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§1. Introduction

This article concerns two problems involving the Ricci curvature of
a Riemannian metric. In each of these problems, one seeks a metric
whose Ricci curvature is prescribed in advance in some manner.

Let X be a manifold of dimension n > 3, whose tangent and cotan-

gent bundles we denote by T and T*, respectively. By @™ FE, /\kE and
S'E, we shall mean the m-th tensor power, k-th exterior product and
the [-th symmetric product of a vector bundle E over X, respectively.
Under the natural identification of Hom (T, T*) with T* @ T*, we can
view a symmetric 2-form R on X, that is, a section of S2T*, as a mor-
phism R’ : T — T*; we shall consider the section det R of the line bundle
Hom (A\"T, A"T*) which is induced by R".

The first problem consists in finding a Riemannian metric with pre-
scribed Ricci tensor. We are given a section R of S?T* over X and
we seek a Riemannian metric g in some neighborhood of a given point
zo € X whose Ricci tensor Ric(g) is equal to R throughout this neigh-
borhood. The first definitive results concerning the problem of prescrib-
ing the Ricci tensor were obtained in [4]. There it was shown that, if
R(zo) is a non-degenerate symmetric quadratic form on Ty, then a so-
lution of this problem always exists. Examples were also given showing
that, when R(zo) is degenerate, a solution may or may not exist. In
the present paper, our attention focuses on the problem of solving the
equation Ric(g) = R when R is degenerate at every point of X, but has
constant rank.

The second problem we consider here is the prescription of the prin-
cipal Ricci curvatures of a Riemannian metric (without any prescription
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of the directions in which these principal curvatures are attained). If
{A1,...,A\n} are given real-valued functions on X, we seek a metric g in
a neighborhood of g € X satisfying

det (Ric(g) — \ig) =0, 1=1,...,n,

on this neighborhood. If these equations hold, then these functions
{A1,.--,An} are principal Ricci curvatures of g, i. e. if = is an arbitrary
point of this neighborhood, the scalars A;(z),..., A\, (z) are eigenvalues
of Ric(g) with respect to g at = . This study of the principal Ricci cur-
vatures in this sense has been proposed by many authors (in particular
[3, p- 315] and [1, p. 180]). The reason for their interest in this question
arises from the fact that, for generic Riemannian metrics, the principal
Ricci curvatures provide canonical coordinates in which to express the
metric. Such coordinates enable one to determine whether two Rieman-
nian manifolds are locally (or even globally) isometric. In other words,
the principal Ricci curvatures provide the key to obtaining a complete
system of scalar invariants for a Riemannian manifold. Thus, it becomes
desirable to know whether these important scalar invariants can be pre-
scribed in advance. We will consider this problem in the generic case
where the values {A1(zo),..., \n(z0)} are all distinct.

Both of our problems manifest themselves as systems of second-order
partial differential equations for the metric g. The system correspond-
ing to the second problem is underdetermined; in fact, it consists of n
equations for the n(n + 1)/2 unknown components of g. Thus we are
able to solve the second problem using relatively “soft” techniques. Our
main result is the following:

Theorem 1. Let {)\1,...,A,} be real-analytic real-valued func-
tions on a real-analytic manifold X of dimension n > 3. Suppose that
“the values {\1(zo),- .., n(x0)} of these functions at a point zo € X are
distinct. Then there exists a real-analytic Riemannian metric g on a
neighborhood of zo whose principal Ricci curvatures are {A1,...,An}.

In fact, under a slightly stronger hypothesis, the above theorem
admits an elementary proof, which is given in §3; our precise result can
be formulated as follows:

Theorem 2. Let {\1,...,A,} be a set of C™-real-valued func-
tions on X whose values {A1(xo),-.., \n(z0)} at a point oy € X are
distinct. If the differentials {d\1,...,d\,} of these functions are lin-
early independent at the point xq, then there exists a C*°-Riemannian
metric g defined in a neighborhood of xo whose principal Ricci curvatures
are {A1,..., A}



62 D. DeTurck and H. Goldschmidt

The proof of Theorem 1 (in the analytic case) relies on our finding a
non-characteristic direction for the system of equations at each generic
2-jet of a Riemannian metric. This is in some ways similar to what
happened for the non-degenerate case of our first problem in [4].

Our other problem, in which we wish to prescribe a degenerate
Ricci tensor R, involves some fairly delicate analysis. We will work
in the real-analytic category and attempt to construct a power series
solution centered at zg € X. As is well-known, the second-order equa-
tion Ric(g) = R always implies an additional system of first- order (in
both g and R) equations. This is the so-called Bianchi identity for the
Ricci curvature. In [4], it was shown that, in the non-degenerate case,
the Bianchi identity is the only obstruction to the construction of the
construction of the power series solution. When one wishes to extend a
2-jet of a solution g to the equation Ric(g) = R to a 3-jet of a solution,
the Bianchi identity imposes a condition on the 1-jet of g. More gener-
ally, the k-jet of the Bianchi identity must be taken into account when
specifying the (k + 1)-jet of a solution to the equation Ric(g) = R in
order to be able to extend this solution to one of order k + 2. In §4, we
explain how it is possible to overcome these obstructions.

However, when R is degenerate and but still has constant rank, ad-
ditional constraints must be placed upon the unknown metric g, beyond
those usually implied by the Bianchi identity. In particular, conditions
must be imposed on the 0-jet of g. These make it more difficult (and
in some cases, impossible) to satisfy the higher-order prolongations of
the equation Ric(g) = R. We denote by K the kernel of the morphism
R’ : T — T*. In this paper, as in [6], we analyze the case where the
distribution determined by the sub-bundle K of T is integrable and give
a sufficient condition for local solvability of our equation. We are now in
the midst of studying the case when this distribution is not integrable.

Our analysis of this degenerate case leads us to associate to each
vector & of the kernel K, of Rb(z), with £ € X, a quadratic form Q¢ on
the tangent space T, which depends only on R and £. The obstruction to
the local solvability of the equation Ric(g) = R can then be formulated
as follows: At every point of X, the trace of each of these forms Q,
with respect to a solution g of the equation Ric(g) = R, must vanish.
The first positive result we obtained (see [6, Theorem 6.1]) states that, if
all these quadratic forms vanish at every point of X, then the equation
Ric(g) = R admits local solutions in the real-analytic category; this
includes the case when R is non-degenerate. More generally, we will
also assume the space of quadratic forms Q, = {Q¢}, with £ € K,
associated to a point z € X has constant dimension m, independent of
the point . For z € X, the null-space of the pencil @, of quadratic
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forms contains K, and so its dimension v(z) is > m.

Let (z!,...,2") be a local coordinate system on a neighborhood U
of x € X such that {9/0z!,...,0/0z"} is a frame for the integrable sub-
bundle K of T'. In terms of this coordinate system, we have R;; = 0, for
1<i<mnand 1< j<r; the quadratic form Q¥ corresponding to the
section 8/9z* of K over U, with 1 < k < r, is given by

k _ _10Ry

U9 gk

for 1 < 4,7 < n. According to our assumption, at every point z of U, the
~vector space of quadratic forms on T, generated by {Q'(z),...,Q ()}
is m-dimensional.

If m = 0, then on the open set U the tensor R depends only on
the variables ™, ..., 2. Thus, R respects the local product structure
induced on X by the leaves of K. In this case, if n—r > 3, orif n—r =2
and R is semi-definite, then the results of [4] can be used to prove the
local existence of a product metric which satisfies Ric(g) = R. However,
as indicated by corank-one examples on céertain unimodular Lie groups
(see [6] and [11]), there may be other solutions which do not respect the
local product structure induced by R on X.

Our most general result for this problem can be stated as follows:

Theorem 3. Let R be a real-analytic symmetric 2-form on a real-
analytic manifold X of dimension n > 3. Suppose that the kernel K
of R is an integrable sub-bundle of T and that, for all x € M, the space
Q. of quadratic forms {Q¢}, with £ € K, has constant dimension m.
Let xqg € X and suppose that there exists a Riemannian metric go on X
such that the trace (with respect to go) of the form Q¢ vanishes, for all
€ € K;,. Suppose that the following conditions do not hold:

(i) we have m =2 and n =4;

(ii) we have m =2, n =5 and v(zg) = 3;

(iii) we have m =3 and n = 6.

Then there exists a real-analytic Riemannian metric g solution of the
equation Ric(g) = R on a neighborhood of zy.

This theorem tells us that, when the dimension of X is > 7 and K
is an integrable sub-bundle of T, our condition for local solvability is
always sufficient. When the dimension of the spaces Q. is either zero
or one, then our proof is somewhat less complicated than in the case
m > 2; the cases m = 2 or 3 require special attention.

In the special case when the kernel K of R® is a line bundle, the
obstruction to local solvability described above and Theorem 3 lead to
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a condition, which is essentially necessary and sufficient, given by the
following result:

Theorem 4. Let R be a real-analytic symmetric 2-form on a real-
analytic manifold X of dimension n > 3. Suppose that the kernel K
of R® is a sub-bundle of T of rank 1. Let x € M and £ € K,. If Q¢
s non-zero, there exists a Riemannian metric g solution of the equation
Ric(g) = R on a neighborhood of = if and only if Q¢ is not semi-definite.

The necessity of the condition is obvious, since Q¢ must ultimately
be traceless with respect to the metric g. We present an outline of the
proof of these last two theorems in §4. For all the details, we refer the
reader to [6].

In this paper, we shall use the theory of overdetermined partial
differential equations of [9] or [2, Chapter IX] and the the notation and
terminology introduced there.

We wish to thank R. Bryant and S. S. Chern for organizing a con-
ference in March 1994 at the Mathematical Sciences Research Institute
in Berkeley, where a preliminary version of Theorems 3 and 4 were pre-
sented. We thank M. Berger for suggesting the problem that led us to
Theorem 1. Finally, we wish to thank M. Namba, K. Yamaguchi and the
other organizers of the conference in honor of M. Kuranishi, for which
this paper was written.

§2. The Ricci and Bianchi operators

If E is a fibered manifold over X, we denote by Ji(E) the fibered
manifold of k-jets of sections of E, and by mg : Jy+i1(E) — Ji(E) the
natural projection. If s is a section of E over a neighborhood of z € X,
then jx(s)(x) is the k-jet of s at x; the projection 7 : Ji(E) — X sends
Ji(s)(z) into z. We identify Jo(E) with E. If E is a vector bundle
over X, we denote by £ the sheaf of sections of E over X and we recall
that there is a monomorphism of vector bundles

e: S*T* ® E — Jy(E);

if s is a section of E over a neighborhood of z € X whose (k — 1)-jet
vanishes at z, then ji(s)(z) is equal to the image under € of a unique
element e 1ji(s)(z) of S¥T* ® E. If F is another vector bundle over X
and

0:S8*T*®E - F
is a morphism of vector bundles, we denote by

oW ST 9 F  SIT* @ F
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the I-th prolongation of . If R is a non-degenerate section of S?T*, we
consider the morphism RY : T* — T which is the inverse of R’ : T — T*.

Let g be a Riemannian metric on X whose Levi-Civita connection
and Ricci curvature we denote by V9 and Ric(g), respectively. We con-
sider the inner product ( , )4 on ®kT* determined by g; then the trace,
with respect to g, of an element h of S2T* is equal to Trg h = (h, g),.
Let (z!,...,2") be a coordinate system on an open subset U of X. In
expressions written in terms of such a local coordinate system, we shall
use the summation convention. On U, the Levi-Civita connection V9 of
g is determined by its Christoffel symbols

i _ 1 gt 99s; + Ogsk _ Ogjik
LA ozk OxI oxs )’

while the components of the Ricci tensor Ric(g) are given by

: ar’f args s Tt s Tt
Ric(g)s; = %SJ = Bz + I3 — I,
The Bianchi operator
B, :S*T* > T*

is the first-order linear differential operator defined by

n

(th)(f) = Z((vgh)(tiaﬁati) - %(Vgh)(gatiyti)%

i=1

for a section h of S2T* over X and ¢ € T, with z € X, where {t1,...,t,}
is an orthonormal basis of T,. We also write Bgh = Bian(g, h); in fact,
on U we have

4 (Ohi;  10ha .
1) Bh=g k(anf - rgkhlj>dxﬂ.

The symbol

o(B,) : T* ® S*T* — T*
of the differential operator By is given by

(e(Be)w)(€) = Y (ults, i, €) — Ju(& i, 1)),
=1
for £ € T,, where {t1,...,tn} is an orthonormal basis of T; we denote

by 01(B,) : S"T* ® S2T* — S'T* ® T* the I-th prolongation of o(By).
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The Ricci curvature of g satisfies the Bianchi identity
(2) BgRic(g) =0.

Let SiT* be the open fibered submanifold of S?T* consisting of
the positive-definite symmetric 2-forms on X. Let E and F' be vector
bundles over X and let ¥ : E — F be a morphism of vector bundles over
Ji(83T*). If g is a Riemannian metric on X, we consider the morphism
of vector bundles ¢4 : E — F over X sending u € E; into ¢(jx(g)(x), u),
where x € X.

The morphism of fibered manifolds

@ Jp(S2T*) — S*T™,

sending the 2-jet j2(g)(z) at z € X of a Riemannian metric g on X into
Ric(g)(z), is quasi-linear in the sense of {2, Chapter IX]. The symbol

o(p): 8°T* ® S*T* — S°T*
of ¢ is the morphism of vector bundles over J; (S_%_T*) satisfying
o(p + eu) = o(p) + o (P)mip,

for all p € Jo(S2T*), u € S?T* ® S?T*. If g is a Riemannian metric
on X, the morphism of vector bundles

o(p)g : S*°T* ® S*T* — S°T*

over X is given by

(0(0)gu)(&m) = 3D {ults, & ti,n) + ults, n, t:,€)

u(tiv ti7 fa 77) - u(&a m, t'ia tl)})

for u € (S?T* ® S?T*), and &, € T, where z € X and {t1,...,t,} is
an orthonormal basis of T,,. The [-th prolongation

Pi(p) : Jisa(S3T") — Ji(S*T")

of ¢ is quasi-linear; if 6;()4 is the I-th prolongation of o(y),, then we
have

pi(p)(g +eu) = o(p) + o1(p)gu
for all ¢ € Ji12(S2T*) and u € S!2T* ® S2T™*, with 719 = j1(g)(z).
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We set S'T* = 0 for | < 0. Let ¢ be a Riemannian metric on X and
let
L : (SlT* ® S2T*) ) (Sl—l—lT* ®T*) _ Sl—lT* ®T*
be the morphism of vector bundles sending u @ v, with u € S'T* ® S2T*
and v € S"™MT* @ T*, into 0_1(By)u.
From Lemma 3.1 of [6] (with K = {0}) (see also [4] and [2], Chap-
ter IX), we obtain the following:

Lemma 1. Let g be a Riemannian metric on X. The morphism
of vector bundles o(p)y : S?°T* @ S*T* — S?T* is surjective and the
sequences

Sl+2T* ® S2T* o1(p)g®oi+1(Byg)
(3) Hg
(SZT* ® S2T*) ® (Sl+1T* ® T*) _ Sl—lT* ® T* -0

are exact for all 1 > 0.

From Lemma 1, we obtain the exact sequences
(4) S"™71* ® ST s g ® S°T* 7B gioaps ®T* — 0,
for alll > 0. If 8 € T, with € X, we consider the morphisms
0p(p)g: SPTS — SPTZ,  op(By): S°T% — T2
defined by

op(p)gh =0(p)g(BOBON),  05(Bg)(B&h),

for h € S?T%. According to [8, §6], if 3 is a non-zero vector of T, with
z € X, the exactness of the sequences (4) gives us the exact sequence

as(®) o3(Bg)
(5) s LTS gy T e g,

Now let 2y be an arbitrary point of X and p be an element of SzTa’:O.
From the surjectivity of the morphism o(¢),, we infer that the equation
Ric(g)(zo) = p can always be solved. In fact, we may assume without
loss of generality that X = R™ and that x( is the origin of R™. The
surjectivity of the morphism o(p)g, tells us that there is an element
u € (S?2T* ® S%T*),, satisfying o(p)gu = p. Then the symmetric
tensor g given by

9ij = 6ij + tuij !
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is a Riemannian metric on a neighborhood of zg satisfying the desired
condition.

It is obvious how to use this fact for the prescribed Ricci tensor
problem; for our eigenvalue problem, in Lemma 2 below we shall choose
p to be diagonal with respect to the coordinate system so that our metric
will have the desired principal Ricci curvatures at one point.

We now turn to the relation of the Bianchi identity to our problems.
Let R be a given section of S*T*. The morphism of fibered manifolds

Yr: J1(SIT*) — T*,

sending the 2-jet j2(g)(z) at z € X of a Riemannian metric g on X into
Bian(g, R)(xz), is quasi-linear. The symbol

o(yr): T*® S*T* — T*
of ¢pg is a morphism of vector bundles over SiT* which satisfies

sz(p + Eu) = d)R(p) =+ 0'(7/)R)7ropu7

forallp € J1(83T*), u € T*®S2T*; in fact, this morphism is determined
by

(6) o(Yr)g = ~R’o gﬁ o o(By),

where g is a Riemannian metric on X.

The most direct evidence that the Bianchi identity Bian(g, R) = 0
provides us with an obstruction to finding solutions of the equation
Ric(g) = R or solutions of the principal Ricci curvature problem arises
from the exactness of the sequence (4), with [ = 1, when one attempts
to solve the equation Ric(g) = R to first-order at a point of X. For
the principal Ricci curvature problem, in Lemma 2 below we are able
to satisfy this obstruction easily, because we may choose R and g simul-
taneously. The implications of the Bianchi identity for the prescribed
Ricci curvature problem are more subtle and shall be examined in §4.

§3. Prescribing the principal curvatures

This section is devoted to the proofs of Theorems 1 and 2 of the
introduction. If g is a Riemannian metric on X and R is a section
of §2T*, we denote by dety R the real-valued function on X which is
equal to the determinant of the endomorphism g* o R® of T. Then we
easily see that the section det R of the line bundle Hom (A"T, A"T*)
vanishes at z € X if and only if the function dety R vanishes at z. In
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particular, we know that A € R is an eigenvalue of Ric(g) with respect
to g at z if and only if the function dety(Ric(g) — Ag) vanishes at z € X,
or equivalently if det (Ric(g) — Ag)(z) = 0.

We shall require the following lemma in our proof of Theorem 2.

Lemma 2. Let go be a Riemannian metric on X. Let A1,..., A\,
be given distinct real numbers. Then there erists a Riemannian met-
ric g on a neighborhood U of xo € X, with g(zo) = go(zo), such that
the eigenvalues p, . .., un of Ric(g) with respect to g are C°°-functions
on U whose differentials are linearly independent at xo and which satisfy
pi(xo) = Ay, for 1 < j <m.

Proof. We may assume without loss of generality that X = R",
that zg is the origin of R™ and that

90,i5(0) = 6ij-
Consider the section p of S?2T* determined by
pij = Ajbij + (nbij — 1)(wi + ;).

As we have seen in §2, there is an element u € (S2T*®S%T*),, satisfying
o(p)got = p(xo) and the symmetric tensor g given by

1 kL
9ij = 6ij + Ui k1T T

is a Riemannian metric on a neighborhood U of zy which satisfies
Ric(g)(z0) = p(o)-

Clearly Mg, ..., A\, are the eigenvalues of p(zo) with respect to the metric
g(zo) = go(mo). Since these scalars are distinct, there are C*°-functions

AL, - -+, An and an orthonormal frame {£;,...,&,} for T, with respect to

the metric g, over an neighborhood U’ C U of xg such that S\j (o) = Aj
and

(7) p(&,m) = Xjg(&,m),

for all vector fields 7 on U’ and 1 < j < n. Let ¢ be a vector field on U’.
From relation (7), with n = §; and 1 < j < n, we obtain

(®) (Vp)(&1,€&5) +20(85, VEE;) = (G, dN;) + Njg (&5, V).

Since &; is a unitary vector field, we see that g(§j,Vg£j) = 0 and so
by (7) we also have

P&, VEEG) = Xj9(€;, VEE) = 0.
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Hence the equality (8) gives us
(V20)(5,€5) = (¢, dAy)-

Since &, = 9/0z* at x and Ffj(xo) = 0 for the metric g, from the
definition of p we see that

(VE,p) (& &) (20) = %%41%(900) = (1= 6i;) (bir + 631,

for 1 < 4,7,k < n. Thus we have dS\j = 2(n — 1)dz’ at z, and so the
differentials of the eigenvalues S\j are linearly independent at zy. Using
(1) and (2), it is easily verified that the section h = Ric(g) — p, which
vanishes at xo, satisfies the Bianchi identity Bjh = 0 at zo. Thus we
know that

a(Bg)e™ ji(h)(zo) =0,

and so by the exactness of the sequence (4), with [ = 1, there is an
element v of (S3T* ® S*T™*),, satisfying

a1(p)gv = —e~1j1(h) (o).

Then a Riemannian metric § on a neighborhood of zy, whose 3-jet at xg
is equal to j3{g)(xzo) + ev, satisfies the relations

(9) J2(9)(20) = j2(g)(w0),  Jr(Ric(g) — p)(x0) = 0.

Clearly there are C°°-functions {u1,..., tn}, which are eigenvalues of
Ric(g) with respect the metric §, such that p;(zo) = Aj, for 1 <j < n.

From the equalities (9), we infer that j; (u;)(x0) = j1();)(%0); hence the
differentials of the functions {y,. .., pn } are linearly independent at xq.

Proof of Theorem 2. Let gg be a given Riemannian metric on X
and let g be a Riemannian metric on a neighborhood of zq satisfying
the assertions of Lemma 2 with respect to the distinct real numbers
{AM(z0), ..., An(zo)} and go. Since their differentials are linearly inde-
pendent at zo, the eigenvalues uq,..., u, of Ric(g) with respect to g
define a diffeomorphism g = (¢4, ..., pn ) of an open neighborhood of zo
onto an open neighborhood of yo = (A1(xzo),- .., An{zo)) in R”®. Simi-
larly by hypothesis, the mapping A = (A1,...,A) is a diffeomorphism
of an open neighborhood of zy onto an open neighborhood of ¥y, in R™.
Thus 1o is a local diffeomorphism ¥ of X defined on a neighborhood
of zg such that p o ¥ = X on a neighborhood of xy. Because

det (™ (Ric(g) — pj9)) =0
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and A\; = U*pu;, we see that ¥*g is a metric on a neighborhood of xg
satisfying

det (Ric(¥*g) — A; ¥*g) = 0,
forall1<j<n.

The remainder of this section is devoted to the proof of Theorem 1.
Let A, be the affine space of all real monic polynomials in the variable A
of degree n, which is modeled on the vector space V,,_; of all real poly-
nomials in the variable A of degree < n — 1. Let E and F be the trivial
bundles over X whose fibers are equal to A, and V,,_1, respectively.
Then F' is an affine bundle over X modeled on the vector bundle E. We
consider the morphism of fibered manifolds

®: J(S3T*) — F,

sending the 2-jet ja(g)(z) at z € X of a Riemannian metric g on X into
the monic polynomial (—1)™ dety(Ric(g) — Ag)(z) in the variable A. The
symbol of ® is the morphism

o(®): S°T*® S*°T* - E

of vector bundles over J5(S2T*) defined as follows. If g is a Riemannian
metric on X and A is a section of S?2T* over a neighborhood of € X
satisfying j1(h)(z) = 0, then g+th is a Riemannian metric on neighbor-
hood of z for |t| < €, with € > 0; the morphism o(®)4 sends the element
e 1ja(h)(z) of (S?°T* ® S*T*), into the vector £&(g + th)s=o of Ej.
Let g be a Riemannian metric on X and ¢ € X. Let {A1,...,\n}
be the eigenvalues of Ric(g) with respect to g at x; then there is an

orthonormal basis {{1,...,&n} of Ty, with respect to the metric g, con-
sisting of eigenvectors for Ric(g) satisfying
(10) g* - Ric(9)°¢; = Niés,

for 1 < 7 < n. Let Ric; 1 §27* — S2T7* be the linear differential
operator of order 2 which is the linearization along g of the non-linear
operator h — Ric(h), where h is a Riemannian metric on X. Let h be
a section of S2T™* over X. For |t| < €, we know that g; = g +th is a
Riemannian metric on a neighborhood of z; by definition, we have

. d ..
Ricj(h) = pr Ricy(g + th)s=o-

For |t] < € and ) € R, we consider the endomorphism

B} = ¢! o Ric(g;)’ — Aid
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of T,;; then it is easily seen that

d . .
B= -CEB?H:O = (gIi o Rl(:;(h)b —gtoh’oglo RIC(g)b)(w)-

Clearly the vector

p(Y) = < dety, (Ric(g:) — A90) (@) e=o

of V,,_1 is determined by the relation

n

> By A...ABJi A ABEABM i A ABn = p(A) €1 AL NEn,

for A € R. According to (10), for 1 < i < n, we have B}¢; = (A; — A)&;
and we see that

9(B&i, &) = Ric, (h)(&, &) — (&, B - g* - Ric(g)"&:)
= Ricy (h) (&, &) — Mih(&, &)

For 1 <4 < n, we consider the polynomial

of V,,_1. From the previous relations, we obtain the equality
(11) p(N) =) (Ricy(h) = Aih) (&, &) - Pi(N).
=1

Since the symbol of the differential operator Ric) is equal to a(p),
from (11) we deduce that the morphism o(®), at z is given by

(12) o(®)gu = (- ”Z (0(0)gu) (i &) - Pi(X),

for u € (S?T* @ ST*),. If B € T, let

(13) UB((I))jz(g)(w) : S2T; — Ez
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be the mapping sending the element v of S*T* into o(®),(3 ® B ® v);
thus we have

n

(14) 75(2)s2() )0 = (~1)" D_ (05(9)gv) (s &) - Bi(N),

=1

for v € S2T.

Now assume that the eigenvalues {A;,...,A,} are distinct. Then
the n polynomials {P;,..., P,} of degree n — 1 form a basis for V,,_1;
this fact follows from the relations P;(A;) # 0 and P;(\;) = 0 when j # 1.
Let 8 be a non-zero vector of Ty; we write 3; = (&), for 1 < i < n.
According to formula (14), the mapping (13) is surjective if and only if
the mapping S?T; — R”, which sends an element v of S?T* into the
n-~tuple

((UE(Q)Q'U)(&’ 51)) 1<i<n’

is surjective. From the exactness of the sequence (5), we infer that the
mapping (13) is surjective if and only if, given an arbitrary element
Y= (¥1,---,Yn) € R", there exists v € S2T} satisfying v(&;,&;) = y; for
all 1 <i<n and 0g(Bg)v = 0. Hence the mapping (13) is surjective if
and only if the following assertion holds: for all y = (y1,...,y,) € R,
there exists an nxn symmetric matrix A = (aij)lsi, j<n satisfying a;; =0
and

(15) > Bjai; = Biz,
=1

where
1 n
Zi:—yi+‘2‘z Ys)
j=1

for all 1 < ¢ < n. If we set m = n(n — 1)/2, we may view the equa-
tions (15) as a system of linear equations

(16) (CA); = Bizi, i=1,...,n,

where the matrix A is viewed as a vector in R™ and C is a given n X m-
matrix each of whose entries is equal either to 0 or to one of the 3;’s.
We then see that our condition for the surjectivity of the mapping (13)
can be reformulated as follows: for all z = (21,...,2,) € R", we can
solve the system (16) for A € R™. If 1 <3, j, k < n are distinct integers,
it is easily verified that the matrix C possesses an n X m-minor whose
determinant is equal to +2 ﬁi"_zﬂj Brx. On the other hand, if there are
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at most two non-vanishing coefficients 3; of 3, it is easily seen that this
last condition for the surjectivity of (13) does not hold. Thus we have
proved the following lemma;:

Lemma 3. Let g be a Riemannian metric on X. Assume that
the eigenvalues {1, ..., \,} of Ric(g) with respect to g at z € X are
distinct. Let{&;,...,&.} be an orthonormal basis of Ty, with respect to g,
consisting of eigenvectors for Ric(g) and satisfying the relations (10), for
1 <j<mn. Iff is a vector of T, then the mapping (13) is surjective
if and only if there exist three distinct integers 1 < 4,7,k < n such that
B(&:) - BE) - Blew) # 0.

Let N3 be the subset of J>(S2T*) consisting of all 2-jets j2(g)(x),
where £ € X and g is a Riemannian metric on X for which the eigen-
values of Ric(g)(z) with respect to g(z) are distinct. According to
Lemma 2, we see that N} is an open fibered submanifold of J»(S2T™),
with moNj = S3T™*.

Let {A1,...,A,} be given real-valued functions on X; assume that,
for all z € X, we have \;(z) # Aj(x), for ¢ # j. We consider the

A, -valued function
n

PO =T =)

j=1

on X and the subset
N2 ={p € N3 | ©(p) = P(\(z), where z = 7(p) }

of J5(S2T*). Clearly, if a Riemannian metric g satisfies ®(j2(g)) =
P()\) at x € X, then the eigenvalues of its Ricci tensor with respect
to g at = are equal to {A1(z),...,An(z)}. By Lemma 2, we know that
P(X) C ®(N3). If p € N} and = = w(p), according to Lemma 3 there
exists an element 38 of T such that the mapping o5(®), : S?T} — E,
is surjective. From Lemma 1 of {7], we obtain:

Proposition 1. Let {\1,...,\,} be given real-valued functions
on X; assume that, for all x € X, we have \j(x) # \;(x), for i # j.
Then the subset Ny of Jo(S3T*) is a formally integrable differential
equation.

Thus N; is an underdetermined differential equation. If the mani-
fold X is real-analytic and if the functions {\1, ..., A, } are real-analytic,
Theorem 2.2, Chapter IX of [9] provides us with the existence of local
solutions of the equation Ns; in fact, if z € X, it gives us a real-analytic
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Riemannian metric g satisfying ®(j2(g9)) = P(\) on a neighborhood
of x € X. This completes the proof of Theorem 1.

§4. Prescribing the Ricci tensor

Let R be a given section of S?T* over X of constant rank. The
expression Bian(g, R) is first-order in the metric g (as well as in R); in
right-hand side of (1), the highest (first) derivatives of g are all multiplied
by coefficients of R. This is reflected in formula (6) and, when R is
degenerate, is the source of the problems which need to be overcome.
We now indicate how to solve the prescribed Ricci curvature problem
and why the Bianchi identity is the only obstruction to local solvability
in the non-degenerate case.

We suppose that R is non-degenerate and we consider the quasi-
linear morphism of fibered manifolds

Vh: (ST - T

determined by
Va(i1(9) = ¢ R* - ¢r(i(9)),

where g is a Riemannian metric. According to (6) and Lemma 1, the
symbol
o) : T* ® S?T* — T*

of ¥}, is the surjective morphism of vector bundles over Ser T* determined
by the equality
o(Pr)g = —0(Bg)u,

where g is a Riemannian metric on X. Because of (2), a solution g
to our original problem is also a solution of the system of second-order
equations

(17) Ric(g) =R,  ji(¥r(9)) =0.

The exactness of the sequences (3) is the main ingredient in the local
solvability of this system of equations. In fact, since the morphism
o (¢} is surjective, we obtain a Riemannian metric g on a neighborhood
of zg € X satisfying ¢¥(9)(zo) = 0. Next, let I > 0 and let g be
a Riemannian metric on a neighborhood of zg whose (I 4 1)-jet at xg
satisfies

(18) ji-1(Ric(g) — R)(zo) =0,  5i(¥r(g))(xo) =0.
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Then we have j;(Bian(g, R))(xo) = 0. Thus if v € (S'T* ® S?T*),, and
v € (SH1T* @ T*),, are the elements defined by

u = e 'ji(Ric(g) — R)(z0), v =¢""fip1(¢r(9))(x0),

by (2) we easily see that pg(u,v) = 0. Hence by the exactness of the
sequence (3), there exists an element w € (S'*2T* ® S2T*),, such that

oi(p)gw = u, o141(Bg)w = v.

Since the morphisms ¢ and vy, are quasi-linear, we see that a Rieman-
nian metric on a neighborhood of zy, whose (I + 2)-jet at zo is equal
to Ji+2(g)(zo) — ew, satisfies equations (18), with ! replaced by I + 1.
Thus we obtain a formal solution at zo of our system (17), which has
the special property that its jet of order 2 at zg is strongly prolongable.
If R is a real-analytic section, a result of Malgrange [10] asserts that
the equations (17) admit a convergent series solution at g, and yields
a solution of our original equation.

We now turn to the case where R is degenerate. A solution g to
the equation Ric(g) = R must satisfy some further equations which we
now proceed to derive. The kernel K of the morphism R* : T — T* is a
sub-bundle of T*. We say that this bundle K is integrable if the sheaf
K is stable under the Lie bracket.

Let V be an arbitrary torsionless connection in T'. We consider the
section VR of T* ® S*T* and the Lie derivative L£¢R of R along a vector
field £ on X.

The following lemma associates a section Q of S?T* ® K* to the
section R of S2T™*.

Lemma 4. The section
Q = (MVR))rerex

of S?T* ® K* is independent of the torsionless connection V and has
the following properties:
(i) If € is a section of K over X, we have

forallm, eT.
(ii) IfneT, &,&,¢ € K, we have

(20) Q(ﬂ, 51)52) + Q(Tl, 62751) = Ov Q(C, 51,62) =0.
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(i) The sub-bundle K of T is integrable if and only if
Q(ﬂ, 51762) = 07
forall€1,60€ K, neT.

Proof. If V, V' are torsionless connections in T', then there is a
section L of S*T* ® T such that

for £,m € T. It is easily verified that

(A(V'R — VR))(1, 2, €) = —R(L(G1,2), 6),

for £,(1,(s € T. If € belongs to K, the right-hand side of the above
equation vanishes, and so we see that @ is independent of V. Since V
is torsionless, according to the definition of @ we have

Q(n,¢,€) = 3(R([&,7],¢) + R(n, [£,¢]) — € - R(n,¢)) = —3(LcR)(n, C),
for all £ € K, n,{ € T. We thus obtain (19) and see that
Q(”L 61’62) = —%R(ﬂ, [§1a£2])7

for all &,6, € K, n € T. Assertions (ii) and (iii) follow directly from
this equality.

If € € K, we denote by Q¢ the element of S?T* defined by

QE("L C) = Q(na C’ 6)7
for n,¢ € T'; from (20), we deduce that

(21) Qe(€,m) =0,
for all p € T'. If £ is a section of K over X, by (19) we have
Qe = —1L¢R.

If @ vanishes identically, then by Lemma 4,(iil) we see that K is
integrable. Let K" be the sub-bundle of T, with possibly varying fiber,
consisting of all elements £ € T satisfying

Q(n,&,¢) =0,

foralln € T, ( € K. If K is integrable, then according to Lemma 4,(iii)
we see that K C K", and so the dimension v(z) of K is greater the rank
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of K. We shall consider the morphism of vector bundles ¢ : K — S2T*,

which sends § € K into Q.
If g is a Riemannian metric on X, using V9 to define @), we see that

(22) (BgR)(§) = Trg Q,

for all £ € K. This provides us with a new obstruction to solvability;
indeed, by (2) any solution g to the equation Ric(g) = R must also
satisfy

(23) Trg Qe = 0,

for all £ € K. If g is a Riemannian metric on X and £ is a vector of K
satisfying the relation (23), then we easily see that either Q¢ vanishes
or is not semi-definite. These remarks imply the following:

Theorem 5. Letx € X and §{ € K. If Q¢ does not vanish and is
semi-definite, then there does not exist a Riemannian metric g on any
neighborhood of x such that Ric(g) = R.

In [6, Lemma 2.3], using (21) we prove the more precise version of
the previous observation:

Lemma 5. Let z € X and £ € K;; assume that Q¢ does not
vanish. Then there exists a Riemannian metric g on X such that

Trg Qe =0
if and only if Q¢ is not semi-definite.

By the preceding lemma, we see that Theorem 4 is a direct conse-
quence of Theorem 3.

In terms of a local coordinate system (z!,...,2") on an open sub-
set U of X, using the flat connection V on U satisfying V8/8z7 = 0,
for 1 < j < n, to compute the section @, we see that the section ¢)¢ of
S2T™ over U corresponding to the section ¢ = £79/0z7 of K is given by

1/0R;; ORy ORy
2 L= — J. 7’. — (¥ k
( 4) (Q&)z] 2( 9z + 929 Py )€ s

for 1 < 4,5 < n. If the bundle K is integrable and if {9/0z",...,8/0z"}
is a frame for this bundle K over U, then we have R;; =0,for 1 <i <n
and 1 < j <'r, and the section Q* = Qg¢, of S*T* over U corresponding
to the section & = 9/8xz* of K, with 1 < k < r, is given by

10R;;
25 St
( ) 1,] 2 axk )
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for 1 < 4,j < n. If the morphism of vector bundles ¢ : K — S?T* has
constant rank equal to m, then, at every point z of U, the vector space
of elements of S?T* generated by {Q'(z),...,Q"(x)} is m-dimensional.

We now consider some simple examples of degenerate Ricci candi-
dates.

Ezxample 1. A simple example of non-existence arising from Theo-
rem 5 is given by the following. We consider the symmetric 2-form

R=dr*®dr* + - +dz" ' ®@dz" ! + (1 + 2')dz" ® dz™

on R™. Note that the rank of R is equal to n —1 in a neighborhood U of
the origin and that the vector field £ = 8/0z" generates the sub-bundle
K over U. According to (25), for z € U, the element Q(x) of ST}
is determined by Q};(z) = A\i6;;, where X\; = 0 for 1 < i <n—1 and
An = 1; thus Q'(z) is non-zero and semi-definite. Hence we know that
there does not exist a Riemannian metric g satisfying Ric(g) = R on
any neighborhood of a point of U.

Ezample 2. The tensor R = + dz®®dz? on R? clearly has rank one
everywhere. The vector fields {9/8z',8/8x%} generate the integrable
sub-bundle K over R3, and by (25) the sections Q! and Q2 of S?T™*
both vanish. As noted in the introduction, if x is an arbitrary point
of R3, we can apply Theorem 3 to obtain the existence of a metric g
satisfying Ric{g) = R on a neighborhood of z. However, it is worth
noting that although R splits as a product, the same cannot be true
for g, since then the one-dimensional factor of g would have to exhibit
non-zero curvature, which is impossible. It is therefore interesting to
exhibit an explicit solution g of the equation Ric(g) = R. We first
consider the case when R = dz3 ® dz® and seek a solution g of the form

(26) g = f(z%)? (dz' ® dz* + dz? ® dz?) + h(z*)? dz® ® dz?,

where f and h are non-vanishing functions of t = z3. We shall use
a prime to denote the derivative with respect to ¢, and will no longer
indicate the dependence of f and h on t. This metric g is a warped prod-
uct and is necessarily conformally flat. Its only possibly non-vanishing
Christoffel symbols are determined by

L=T%=f/f, T3 =T%=—ff/h%  T33=H/h

An elementary calculation yields the components of its Ricci tensor:

Ric(g)11 = Ric(g)22 = —(%)2 - %(%)I Ric(g)ss = — ;(%)I
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and Ric(g)i; = 0 for i # j. If we set f(t) = e and h(t) = Ce®*, where
a,C € R and C > 0, we find that the Ricci tensor of the metric g is
equal to 2a%dz® @ dz3. With this choice of positive functions f and A,
where @ = 1/v/2 and C > 0, the metric g given by (26) is a solution
of the equation Ric(g) = dz® ® dz® on R3. Finally, the only possibly
non-vanishing Christoffel symbols of the metric

g = e~20%° 4ol @ dad + €2%%° dz? ® da? + dad @ dz®
on R3, with a € R, are determined by:

—2az®

1 _ 2 _ 3 _ 3 _ 2az®
Ii3=—a, Iyp=a, Iy =ae , Top = —ae™® .

Then one easily verifies that the Ricci tensor of the metric ¢’ is equal
to —2a?dz® ® dz3. Thus this metric ¢/, with a = 1/ V2, is a solution of
the equation Ric(g’) = —dz® ® dz® on R3. It is interesting to examine
the geometry of the metric ¢’ on R3. For ¢ € R, the hypersurface of R?
defined by x3 = ¢ is a flat submanifold (but not complete), while the
hypersurfaces of R? defined by x! = ¢ and 2% = ¢ have constant negative
curvature (equal to —a?) and are also not complete.

FEzxample 3. The tensor
R = (dz® + 2%dz') ® (dz® + 23dx!) + do® ® dx

on R® has rank two and the kernel K is generated by the vector field
¢ = 0/0z' — 229/0x%. By (24), the section Q = Q¢ is non-zero at all
points of R3; in fact, its non-zero coefficients are given by

3

1
Q13—77 Q23—§-

The Euclidean metric
go = dz' ® dz! 4 dz? ® da? + da® @ dx

clearly satisfies Trg, Q¢ = 0 on R®. Hence, if z is an arbitrary point of R?,
Theorem 4 gives us a metric g satisfying Ric(g) = R on a neighborhood
of z.

Ezample 4. The tensor
R = (dz* + z%dz') ® (dz? 4 z3dz?)

on R3 has rank one and the kernel K is generated by the vector fields
& = 0/0z' — 230/82? and & = 8/0x3. Since [£1,8&] = 8/0x?, the
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distribution determined by K is not integrable. If g is a Riemannian
metric on R3, then by (1) we see that

(BgR)(&1) = 2% + ¢,  (ByR)(&2) = —(2%g™ + ¢™).

It is easily seen that the integrability condition BgR = 0 places two
conditions of order zero on the metric g; namely, a solution g of the
equation Ric(g) = R must satisfy the relations

g23 =0, g12 = 2°ga2.

This example shows that the singularity of the tensor R places substan-
tial restrictions on the 0-jet of the solution metric g.

We now present an outline of the proof of Theorem 3. For simplicity,
we assume that the morphism ¢+ : K — S2T* is injective and that its
rank is equal to m > 1. We choose a fixed complement T" of K in T
which allows us to split the equation Bian(g, R) = 0, for the Riemannian
metric g, into two pieces. The first one is a first-order equation similar to
the equation ¥'z(j1(g)) = O considered above when R is non-degenerate.
If p : T* — T'* is the natural restriction mapping, we denote by R* the
inverse of the isomorphism

pR’ :T' — T,
If i : T' — T is the inclusion mapping, we set
S=iR'Yp:T* > T.

Then the endomorphism SR’ of T is equal to the projection 7’ of T
onto T" corresponding to the decomposition T' = T’ & K. We consider
the quasi-linear morphism of fibered manifolds

L Jz(S'iT*) — T,

determined by
V" (51(9)) = 9" - S - ¥r(51(9)),

where g is a Riemannian metric on X. According to (6), the symbol
0'(’([)") . T* ® SzT* — T*
of 9" is the morphism of vector bundles over S3T™* determined by

U(¢/I)y = "gb""/gna(Bg)’
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where g is a Riemannian metric on X; the l-th prolongation of the
morphism o(¢)"), will be denoted by ¢;(¢")g. The first part of the
Bianchi identity is the first-order equation

¥"(j1(g)) = 0.

To a Riemannian metric g on X, we associate the section x(g) of K*
determined by

(&, x(9)) = Try Qg,

for £ € K. The second equation x(g) = 0 arises from the relation (19)
and imposes a condition of order zero on the metric g. We then attempt
to apply the Cartan-K&hler theorem to the system

(27) Ric(g) =R,  71(®¥"(1(9)) =0,  Jja(x(9)) =0

of partial differential equations of order 2 for the metric g. This approach
fails; indeed, by prolonging the system (27), we find that a set of m
additional identities must be taken into consideration. We now derive
these scalar-valued identities and then study the new system consisting
of (27) and these new identities.

Let g be a Riemannian metric on X. The morphism of vector bun-
dles

o(x)g : S°T* — K*

over X obtained from the symbol o(x) of x is given by
(gv U(X)gh> = _<§a U(X)gh>ga

for h € S2?T*; its I-th prolongation will be denoted by o;(x),. We
consider the sequence of vector bundles

o v
(28) S’T*®S°T* - S*T*&(T*®¢' (T")) & (S* T*®K*) — K* — 0,
where the mc;rphism

Og = G(W)g D Ul(wll)g @ U2(X)g

is the symbol of the system (27) associated to g, and where v, is the
morphism of vector bundles determined by

(& vg(u@®vOw)) = (utv,Qe)g — 3Tryg(€,w),

forue S?T*, veT* R (T"), w € S’°T*® K* and £ € K.
In [6, §4]), we first observe that the sequence (28) is a complex,
because K is integrable, and then prove:
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Lemma 6. Let g be a Riemannian metric on X. If x(g) van-
ishes at x € X and if T), is the orthogonal complement of K, then the
sequence (28) is ezact at x.

Given the complexity of the morphism oy, it is remarkable that the
cokernel morphism v, can be expressed in such a simple and natural
manner. The non-surjectivity of the morphism o, leads us to our addi-
tional identities.

Let zp be a point of X and gy be a given Riemannian metric on X
satisfying Tr, Q¢ = 0, for all £ € K . Since we are interested in the
local solvability, we may suppose that X = R™ with a system of linear
coordinates (z!,...,z™) such that {8/9z!,...,8/0z™} is a frame for K
over X. We set {; = 8/08a7, for 1 < j < n. Since K contains Ky,
without loss of generality, we may also suppose that go ;;(z0) = §;; and
that {&1(0),..-,&q(x0)} is a basis for K| , where ¢ = v(zq) > m. We
choose T’ to be the integrable complement of K in T generated by the
vector fields {£m41, - . -, €} on X; thus T, is the orthogonal complement
of K, in Ty, (with respect to go). We consider the flat connection V
in T for which all the vector fields &; are horizontal. This connection
preserves K and so, if g is a Riemannian metric on X, we may consider
the section

P(g9) = vg((Ric(g) — R) & (V¥ (9)) & V*x(9))

of K*. A Riemannian metric g, solution of Ric(g) = R, must also satisfy
the equation P(g) = 0, which, in light of the complex (28), is in fact of
first order. However, as P(g) arises from the lower order terms of Ric(g),
it is an expression which is quadratic in the first derivatives of g.

We then consider the new system M, of order 2 consisting of the
equations (27) together with the second-order equation j;(P(g)) = 0
for a Riemannian metric g. We construct a strongly prolongable 2-jet
Ja(g)(zo) of a solution g of the equation Ms at zg. The main difficulty in
proving the existence of such a formal solution at zg consists in finding
a 1-jet j1(g)(zo) of a Riemannian metric g at zg, which is a solution of
the first-order system

¥'(g)=0, jilx(9)=0, P(g)=0

determined by our system Ms, such that the symbol of the system M,
is involutive at j1(g)(zo). Then, if R is a real-analytic section, a result
of Malgrange [10] asserts that the system M, admits a convergent series
solution at xo, and thus yields a solution of our original equation. This
completes our outline of the proof of Theorem 3, when m is equal to the
rank of K and is > 1.
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