asserts the existence of a good 
reduction of the pair (F(R), w) for a system R with the typical symbol 
of type ( [, p). This reduction is carried out in several steps. 

First, let { sr} r;;o be the filtration of S. The associated graded 

vector space gr(S) = EBr;;o sr I sr+l can be naturally identified with 

S = ©r;;o Sr. Let G£(0l(S) denote the subgroup of GL(S) consisting 

of all elements a E G L( S) which preserve the filtration { sr} r;;o of S. For 

a E G£(0l(S), we denote by gr(a) E GL(S) the induced automorphism 
of the graded vector space S = ©~=O Sr. Define 

aC0 ) = { a E G£C0l(S) I gr(a) E Go}. 
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The Lie algebra of c(o) is given by g(o) = g0 EB E0~:~ g((S)r. Then we 
have the natural reduction of the structure group GL(S) of F(R) to Q(o) 
as follows : At each x E M, Rx has a filtration { R;} r;;:;:o given by 

Rr = Ker (1rP · R ----+ Jr-l(E)) x r-l · x :z: 

Put 
Px(R) = { z E Fx(R) I z(Sr) CR; for any r }. 

Obviously, P(R) = UxEM Px(R) is a principal 

G£(0)(S)-subbundle of F(R). Since 9r = Rr n (SkT* © E) denotes 

the r-th symbol of R, each frame z E Px(R) induces a graded map 
gr(z): Sr----+ (gr)x. We put 

Px(R) = { Z E Px(R) I 
gr(z) is the extension of isomorphisms V ~ Tx and W ~Ex}. 

Then P(R) = UxEM Px(R) is a principal G(0Lsubbundle of F(R). Let 
7r : P(R) ----+ M be the bundle projection and let w be the restriction to 
P(R) of the connection form won F(R). According to the decomposition 

g((S) = E0~:~P+l g((S)r, the form w is decomposed as 

r 

It has the following properties (Proposition 3.2.2 [S]): 

(2.6) 

1 
(1) dw + 2w /\ w = 0, 

(2) Wr = 0 for r ~ -2, 

(3) w_1 is a g_1-valued basic form, that is, w_1 gives the 

isomorphism Tz(P(R))/ Ker 1r ~ g_ 1 at each z E P(R). 

The pair (P(R), w) characterizes the equivalence class of the system 
R (Proposition 3.3.1 [S]). Namely, let R and R' be integrable systems 
of type S. Then an isomorphism ¢ of R onto R' induces the bundle 
isomorphism P(</>) : (P(R),w) ----+ (P(R'),w'), i.e., P(</>) is a bundle 
isomorphism of P(R) onto P(R') satisfying P(</>)*w' = w. Conversely, 
for any isomorphism '1!: (P(R),w)----+ (P(R'),w'), there exists a unique 
isomorphism¢ of R onto R' such that '1! = P(</>). 



334 T. Sasaki, K. Yamaguchi and M. Yoshida 

Second, in order to state the normality condition for G'-reduction of 
P(R), we prepare the Spencer cohomology associated with the adjoint 
representation of [_ 1 on g[(S). 

On the space C = EB CP,q of cochains 

q 

Cp,q = A.(L1)* @g[(S)p-1, 

we define the coboundary operator 8: cp,q ------, cp-l,q+l by 

8c(Xo, ... ,Xq) = L(-1)1[p(Xj),c(Xo, ... ,Xj, ... ,Xq)]. 
j 

The cohomology group Hq([_1, g[(S)) = EBP Hp,q(L1, g[(S)) of this 

cochain complex ( C, 8) is called the Spencer cohomology group asso
ciated with the adjoint representation of [_1 on g[(S). Moreover, the 
adjoint operator 8* : cp-l,q+l ------, cp,q is given by 

8*c(X1, ... , Xq) = L[p(Ei), c(Ei, Xi, ... , Xq)], 
i 

where {Ei} is a basis of [_1 and {Ei} is the dual basis of [1 relative to the 
Killing form B. Let T be the complex conjugation relative to a compact 
real form of [ such that T([1) = [_1 and T([0) = [0 . We have a (hermitian) 
inner product given by {X,Y} = -B(X,T(Y)). Moreover, since [ is 
simple, we can find an inner product (,) on S such that (p(X)(s), s') + 
(s, p(T(X))(s')) = 0 for s, s' E Sand X E [. Then we define the inner 
product(,) on g[(S) by (u,v) =trace (uv*), where u,v E g[(S) and v* 
is the adjoint of v relative to (, ). These inner products induce naturally 
an inner product on CP,q. Then, relative to this inner product, 8* is 
seen to be the adjoint of 8. Thus we can develop a harmonic theory 
for (C,8), using the laplacian ~ = 88* + 8*8. In fact, we will apply 
the harmonic theory of Kostant to compute HP,1([_1,g-1) in §2.5. We 
denote by 'H the harmonic projection. For [-submodule g-1 of g[(S), we 
put C(g-1) = A([_1)*@ g-1. Then ( C(g-1 ), 8) is a subcomplex of ( C, 8). 

Let (Q(R),x) be a G'-reduction of (P(R),w); i.e., Q(R) is a G'
principal subbundle of P(R) and x is the restriction of w to Q(R). Ac
cording to the decomposition g[(S) = g EB g-1, the form xis decomposed 
as 

X = Xg + XgL 

Since Tr is Ad(G')-invariant, we have R; Xg = Ad(a-1) Xg and R; Xg..L = 
Ad(a-1) Xg..L for any a E G'. For XE g', Xg..L (X*) = 0 since x(X*) = X. 
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From (2) and (3) of (2.6), we have (x9 _1_)p = 0 for p ~ -1. Moreover, x9 

gives an isomorphism between Tu(Q(R)) and g at each point u E Q(R). 
Namely, we have (Proposition 5.1.1 (SJ) the following. 

(1) (Q(R),x9 ) is a Cartan connection of type G/G' over M. 

(2) x9 _1_ is a tensorial 1-form on Q(R). 

We now define a C 1 (gl.)(= Hom((_1 ,gl.))-valued function con Q(R) by 

for u E Q(R), X E l-1-

c is called the structure function on Q(R). For each p, cP denotes the 
CP•1 (gl.)-component of c, i.e., cP(u)(X) = (x9 _1_)p- 1 (X~)- Then 

(2.7) cP = 0 for p ~ 0. 

We note here that, if c vanishes identically, we have x = x9 and, from 
(1) of (2.6), (Q(R),x) is a flat Cartan connection of type G/G'. 

A G'-reduction (Q(R), x) is said to be normal if the function c is 8*
closed. Now we can state Se-ashi's Theorem (Theorem 5.1.2, Theorem 
5.2.2 (SJ) as follows. 

Theorem A. (1) For every integrable system R of differential 
equations of type ([,p), there exists a unique normal reduction (Q(R),x) 
of (P(R),w). 

(2) Let Rand R' be integrable systems of type ([,p). Then an iso
morphism <p of R onto R' induces the isomorphism Q(</>) : (Q(R), x)--+ 
(Q(R'),x'), i.e., Q(</>) is a bundle isomorphism ofQ(R) onto Q(R') sat
isfying Q(</>)*x' = X· Conversely, for an isomorphism'¥: (Q(R),x)--+ 
(Q(R'), x'), there exists a unique isomorphism <p of R onto R' such that 
ii,= Q(</J). 

(3) If the structure function c vanishes identically, then R is lo-
cally isomorphic with the model system of type ([, p). Furthermore, the 
harmonic part 1-lc of c gives a fundamental system of invariants of R, 
i.e., c vanishes if and only if 1-lc vanishes. 

2.5. Vanishing theorem on H 1 (L1 ,gl.), Let us recall some 
facts on simple graded Lie algebras [ = L1 EB lo EB [1 of the first kind, 
following [Y], which are necessary in the subsequent discussion. 

Let Z be the characteristic element of [ = [_1 EB lo EB [1 . Since ad(Z) 
is a semi-simple endomorphism of [, we can take a Cartan subalgebra t 
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of [ containing Z. Let <I> be the set of roots of [ relative to t. Then we 
have the root space decomposition of [: 

where [a = { X E [ I [H, X] = a(H)X for all H E t} is the root 
space for a E <I>. We have by definition a(Z) = -1, 0 or 1 for any a E <I>. 
Let us choose a simple root system A = { a 1 , ... , a1} of <I> such that 
a(Z) ~ 0 for all a E A. Then there exists a unique simple root aio E A 
such that aio ( Z) = 1, ai ( Z) = 0 for i =J io and the gradation is given by 

(2.8) [o = t EB EB ([a EB [_a), 
aE<I>ci 

where <I>t = { a E cf>+ I a(Z) = p} and cf>+ is the set of positive roots. 

Because of the partition cf>+ = <I>t U <I>t, we see that nio ( 0) = 1 for the 

highest root 0 = I::!=l ni(0)ai and that 

l 

(2.9) <I>t = {a= L ni(a)ai E cf>+ I ni0 (a) = p} for p = 0, l. 
i=l 

Conversely, let [ be a simple Lie algebra over C. Let us fix a Cartan 
subalgebra t of [ and a simple root system A = { a 1 , ... , a1} of <I>. 
Choose a simple root aio such that nio ( 0) = 1 for the highest root 

0 = I::!=1 ni(0)ai, and define the partition cf>+ = <I>t U <I>t by (2.9). 
Then we can construct the gradation of [ of the first kind by (2.8), i.e., 
by defining the characteristic element Z E t by 

(2.10) { 
1 if i = i 0 , 

a·Z -' ( ) - 0 'f . -1- . 
1 z r z0 . 

We denote the simple graded Lie algebra [ = L 1 EB (0 EB [i obtained in this 
manner by (X1, { ai0 } ), when [ is a simple Lie algebra of type Xz. Here 
X1 stands for the Dynkin diagram of ( representing A and aio is a vertex 
of X1 with the coefficient 1 for the highest root. It is known [Y, §3] that 
simple graded Lie algebras of the first kind are completely classified by 
the diagram automorphism of (X1, { aio} ). For example, the gradation 
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of [ = s[(n- 2,C) given in (1.1) corresponds to (An-3,{ak- 1 }). We 
refer the reader to [Y, §4.4] for the detail. 

Let T : [ --+ g[(T) be an irreducible representation with the highest 
weight A. Let tA be a maximal vector in T of the highest weight A. 
Then an isotropy algebra at [tA] E P(T) coincides with [' = [o EB [1 if and 
only if (A,ai0 ) =/- 0 and (A,ai) = 0 for simple roots ai other than ai0 , 

where (,) denotes the inner product in (tIR)*. 
Let p: [--+ g[(S) be the dual representation of T ; i.e., S = T* is the 

dual space of T and p = T* is defined by 

(p(X)(~), t) + (~, T(X)(t)) = o, 

for X E [, t E T, ~ E T* and ( , ) is the canonical pairing between T* 
and T. Then p is an irreducible representation with the lowest weight 
r = -A. Hence the minimum eigenvalue Ao of p( Z) is given by Ao = 
f(Z). From (2.10), we see that the eigenvalues of p(Z) are of the form 

; Ao, Ao + 1, ... , Ao+ p0 - 1 = A(Z), where A is the highest weight of 
p. When [' = [0 EB [1 is the isotropy algebra at [tA], the >.0-eigenspace of 
p(Z) coincides with the weight space for r, i.e., S0 = (s1 ) in the notation 
of §1. 

Given an irreducible representation p : [ --+ g[(S) on S, consider 
the adjoint representation ado p : [ --+ g[(g[(S)) on g[(S). Then, from 
[p(Z), Y](s) = p(Z)Y(s) - rY(s) for s E Sr, we have 

Y(Sr) c Sz+r for all r if and only if [p(Z), Y] = lY. 

Thus p(Z) E g[(S) is the characteristic element of the gradation of 
g[(S) = EBr g[(S)r-

To state the theorem of Kostant, we prepare the notation for the 
Weyl group W of the root system <I>. For an element <Y E W, we put 
<1>- = -<J>+ and <I>o- = <Y(<I>-) n <J>+. Then <Y(8) = 8 - (<I>o-), where 
8 = ½ I:aE<I>+ a and (<I>o-) denotes the sum of all elements in <Po-. For a 
fixed (Xi, { aio} ) , we define the subset W 0 of W by putting 

w0 = { (Y E w I <I> O" C <I> t } . 
Moreover, we put 

W(q) ={<YEW I n(<Y) = q} and w0 (q) = w 0 n W(q), 

where n(<Y) is the number of roots in <I>o-. For an element <Y E W 0 (q), 
we put Xq," = Xf3 1 I\··· I\ Xf3q where <I>o- = {,61, ... , ,6q} C <Pi and Xf3i is 
a root vector for the root f3i E 4>i. 

The theorem due to Kostant that we utilize is the following. 
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Theorem B. (Proposition 10.1 [MM], Theorem (Kostant) [Y, 
§5.1].) Let [ = L 1 EB [0 EB [1 be a simple graded Lie algebra over C 
represented by (X1, { aio}) as above. Let T : [ ---+ gl(T) be an irreducible 
representation of [ on T with the lowest weight r. 

Then the harmonic space rlq of the cochain complex Cq = T ® 
/\q([_1)* can be decomposed into the irreducible [0 -module as follows: 

1{q = E0 1{f.a' 

<1EW0 (q) 

where r£f.,, is the irreducible lo-module with the lowest weigh e<T 
a(r - 8) + 8 = a(r) + (<I><T) generated by the lowest weight vector 

where t<1(r) is a weight vector in T with weight a(r) and 

Xcp,, = Xf31 I\""· I\ Xf3q EA q [1 ~ A q(l-1)* • 

We apply this theorem to our case when q = l. In this case we have 
W 0 (1) = {ai0 }, where D"io = D"a.;0 is the reflection corresponding to the 
simple root aio. Hence 1{1 is an irreducible [0-module with the lowest 
weight eio = aio (r) + aio. 

Now we show the following vanishing theorem for HP•1 ([_1 ,g-1). 

Theorem 2. Let [ = L 1EBloEBh be a simple graded Lie algebra over 
C and let M = L / L' be the model space associated with [ = L 1 EB lo EB [ 1. 

Let p: [---+ g[(S) be an irreducible representation on Sand H 1(l-1,f1_1) 
be the first Lie algebra cohomology associated with the adjoint repre
sentation of [_1 on g-1 induced from ado p : [_1 ---+ gl(g[(S)), where 
g[(S) = fl EB fl-1. 

Then, for each p: [---+ g[(S), 

except when M is a projective space pm or a hyperquadric qm. 

Proof. The adjoint representation ado p: [---+ g[(g[(S)) on g[(S) is 
decomposable according to the decomposition 

and the gradation gl(S) = EBrgl(S)r coincides with the eigenspace de
composition of ado p(Z). To utilize Theorem B, we further decompose 
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g..L into direct sum of irreducible [-modules 

where Tr is an irreducible [-submodule with the lowest weight r. Then 
we have 

By Theorem B, the harmonic space Hi., representing H 1([-1, Tr) is an 
irreducible [0-module in Tr® [1 generated by 

where ta;0 (r) is the weight vector with weight aio (f) and Xa; 0 is a root 

vector for aio E <I?t. Thus Hi., C CP•1(g..L), ifta;0 (r) E g[(S)p-1· Hence 
pis given by 

Let us compute the integer ai0 (f)(Z). For each a Et*, we denote 
by ta and ha the elements of t defined by 

B(ta, h) = a(h) for h Et and 
2ta 

ha= -( -)' a,a 

where (a, a) = B(ta, ta) and B is the Killing form of L Moreover, we 
put 

2(µ, a) 
(µ, a) = -( -) = µ(ha) 

a,a 
forµ Et*. 

Thus, for the simple root system { a1, ... , az} of <I?, { ha1 , ••• , ha,} forms 
a basis of t. With respect to this basis, we put 

l 

Z = Laiha;· 
i=l 

Then we compute 

(2.11) 
ai0 (f)(Z) =(f - (f,ai0 )a;J(Z) = f(Z) - (f,ai0 ) 

=(aio - l)(r, Cl!io) + L ai(r, ai) 
i#io 

Since r is the lowest weight, we have (f, ai) ~ 0 for i = 1, ... , l and 
(f, aj) < 0 for some j. Let us now check the sign of ( aio - 1) and ai. 
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From (2.10), we have 

i = i 0 , 

if i -=/= io. 

Hence, we see that (a1 , ... , at) coincides with the i0-th column vector 
of the inverse matrix c-1 of the Cartan matrix C = ((ai,aj)) of L It 
is a well-known fact that all entries of c-1 are positive numbers (see, 
e.g., Table 1 [Hu, p.69]). Moreover, if ai0 > 1, we see, from (2.11), that 
a-i0 (r)(Z) < 0 for every r, i.e., p < 1 for every 7-l}, c CP,1 (9.1). Hence 
we get HP, 1 (t_ 1 ,g.L) = {O} for all p ~ 1 in this case. Thus our task is 
to list up those (X1,{ai0 }) for which aio ~ 1. In fact, from Table 1 [Hu, 
p.69], we obtain the following list of (Xz, { ai0 }) for which aio ~ 1 : 

(A1,{a1}) 

(Bz,{ai}) 

l 
a1 = l + 1 (l ~ 1), 

a1 = 1 (t ~ 2), 

(A3, {a2}) 

(D1,{a1}) 

a2 = .1 

a1 = 1 (t ~ 4), 

Here we identify (B2,{ai}) ~ (C2,{a2}), (D4,{ai}) ~ (D4,{a3}) ~ 
(D4, {a4}) and (Az, {ai}) ~ (Az, {az}) by diagram automorphisms. One 
can easily check ( cf. [Y, §4.4]) that, when (Xz, { aio}) coincides with one 
of the above list, the model space M = L / L' corresponds to JP1 ( l ~ 1), 
Q4 = Gr2,4, Q21- 1 (l ~ 2) and Q2(!-l) (l ~ 4). This completes the proof 
of Theorem C. 

Now, combining Theorem A (3), Theorem C and (2.7), we obtain 

Corollary 3. Lett= L1 EB t0 EB t1 be a simple graded Lie algebra 
over (C and let M = L/ L' be the model space associated with t = t_1 EB 
to EB (i. Let p : t - gt(S) be an irreducible representation of L Then, 
except when M = Jp>m or Qm, every integrable system R of differential 
equations of type (t, p) is locally isomorphic with the model system RP of 
type (t,p). 

3. Proof of Theorem 1 

In this section we will show the inequivalence of E(k,n) and R(k,n) 
for (k,n)-=/= (3,6) and prove Theorem. Recall that R(k,n) is the model 
system of type (t, Po), where t = st(n-s, q with the gradation t = L 1 EB 
t0 EB t1 given by (1.1) and p0 is the exterior representation of st(n- 2, q 
on/\ n-k-l cn-2 • By the argument in §2.2 and §2.3, we see that R(k, n) 
is an integrable system of order p0 = min { k, n - k} over the model 
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space M = Grk-1,n-2· Hence, by Corollary D, R(k, n) is characterized 
solely by its symbol. Thus, to prove Theorem, we need only to show 
that E(k,n) is not of type ((,p0 ) for (k,n) =/- (3,6), i.e., the symbol 
of E(k, n) at a generic point is not equivalent to the typical symbol of 
R(k,n) discussed in §2.2 for (k,n) =/- (3,6). 

3.1. The symbol of the Pliicker embedding 

We recall the calculations in §2.2. Let us take the following basis for 
V = (_1 and Sr, 

V =(-1 = (Epi 11 ~ i ~ k - 1, k ~ p ~ n - 2), 

Sr =(s(i1, ... ,ir,Pl,·••,Pr) I 
1 ~ i1 < · · · < ir ~ k -1, k ~Pl<···< Pr~ n - 2), 

where 

n-k-1 

s(i1, ... ,ir,Pl,··•,Pr) =ei1/\···/\eir/\e(p1,--·,Pr) ES= I\ cn-2 • 

Then we have 

1,r(s(i1, ... , ir,P1, ... ,Pr))(X, ... , X) = 

r! ( - 1 r (~= sgn a xi1Pa(l) ... xirPa(r) ePl I\ ... I\ ePr I\ e(p1' ... 'Pr)' 
(j 

for X = L-ip XipEpi E V. Thus, by fixing a basis of W = So and 
identifying SV* with the ring of polynomials on V, we see that S1 = V* 
and Sr C srv* is spanned by the minor determinants of degree r of the 
matrix (Xip)- By construction of R(k, n), 

is the typical symbol of R(k, n). Hence, putting Rr(k, n) = 1rf0 (R(k, n)), 
the symbol gr= Rr(k, n) n (SrT* 0 E) of Rr(k, n) is of type Sr c srv* 
at each point of M = Grk-1,n-2· 

Now let us first show that R(k, n) is essentially a second order sys
tem. More precisely, we claim 

R(k, n) is the (Po - 2)-th prolongation of R2(k, n) 

Namely p0-th order system R(k, n) is obtained from the second order 
system R2 (k, n) by adding successive (partial) derivatives to R2 (k, n). 
In order to show this, since 1r;_1 : Rr(k,n) ---+ Rr-i(k,n) is onto by 
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construction, we need only to show that the symbol 9r of R,. ( k, n) is the 
(r - 2)-th prolongation of g2 . In fact we have 

Lemma 3.1. The space Sr c srV* is equal to the (r - 2)-th 
prolongation p(r-2)(82) of S2 C S 2V*. 

Here we recall that s-th (algebraic) prolongation p(s)(S2) of S2 is 
given by 

Proof. Let Tr be the annihilator of Sr in srv, where we identify srv 
with the dual space of srv*. Then T2 is generated by the following 
vectors; 

Epi · Eqj + Eqi · Evi 

Evi · Eqj 

Eqi · Eqj 

E;i 

(1 ~ i < j ~ k - 1, k ~ p < q ~ n - 2) 

(1 ~ i ~ k - 1, k ~ p < q ~ n - 2) 

(1 ~ i < j ~ k - 1, k ~ q ~ n - 2) 

(1 ~ j ~ k - 1, k ~ q ~ n - 2) 

where· denotes the symmetric product. Let rJ8) denote the annihilator 
of p(s) (S2 ) in 3s+2y_ Then we have 

Moreover, since S8 +2 is generated by the minor determinants of degree 
s + 2 of the matrix (Xip), we have 

(3.1) T.(s) T 
2 C s+2· 

We observe here that each monomial Ev1 ii· Ep2 i2 • • • • • Ev.+2 i.+2 in ss+2v 
belongs to TJ8) if there is a repetition among the indices i 1 , .•. , i 8+2 or 
P1, ... ,Ps+2· On the other hand, given indices i1, ... , is+2 and P1, ... , 

Ps+2 such that 1 ~ i1 < · · · < is+2 ~ k - 1 and k ~ P1 < · · · < Ps+2 ~ 
n - 2, we see that (s + 2)! monomials 

where a runs for all permutations of degree s + 2, span (at most) 1-

dimensional subspace modulo Tis). In fact, to see this, it is enough 
to line up all the permutations of degree (s + 2) in one row so that 
each permutation (li, ... , l8 +2 ), where li = a(i) (i = 1, 2, ... , s + 2), is 
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obtained by a transposition from the former permutation in this row. 
Then the dimension count shows 

codim T2 
8 ~ x = dim Ss+2, ( ) (k - 1) (n -k - l) 

s+2 s+2 

which, together with (3.1), implies rJs) = T8 +2 · This completes the 
proof of Lemma. 

In view of this lemma, we will discuss the inequivalence of second 
order systems E(k, n) and R2 (k, n) in §3.3. Here the symbol g2 = 
R2 (k, n) n (S2T* © E) of R2 (k, n) is of type S2 c S2V* at each point of 
M = Grk-1,n-2• Let {eip} denote the dual basis of {Epi} in V*. Then 
recall that S2 c S2V* is generated by the following elements of S2V* ; 

(1 ~ i < j ~ k - 1, k ~ p < q ~ n - 2). 

3.2. The symbol of E(k, n) 

For a set of parameters 

n 

a= (a1, ... ,an), Lai= n- k, 
j=l 

the hypergeometric system of type (k, n) is the system of linear differ
ential equations: 

where 

(xij) E M*(k,n) = {k x n-matrices such that no k-minor vanishes}. 

The configuration space X(k, n) of distinct n points on the projective 
(k - 1)-space is by definition given as 

X(k,n) = GL(k)\M*(k,n)/H(n), 
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where H(n) is the group consisting of diagonal non-singular n-matrices. 
Though the above system is not defined on X(k, n), its projective so
lutions are defined on it. So instead of transforming the system into a 
GL(k) x H(n)-invariant form, we restrict this system to the "subset" of 
M*(k, n) defined as follows: 

(~ ~ 

0 0 

0 1 1 
0 1 X2 k+2 

1 1 Xk k+2 

Note that any element of M*(k, n) can be taken to this form by GL(k) x 
H(n), in other words, this is a section of the projection M*(k,n) --+ 

X(k, n). So in the following, we identify this subset with X(k, n), i.e., 
we regard (xip) E X(k, n). 

The restricted system E(k,n) = E(k,n;cx1 , ... ,cxn) consists of the 
following differential equations relative to the variables Xip, 2 ~ i ~ k, 
k+2 ~ p ~ n. 

(3.2) 

where 

and 

(a -1 + 0)0jqU = Xjq(0q - O'.q + 1)(0j + CXj)u, 

Xjp(0P - O'.p + 1)0jqU = Xjq(0q - O'.q + 1)0jpU, 

Xiq ( 0i + CXi)0jqU = Xjq ( 0j + O'.j )0iqU, 

XiqXjp0ip0jqU = XipXjq0iq0jpU, 

n 

ei = I: eip, 

p=k+2 

k 

BP= Leip, 

i=2 

CX = 0:2 + · · · + O'.k+l · 

k n 

0 = I: I: eip· 

i=2 p=k+2 

Refer to [MSYl]. Here and in the following, the indices i and j run from 
2 to k, and the indices p and q from k + 2 to n. 

Now let us calculate the symbol of E(k, n). Ih the spirit of §2, 
we regard E(k, n) as the subbundle of J2(E) defined by (3.2), where 
E = C x X(k, n) is the trivial line bundle over the configuration space 
X(k, n). Let S2 (x) = E(k, n) n (S2T; ® q be the symbol of E(k, n) at 
x = (xip) E X(k, n). We regard S2 (x) as a subspace of S 2T;. Then, from 
(3.2), we see that the annihilator T2 (x) of S2 (x) in S 2Tx is generated by 
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the following elements: 

Ajq = :Z:)xiplipXjqljq - XjqXiqliqXjpljp), 
i,p 

p p 

where we put lip = "' 8 , and { lip} forms a basis of Tx- Since 
UX1,p 

and 

Bjpq = XjpXjq((2::>iplip)ljq - (LXiqliq)ljp), 
i 

p p 

Ajq = Xjq(LXjpljp)(L(l - Xiq)liq) modulo Dijpq, 
p 

T2 ( x) is generated by 

where 

A' _,,,,_,,,,q 
jq - '/]'/ ' 

Bjpq = TJpljq - T/q~jp, 

c{jq = TJiljq - T/jliq, 

D~jpq = lipljq - ~iqljp, 

T/j = L Xjpljp, TJ9 = L(1 - xiq)liq· 
p 

Furthermore, the first three are equal to the following, respectively, 
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modulo the generator D~jpq· 

A 1q = (l)xip - XiqX1p)(ip)(1q, 

i,p 

6ijq = (L(Xip - Xjp)(ip)(jq· 

p 

Let us now compute the generators of S2 (x). We denote by {eip} 
the dual basis of {(ip}- Since any elements of S2(x) are annihilated by 
above elements of T2 (x), we look for the elements of the form 

E - '°"' pijpq 
ijpq - eip · e1q + eiq · e1p + ~ £ms ecs · ems 

f<m,s 

+ '°"' Qijpq + '°"' Rijpq 2 L-t mrsemr. ems ~ ms ems . 

m,r<s m,s 

Obviously, this satisfies D~mrs(Eijpq) = 0. By requiring Eijpq to be 

annihilated by Gems and by Bmrs, we can determine the coefficients P's 
and Q's as follows: 

The condition Ams (Eijpq) = 0 is a little complicated; a calculation shows 

We put 

R ijpq _ Xjq - XjpXiq Xjp Xiq - Xjq Xiq Xjq - Xjp 
i - - -=-~--"-'--~ + - -'----=-=- + - -=--'----=-, 

p (1 - Xip)Xip Xip Xip - Xjp Xip Xiq - Xip 

R i_jpq ___ Xjp - XjqXip Xjq Xip - Xjp Xip Xjq - Xjp 
-=-'-----"-''---'- + - ---- + - ----, 

iq (1 - Xiq)Xiq Xiq Xiq - Xjq Xiq Xiq - Xip 

R i_jpq ___ Xiq - XipXjq Xip Xiq - Xjq Xjq Xiq - Xip --'----"----"-~ + - --'----"-'- + - ----, 
JP (1 - Xjp)Xjp Xjp Xip - Xjp Xjp Xjq - Xjp 

Rijpq = 0 
ms 

Xip - XiqXjp Xiq Xip - Xjp Xjp Xiq - Xip -'-----"----'--'- + - ---- + - ----, 
(1 - Xjq)Xjq Xjq Xiq - Xjq Xjq Xjq - Xjp 

otherwise. 

R· - Rijpq_ 
ip - ip ' 
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then, we see that 

(3.3) 
Xiq - Xjq Xip - Xjp 

Eijpq = eip · ejq + eiq · ejp - ~~~~eip • ejp - ~-~~eiq · ejq 
Xip - Xjp Xiq - Xjq 

Xjq - Xjp Xiq - Xip 
eip · eiq - ejp · ejq 

Xiq - Xip Xjq - Xjp 

+ R;peip 2 + R;qeiq 2 + Rjpejp 2 + Rjqejq 2 . 

Here we note that Eijpq is a quadratic polynomial in four variables eip, 

eiq, ejp and ejq· Thus, the space S2(x) is generated by these elements 
Eijpq (2 ~ i < j ~ k, k + 2 ~ p < q ~ n). 

In the following, we use Rip written in the form 

(3.4) 

Q. XiqXjp - Xiq - Xjp + Xjq XiqXjp - Xjq 
-'"ip =~~~-~-~~-~ + ~~~-~ 

Xip 1- Xip 

Xiq - Xjq Xjp - Xjq + ---=--=--=- + --=---=--=-. 
Xip - Xjp Xip - Xiq 

3.3. Proof 

By summarizing the discussion in the above subsections, our task is 
now to show the inequivalence of the symbol spaces S2 ( x) and S2 for a 
generic point x of X(k, n). More precisely, we need to show that, for a 
generic point x E X ( k, n), there does not exist a linear isomorphism </> 

of V onto Tx such that</>* : S 2T; -+ S 2V* sends S 2(x) onto S 2 . In other 
words our task is to show, for a generic point x E X(k, n), the projective 
inequivalence of the varieties V(82(x)) and V(82), where V(S2 (x)) and 
V(S2 ) are varieties in the projective spaces PT; and PV*, which are 
defined by the quadratic generators of 82 (x) and S2 , respectively. 

Here we note that, since the generators of 82 are minor determinants 
of degree 2 of the matrix (eip), V(S2 ) is called the Segre variety and 
coincides with the image of JP>k- 2 x IP'n-k-2 under the Segre embedding. 

Especially, we see that V(S2 ) is a smooth projective variety of dimension 
n - 4. Referring to this fact, we will check the above inequivalence by 
looking at the most primitive invariants of varieties, i.e., by counting the 
dimension of V ( 82 ( x)). In fact we can check that 

dim V(S(x)) < n - 4, 

at a generic point x = (xip) E X(k, n) as in the following. 
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Let us first examine the typical and easiest case when (k, n) = (3, 7). 
The dimension of S2 is 3; the space S2 is generated by 

For ease of reference we index the coordinates as follows: 

( X25 
X35 

Each E* is a homogeneous polynomial of eip· We introduce inhomoge
neous coordinates by 

Then the E/s, more precisely the quotients E*/e252, are functions of 
the inhomogeneous coordinates. The explicit forms are given by (3.3) 
and (3.4) as follows: 

E2355 =W1 + Y1Z + A1 + B1Y/ + C1Z2 + D 1 W12 

- 0'.1 - ')'1 z - X - (3 Y1 W1 - 1'1 - (3 Y1 - 0'.1 - X ZW1' 
X - (3 0'.1 - ')'1 0'.1 - X ')'1 - (3 

where 

A a1f3 - a1 - f3 + ')'1 a1f3 - ')'1 a1 - ')'1 f3 - ')'1 
1 = ------- + ---- + --- + ---, 

X 1 - X X - (3 X - 0'.1 

X')'1 - X - ')'1 + (3 X')'1 - (3 X - (3 ')'1 - (3 
B1 = ------ + --- + --- + ---, 

0'.1 1 - 0'.1 0'.1 - ')'l 0'.1 - X 

C ')'1X - ')'1 - X + 0'.1 ')'1X - 0'.1 ')'1 - 0'.1 X - 0'.1 
1 = ------- + --- + --- + ---, 

/3 1 - /3 (3 - X (3 - ')'1 

f3a1 - {3 - 0'.1 + X f3a1 - X {3 - X 0'.1 - X 
D1 = ------- + --- + --- + ---; 

')'1 1 - ')'1 ')'1 - 0'.1 ')'1 - f3 

E2357 =W2 + Y2Z + A2 + B2Y22 + C2Z2 + D2W22 

- 0'.2 - ')'2 z - X - f3 Y2 W2 - ')'2 - f3 ½ - 0'.2 - X ZW2' 
X - f3 0'.2 - ')'2 0'.2 - X ')'2 - f3 
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where 

A a2f3 - a2 - /3 + 1'2 a2f3 - 1'2 a2 - 1'2 /3 - 1'2 
2 = ------- + ---- + --- + ---, 

x l - x x - f3 x - a 2 

B X')'2 - X - ')'2 + (3 X')'2 - (3 X - (3 1'2 - (3 
2 = ------- + --- + --- + ---, 

a2 1 - a2 a2 - ')'2 a2 - x 

C ')'2X - 1'2 - x + a2 ')'2X - a2 ')'2 - a2 x - a2 
2 = ------ + --- + --- + --

/3 1 - /3 (3 - X /3 - ')'2 ' 

f3a2 - /3 - a2 + x f3a2 - x /3 - x a2 - x 
D2 = ------- + --- + --- + ---; 

1'2 1 - ')'2 1'2 - a2 1'2 - /3 

where 

A a2')'1 - a2 - 1'1 + 1'2 a2')'1 - 1'2 a2 - 1'2 1'1 - 1'2 = -------- + ---- + --- + ---, 
a1 1 - a1 a1 - ')'1 a1 - a2 

B a11'2 - a1 - 1'2 + 1'1 a11'2 - 1'1 a1 - 1'1 1'2 - 1'1 = -------- + ---- + --- + ---, 
a2 1 - a2 a2 - 1'2 a2 - a1 

C ')'2a1 - 1'2 - a1 + a2 ')'2a1 - a2 1'2 - a2 a1 - a2 = ------- + --- + --- + ---, 
1'1 1 - 1'1 1'1 - a1 1'1 - 1'2 

D ')'1a2 - ')'1 - a2 + a1 ')'1a2 - a1 1'1 - a1 a2 - a1 = ------- + --- + --- + ---. 
1'2 1 - 1'2 1'2 - a2 ')'2 - 1'1 

Thus, on the Zariski open subset (D1 -IO and D2 -I 0) of X(3, 7), from 
the equations E 2356 = E2357 = 0, we can solve W1 and W2 in terms of Y1, 

Z and Y2 , Z, respectively. Substituting these into E2357 = 0, we get a 
non-trivial equation for Y1 , Y2 and Z. Thus we see that dim V(S2 (x)) = 
2 at a generic point of X(3, 7), whereas dim V(S2 ) = 3. More precisely, 
we observe this fact from the following computation of the differentials: 
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( a2 - 'Y2 a2 - a1 ) 
dE2367 = Y2 - ---Y1 - ---W2 + 2CW1 dW1 

0!1 - 'Yl 'Y2 - 'Yl 

+ (w2 - az - 'Yz W1 - 72 - 'Yi Y2 + 2AY1) dY1 
a1 - 'Y1 a2 - a1 

+ (y1 - ai - 'Yi Y2 - ai - az W1 + 2DW2) dW2 
O!z - 'Y2 'Yl - 'Y2 

+ (w1 - ai - 'Yl W2 - 'Yl - 72 Y1 + 2BY2) dYz. 
a2 - 'Y2 a1 - a2 

In the general case, we take the following inhomogeneous coordinates; 

Yv = e2v/e2k+2 (k + 2 < p ~ n), Zi = eik+2/e2k+2 (2 < i ~ k), 

Wip = eip/e2k+2 (2 < i ~ k, k +2 <p ~ n). 

Then, similarly as in the case of (k, n) = (3, 7), from the quadratic 
equation E2ik+Zp = 0, we can solve Wip (2 < i ~ k, k + 2 < p ~ n) in 
terms of Yp and Zi on the Zariski open subset of X(k, n). Substituting 
these into Eijpq = 0, we get non-trivial equations for Y's and Z's. Thus, 
at a generic point x E X(k, n), we obtain 

dim V(S2(x)) < n - 4 = dim V(S2), 

which completes the proof of Theorem. 

4. Disproof of a dream on E(4,8; {1/2}) 

The authors are afraid that the reader would not be satisfied by the ar
gument in the previous section based on [S] and [Y], which are hardly ele
mentary. So in this section we give an elementary proof for E(4, 8; {1/2}) 
that Im( cp) does not lie in Gr3,6 C IP'19 • 

The idea is as follows: Assume the contrary. Then the restriction 
of the projective solution to any stratum consisting of degenerate S
plane arrangements in P 3 has its image in quadratic hypersurfaces in a 
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projective space, since Grassmannians can be defined only by quadratic 
equations. Ifwe choose a I-dimensional stratum, the restricted equation 
is an ordinary differential equation; so we can know whether its image 
lies in a quadric by the vanishing of the Laguerre-Forsyth invariant. 

Let us carry out the above program. We consider the degenerate 
stratum given by the following matrix: 

C 
1 

1 
1 

1 
-1 1 

-1 1 
-1 

where each column defines a hyperplane. The integral belonging to the 
stratum is of the form 

J t?-1t~2 - 1t~3 -l (1-ti)<>rl (t1 -t2)°'5 -l (t2 - t3)°'6 -l (l -xt3)07 - 1dT, 

where dT = dt1 I\ dt2 I\ dt3 • The associated ordinary differential equa
tion in x is of fourth order and coincides with the so-called generalized 
hypergeometric differential equation 4E 3(a1, a2, a3 , a4 ; b1, b2, b3): 

0(0+b1 -1)(0+b2-1)(0+b3-l)z-x(0+a1)(0+a2)(0+a3)(0+a4)z = O, 

where 0 = xd/dx (refer to [El), which admits the solution given by the 
following power series: 

where 

a1 = a1 + a2 + 03 + a5 + a6 - 2, a2 = a2 + a3 + a6 - 1, a3 = a3, 

a4 = 1 - a7, b1 = a1 + a2 + a3 + a4 + a5 + a6 - 2, 

b2 = a2 + a3 + a5 + a6 -1, b3 = a3 + a6, 

and (a,n) =a(a+l)··•(a+n-1). 
Now, consider the case where all ai are equal to 1/2; the correspond

ing parameters are a1 = a2 = a3 = a4 = 1/2 and b1 = b2 = b3 = 1. The 
question is to see if the curve in lP'3 defined by the 4 E3 lies on quadratic 
surfaces for this special choice of parameters. To proceed further, we 
need to recall a bit of the Laguerre-Forsyth theory. We start with an 
ordinary differential equation of the form 

y· ... + 4p1y· .. + 6p2y .. + 4p3y· + p4y = o, 
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where y is the indeterminate of the variable x and the dot denotes the 
derivation relative to x. We can find a non-vanishing function >. and a 
new variable t so that the function z = >.y relative to the coordinate t 
satisfies the ordinary differential equation 

( 4.1) 

where r-3 and r-4 are differential polynomials of Pi, and ' denotes the 
derivation relative to t. The Laguerre-Forsyth theory (refer to, say, 
[MSY2], [W]) tells us that 

and 

are projective invariants; that is, independent of the choice of such a 
coordinate t. For the case 4 E3 ( ½, ½, ½, ½; 1, 1, 1), a calculation shows 
r-3 = 0. 

On the other hand, for the ordinary differential equation 

we can check that 

z"" + rz = 0, 

(Srr" - 9(r') 2 ) 2 
l=-----~

r-5 

is an absolute invariant; in our case it is equal to 

16(125x6 - 4650x5 + 3075x4 - 38572x3 + 3075x2 - 4650x + 125) 2 

x(5x + 1)5 (x + 5) 5 

In particular, I is not constant. 
We next consider the case where the projective curve defined by 

the equation ( 4.1) is on a non degenerate quadratic surface, say, ( 1 ( 4 = 
( 2 ( 3 in lP'3 ((1 , ( 2 , ( 3 , ( 4 ). Then around a generic point, we can choose a 
coordinate t so that the set of independent solutions is {1, t, f, tf} for a 
function f. This means that the equation ( 4.1) is the tensor product of 
two differential equations 

y~ = 0 and 

namely, y1 y2 are general solutions of ( 4.1). Such an ordinary differential 
equation is studied by [Ha] and its general form is known to be 

z"" - 2gz111 - 2g1 z' + (g2 - g" - c2)z = 0, 
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where g is a function and c is a constant. The invariants r3 and r 4 of 
this equation are given by 

2 1 /I 36 2 
r 4 = 4c - - g - -g 

5 25 

If the image curve of a projective solution of the equation 
4E3(½, ½, ½, ½; 1, 1, 1) lies on a nondegenerate quadratic surface, since 
r3 = 0, the function g must be constant, and so r 4 should also be con
stant, which implies I = 0. Therefore, our curve does not lie on any 
nondegenerate quadratic surface. 

Suppose that the image Imcp is on the Grassmannian Gr3 ,6 , then the 
image of a projective solution of the restricted system 4E 3 would be in 
the intersection Gr3 ,6 n L of Gr3 ,6 and a 3-dimensional linear subvariety 
L of JP'20 - 1 . Since Grassmannians can be defined only by quadrics, the 
curve Gr3 ,6 n L in L must be the intersection of two quadric surfaces. 
If the pencil generated by two quadric surfaces consists of degenerate 
quadrics only, the intersection must be linear, which contradicts that 
the projective solution is defined by linearly independent solutions. 
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