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§1. Introduction 

This article concerns two problems involving the Ricci curvature of 
a Riemannian metric. In each of these problems, one seeks a metric 
whose Ricci curvature is prescribed in advance in some manner. 

Let X be a manifold of dimension n 2: 3, whose tangent and cotan­

gent bundles we denote by T and T*, respectively. By ®m E, I\ k E and 
S1E, we shall mean them-th tensor power, k-th exterior product and 
the l-th symmetric product of a vector bundle E over X, respectively. 
Under the natural identification of Hom (T, T*) with T* 0 T*, we can 
view a symmetric 2-form R on X, that is, a section of S 2T*, as a mor­
phism RP : T ---+ T*; we shall consider the section <let R of the line bundle 
Hom (/\ nT, I\ nT*) which is induced by RP. 

The first problem consists in finding a Riemannian metric with pre­
scribed Ricci tensor. We are given a section R of S 2T* over X and 
we seek a Riemannian metric g in some neighborhood of a given point 
x 0 E X whose Ricci tensor Ric(g) is equal to R throughout this neigh­
borhood. The first definitive results concerning the problem of prescrib­
ing the Ricci tensor were obtained in [4]. There it was shown that, if 
R( xo) is a non-degenerate symmetric quadratic form on Tx 0 , then a so­
lution of this problem always exists. Examples were also given showing 
that, when R(x0 ) is degenerate, a solution may or may not exist. In 
the present paper, our attention focuses on the problem of solving the 
equation Ric(g) = R when R is degenerate at every point of X, but has 
constant rank. 

The second problem we consider here is the prescription of the prin­
cipal Ricci curvatures of a Riemannian metric (without any prescription 
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of the directions in which these principal curvatures are attained). If 
{A1, ... , An} are given real-valued functions on X, we seek a metric gin 
a neighborhood of x 0 E X satisfying 

det (Ric(g) - Aig) = 0, i = 1, ... ,n, 

on this neighborhood. If these equations hold, then these functions 
{A1 , ... , An} are principal Ricci curvatures of g, i.e. if xis an arbitrary 
point of this neighborhood, the scalars A1 (x), ... , An(x) are eigenvalues 
of Ric(g) with respect to g at x . This study of the principal Ricci cur­
vatures in this sense has been proposed by many authors (in particular 
[3, p. 315] and [1, p. 180]). The reason for their interest in this question 
arises from the fact that, for generic Riemannian metrics, the principal 
Ricci curvatures provide canonical coordinates in which to express the 
metric. Such coordinates enable one to determine whether two Rieman­
nian manifolds are locally (or even globally) isometric. In other words, 
the principal Ricci curvatures provide the key to obtaining a complete 
system of scalar invariants for a Riemannian manifold. Thus, it becomes 
desirable to know whether these important scalar invariants can be pre­
scribed in advance. We will consider this problem in the generic case 
where the values {A1 (x0 ), ... , An(x0 )} are all distinct. 

Both of our problems manifest themselves as systems of second-order 
partial differential equations for the metric g. The system correspond­
ing to the second problem is underdetermined; in fact, it consists of n 
equations for the n(n + 1)/2 unknown components of g. Thus we are 
able to solve the second problem using relatively "soft" techniques. Our 
main result is the following: 

Theorem 1. Let {A1, ... , An} be real-analytic real-valued func­
tions on a real-analytic manifold X of dimension n ~ 3. Suppose that 

· the values {A1 (xo), ... , An(xo)} of these functions at a point xo E X are 
distinct. Then there exists a real-analytic Riemannian metric g on a 
neighborhood of x 0 whose principal Ricci curvatures are {A1, ... , An}-

In fact, under a slightly stronger hypothesis, the above theorem 
admits an elementary proof, which is given in §3; our precise result can 
be formulated as follows: 

Theorem 2. Let {A1, ... , An} be a set of C 00 -real-valued func­
tions on X whose values {A1 (xo), ... , An(xo)} at a point xo E X are 
distinct. If the differentials { dA1 , ••. , dAn} of these functions are lin­
early independent at the point x 0 , then there exists a C 00 -Riemannian 
metric g defined in a neighborhood of x 0 whose principal Ricci curvatures 
are {>.1, ... , An}-
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The proof of Theorem 1 (in the analytic case) relies on our finding a 
non-characteristic direction for the system of equations at each generic 
2-jet of a Riemannian metric. This is in some ways similar to what 
happened for the non-degenerate case of our first problem in [4]. 

Our other problem, in which we wish to prescribe a degenerate 
Ricci tensor R, involves some fairly delicate analysis. We will work 
in the real-analytic category and attempt to construct a power series 
solution centered at x 0 E X. As is well-known, the second-order equa­
tion Ric(g) = R always implies an additional system of first- order (in 
both g and R) equations. This is the so-called Bianchi identity for the 
Ricci curvature. In [4], it was shown that, in the non-degenerate case, 
the Bianchi identity is the only obstruction to the construction of the 
construction of the power series solution. When one wishes to extend a 
2-jet of a solution g to the equation Ric(g) = R to a 3-jet of a solution, 
the Bianchi identity imposes a condition on the 1-jet of g. More gener­
ally, the k-jet of the Bianchi identity must be taken into account when 
specifying the (k + 1)-jet of a solution to the equation Ric(g) = R in 
order to be able to extend this solution to one of order k + 2. In §4, we 
explain how it is possible to overcome these obstructions. 

However, when R is degenerate and but still has constant rank, ad­
ditional constraints must be placed upon the unknown metric g, beyond 
those usually implied by the Bianchi identity. In particular, conditions 
must be imposed on the 0-jet of g. These make it more difficult (and 
in some cases, impossible) to satisfy the higher-order prolongations of 
the equation Ric(g) = R. We denote by K the kernel of the morphism 
Rb : T ---+ T*. In this paper, as in [6], we analyze the case where the 
distribution determined by the sub-bundle K of Tis integrable and give 
a sufficient condition for local solvability of our equation. We are now in 
the midst of studying the case when this distribution is not integrable. 

Our analysis of this degenerate case leads us to associate to each 
vector e of the kernel Kx of RP(x), with XE X, a quadratic form Qe on 
the tangent space Tx, which depends only on R and f The obstruction to 
the local solvability of the equation Ric(g) = R can then be formulated 
as follows: At every point of X, the trace of each of these forms Qe, 
with respect to a solution g of the equation Ric(g) = R, must vanish. 
The first positive result we obtained (see [6, Theorem 6.1]) states that, if 
all these quadratic forms vanish at every point of X, then the equation 
Ric(g) = R admits local solutions in the real-analytic category; this 
includes the case when R is non-degenerate. More generally, we will 
also assume the space of quadratic forms Qx = {Qd, withe E Kx, 
associated to a point x E X has constant dimension m, independent of 
the point x. For x E X, the null-space of the pencil Qx of quadratic 
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forms contains Kx, and so its dimension v(x) is 2: m. 
Let ( x 1 , ... , xn) be a local coordinate system on a neighborhood U 

of x E X such that { 8 / 8x1 , ... , 8 / 8xr} is a frame for the integrable sub­
bundle K of T. In terms of this coordinate system, we have Rij = 0, for 
1 ~ i ~ n and 1 ~ j ~ r; the quadratic form Qk corresponding to the 
section 8/8xk of Kover U, with 1 ~ k ~ r, is given by 

for 1 ~ i, j ~ n. According to our assumption, at every point x of U, the 
vector space of quadratic forms on Tx generated by {Q1 (x), ... ,Qr(x)} 
is m-dimensional. 

If m = 0, then on the open set U the tensor R depends only on 
the variables xr+l, .. . , xn. Thus, R respects the local product structure 
induced on X by the leaves of K. In this case, if n-r 2: 3, or if n-r = 2 
and R is semi-definite, then the results of [4] can be used to prove the 
local existence of a product metric which satisfies Ric(g) = R. However, 
as indicated by corank-one examples on certain unimodular Lie groups 
(see [6] and [11]), there may be other solutions which do not respect the 
local product structure induced by Ron X. 

Our most general result for this problem can be stated as follows: 

Theorem 3. Let R be a real-analytic symmetric 2-form on a real­
analytic manifold X of dimension n 2: 3. Suppose that the kernel K 
of RD is an integrable sub-bundle of T and that, for all x EM, the space 
Qx of quadratic forms {Qi;}, with~ E Kx, has constant dimension m. 
Let x0 E X and suppose that there exists a Riemannian metric g0 on X 
such that the trace ( with respect to g0 ) of the form Q~ vanishes, for all 
~ E Kx0 • Suppose that the following conditions do not hold: 

(i) we have m = 2 and n = 4; 
(ii) we have m = 2, n = 5 and v(x0 ) = 3; 

(iii) we have m = 3 and n = 6. 
Then there exists a real-analytic Riemannian metric g solution of the 
equation Ric(g) = R on a neighborhood of x0 . 

This theorem tells us that, when the dimension of X is 2: 7 and K 
is an integrable sub-bundle of T, our condition for local solvability is 
always sufficient. When the dimension of the spaces Qx is either zero 
or one, then our proof is somewhat less complicated than in the case 
m 2: 2; the cases m = 2 or 3 require special attention. 

In the special case when the kernel K of RD is a line bundle, the 
obstruction to local solvability described above and Theorem 3 lead to 
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a condition, which is essentially necessary and sufficient, given by the 
following result: 

Theorem 4. Let R be a real-analytic symmetric 2-form on a real­
analytic manifold X of dimension n ~ 3. Suppose that the kernel K 
of Rb is a sub-bundle of T of rank 1. Let x E M and~ E Kx. If Qi;, 
is non-zero, there exists a Riemannian metric g solution of the equation 
Ric(g) = R on a neighborhood of x if and only if Qi;, is not semi-definite. 

The necessity of the condition is obvious, since Qi;, must ultimately 
be traceless with respect to the metric g. We present an outline of the 
proof of these last two theorems in §4. For all the details, we refer the 
reader to [6]. 

In this paper, we shall use the theory of overdetermined partial 
differential equations of [9] or [2, Chapter IX] and the the notation and 
terminology introduced there. 

We wish to thank R. Bryant and S. S. Chern for organizing a con­
ference in March 1994 at the Mathematical Sciences Research Institute 
in Berkeley, where a preliminary version of Theorems 3 and 4 were pre­
sented. We thank M. Berger for suggesting the problem that led us to 
Theorem 1. Finally, we wish to thank M. Namba, K. Yamaguchi and the 
other organizers of the conference in honor of M. Kuranishi, for which 
this paper was written. 

§2. The Ricci and Bianchi operators 

If E is a fibered manifold over X, we denote by Jk(E) the fibered 
manifold of k-jets of sections of E, and by 7rk : Jk+z(E) -* Jk(E) the 
natural projection. If s is a section of E over a neighborhood of x E X, 
then Jk(s)(x) is the k-jet of sat x; the projection 1r: Jk(E)-* X sends 
Jk(s)(x) into x. We identify J0 (E) with E. If E is a vector bundle 
over X; we denote by £ the sheaf of sections of E over X and we recall 
that there is a monomorphism of vector bundles 

C: SkT* ® E - Jk(E); 

ifs is a section of E over a neighborhood of x E X whose (k - 1)-jet 
vanishes at x, then Jk(s)(x) is equal to the image under c: of a unique 
element c:- 1 jk(s)(x) of SkT* ®E. If Fis another vector bundle over X 
and 

cp : S2T* ® E -* F 

is a morphism of vector bundles, we denote by 

'P(l) : sk+1T* ® E -* S 1T* ® F 
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the Z-th prolongation of cp. If R is a non-degenerate section of S2T*, we 
consider the morphism R~ : T* -+ T which is the inverse of R0 : T -+ T*. 

Let g be a Riemannian metric on X whose Levi-Civita connection 
and Ricci curvature we denote by '19 and Ric(g), respectively. We con­

sider the inner product ( , ) 9 on (g/T* determined by g; then the trace, 
with respect tog, of an element h of S2T* is equal to Tr9 h = (h,g) 9 • 

Let (x1, ... ,xn) be a coordinate system on an open subset U of X. In 
expressions written in terms of such a local coordinate system, we shall 
use the summation convention. On U, the Levi-Civita connection '19 of 
g is determined by its Christoffel symbols 

while the components of the Ricci tensor Ric(g) are given by 

The Bianchi operator 
B 9 : S2T* -+ T* 

is the first-order linear differential operator defined by 

n 

(B9 h)(~) = 2)('19 h)(ti,~,ti)- ½('v9 h)(~,ti,ti)), 
i=l 

for a section h of S2T* over X and~ E Tx, with x E X, where {ti, ... , tn} 
is an orthonormal basis of Tx. We also write B9 h = Bian(g, h); in fact, 
on U we have 

(1) 

The symbol 
a(B9 ) : T* 0 S2T*-+ T* 

of the differential operator B9 is given by 

n 

(a(B9 )u)(O = L (u(ti,ti,~) - ½u(~,ti,ti)), 
i=l 

for~ E Tx, where {ti, ... , tn} is an orthonormal basis of Tx; we denote 
by a1(B9 ) : S1+1T*@S2T* -+ S1T* @T* the Z-th prolongation of a(B9 ). 
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The Ricci curvature of g satisfies the Bianchi identity 

(2) B 9 Ric(g) = 0. 

Let SiT* be the open fibered submanifold of S2T* consisting of 
the positive-definite symmetric 2-forms on X. Let E and F be vector 
bundles over X and let 'ljJ : E -----, F be a morphism of vector bundles over 
Jk(SiT*). If g is a Riemannian metric on X, we consider the morphism 
of vector bundles 'ljJ9 : E -----, F over X sending u E Ex into 'l/J(jk (g) ( x), u), 
where x EX. 

The morphism of fibered manifolds 

sending the 2-jet j 2 (g)(x) at x EX of a Riemannian metric g on X into 
Ric(g)(x), is quasi-linear in the sense of [2, Chapter IX]. The symbol 

a( 'P) : S2T* 0 S2T* -----t S2T* 

of 'P is the morphism of vector bundles over J1 ( Si T*) satisfying 

for all p E J2 ( SiT*), u E S2T* 0 S2T*. If g is a Riemannian metric 
on X, the morphism of vector bundles 

over X is given by 

n 

(a(ip)9 u)(l,TJ) = ½ L {u(ti,Cti,TJ) +u(ti,T/,ti,l) 
i=l 

- u(ti, ti, l, 17) - u(l, TJ, ti, ti)}, 

for u E (S2T* 18) S2T*)x and l,17 E Tx, where XE X and {ti, ... , tn} is 
an orthonormal basis of Tx. The l-th prolongation 

of <pis quasi-linear; if a1(ip)9 is the l-th prolongation of a(ip)9, then we 
have 

pz(ip)(q + rn) = ip(p) + a1(ip)9u, 

for all q E J1+2 (SiT*) and u E Sl+2T* 0 S2T*, with n 1q = j 1 (g)(x). 
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We set S1T* = 0 for l < 0. Let g be a Riemannian metric on X and 
let 

µg: (S1T* © S2T*) EB (s1+1T* © T*) -+ s1- 1T* © T* 

be the morphism of vector bundles sending u EB v, with u E S 1T* © S 2T* 
and v E S1+1T* ©T*, into a1-1(B9 )u. 

From Lemma 3.1 of [6] (with K = {0}) (see also [4] and [2], Chap­
ter IX), we obtain the following: 

Lemma 1. Let g be a Riemannian metric on X. The morphism 
of vector bundles a(<p) 9 : S2T* © S2T* -+ S 2T* is surjective and the 
sequences 

1+2 2 ui(cp) 9 EBui+1(B9 ) 

S T* © S T* ------+ 

(3) 
(S1T* © S2T*) EB (S1+1T* © T*) !.:...,. s1- 1T* © T* -+ 0 

are exact for all l ;::=: 0. 

From Lemma 1, we obtain the exact sequences 

(4) 
uz(cp) 9 ui-1(B9 ) 

s 1+2T* 0 s 2T* - S1T* 0 s 2T* --..... s 1- 1T* 0 T* - o, 

for all l ;:=:: 0. If /3 E T;, with x E X, we consider the morphisms 

defined by 

for h E S 2T;. According to [8, §6], if /3 is a non-zero vector of T;, with 
x EX, the exactness of the sequences (4) gives us the exact sequence 

(5) S2 * u13(cp)g s2T* u13(Bg) T* 
T,,,--+ ,,,---+ ,,,-+0. 

Now let Xo be an arbitrary point of X and p be an element of S2T;o. 
From the surjectivity of the morphism a( <p )9 , we infer that the equation 
Ric(g)(x0) = p can always be solved. In fact, we may assume without 
loss of generality that X = ]Rn and that x 0 is the origin of ]Rn. The 
surjectivity of the morphism a(<p)90 tells us that there is an element 
U E (S2T* © S2T*)xo satisfying a(<p)goU = p. Then the symmetric 
tensor g given by 
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is a Riemannian metric on a neighborhood of x 0 satisfying the desired 
condition. 

It is obvious how to use this fact for the prescribed Ricci tensor 
problem; for our eigenvalue problem, in Lemma 2 below we shall choose 
p to be diagonal with respect to the coordinate system so that our metric 
will have the desired principal Ricci curvatures at one point. 

We now turn to the relation of the Bianchi identity to our problems. 
Let R be a given section of S2T*. The morphism of fibered manifolds 

'l/JR: J1(S!T*)--+ T*, 

sending the 2-jet j 2 (g)(x) at x EX of a Riemannian metric g on X into 
Bian(g, R)(x), is quasi-linear. The symbol 

a('l/JR) : T* ® S2T* --+ T* 

of 'l/JR is a morphism of vector bundles over StT* which satisfies 

for all p E J1 (StT*), u E T*@S2T*; in fact, this morphism is determined 
by 

(6) 

where g is a Riemannian metric on X. 
The most direct evidence that the Bianchi identity Bian(g, R) = 0 

provides us with an obstruction to finding solutions of the equation 
Ric(g) = R or solutions of the principal Ricci curvature problem arises 
from the exactness of the sequence (4), with l = l, when one attempts 
to solve the equation Ric(g) = R to first-order at a point of X. For 
the principal Ricci curvature problem, in Lemma 2 below we are able 
to satisfy this obstruction easily, because we may choose R and g simul­
taneously. The implications of the Bianchi identity for the prescribed 
Ricci curvature problem are more subtle and shall be examined in §4. 

§3. Prescribing the principal curvatures 

This section is devoted to the proofs of Theorems 1 and 2 of the 
introduction. If g is a Riemannian metric on X and R is a section 
of S2T*, we denote by det9 R the real-valued function on X which is 

equal to the determinant of the endomorphism g~ o R 0 of T. Then we 
easily see that the section <let R of the line bundle Hom(/\ nT, I\ nT*) 
vanishes at x E X if and only if the function det9 R vanishes at x. In 
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particular, we know that A E JR is an eigenvalue of Ric(g) with respect 
to g at x if and only if the function det9 (Ric(g) - Ag) vanishes at x E X, 
or equivalently if <let (Ric(g) - Ag)(x) = 0. 

We shall require the following lemma in our proof of Theorem 2. 

Lemma 2. Let go be a Riemannian metric on X. Let A1, ... , An 
be given distinct real numbers. Then there exists a Riemannian met­
ric g on a neighborhood U of x 0 E X, with g(x0 ) = g0 (x0 ), such that 
the eigenvalues µ1, ... , µn of Ric(g) with respect to g are ex, -functions 
on U whose differentials are linearly independent at x 0 and which satisfy 
µj(x 0 ) = Aj, for l :S j :Sn. 

Proof. We may assume without loss of generality that X = ]Rn, 

that x 0 is the origin of ]Rn and that 

go,ij(xo) = 8ij· 

Consider the section p of S2T* determined by 

Pij = Aj8ij + (n8ij - l)(xi + Xj)-

As we have seen in §2, there is an element u E (S2T*&)S2T*)xo satisfying 
a(cp) 90 u = p(xo) and the symmetric tensor g given by 

gij = 8ij + ½uij,klXkXl 

is a Riemannian metric on a neighborhood U of x 0 which satisfies 

Ric(g)(xo) = p(xo)-

Clearly A1 , ... , An are the eigenvalues of p( x 0 ) with respect to the metric 
g(x0 ) = g0 (x0 ). Since these scalars are distinct, there are C 00 -functions 

>.1 , ... , >-n and an orthonormal frame { 6, ... , ~n} for T, with respect to 

the metric g, over an neighborhood U' CU of x 0 such that >.j(x0 ) = Aj 
and 

(7) 

for all vector fields 'f/ on U' and 1 :S j :S n. Let ( be a vector field on U'. 
From relation (7), with 'f/ = ~j and 1 :S j :S n, we obtain 

Since ~j is a unitary vector field, we see that g( ~j, 'vf ~j) = 0 and so 

by (7) we also have 
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Hence the equality (8) gives us 

Since ~k = 8/8xk at x0 and rfj(x0 ) = 0 for the metric g, from the 
definition of p we see that 

for 1 :S i,j, k :Sn. Thus we have i>-..j = 2(n - l)dxj at x 0 , and so the 

differentials of the eigenvalues >.j are linearly independent at Xo- Using 
(1) and (2), it is easily verified that the section h = Ric(g) - p, which 
vanishes at x 0 , satisfies the Bianchi identity B 9 h = 0 at xo. Thus we 
know that 

a(B9 )s-1j 1 (h)(xo) = 0, 

and so by the exactness of the sequence (4), with l 
element V of (S3T* Q9 S2T*)xo satisfying 

1, there is an 

Then a Riemannian metric g on a neighborhood of x 0 , whose 3-jet at x0 

is equal to j 3 (g)(x0 ) + sv, satisfies the relations 

(9) j2(1J)(xo) = j2(g)(xo), j1(Ric(g) - p)(xo) = 0. 

Clearly there are C 00-functions {µ1, ... , µn}, which are eigenvalues of 
Ric(g) with respect the metric g, such that µj(x 0 ) = Aj, for 1 :S j :Sn. 
From the equalities (9), we infer that j 1(µj)(x 0 ) = j 1(>.j)(x0 ); hence the 
differentials of the functions {µ1, ... , µn} are linearly independent at x 0 . 

Proof of Theorem 2. Let g0 be a given Riemannian metric on X 
and let g be a Riemannian metric on a neighborhood of x 0 satisfying 
the assertions of Lemma 2 with respect to the distinct real numbers 
{>..1 (xo), ... , An(xo)} and go. Since their differentials are linearly inde­
pendent at xo, the eigenvalues µ 1, ... , µn of Ric(g) with respect to g 

define a diffeomorphism µ = (µ1, ... , µn) of an open neighborhood of x 0 

onto an open neighborhood of y0 = (>..1(x0 ), ... , >..n(x0 )) in JR.n. Simi­
larly by hypothesis, the mapping>..= (>..1, ... , >..n) is a diffeomorphism 
of an open neighborhood of x 0 onto an open neighborhood of y0 in ]Rn. 

Thus µ- 1 o>.. is a local diffeomorphism '1! of X defined on a neighborhood 
of xo such thatµ o '1! =>..on a neighborhood of x 0 . Because 

det (w*(Ric(g) - µJg))= 0 
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and Aj = \JI* µj, we see that \JI* g is a metric on a neighborhood of x 0 

satisfying 
det (Ric(\J!*g) - >..j\J!*g) = 0, 

for all 1 ~ j ~ n. 

The remainder of this section is devoted to the proof of Theorem 1. 
Let An be the affine space of all real monic polynomials in the variable >.. 
of degree n, which is modeled on the vector space Vn-l of all real poly­
nomials in the variable >.. of degree ~ n - 1. Let E and F be the trivial 
bundles over X whose fibers are equal to An and Vn-I, respectively. 
Then Fis an affine bundle over X modeled on the vector bundle E. We 
consider the morphism of fibered manifolds 

<I> : J2(S!T*) - F, 

sending the 2-jet j 2 (g)(x) at x EX of a Riemannian metric g on X into 
the monic polynomial ( - 1 t det9 (Ric(g) - >..g) ( x) in the variable >... The 
symbol of <I> is the morphism 

cr(<T>): S2T* ® S2T* - E 

of vector bundles over J2(S!T*) defined as follows. If g is a Riemannian 
metric on X and h is a section of S2T* over a neighborhood of x E X 
satisfying j 1 (h)(x) = 0, then g+th is a Riemannian metric on neighbor­
hood of x for ltl < E, with E > O; the morphism cr(<I>) 9 sends the element 

C 1j2(h)(x) of (S2T* ® S 2T*)x into the vector ft<I>(g + th)it=O of Ex. 
Let g be a Riemannian metric on X and x EX. Let {>..1 , ... , >..n} 

be the eigenvalues of Ric(g) with respect to g at x; then there is an 
orthonormal basis { 6, ... , ~n} of Tx, with respect to the metric g, con­
sisting of eigenvectors for Ric(g) satisfying 

(10) 

for 1 ~ j ~ n. Let Ric~ : S 27* - S27* be the linear differential 
operator of order 2 which is the linearization along g of the non-linear 
operator h ~ Ric(h), where his a Riemannian metric on X. Let h be 
a section of S2T* over X. For ltl < E, we know that Yt = g + th is a 
Riemannian metric on a neighborhood of x; by definition, we have 

Ric~(h) = ! Ricg(g + th)lt=O· 

For ltl < E and>.. E JR, we consider the endomorphism 

Bf= gf O Ric(gtl - >..id 
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of Tx; then it is easily seen that 

Clearly the vector 

of Vn-l is determined by the relation 

n 

L B€6 I\,,, I\ B€~i-l I\ B~i I\ B€~i+l I\,,, I\ B€~n = p(>.) ~1 /\ • • • /\ ~n, 
i=l 

for >. E R According to (10), for 1 ::; i ::; n, we have B€~i = (>.i - >.)~i 
and we see that 

g(B~i, ~i) = Ric~(h)(~i, ~i) - (~i, h'o · g~ · Ric(g)'"~il 

= Ric~(h)(~i, ~i) - >.ih(~i, ~i)-

For 1 ::; i ::; n, we consider the polynomial 

n 

Pi(>.)= IT (>.j - >.) 
j=l 
#i 

of Vn-l· From the previous relations, we obtain the equality 

n 

(11) p(>.) = L (Ric~(h) - Aih)(~i,~i). Pi(>.). 
i=l 

Since the symbol of the differential operator Ric~ is equal to cr(cp) 9 , 

from (11) we deduce that the morphism cr(<I>)9 at xis given by 

n 

(12) cr(<I>)9 u = (-l)n L (cr(cp) 9 u)(~i, ~i) · Pi(>.), 
i=l 

for u E (S2T* 0 S2T*)x. If /3 E T;, let 

(13) 
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be the mapping sending the element v of S 2T; into a(~)9 (,8 © ,8 © v); 
thus we have 

n 

(14) a,a(~)h(g)(x)V = (-It L (a,a(cp)gv)(ei, ei) · Pi(A), 
i=l 

for VE S 2T;. 
Now assume that the eigenvalues {-X1 , ... , An} are distinct. Then 

the n polynomials {Pi, ... , Pn} of degree n - I form a basis for Vn-l; 
this fact follows from the relations Pi(.Xi) -/- 0 and Pi(Aj) = 0 when j -/- i. 
Let ,8 be a non-zero vector of r;; we write ,Bi = ,B(ei), for 1 ~ i ~ n. 
According to formula (14), the mapping (13) is surjective if and only if 
the mapping s2r; -+ ]Rn, which sends an element V of s2r; into the 
n-tuple 

is surjective. From the exactness of the sequence (5), we infer that the 
mapping (13) is surjective if and only if, given an arbitrary element 
y = (Y1, ... , Yn) E ]Rn, there exists v E S 2T; satisfying v(ei, ei) = Yi for 
all 1 ~ i ~ n and a,a(B9 )v = 0. Hence the mapping (13) is surjective if 
and only if the following assertion holds: for ally= (y1 , ... , Yn) E ]Rn, 
there exists an nxn symmetric matrix A= (aijh'.5i,j:$n satisfying aii = 0 
and 

(15) 

where 

n 

L ,Bjaij = ,Bizi, 
j=l 

I n 

Zi = -yi + 2 L Yj, 
j=l 

for all 1 ~ i ~ n. If we set m = n(n - 1)/2, we may view the equa­
tions (15) as a system of linear equations 

(16) (CA)i = ,Bizi, i = 1, ... ,n, 
where the matrix A is viewed as a vector in ]Rm and C is a given n x m­
matrix each of whose entries is equal either to O or to one of the ,Bj 's. 
We then see that our condition for the surjectivity of the mapping (13) 
can be reformulated as follows: for all z = (z1 , ... , Zn) E ]Rn, we can 
solve the system (16) for A E ]Rm. If 1 ~ i, j, k ~ n are distinct integers, 
it is easily verified that the matrix C possesses an n x n-minor whose 
determinant is equal to ±2,Bf'-2 ,Bj,Bk. On the other hand, if there are 
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at most two non-vanishing coefficients /31 of /3, it is easily seen that this 
last condition for the surjectivity of (13) does not hold. Thus we have 
proved the following lemma: 

Lemma 3. Let g be a Riemannian metric on X. Assume that 
the eigenvalues {A1, ... , An} of Ric(g) with respect tog at x E X are 
distinct. Let {6, ... , ln} be an orthonormal basis ofTx, with respect tog, 
consisting of eigenvectors for Ric(g) and satisfying the relations (10), for 
1 ::; j :=; n. If j3 is a vector of r;, then the mapping (13) is surjective 
if and only if there exist three distinct integers l ::; i, j, k :=; n such that 
/3(li) · j3((j) · /3(lk) =/= 0. 

Let N~ be the subset of J2(S!T*) consisting of all 2-jets j 2(g)(x), 
where x E X and g is a Riemannian metric on X for which the eigen­
values of Ric(g)(x) with respect to g(x) are distinct. According to 
Lemma 2, we see that N~ is an open fibered submanifold of J2(S!T*), 

with 1r0N~ = S!T*. 
Let {A1, ... , An} be given real-valued functions on X; assume that, 

for all x E X, we have Ai(x) =/= A1(x), for i =/= j. We consider the 
An-valued function 

n 

P(A) = II (A - Aj) 
j=l 

on X and the subset 

N2 = {p EN~ I <I>(p) = P(A)(x), where x = 1r(p)} 

of J2(S!T*). Clearly, if a Riemannian metric g satisfies <I>(j2 (g)) 
P(A) at x E X, then the eigenvalues of its Ricci tensor with respect 
tog at x are equal to {>.1(x), ... , An(x)}. By Lemma 2, we know that 
P(X) C <I>(N~)- If p E N~ and x = 1r(p), according to Lemma 3 there 
exists an element /3 of r; such that the mapping a 13 ( <I> )p : S2T; -+ Ex 
is surjective. From Lemma 1 of [7], we obtain: 

Proposition 1. Let {A1, ... , An} be given real-valued functions 
on X; assume that, for all x E X, we have Ai(x) =/= A1(x), for i =/= j. 
Then the subset N2 of J2(S!T*) is a formally integrable differential 
equation. 

Thus N2 is an underdetermined differential equation. If the mani­
fold X is real-analytic and if the functions { A1, ... , An} are real-analytic, 
Theorem 2.2, Chapter IX of [9] provides us with the existence of local 
solutions of the equation N 2 ; in fact, if x E X, it gives us a real-analytic 
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Riemannian metric g satisfying <I>(j2 (g)) = P(>..) on a neighborhood 
of x E X. This completes the proof of Theorem l. 

§4. Prescribing the Ricci tensor 

Let R be a given section of S2T* over X of constant rank. The 
expression Bian(g, R) is first-order in the metric g (as well as in R); in 
right-hand side of ( 1), the highest (first) derivatives of g are all multiplied 
by coefficients of R. This is reflected in formula (6) and, when R is 
degenerate, is the source of the problems which need to be overcome. 
We now indicate how to solve the prescribed Ricci curvature problem 
and why the Bianchi identity is the only obstruction to local solvability 
in the non-degenerate case. 

We suppose that R is non-degenerate and we consider the quasi­
linear morphism of fibered manifolds 

determined by 

where g is a Riemannian metric. According to (6) and Lemma 1, the 
symbol 

of 'l/Jk is the surjective morphism of vector bundles over Si T* determined 
by the equality 

where g is a Riemannian metric on X. Because of (2), a solution g 

to our original problem is also a solution of the system of second-order 
equations 

(17) Ric(g) = R, J1('1/Jk(g)) = o. 

The exactness of the sequences (3) is the main ingredient in the local 
solvability of this system of equations. In fact, since the morphism 
a-( 'l/Jk) is surjective, we obtain a Riemannian metric g on a neighborhood 
of x0 E X satisfying 'l/Jk(g)(x0 ) = 0. Next, let l 2'.'. 0 and let g be 
a Riemannian metric on a neighborhood of xo whose (l + 1)-jet at xo 
satisfies 

(18) J1-1(Ric(g) - R)(xo) = 0, J1('1/Jk(g))(xo) = 0. 
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Then we have jz(Bian(g, R))(x0 ) = 0. Thus if u E (S1T* ® S2T*)xo and 
v E (Sl+ 1T* ® T*)xo are the elements defined by 

u = E-1jz(Ric(g) - R)(xo), 

by (2) we easily see that µ 9 ( u, v) = 0. Hence by the exactness of the 
sequence (3), there exists an element w E (s1+2T* ® S2T*)x0 such that 

Since the morphisms cp and '¢k are quasi-linear, we see that a Rieman­
nian metric on a neighborhood of x0 , whose (l + 2)-jet at x0 is equal 
to jz+2 (g)(x0 ) - Ew, satisfies equations (18), with l replaced by l + 1. 
Thus we obtain a formal solution at x 0 of our system (17), which has 
the special property that its jet of order 2 at x 0 is strongly prolongable. 
If R is a real-analytic section, a result of Malgrange [10] asserts that 
the equations (17) admit a convergent series solution at x 0 , and yields 
a solution of our original equation. 

We now turn to the case where R is degenerate. A solution g to 
the equation Ric(g) = R must satisfy some further equations which we 
now proceed to derive. The kernel K of the morphism R'o : T -+ T* is a 
sub-bundle of T*. We say that this bundle K is integrable if the sheaf 
JC is stable under the Lie bracket. 

Let 'v be an arbitrary torsionless connection in T. We consider the 
section 'v R of T* ® S2T* and the Lie derivative LeR of R along a vector 
field~ on X. 

The following lemma associates a section Q of S2T* ® K* to the 
section R of S2T*. 

Lemma 4. The section 

Q = (>.('vR))ir@T®K 

of S2T* ® K* is independent of the torsionless connection 'v and has 
the fallowing properties: 

(i) If~ is a section of K over X, we have 

(19) Q(77,(,~) = -½(£eR)(77,(), 

for all 17, ( E T. 
(ii) If17 ET, 6,~2,( EK, we have 

(20) Q(77,~1,6) +Q(77,6,6) = o, Q((,6,6) = 0. 
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(iii) The sub-bundle K of T is integrable if and only if 

Q('TJ, 6, 6) = 0, 

for all 6, 6 E K, 'T/ E T. 

77 

Proof. If 'v, 'v' are torsionless connections in T, then there is a 
section L of S2T* © T such that 

fore, 'T/ ET. It is easily verified that 

for e, (1, (2 E T. If e belongs to K, the right-hand side of the above 
equation vanishes, and so we see that Q is independent of 'v. Since 'v 
is torsionless, according to the definition of Q we have 

Q(,,,, (, e) = ½(R([e, ,,,1, o + R(,,,, [e, (D - e. R(,,,, ()) = -½(.CeR)(,,,, (), 

for all e E K, 'T/, ( E T. We thus obtain (19) and see that 

Q('TJ,6,6) = -½R(rJ, [6,6]), 

for all 6, 6 E K, 'TJ E T. Assertions (ii) and (iii) follow directly from 
this equality. 

If e EK, we denote by Qe the element of S2T* defined by 

Qe('TJ, () = Q('TJ, (, e), 

for 'T/, ( E T; from (20), we deduce that 

(21) 

for all 'T/ ET. If e is a section of Kover X, by (19) we have 

Qe = -½.CeR, 

If Q vanishes identically, then by Lemma 4,(iii) we see that K is 
integrable. Let K" be the sub-bundle of T, with possibly varying fiber, 
consisting of all elements e E T satisfying 

Q(,,,, e, () = o, 

for all 'T/ ET, (EK. If K is integrable, then according to Lemma 4,(iii) 
we see that K C K", and so the dimension v(x) of K; is greater the rank 
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of K. We shall consider the morphism of vector bundles l : K --+ S 2T*, 
which sends l EK into Qe. 

If g is a Riemannian metric on X, using '79 to define Q, we see that 

(22) 

for all l E K. This provides us with a new obstruction to solvability; 
indeed, by (2) any solution g to the equation Ric(g) = R must also 
satisfy 

(23) Tr9 Qe = 0, 

for all l E K. If g is a Riemannian metric on X and l is a vector of K 
satisfying the relation (23), then we easily see that either Qe vanishes 
or is not semi-definite. These remarks imply the following: 

Theorem 5. Let x EX and l E Kx. If Qe does not vanish and is 
semi-definite, then there does not exist a Riemannian metric g on any 
neighborhood of x such that Ric(g) = R. 

In [6, Lemma 2.3], using (21) we prove the more precise version of 
the previous observation: 

Lemma 5. Let x E X and l E Kx; assume that Qe does not 
vanish. Then there exists a Riemannian metric g on X such that 

if and only if Qe is not semi-definite. 

By the preceding lemma, we see that Theorem 4 is a direct conse­
quence of Theorem 3. 

In terms of a local coordinate system ( x1, ... , xn) on an open sub­
set U of X, using the flat connection v' on U satisfying v' 8 / 8xJ = 0, 
for 1 ~ j ~ n, to compute the section Q, we see that the section Qe of 
S 2T* over U corresponding to the section l = lj 8 / 8xJ of K is given by 

(24) (Q k = ~ (aRj_k + aRik _ aRij)e, 
E 1 2 ax• 8xJ Bxk 

for 1 ~ i, j ~ n. If the bundle K is integrable and if { 8 / ax 1, ... , 8 / axr} 
is a frame for this bundle Kover U, then we have Rij = 0, for 1 ~ i ~ n 
and 1 ~ j ~ r, and the section Qk = Qek of S2T* over U corresponding 
to the section lk = a;axk of K, with 1 ~ k ~ r, is given by 

(25) Qk. = -~ 8Rij 
' 1 2 Bxk ' 
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for 1 :S i, j :S n. If the morphism of vector bundles L : K -+ S2T* has 
constant rank equal to m, then, at every point x of U, the Vector space 
of elements of S 2T; generated by {Q1 (x), ... , Qr(x)} ism-dimensional. 

We now consider some simple examples of degenerate Ricci candi­
dates. 

Example l. A simple example of non-existence arising from Theo­
rem 5 is given by the following. We consider the symmetric 2-form 

R = dx2 18) dx2 + · · · + dxn-l 18) dxn-l + (1 + x 1 )dxn 18) dxn 

on !Rn. Note that the rank of R is equal to n - l in a neighborhood U of 
the origin and that the vector field e = 8/8x1 generates the sub-bundle 
K over U. According to (25), for x E U, the element Q1 (x) of S2T; 
is determined by Q}i(x) = Ai8ij, where Ai = 0 for 1 :S i :S n - l and 

An = l; thus Q1 (x) is non-zero and semi-definite. Hence we know that 
there does not exist a Riemannian metric g satisfying Ric(g) = R on 
any neighborhood of a point of U. 

Example 2. The tensor R = ± dx3 ® dx3 on JR3 clearly has rank one 
everywhere. The vector fields { 8 / 8x1, 8 / 8x2} generate the integrable 
sub-bundle K over JR3 , and by (25) the sections Q1 and Q2 of S2T* 
both vanish. As noted in the introduction, if x is an arbitrary point 
of JR3 , we can apply Theorem 3 to obtain the existence of a metric g 
satisfying Ric(g) = R on a neighborhood of x. However, it is worth 
noting that although R splits as a product, the same cannot be true 
for g, since then the one-dimensional factor of g would have to exhibit 
non-zero curvature, which is impossible. It is therefore interesting to 
exhibit an explicit solution g of the equation Ric(g) = R. We first 
consider the case when R = dx3 18) dx3 and seek a solution g of the form 

(26) g = f(x3) 2 (dx 1 18) dx1 +dx2 18) dx2 ) + h(x3) 2 dx3 18) dx3 , 

wher,:i f and h are non-vanishing functions of t = x3 • We shall use 
a prime to denote the derivative with respect to t, and will no longer 
indicate the dependence off and hon t. This metric g is a warped prod­
uct and is necessarily conformally flat. Its only possibly non-vanishing 
Christoffel symbols are determined by 

An elementary calculation yields the components of its Ricci tensor: 

. . (r)2 1(r)' Ric(g)11 = Ric(g)22 = - h - h, h , 
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and Ric(g)ij = 0 for i =f. j. If we set J(t) = eat and h(t) = Ce2at, where 
a, C E JR and C > 0, we find that the Ricci tensor of the metric g is 
equal to 2a2dx3 © dx3. With this choice of positive functions f and h, 
where a = 1/~ and C > 0, the metric g given by (26) is a solution 
of the equation Ric(g) = dx3 © dx3 on JR3 . Finally, the only possibly 
non-vanishing Christoffel symbols of the metric 

3 3 
g' = e-2ax dxl © dxl + e2ax dx2 © dx2 + dx3 © dx3 

on JR3 , with a E JR, are determined by: 

r 3 _ ae-2ax3 

11 - ' 
r 3 _ -ae2ax3 

22 - · 

Then one easily verifies that the Ricci tensor of the metric g' is equal 
to -2a2dx3 © dx3. Thus this metric g', with a= 1/~, is a solution of 
the equation Ric(g') = -dx3 © dx3 on JR3 • It is interesting to examine 
the geometry of the metric g' on JR3 . For c E JR, the hypersurface of JR3 

defined by x 3 = c is a flat submanifold (but not complete), while the 
hypersurfaces of JR3 defined by x 1 = c and x 2 = c have constant negative 
curvature (equal to -a2 ) and are also not complete. 

Example 3. The tensor 

R = (dx2 + x3dx1 ) © (dx2 + x3dx1) + dx3 © dx3 

on JR3 has rank two and the kernel K is generated by the vector field 
e = 8/8x1 - x38/8x2. By (24), the section Q = Qe is non-zero at all 
points of JR3 ; in fact, its non-zero coefficients are given by 

The Euclidean metric 

x3 
Q13 = 2' 

go = dx1 © dx1 + dx2 © dx2 + dx3 © dx3 

clearly satisfies Tr 90 Qe = 0 on JR3 . Hence, if xis an arbitrary point of JR3 , 

Theorem 4 gives us a metric g satisfying Ric(g) = R on a neighborhood 
of x. 

Example 4. The tensor 

R = (dx2 + x 3dx1 ) © (dx2 + x3dx1 ) 

on JR3 has rank one and the kernel K is generated by the vector fields 
6 = 8/8x1 - x38/8x2 and 6 = 8/8x3. Since [6,6] = 8/8x2, the 
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distribution determined by K is not integrable. If g is a Riemannian 
metric on IR. 3 , then by ( 1) we see that 

It is easily seen that the integrability condition B9 R = 0 places two 
conditions of order zero on the metric g; namely, a solution g of the 
equation Ric(g) = R must satisfy the relations 

g23 = o, g12 = x3g22-

This example shows that the singularity of the tensor R places substan­
tial restrictions on the 0-jet of the solution metric g. 

We now present an outline of the proof of Theorem 3. For simplicity, 
we assume that the morphism i : K --+ S2T* is injective and that its 
rank is equal to m 2::: 1. We choose a fixed complement T' of K in T 
which allows us to split the equation Bian(g, R) = 0, for the Riemannian 
metric g, into two pieces. The first one is a first-order equation similar to 
the equation 'lfk (j1 (g)) = 0 considered above when R is non-degenerate. 
If p : T* --+ T'* is the natural restriction mapping, we denote by RU the 
inverse of the isomorphism 

pRP : T' --+ T'*. 

If i : T' --+ T is the inclusion mapping, we set 

S = iRU p : T* --+ T. 

Then the endomorphism SRP of T is equal to the projection 1r' of T 
onto T' corresponding to the decomposition T = T' EB K. We consider 
the quasi-linear morphism of fibered manifolds 

determined by 

where g is a Riemannian metric on X. According to (6), the symbol 

a('ljJ") : T* ® S2T* --+ T* 

of 'ljJ" is the morphism of vector bundles over S~ _ _T* determined by 
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where g is a Riemannian metric on X; the l-th prolongation of the 
morphism a('¢")9 will be denoted by a1('¢") 9 . The first part of the 
Bianchi identity is the first-order equation 

'¢"(j1(g)) = 0. 

To a Riemannian metric g on X, we associate the section x(g) of K* 
determined by 

(tx(g)) = TrgQe, 

fore E K. The second equation x(g) = 0 arises from the relation (19) 
and imposes a condition of order zero on the metric g. We then attempt 
to apply the Cartan-Kahler theorem to the system 

(27) Ric(g) = R, i1('¢"(j1(g))) = o, h(x(g)) = o 

of partial differential equations of order 2 for the metric g. This approach 
fails; indeed, by prolonging the system (27), we find that a set of m 

additional identities must be taken into consideration. We now derive 
these scalar-valued identities and then study the new system consisting 
of (27) and these new identities. 

Let g be a Riemannian metric on X. The morphism of vector bun­
dles 

a(x)9 : S2T* --t K* 

over X obtained from the symbol a(x) of x is given by 

(e, a(x) 9 h) = -(e, a(x)9 h)9 , 

for h E S2T*; its l-th prolongation will be denoted by a1(x)9. We 
consider the sequence of vector bundles 

where the morphism 

is the symbol of the system (27) associated to g, and where v9 is the 
morphism of vector bundles determined by 

for u E S2T*, v ET* @y'o(T'), w E S2T* @K* and e EK. 
In [6, §4]), we first observe that the sequence (28) is a complex, 

because K is integrable, and then prove: 
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Lemma 6. Let g be a Riemannian metric on X. If x(g) van­
ishes at x E X and if T; is the orthogonal complement of Kx, then the 
sequence (28) is exact at x. 

Given the complexity of the morphism a9 , it is remarkable that the 
cokernel morphism v9 can be expressed in such a simple and natural 
manner. The non-surjectivity of the morphism a9 leads us to our addi­
tional identities. 

Let xo be a point of X and g0 be a given Riemannian metric on X 
satisfying Tr9 Qe = 0, for all e E Kxo· Since we are interested in the 
local solvability, we may suppose that X = !Rn with a system of linear 
coordinates ( X l, ... , xn) such that { a I 8x1 , ••• , a I axm} is a frame for K 
over X. We set ej = 8 / 8xi, for 1 ~ j ~ n. Since K;0 contains Kxo, 
without loss of generality, we may also suppose that go,ij(x0 ) = 8ij and 
that {6(xo), ... ,eq(x0 )} is a basis for K;0 , where q = v(x0 ) ~ m. We 
choose T' to be the integrable complement of K in T generated by the 
vector fields { em+ 1, ... , en} on X; thus T;0 is the orthogonal complement 
of Kx0 in Tx0 (with respect to g0 ). We consider the flat connection 'v 
in T for which all the vector fields ej are horizontal. This connection 
preserves K and so, if g is a Riemannian metric on X, we may consider 
the section 

P(g) = v9 ((Ric(g) - R) E9 ('v'I/J"(g)) E9 'v2x(g)) 

of K*. A Riemannian metric g, solution ofRic(g) = R, must also satisfy 
the equation P(g) = 0, which, in light of the complex (28), is in fact of 
first order. However, as P(g) arises from the lower order terms of Ric(g ), 
it is an expression which is quadratic in the first derivatives of g. 

We then consider the new system M 2 of order 2 consisting of the 
equations (27) together with the second-order equation j 1 (P(g)) = 0 
for a Riemannian metric g. We construct a strongly prolongable 2-jet 
h(g)(x0 ) of a solution g of the equation M 2 at x 0 • The main difficulty in 
proving the existence of such a formal solution at x 0 consists in finding 
a 1-jet j 1 (g)(x0 ) of a Riemannian metric g at x 0 , which is a solution of 
the first-order system 

'1/J"(g) = 0, ii(x(g)) = o, P(g) = 0 

determined by our system M 2 , such that the symbol of the system M 2 

is involutive at j 1 (g)(x0 ). Then, if Risa real-analytic section, a result 
of Malgrange [10] asserts that the system M 2 admits a convergent series 
solution at x 0 , and thus yields a solution of our original equation. This 
completes our outline of the proof of Theorem 3, when m is equal to the 
rank of K and is ~ 1. 
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