Spin Models and Almost Bipartite 2-Homogeneous Graphs

Kazumasa Nomura

Abstract

. A connected graph of diameter d is said to be almost bipartite if it contains no cycle of length $2 \ell+1$ for all $\ell<d$. An almost bipartite distance-regular graph $\Gamma=(X, E)$ is 2 -homogeneous if and only if there are constants $\gamma_{1}, \ldots, \gamma_{d}$ such that $\left|\Gamma_{i-1}(u) \cap \Gamma_{1}(x) \cap \Gamma_{1}(y)\right|=$ γ_{i} holds for all $u \in X$ and for all $x, y \in \Gamma_{i}(u)$ with $\partial(x, y)=2$ $(i=1, \ldots, d)$.

In this paper, almost bipartite 2-homogeneous distance-regular graphs are classified. This determines triangle-free connected graphs affording spin models (for link invariants) with certain weights.

§1. Introduction

A spin model is one of the statistical mechanical models which were introduced by Vaughan Jones to construct invariants of knots and links [12]. A spin model is defined as a complex-valued symmetric function w on $X \times X$, where X is a finite set of "spins", satisfying several axioms. Each spin model S gives a corresponding link invariant through its partition function. Three examples of spin models are mentioned in Jones' paper [12]; Potts models, cyclic models and square models. It must be remarked that the Jones polynomial can be obtained from the partition function of the Potts models.

A connection between spin models and distance-regular graphs was found by François Jaeger [9] by constructing a new spin model on the Higman-Sims graph, a distance-regular graph of diameter $d=2$ with $n=100$ vertices, which was discovered by D. Higman and C. Sims [8], where we say that a spin model $S=(X, w)$ is constructed on a connected graph $\Gamma=(X, E)$ if $w(x, y)$ depends only on the distance $\partial(x, y)$ in the graph Γ. Jaeger [9] proved that the corresponding link invariant

Revised June 7, 1995.
of the Higman-Sims model becomes a specialization of the Kauffman polynomial [14]. After Jaeger's discovery, a new infinite family of spin models were constructed on Hadamard graphs by the author [14]. The corresponding link invariants of the Hadamard models were determined by Jaeger $[10,11]$, and then Jones [13] gave a pair of two links which can be detected by this invariant but not by Jones polynomial.

These examples of spin models can be constructed on almost bipartite distance-regular graphs. Moreover these graphs have extra regularity which we call 2-homogeneity; an almost bipartite distance-regular graph $\Gamma=(X, E)$ is 2-homogeneous if and only if $\left|\Gamma_{i-1}(u) \cap \Gamma_{1}(x) \cap \Gamma_{1}(y)\right|$ is a constant for all $u, x, y \in X$ with $\partial(u, x)=\partial(u, y)=i, \partial(x, y)=2$ ($i=1, \ldots, d$, where d denotes the diameter of Γ). In fact it was shown [21] that if a triangle-free connected graph affords a spin model with certain weights then the graph must be distance-regular and almost bipartite.

This paper contains two main results. At first we show that if a spin model is constructed on an almost bipartite distance-regular graph then the graph must be 2-homogeneous (under some conditions, see Theorem 4.3). Next we classify almost bipartite 2 -homogeneous distance-regular graphs (Theorem 5.1). The proofs of these results are given in Section 4 and Section 5. In Section 2, some preliminaries on spin models and distance-regular graphs are given. In Section 3, two necessary and sufficient conditions (H1), (H2) for 2-homogeneity of almost bipartite distance-regular graphs are given. Then we slightly generalize of Yamazaki's sufficient condition for 2-homogeneity [22].

There are two generalizations of Jones' spin models by Kawagoe-Munemasa-Watatani [15] and Bannai-Bannai [1] (see also [2, 3, 16]). In this paper we restrict our interest to the original spin models defined in [12].

§2. Spin models and distance-regular graphs

2.1. Definition and examples of spin models

A spin model is a pair $S=(X, w)$ of a finite set of size $|X|=n>0$ and a complex-valued function w on $X \times X$ such that (for all a, b, c in X)

$$
\begin{gather*}
w(a, b)=w(b, a) \neq 0 \tag{S1}\\
\sum_{x \in X} w(a, x) w(b, x)^{-1}=n \delta_{a, b} \tag{S2}\\
\sum_{x \in X} w(a, x) w(b, x) w(c, x)^{-1}=\sqrt{n} w(a, b) w(a, c)^{-1} w(b, c)^{-1} \tag{S3}
\end{gather*}
$$

The equation (S3) is called the "star-triangle" relation. The elements of X is called the spins, and the function w is called the (Boltzmann) weight. Putting $a=c$ in (S3), we have

$$
\sum_{x \in X} w(b, x)=\sqrt{n} w(a, a)^{-1}
$$

so that $w(a, a)=\alpha$ is a constant, called the modulus of S, which is independent of the choice of a in X.

The weight matrix of a spin model $S=(X, w),|X|=n$, is a $n \times n$ matrix W, indexed by $X \times X$, whose (x, y)-entry is $W_{x, y}=w(x, y)$. For b, c in X, we consider a vector $\mathbf{u}_{b c}$ in the n-space $V=\mathbf{C}^{n}$, where the entries of the vectors are indexed by X, whose x-entry is given by

$$
\left(\mathbf{u}_{b c}\right)_{x}=\frac{w(b, x)}{w(c, x)}, \quad(x \in X)
$$

Then the condition (S3) can be written as

$$
W \mathbf{u}_{b c}=\sqrt{n} w(b, c)^{-1} \mathbf{u}_{b c} .
$$

This means the vector $\mathbf{u}_{b c}$ is an eigenvector of W for the eigenvalue $\sqrt{n} w(b, c)^{-1}$. It can be easily shown from (S2) that, for a fixed $b \in X$, the vectors $\mathbf{u}_{b c}, c \in X$ are linearly independent and hence form a basis of V. Therefore the values $\sqrt{n} w(b, c)^{-1}, c \in X$ give all the eigenvalues of W, where multiplicities are counted. This means that the multiplicity of an eigenvalue $\sqrt{n} \lambda^{-1}$ agrees with the number of $x \in X$ such that $w(b, x)=\lambda$ (thus this number does not depend on the choice of b). The vector $\mathbf{u}_{b b}$ becomes the all one vector \mathbf{j}, and it is an eigenvector of W corresponding the eigenvalue $\sqrt{n} \alpha^{-1}$ (α is the modulus). From condition (S2), the other vectors $\mathbf{u}_{b c}, b \neq c$ are orthogonal to \mathbf{j}.

Now we give three basic examples of spin models.
Potts model. Let X be a finite set with $n>1$ elements. Let β be a solution of $\beta^{2}+\beta^{-2}+\sqrt{n}=0$ and put $\alpha=-\beta^{-3}$. Define a function w on $X \times X$ by

$$
w(x, y)= \begin{cases}\alpha & x=y \\ \beta & \text { otherwise }\end{cases}
$$

Then (X, w) is a spin model called the Potts model [12]. Potts model with $n=2$ is also called the Ising model.

Cyclic model. Let $X=\{0,1, \ldots, n-1\}$, and let θ be a primitive n-root of unity when n is odd, or a primitive $2 n$-root of unity when n is even. Define a function w on $X \times X$ by

$$
w(x, y)=\alpha \theta^{(x-y)^{2}}
$$

where

$$
\alpha^{2}=\frac{\sqrt{n}}{\sum_{i=0}^{n-1} \theta^{i^{2}}}
$$

Then (X, w) becomes a spin model, called the cyclic model $[2,6,12]$.
Square model. Let $X=\{1,2,3,4\}$ and let α be an arbitrary nonzero complex number. Let us consider the following matrix:

$$
W=\left(\begin{array}{cccc}
\alpha & \alpha^{-1} & -\alpha & \alpha^{-1} \\
\alpha^{-1} & \alpha & \alpha^{-1} & -\alpha \\
-\alpha & \alpha^{-1} & \alpha & \alpha^{-1} \\
\alpha^{-1} & -\alpha & \alpha^{-1} & \alpha
\end{array}\right)
$$

and define a function w on $X \times X$ by $w(x, y)=W_{x, y}$. Then (X, w) becomes a spin model, called the square model $[7,12]$.

2.2. Preliminaries for distance-regular graphs

Let $\Gamma=(X, E)$ be a connected (undirected simple) graph of diameter d with the vertex set X and the edge set E with the usual metric ∂ on X. For vertices u, v and for integers r, s, define

$$
\begin{gathered}
\Gamma_{r}(u)=\{x \in X \mid \partial(u, x)=r\} \\
\mathrm{D}_{s}^{r}(u, v)=\Gamma_{r}(u) \cap \Gamma_{s}(v)
\end{gathered}
$$

Γ is said to be distance-regular if there are integers b_{r}, c_{r} such that for any two vertices u, x at distance $r=\partial(u, x)$, there are precisely c_{r} neighbours of x in $\Gamma_{r-1}(u)$ and b_{r} neighbours of x in $\Gamma_{r+1}(u)$. In particular Γ is regular of valency $k=b_{0}$, and there are $a_{r}=k-c_{r}-b_{r}$ neighbours of x in $\Gamma_{r}(u)$. The parameters $c_{r}, b_{r}, a_{r}(r=0, \ldots, d)$ satisfy (see [5], Proposition 4.1.6)

$$
1=c_{1} \leq c_{2} \leq \cdots \leq c_{d-1} \leq c_{d}
$$

$$
k=b_{0} \geq b_{1} \geq \cdots \geq b_{d-1} \geq b_{d}=0 .
$$

The array

$$
\left\{\begin{array}{cccccc}
0 & c_{1} & c_{2} & \cdots & c_{d-1} & c_{d} \\
0 & a_{1} & a_{2} & \cdots & a_{d-1} & a_{d} \\
k & b_{1} & b_{2} & \cdots & b_{d-1} & 0
\end{array}\right\}
$$

is called the intersection array of Γ.
It is known (see [5], Section 4.1) that the parameters

$$
p_{r, s}^{t}=\left|\mathrm{D}_{s}^{r}(u, v)\right|, \quad(t=\partial(u, v))
$$

are well-defined, i.e., these parameters depends only on r, s and $t=$ $\partial(u, v)$, rather than on the individual vertices u, v with $t=\partial(u, v)$. The parameters $p_{r, s}^{t}$ are called the intersection numbers of Γ. Clearly $c_{r}=p_{r-1,1}^{r}, a_{r}=p_{r, 1}^{r}$ and $b_{r}=p_{r+1,1}^{r}$ hold.

Let $A_{i}(i=0,1, \ldots, d)$ denote the i-th adjacency matrix of Γ, i.e., A_{i} is the $n \times n$ matrix, indexed by $X \times X$, whose (x, y)-entry is

$$
\left(A_{i}\right)_{x, y}= \begin{cases}1 & \partial(x, y)=i \\ 0 & \text { otherwise }\end{cases}
$$

In particular, $A_{0}=I$ the identity matrix of size n and $A_{1}=A$ the usual adjacency matrix of Γ. The matrices $A_{0}, A_{1}, \ldots, A_{d}$ satisfy

$$
A_{i} A_{j}=A_{j} A_{i}=\sum_{\ell=0}^{d} p_{i j}^{\ell} A_{\ell}
$$

In particular,

$$
A A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1}
$$

holds. Using this relation recursively, A_{i} can be written as a polynomial in A, i.e., there are polynomials $v_{i}(x)$ of degree i such that $A_{i}=v_{i}(A)$ holds for $i=0,1, \ldots, d$.

It is known that the adjacency matrix A has distinct eigenvalues $\theta_{0}=k, \theta_{1}, \ldots, \theta_{d}$, and the corresponding eigenspaces $V_{0}, V_{1}, \ldots, V_{d}$ in $V=\mathbf{C}^{n}(n=|X|)$ are mutually orthogonal (see [5], Section 4.1):

$$
V=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{d} \quad \text { (orthogonal sum). }
$$

Remark that V_{0} is the 1 -dimensional subspace spanned by \mathbf{j}.
More precise descriptions of distance-regular graphs can be found in $[4,5]$.

2.3. Spin models on distance-regular graphs

Let $\Gamma=(X, E)$ be a connected graph of diameter d with the usual metric ∂ on X. Let $R_{i}(i=0,1, \ldots, d)$ be the set of pairs (x, y) in $X \times X$ such that $\partial(x, y)=i$. Then $X \times X$ is partitioned into $d+1$ relations:

$$
X \times X=R_{0} \cup R_{1} \cup \cdots \cup R_{d}
$$

We consider spin models $S=(X, w)$ such that w takes a constant value t_{i} on $R_{i}(i=0,1, \ldots, d)$, i.e., $w(x, y)=t_{i}$ holds for all x, y in X at distance $\partial(x, y)=i$. In this case we say that the spin model $S=(X, w)$ is constructed on the graph $\Gamma=(X, E)$. We are particularly interested in spin models which are constructed on distance-regular graphs.

For three vertices x, y, z and for integers i, j, ℓ, define

$$
P_{i, j, \ell}(x, y, z)=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y) \cap \Gamma_{\ell}(z)\right| .
$$

Lemma 2.1. Let $\Gamma=(X, E)$ be a distance-regular graph of diameter d with the intersection numbers $p_{i, j}^{\ell}$, and let t_{0}, \ldots, t_{d} be non-zero complex numbers. Define a function w on $X \times X$ by $w(x, y)=t_{\partial(x, y)}$. Then $S=(X, w)$ is a spin model if and only if the following conditions hold:
(S2') For $\ell=1, \ldots, d$,

$$
\sum_{i=0}^{d} \sum_{j=0}^{d} p_{i, j}^{\ell} t_{i} t_{j}^{-1}=0
$$

(S3') For all x, y, z in X,

$$
\sum_{i=0}^{d} \sum_{j=0}^{d} \sum_{\ell=0}^{d} P_{i, j, \ell}(x, y, z) t_{i} t_{j} t_{\ell}^{-1}=\sqrt{n} t_{\partial(x, y)} t_{\partial(x, z)}^{-1} t_{\partial(y, z)}^{-1}
$$

Proof. It is not difficult to show that (S2), (S3) are equivalent to (S2'), (S3') respectively. Remark that (S1) holds for a spin model constructed on a connected graph.
Q.E.D.

Now we give two examples which are constructed on distance-regular graphs.

Jaeger's Higman-Sims model. The Higman-Sims graph, which was discovered by D. Higman and C. Sims [8], is the unique distance-regular
graph $\Gamma=(X, E)$ of diameter $d=2$ with the following intersection array:

$$
\left\{\begin{array}{ccc}
0 & 1 & 6 \\
0 & 0 & 16 \\
22 & 21 & 0
\end{array}\right\}
$$

Γ has $|X|=100$ vertices.
A spin model was constructed on the Higman-Sims graph by F. Jaeger [9] (see also [7]). Let $\tau=(1+\sqrt{5}) / 2$ and put

$$
t_{0}=(5 \tau+3) \sqrt{-1}, \quad t_{1}=\tau \sqrt{-1}, \quad t_{2}=(-\tau+1) \sqrt{-1}
$$

Define a function w on $X \times X$ by $w(x, y)=t_{\partial(x, y)}$ for $x, y \in X$. Then $S=(X, w)$ becomes a spin model. The corresponding link invariant becomes a specialization of the Kauffman polynomial [7].

Hadamard model. Hadamard graphs are distance-regular graphs of diameter $d=4$ with the following intersection array:

$$
\left\{\begin{array}{ccccc}
0 & 1 & 2 m & 4 m-1 & 4 m \\
0 & 0 & 0 & 0 & 0 \\
4 m & 4 m-1 & 2 m & 1 & 0
\end{array}\right\}
$$

where m is a positive integer. There is a natural correspondence between Hadamard graphs of valency $4 m$ and Hadamard matrices of size $4 m$ (see [5], Theorem 1.8.1). Let s, t_{0}, t_{1} be complex numbers such that

$$
s^{2}+2(2 m-1) s+1=0, \quad t_{0}^{2}=\frac{2 \sqrt{m}}{(4 m-1) s+1}, \quad t_{1}^{4}=1
$$

and put

$$
t_{2}=s t_{0}, \quad t_{3}=-t_{1}, \quad t_{4}=t_{1}
$$

Define a function w on $X \times X$ by $w(x, y)=t_{\partial(x, y)}$ for $x, y \in X$. Then $S=(X, w)$ is a spin model [17]. The corresponding link invariants of these models were determined by Jaeger [10,11].

§3. 2-Homogeneous distance-regular graphs

3.1. Definition of 2-homogeneity

Let $\Gamma=(X, E)$ be a distance-regular graph of diameter d. For a vertex x in X and for a subset A of X, let $e(x, A)$ denote the number of edges from x into $A ; e(x, A)=\left|\Gamma_{1}(x) \cap A\right| . \Gamma$ is said to be t-homogeneous (where t is an non-negative integer) if the following condition holds for
all integers r, s, i, j and for all vertices $u, v, u^{\prime}, v^{\prime}$ with $\partial(u, v)=$ $\partial\left(u^{\prime}, v^{\prime}\right)=t$:

$$
x \in \mathrm{D}_{s}^{r}(u, v), x^{\prime} \in \mathrm{D}_{s}^{r}\left(u^{\prime}, v^{\prime}\right) \Longrightarrow e\left(x, \mathrm{D}_{j}^{i}(u, v)\right)=e\left(x^{\prime}, \mathrm{D}_{j}^{i}\left(u^{\prime}, v^{\prime}\right)\right)
$$

This means that, for two vertices u, v at distance t and for x in $\mathrm{D}_{s}^{r}(u, v)$, the number of edges from x into $\mathrm{D}_{j}^{i}(u, v)$ depends only on r, s, i, j rather than on the individual vertices u, v, x with $\partial(u, v)=t$ and $x \in \mathrm{D}_{s}^{r}(u, v)$.

It was shown [18] that, for a distance-regular graph Γ of diameter d in which $\mathrm{D}_{1}^{1}(u, v)$ is a (non-empty) clique for every edge $u v, \Gamma$ is 1 homogeneous if and only if Γ is isomorphic to a regular near $2 d$-gon (see [5], Section 6.4 for the definition).

Now we restrict our interest to the case $t=2$. Let us consider the following conditions for a distance-regular graph Γ of diameter d :
(H1) There are integers $\delta_{2}, \ldots, \delta_{d}$ such that, for every pair of vertices u, v at distance $\partial(u, v)=2$, and for every x in $\Gamma_{r}(u) \cap \Gamma_{r}(v)$, there are precisely δ_{r} neighbours of x in $\Gamma_{r-1}(u) \cap \Gamma_{r-1}(v)(r=2, \ldots, d)$. (H2) There are integers $\gamma_{1}, \ldots, \gamma_{d}$ such that, for every vertex x and for every u, v in $\Gamma_{r}(x)$ with $\partial(u, v)=2$, there are precisely γ_{r} common neighbours of u and v in $\Gamma_{r-1}(x)(r=1, \ldots, d)$.

Lemma 3.1. Let $\Gamma=(X, E)$ be a distance-regular graph of diameter d. Then (H1) is equivalent to (H2).

Proof. First assume Γ satisfies (H1). We must show that the size

$$
\left|\Gamma_{r-1}(x) \cap \Gamma_{1}(u) \cap \Gamma_{1}(v)\right|
$$

does not depend on the choice of x in X and u, v in $\Gamma_{r}(x)$ with $\partial(u, v)=$ 2. Clearly this holds for $r=1$. Assume $r>1$. Fix a vertex x and fix two vertices u, v in $\Gamma_{r}(x)$ with $\partial(u, v)=2$, and put

$$
\mathrm{D}_{j}^{i}=\mathrm{D}_{j}^{i}(u, v)=\Gamma_{i}(u) \cap \Gamma_{j}(v)
$$

for all integers i, j. We count the number N of paths of length $r-1$ from x to D_{1}^{1}. Let $x=x_{r}, x_{r-1}, \ldots, x_{2}, x_{1}$ be a path of length $r-1$ such that $x_{1} \in \mathrm{D}_{1}^{1}$. Then we have $x_{i} \in \mathrm{D}_{i}^{i}$ for $i=1, \ldots, r$. By (H1), there are precisely δ_{i} edges from x_{i} to $\mathrm{D}_{i-1}^{i-1}(i=2, \ldots, r)$. Hence we have

$$
N=\delta_{r} \delta_{r-1} \cdots \delta_{2}
$$

On the other hand, for a fixed vertex y in $\Gamma_{r-1}(x) \cap D_{1}^{1}$, there are precisely $c_{r-1} c_{r-2} \cdots c_{2} c_{1}$ paths of length $r-1$ connecting x and y, since we have $\partial(x, y)=r-1$. Hence we have

$$
N=\left|\Gamma_{r-1}(x) \cap \mathrm{D}_{1}^{1}\right| c_{r-1} c_{r-2} \cdots c_{2} c_{1}
$$

So we obtain

$$
\left|\Gamma_{r-1}(x) \cap \mathrm{D}_{1}^{1}\right|=\frac{\delta_{r} \delta_{r-1} \cdots \delta_{2}}{c_{r-1} c_{r-2} \cdots c_{2} c_{1}}
$$

This means the number of common neighbours of u and v in $\Gamma_{r-1}(x)$ does not depend on the choice of x in X and u, v in $\Gamma_{r}(x)$ with $\partial(u, v)=2$. Thus Γ satisfies (H2).

Next assume Γ satisfies (H2). We show by induction on r that the number of edges $e\left(x, \mathrm{D}_{r-1}^{r-1}(u, v)\right)$ does not depend on the choice of u, v with $\partial(u, v)=2$ and x in $\mathrm{D}_{r}^{r}(u, v)(r=2, \ldots, d)$. This holds when $r=2$, since for $x \in \mathrm{D}_{2}^{2}(u, v)$ we have $u, v \in \Gamma_{2}(x)$ and so

$$
e\left(x, \mathrm{D}_{1}^{1}(u, v)\right)=\left|\Gamma_{r-1}(x) \cap \Gamma_{1}(u) \cap \Gamma_{1}(v)\right|=\gamma_{2}
$$

Assume $r>2$ and assume that there are constants $\delta_{2}, \ldots, \delta_{r-1}$ such that $e\left(x, \mathrm{D}_{i-1}^{i-1}(u, v)\right)=\delta_{r}$ holds for every $x \in \mathrm{D}_{i}^{i}(u, v)(i=2, \ldots, r-1)$. Fix two vertices $u, v \in X$ at distance $\partial(u, v)=2$ and put $\mathrm{D}_{j}^{i}=\mathrm{D}_{j}^{i}(u$, $v)$. Pick a vertex $x \in \mathrm{D}_{r}^{r}$ and put

$$
\delta(x)=e\left(x, \mathrm{D}_{r-1}^{r-1}\right)
$$

We count the number N of paths $x=x_{r}, x_{r-1}, \ldots, x_{1}$ of length $r-1$ with $x_{1} \in \mathrm{D}_{1}^{1}$. Since $x_{i} \in \mathrm{D}_{i}^{i}(i=1, \ldots, r)$ holds for every path $x=x_{r}, \ldots, x_{1}$ with $x_{1} \in \mathrm{D}_{1}^{1}$,

$$
N=\delta(x) \delta_{r-1} \delta_{r-2} \cdots \delta_{2}
$$

On the other hand, since there are precisely γ_{r} common neighbours y of u, v in $\Gamma_{r-1}(x)$ by (H2),

$$
\left|\mathrm{D}_{1}^{1} \cap \Gamma_{r-1}(x)\right|=\gamma_{r}
$$

Since for each vertex y in $\mathrm{D}_{1}^{1} \cap \Gamma_{r-1}(x)$ there are precisely $c_{r-1} c_{r-2} \cdots c_{1}$ paths of length $r-1$ connecting y and x, the number of paths is given by

$$
N=\left|\mathrm{D}_{1}^{1} \cap \Gamma_{r-1}(x)\right| c_{r-1} c_{r-2} \cdots c_{2} c_{1}=\gamma_{r} c_{r-1} c_{r-2} \cdots c_{2} c_{1}
$$

Therefore we obtain

$$
\delta(x)=\frac{\gamma_{r} c_{r-1} c_{r-2} \cdots c_{2} c_{1}}{\delta_{r-1} \delta_{r-2} \cdots \delta_{2}}
$$

Thus Γ satisfies (H1).
Q.E.D.

A connected graph Γ is said to be bipartite if there is no cycle of odd length, and almost bipartite if there is no cycle of odd length ℓ with $\ell<2 d+1$ (where d is the diameter of Γ). Let Γ be a distance-regular graph of diameter d with intersection numbers $c_{r}, a_{r}, b_{r}(r=0, \ldots, d)$. Clearly Γ is bipartite if and only if $a_{r}=0$ for $r=0, \ldots, d$, and Γ is almost bipartite if and only if $a_{r}=0$ for $r=0, \ldots, d-1$.

Lemma 3.2. Let Γ be an almost bipartite distance-regular graph of diameter d. Then Γ is 2-homogeneous if and only if Γ satisfies (H1).

Proof. The condition (H1) says that $e\left(x, \mathrm{D}_{r-1}^{r-1}(u, v)\right)=\delta_{r}$ holds for every u, v, x with $\partial(u, v)=2$ and $x \in \mathrm{D}_{r}^{r}(u, v)$. Hence (H1) holds if Γ is 2 -homogeneous.

Fix two vertices u, v at distance $\partial(u, v)=2$ and let us denote $\mathrm{D}_{j}^{i}=\mathrm{D}_{j}^{i}(u, v)$ for all i, j. Remark that D_{j}^{i} is empty for all i, j with $|i-j|>2$ since $\partial(u, v)=2$. Also remark that D_{j}^{i} is empty for all i, j with $i+j \equiv 1(\bmod 2)$ and $i+j<2 d-1$ since there is no cycle of odd length $\ell<2 d+1$. Therefore the vertex set of Γ is partitioned into the following subsets:

$$
\begin{array}{llllllll}
\mathrm{D}_{2}^{0} & \mathrm{D}_{3}^{1} & \mathrm{D}_{4}^{2} & \cdots & \mathrm{D}_{d-1}^{d-3} & \mathrm{D}_{d}^{d-2} & & \\
& & & & & & \mathrm{D}_{d}^{d-1} & \\
\mathrm{D}_{1}^{1} & \mathrm{D}_{2}^{2} & \mathrm{D}_{3}^{3} & \cdots & \mathrm{D}_{d-2}^{d-2} & \mathrm{D}_{d-1}^{d-1} & & \mathrm{D}_{d}^{d} \\
& & & & & & \mathrm{D}_{d-1}^{d} & \\
\mathrm{D}_{0}^{2} & \mathrm{D}_{1}^{3} & \mathrm{D}_{2}^{4} & \cdots & \mathrm{D}_{d-3}^{d-1} & \mathrm{D}_{d-2}^{d} & &
\end{array}
$$

Remark that there is no edge connecting D_{j}^{i} and $\mathrm{D}_{j^{\prime}}^{i^{\prime}}$ if $\left|i-i^{\prime}\right|>1$ or $\left|j-j^{\prime}\right|>1$. Remark also that there is no edge inside D_{j}^{i} for all i, j with $i<d$ or $j<d$ since $a_{1}=\cdots=a_{d-1}=0$.

First we show that the number of edges $e\left(x, \mathrm{D}_{j}^{i}\right)\left(x \in \mathrm{D}_{s}^{r}\right)$ is determined by the intersection numbers for all r, s with $r \neq s$. For x in D_{r}^{r-2} we have

$$
\begin{gathered}
e\left(x, \mathrm{D}_{r-1}^{r-3}\right)=e\left(x, \Gamma_{r-3}(u)\right)=c_{r-2} \\
e\left(x, \mathrm{D}_{r-1}^{r-1}\right)=e\left(x, \Gamma_{r-1}(v)\right)-e\left(x, \mathrm{D}_{r-1}^{r-3}\right)=c_{r}-c_{r-2}
\end{gathered}
$$

Moreover when $r<d$ we have

$$
e\left(x, \mathrm{D}_{r+1}^{r-1}\right)=e\left(x, \Gamma_{r+1}(v)\right)=b_{r},
$$

and when $r=d$ we have

$$
e\left(x, \mathrm{D}_{d}^{d-1}\right)=e\left(x, \Gamma_{d-1}(u)\right)-e\left(x, \mathrm{D}_{d-1}^{d-1}\right)=b_{d-2}-\left(c_{d}-c_{d-2}\right)
$$

For x in D_{d}^{d-1} we have

$$
\begin{gathered}
e\left(x, \mathrm{D}_{d}^{d-2}\right)=e\left(x, \Gamma_{d-1}(u)\right)=c_{d-1} \\
e\left(x, \mathrm{D}_{d-1}^{d-1}\right) \leq e\left(x, \Gamma_{d-1}(u)\right)=a_{d-1}=0 \\
e\left(x, \mathrm{D}_{d-1}^{d}\right)=e\left(x, \Gamma_{d-1}(v)\right)-e\left(x, \mathrm{D}_{d-1}^{d-1}\right)=c_{d} \\
e\left(x, \mathrm{D}_{d}^{d}\right)=e\left(x, \Gamma_{d}(u)\right)-e\left(x, \mathrm{D}_{d-1}^{d}\right)=b_{d-1}-c_{d}
\end{gathered}
$$

Thus $e\left(x, \mathrm{D}_{j}^{i}\right)$ is determined by the intersection numbers for $x \in \mathrm{D}_{s}^{r}$ with $r \neq s$. Moreover for x in D_{1}^{1} we have

$$
e\left(x, \mathrm{D}_{2}^{0}\right)=e\left(x, \mathrm{D}_{0}^{2}\right)=c_{1}, \quad e\left(x, \mathrm{D}_{2}^{2}\right)=b_{1}-c_{1} .
$$

Now we assume Γ satisfies (H1) and let $x \in \mathrm{D}_{r}^{r}(2 \leq r \leq d)$. Then by (H1) we have

$$
e\left(x, \mathrm{D}_{r-1}^{r-1}\right)=\delta_{r} .
$$

When $r<d$ we have

$$
\begin{gathered}
e\left(x, \mathrm{D}_{r+1}^{r-1}\right)=e\left(x, \Gamma_{r-1}(u)\right)-e\left(x, \mathrm{D}_{r-1}^{r-1}\right)=c_{r}-\delta_{r}, \\
e\left(x, \mathrm{D}_{r-1}^{r+1}\right)=e\left(x, \Gamma_{r-1}(v)\right)-e\left(x, \mathrm{D}_{r-1}^{r-1}\right)=c_{r}-\delta_{r}, \\
e\left(x, \mathrm{D}_{r+1}^{r+1}\right)=e\left(x, \Gamma_{r+1}(u)\right)-e\left(x, \mathrm{D}_{r-1}^{r+1}\right)=b_{r}-\left(c_{r}-\delta_{r}\right),
\end{gathered}
$$

here remark that there is no edge between D_{d-1}^{d-1} and D_{d-1}^{d}. For $x \in \mathrm{D}_{d}^{d}$ we have

$$
\begin{gathered}
e\left(x, \mathrm{D}_{d}^{d-1}\right)=e\left(x, \Gamma_{d-1}(u)\right)-e\left(x, \mathrm{D}_{d-1}^{d-1}\right)=c_{d}-\delta_{d} \\
e\left(x, \mathrm{D}_{d-1}^{d}\right)=e\left(x, \Gamma_{d-1}(v)\right)-e\left(x, \mathrm{D}_{d-1}^{d-1}\right)=c_{d}-\delta_{d} \\
e\left(x, \mathrm{D}_{d}^{d}\right)=e\left(x, \Gamma_{d}(u)\right)-e\left(x, \mathrm{D}_{d-1}^{d}\right)=a_{d}-\left(c_{d}-\delta_{d}\right)
\end{gathered}
$$

Therefore Γ is 2-homogeneous.
Q.E.D.

3.2. A sufficient condition for 2-homogeneity

Yamazaki [22] proved that every bipartite distance-regular graph with an eigenvalue of multiplicity k (k is the valency) satisfies condition (H1). Here we give a slight generalization.

Proposition 3.3. Let Γ be an almost bipartite distance-regular graph of valency k. If the adjacency matrix A of Γ has an eigenvalue θ of multiplicity f with $1<f \leq k$, then Γ is 2 -homogeneous.

In the following we prove the above proposition in a similar way as Yamazaki's proof [22].

Let $\Gamma=(X, E)$ be an almost bipartite distance-regular graph of diameter d and valency k. We may assume $d>1$ and $k>2$ since the graph is clearly 2 -homogeneous if $d=1$ or $k \leq 2$. Let c_{i}, b_{i} and $a_{i}(i=0,1, \ldots, d)$ be the usual intersection numbers of Γ. We have $a_{1}=\cdots=a_{d-1}=0$ since Γ is almost bipartite. In particular Γ has no triangle. Assume that the adjacency matrix A of Γ has an eigenvalue θ of multiplicity f with $1<f \leq k$. By [5] Proposition 4.4.1, we have a mapping $-: X \longrightarrow \mathbf{R}^{f}$ such that $\langle\bar{x}, \bar{y}\rangle=u_{i}$ holds for all x, y at distance $\partial(x, y)=i$, where $\langle\bar{x}, \bar{y}\rangle$ denote the ordinary inner product of the Euclidean space \mathbf{R}^{f}, and $\left(u_{0}, u_{1}, \ldots, u_{d}\right)$ is the standard sequence corresponding to θ, i.e., it is the sequence defined by the recurrence: $u_{0}=1, u_{1}=\theta / k, c_{i} u_{i-1}+b_{i} u_{i+1}=\theta u_{i}(i=1, \ldots, d-1)$. It is known that an eigenvalue η of A has multiplicity 1 if and only if $\eta= \pm k$ [5] Proposition 4.4.8. So $\theta \neq \pm k$ by our assumption $f>1$. Then we obtain $u_{2} \neq u_{0}=1$ from the above recurrence. Hence $\bar{x} \neq \bar{y}$ holds for all vertices x, y with $\partial(x, y)=2$.

Lemma 3.4. Let $\sigma: Y \longrightarrow X$ be a mapping from a subset Y of X which preserves distances. Then for real numbers $\lambda_{y}(y \in Y)$, $\sum_{y \in Y} \lambda_{y} \bar{y}=0$ if and only if $\sum_{y \in Y} \lambda_{y} \overline{\sigma(y)}=0$.

Proof. Use $\langle\bar{x}, \bar{y}\rangle=u_{\partial(x, y)}$ to show

$$
\left\|\sum_{y \in Y} \lambda_{y} \overline{\sigma(y)}\right\|=\left\|\sum_{y \in Y} \lambda_{y} \bar{y}\right\|=0
$$

Q.E.D.

For a subset Y of X, we denote $\bar{Y}=\{\bar{y} \mid y \in Y\}, \tilde{Y}=\sum_{y \in Y} \bar{y}$.
Lemma 3.5. For every $x \in X, \overline{\Gamma_{1}(x) \cup\{x\}}$ spans a k-dimensional subspace of \mathbf{R}^{f}. In particular $f=k$.

Proof. Assume that the subspace U spanned by $\overline{\Gamma_{1}(x) \cup\{x\}}$ has dimension $m+1<k$. Choose m vertices y_{1}, \ldots, y_{m} in $\Gamma_{1}(x)$ such that $\bar{x}, \overline{y_{1}}, \ldots, \overline{y_{m}}$ form a basis of U, and choose two distinct vertices $y, y^{\prime} \in \Gamma_{1}(u)$ which are different from y_{1}, \ldots, y_{m} (here remark that $m \leq k-2)$. Write $\bar{y}=\lambda \bar{x}+\sum_{i=1}^{m} \lambda_{i} \overline{y_{i}}\left(\lambda, \lambda_{i} \in \mathbf{R}\right)$. Applying Lemma 3.4 for $Y=\left\{x, y, y_{1}, \ldots, y_{m}\right\}$ and $\sigma: Y \longrightarrow X$ such that $\sigma(y)=y^{\prime}$,
$\sigma(x)=x, \sigma\left(y_{i}\right)=y_{i}(i=1, \ldots, m)$, we obtain $\overline{y^{\prime}}=\lambda \bar{x}+\sum_{i=1}^{m} \lambda_{i} \overline{y_{i}}$. Hence $\bar{y}=\overline{y^{\prime}}$, contradicting $\partial\left(y, y^{\prime}\right)=2$.
Q.E.D.

Lemma 3.6. There are constants $\lambda_{i}, \mu_{i}, \nu_{i}(i=2, \ldots, d)$ such that $\bar{v}=\lambda_{i} \bar{x}+\nu_{i} \widetilde{C}+\mu_{i} \widetilde{B}$ holds for all v, x with $i=\partial(v, x)$, where $C=\Gamma_{1}(x) \cap \Gamma_{i-1}(v)$ and $B=\Gamma_{1}(x) \backslash C$.

Proof. Remark that $B=\Gamma_{1}(x) \cap \Gamma_{i+1}(v)$ when $i<d$, and $B=$ $\Gamma_{1}(x) \cap \Gamma_{i}(v)$ when $i=d$. From Lemma 3.5, \bar{v} can be written as

$$
\bar{v}=\lambda \bar{x}+\sum_{y \in C} \nu_{y} \bar{y}+\sum_{z \in B} \mu_{z} \bar{z}
$$

for some $\lambda, \nu_{y}, \mu_{z} \in \mathbf{R}(y \in C, z \in B)$. We would like to show that $\nu_{y_{1}}=\nu_{y_{2}}$ holds for all $y_{1}, y_{2} \in C$. Let $y_{1}, y_{2} \in C$ with $y_{1} \neq y_{2}$. We use Lemma 3.4 for $Y=\{v, x\} \cup B \cup C$ and $\sigma: Y \longrightarrow X$ which fixes all vertices in Y except $\sigma\left(y_{1}\right)=y_{2}, \sigma\left(y_{2}\right)=y_{1}$. Clearly σ preserves distances. Then the above equation implies

$$
\bar{v}=\lambda \bar{x}+\nu_{y_{1}} \overline{y_{2}}+\nu_{y_{2}} \overline{y_{1}}+\sum_{y \in C \backslash\left\{y_{1}, y_{2}\right\}} \nu_{y} \bar{y}+\sum_{z \in B} \mu_{z} \bar{z} .
$$

These two equations imply $\nu_{y_{1}} \overline{y_{1}}+\nu_{y_{2}} \overline{y_{2}}=\nu_{y_{1}} \overline{y_{2}}+\nu_{y_{2}} \overline{y_{1}}$, and this becomes $\left(\nu_{y_{1}}-\nu_{y_{2}}\right)\left(\overline{y_{1}}-\overline{y_{2}}\right)=0$. Here we have $\overline{y_{1}} \neq \overline{y_{2}}$ by $\partial\left(y_{1}, y_{2}\right)=2$, so $\nu_{y_{1}}=\nu_{y_{2}}$. This means $\nu_{y}=\nu$ is a constant for $y \in C$. In the same way, $\mu_{z}=\mu$ is a constant for $z \in B$. Thus $\bar{v}=\lambda \bar{x}+\nu \widetilde{C}+\mu \widetilde{B}$. Use Lemma 3.4 again to show that λ, μ, ν do not depend on v and x with $\partial(v, x)=i$.
Q.E.D.

Fix two vertices v, w with $\partial(v, w)=2$ and put $\mathrm{D}_{s}^{r}=\mathrm{D}_{s}^{r}(v, w)$. We have

$$
\|\bar{v}-\bar{w}\|^{2}=\langle\bar{v}, \bar{v}\rangle+\langle\bar{w}, \bar{w}\rangle-2\langle\bar{v}, \bar{w}\rangle=u_{0}+u_{0}-2 u_{2}=2\left(u_{0}-u_{2}\right)
$$

First take $x \in \mathrm{D}_{i}^{i}(1<i<d)$ and put $A=\Gamma_{1}(x) \cap \mathrm{D}_{i-1}^{i-1}, B=\Gamma_{1}(x) \cap$ $\mathrm{D}_{i+1}^{i-1}, C=\Gamma_{1}(x) \cap \mathrm{D}_{i-1}^{i+1}, D=\Gamma_{1}(x) \cap \mathrm{D}_{i+1}^{i+1}$. Then we have a partition $\Gamma_{1}(x)=A \cup B \cup C \cup D$. Clearly we have $|A|+|B|=|A|+|C|=c_{i}$, so that $|B|=|C|$. By Lemma 3.6, we have

$$
\begin{aligned}
& \bar{v}=\lambda_{i} \bar{x}+\nu_{i}(\widetilde{A}+\widetilde{B})+\mu_{i}(\widetilde{C}+\widetilde{D}) \\
& \bar{w}=\lambda_{i} \bar{x}+\nu_{i}(\widetilde{A}+\widetilde{C})+\mu_{i}(\widetilde{B}+\widetilde{D})
\end{aligned}
$$

Hence

$$
\|\bar{v}-\bar{w}\|^{2}=\left\|\left(\nu_{i}-\mu_{i}\right)(\widetilde{B}-\widetilde{C})\right\|^{2}=\left(\nu_{i}-\mu_{i}\right)^{2}\left(\|\widetilde{B}\|^{2}+\|\widetilde{C}\|^{2}-2\langle\widetilde{B}, \widetilde{C}\rangle\right)
$$

Here we have $\|\widetilde{B}\|^{2}=\|\widetilde{C}\|^{2}=|B| u_{0}+|B|(|B|-1) u_{2}$ and $\langle\widetilde{B}, \widetilde{C}\rangle=$ $|B|^{2} u_{2}$. Hence $\|\bar{v}-\bar{w}\|^{2}=2\left(\nu_{i}-\mu_{i}\right)^{2}|B|\left(u_{0}-u_{2}\right)$. Therefore we obtain $\left(\nu_{i}-\mu_{i}\right)^{2}|B|=1$ and hence $|A|=c_{i}-|B|=c_{i}-\left(\nu_{i}-\mu_{i}\right)^{-2}$. This means the size of $\Gamma_{1}(x) \cap D_{i-1}^{i-1}$ depends only on i.

Next take $x \in \mathrm{D}_{d}^{d}$ and put $A=\Gamma_{1}(x) \cap \mathrm{D}_{d-1}^{d-1}, B=\Gamma_{1}(x) \cap \mathrm{D}_{d}^{d-1}$, $C=\Gamma_{1}(x) \cap \mathrm{D}_{d-1}^{d}, D=\Gamma_{1}(x) \cap \mathrm{D}_{d}^{d}$. Then we can show that $|A|=$ $c_{i}-\left(\nu_{i}-\mu_{i}\right)^{-2}$ in the same way.

Thus Γ satisfies (H1) and hence Γ is 2 -homogeneous by Lemma 3.2.

§4. Graphs with spin model structure

4.1. An observation

Here we observe that the examples of spin models given in Section 2 can be constructed on distance-regular graphs. Jaeger's Higman-Sims model and the Hadamard models are constructed on distance-regular graphs with the intersection arrays:

$$
\left\{\begin{array}{ccc}
0 & 1 & 6 \\
0 & 0 & 16 \\
22 & 21 & 0
\end{array}\right\}
$$

and

$$
\left\{\begin{array}{ccccc}
0 & 1 & 2 m & 4 m-1 & 4 m \\
0 & 0 & 0 & 0 & 0 \\
4 m & 4 m-1 & 2 m & 1 & 0
\end{array}\right\}
$$

The Potts models with n spins is constructed on a complete graph K_{n}, which is a distance-regular graph of diameter $d=1$ with the intersection array

$$
\left\{\begin{array}{cc}
0 & 1 \\
0 & k-1 \\
k & 0
\end{array}\right\}, \quad k=n-1
$$

The weights are given by $t_{0}=\alpha, t_{1}=\beta$, where $\beta^{2}+\beta^{-2}+\sqrt{n}=0$ and $\alpha=-\beta^{-3}$.

The cyclic model with n spins is constructed on the n-cycle C_{n} which is a distance-regular graph of diameter d with the intersection array:

$$
\left\{\begin{array}{llllll}
0 & 1 & 1 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
2 & 1 & 1 & \cdots & 1 & 0
\end{array}\right\} \quad \text { when } n=2 d+1
$$

or

$$
\left\{\begin{array}{llllll}
0 & 1 & 1 & \cdots & 1 & 2 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
2 & 1 & 1 & \cdots & 1 & 0
\end{array}\right\} \quad \text { when } n=2 d
$$

The weights are given by $t_{i}=\alpha \theta^{i^{2}}(i=0, \ldots, d)$, where θ is a primitive n-root of unity if $n=2 d+1$, a primitive $2 n$-root of unity if $n=2 d$, and $\alpha=\sqrt{n} /\left(\sum_{i=0}^{n-1} \theta^{i^{2}}\right)$.

The square model is constructed on the 4 -cycle C_{4} with $t_{0}=\alpha$, $t_{1}=\alpha^{-1}, t_{2}=-\alpha$, where α is a non-zero complex number.

Observe that all the above distance-regular graphs are almost bipartite. Moreover, as easily observed, each successive three terms t_{i-1}, t_{i}, t_{i+1} are distinct $(0<i<d)$ in each of the above spin models except the square model with $\alpha= \pm 1$.

Motivated by the above observation, the author obtained the following result [21].

Theorem 4.1. Let $\Gamma=(X, E)$ be a connected graph of diameter d which has no 3-cycle. Let t_{0}, \ldots, t_{d} be non-zero complex numbers such that $t_{1} \neq t_{i}$ and $t_{i-2} \neq t_{i} \neq t_{i-1}$ for $i=2, \ldots, d$. Define a function w on $X \times X$ by $w(x, y)=t_{\partial(x, y)}$ for $x, y \in X$. If $S=(X, w)$ is a spin model, then Γ is an almost bipartite distance-regular graph.

This was obtained by "localizing" the star-triangle relation (S3). This technique of localization was introduced in [19].

4.2. 2-homogeneity

Lemma 4.2. Let $\Gamma=(X, E)$ be a distance-regular graph of diameter $d>1$ and valency k, and let t_{0}, \ldots, t_{d} be non-zero complex numbers such that $t_{i} \neq t_{1}$ for $i=2, \ldots, d$. Assume $S=(X, w)$ is a spin model, where w is a function on $X \times X$ defined by $w(x, y)=t_{\partial(x, y)}$ for $x, y \in X$. Then the adjacency matrix A of Γ has an eigenvalue θ of multiplicity f with $1<f \leq k$.

Proof. Let $\theta_{0}=k, \theta_{1}, \ldots, \theta_{d}$ be the eigenvalues of the adjacency matrix A of Γ and let V_{i} be the eigenspace corresponding to $\theta_{i}, i=$ $0, \ldots, d$, where V_{0} is the 1-dimensional subspace of $V=\mathbf{C}^{n}$ spanned by the all 1 vector \mathbf{j}. V splits into an orthogonal direct sum:

$$
V=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{d} \quad \text { (orthogonal). }
$$

On the other hand, let $\mathbf{u}_{b c}, b, c \in X$ be the vector defined in Section 2.1, which is an eigenvector of the weight matrix W of S for the eigenvalue $\sqrt{n} w(b, c)^{-1}$.

Now fix a vertex $b \in X$. Then the vectors $\mathbf{u}_{b c}, c \in X$, form a basis of V. Let V_{i}^{\prime} be the subspace of V spanned by the vectors $\mathbf{u}_{b c}, c \in \Gamma_{i}(b)$ $(i=0, \ldots, d)$. Remark that $V_{0}^{\prime}=\langle\mathbf{j}\rangle=V_{0}$. So V splits into a direct sum:

$$
V=V_{0} \oplus V_{1}^{\prime} \oplus \cdots \oplus V_{d}^{\prime}
$$

where we have $V_{i}^{\prime} \subset V_{0}^{\perp}$ for $i=1, \ldots, d$. Since $\mathbf{u}_{b c}$ is an eigenvector of W for the eigenvalue $\sqrt{n} w(b, c)^{-1}, V_{i}^{\prime}$ is included in the eigenspace of W for the eigenvalue $\sqrt{n} t_{i}^{-1}, i=0, \ldots, d$. Since $t_{1} \neq t_{i}$ for $i=2, \ldots, d$, the eigenspace of W for the eigenvalue $\sqrt{n} t_{1}^{-1}$ is included in $V_{0} \oplus V_{1}^{\prime}$. Now consider the action of W on

$$
V_{0}^{\perp}=V_{1}^{\prime} \oplus \cdots \oplus V_{d}^{\prime}
$$

Then V_{1}^{\prime} is the eigenspace of W in V_{0}^{\perp} for the eigenvalue $\sqrt{n} t_{1}^{-1}$.
On the other hand, W is written as

$$
W=\sum_{i=0}^{d} t_{i} A_{i}
$$

where A_{i} denotes the i-th adjacency matrix of the distance-regular graph $\Gamma(i=0, \ldots, d)$. Since A_{i} is a polynomial in $A, A_{i}=v_{i}(A), W$ is written as a polynomial in A :

$$
W=\sum_{i=0}^{d} t_{i} v_{i}(A)
$$

Hence for each eigenvector \mathbf{x} of A for the eigenvalue θ_{j} of $A, j>0$, we have

$$
W \mathbf{x}=\sum_{i=0}^{d} t_{i} v_{i}(A) \mathbf{x}=\sum_{i=0}^{d} t_{i} v_{i}\left(\theta_{j}\right) \mathbf{x}
$$

so \mathbf{x} is an eigenvector of W for the eigenvalue $\sum_{i=0}^{d} t_{i} v_{i}\left(\theta_{j}\right)$. Since $\mathbf{x} \in V_{0}^{\perp}, \mathbf{x}$ must belong to some eigenspace (in V_{0}^{\perp}) of W.

Therefore we can conclude that V_{1}^{\prime} is a sum of some eigenspaces of A, say:

$$
V_{1}^{\prime}=V_{1} \oplus \cdots \oplus V_{\ell}
$$

so that

$$
k=\operatorname{dim} V_{1}^{\prime}=f_{1}+\cdots+f_{\ell}
$$

where $f_{i}=\operatorname{dim} V_{i}$. This implies $f_{i} \leq k(i=1, \ldots, \ell)$. We must show that $1<f_{i} \leq k$ holds for some $i(1 \leq i \leq \ell)$. If $\ell=1$ then we have $f_{1}=k$ and $f_{1}>1$ since $k>1$ by our assumption $d>1$. So we may
assume $\ell>1$. If $f_{i}>1$ holds for some i, then we have the conclusion. So we may assume $f_{1}=\cdots=f_{\ell}=1$. Now it is known that an eigenvalue θ of a distance-regular graph has multiplicity 1 if and only if $\theta= \pm k$ [5] Proposition 4.4.8. Hence $f_{i}=1$ occurs at most one i, that is when $\theta_{i}=-k$ (remark that $\theta_{i} \neq k$ since $\theta_{0}=k$). This implies $\ell=1$, a contradiction.
Q.E.D.

Theorem 4.3. Let $\Gamma=(X, E)$ be an almost bipartite distanceregular graph of diameter d, and let $t_{0}, t_{1}, \ldots, t_{d}$ be non-zero complex numbers such that $t_{1} \neq t_{i}$ for $i=2, \ldots, d$. If $S=(X, w)$ is a spin model with the weight w defined by $w(x, y)=t_{\partial(x, y)}, x, y \in X$, then Γ is 2-homogeneous.

Proof. It is obtained from Lemma 4.2 and Proposition 3.3.
Q.E.D.

Corollary 4.4. Let $\Gamma=(X, E)$ be a triangle-free connected graph of diameter d, and let t_{0}, \ldots, t_{d} be non-zero complex numbers such that $t_{1} \neq t_{i}$ and $t_{i-2} \neq t_{i} \neq t_{i-1}$ for $i=2, \ldots, d$. If $S=(X, w)$ is a spin model with the weight w defined by $w(x, y)=t_{\partial(x, y)}, x, y \in X$, then Γ is an almost bipartite 2-homogeneous distance-regular graph.

Proof. It is obtained from Theorem 4.1 and Theorem 4.3. Q.E.D.
Remark. The assumption 'triangle-free' in Corollary 4.4 is essential. Actually there exists a distance-regular graph Γ (with triangles) such that Γ affords a spin model structure with weights t_{0}, \ldots, t_{d} satisfying the same conditions but Γ is not 2 -homogeneous. Also remark that every connected graph can have a spin model structure with the weights $t_{1}=\cdots=t_{d}$ (Potts model), and so we need some conditions on the weights t_{0}, \ldots, t_{d} in Corollary 4.4.

§5. Classification of almost bipartite 2-homogeneous graphs

In this section we determine the intersection arrays of almost bipartite 2-homogeneous distance-regular graphs.

Theorem 5.1. Let Γ be an almost bipartite 2-homogeneous dis-tance-regular graph of diameter $d>0$ and valency k. Then Γ has one of the following intersection arrays:
(1) $\left\{\begin{array}{cc}0 & 1 \\ 0 & k-1 \\ k & 0\end{array}\right\}, k>0$,
(2) $\left\{\begin{array}{ccc}0 & 1 & k \\ 0 & 0 & 0 \\ k & k-1 & 0\end{array}\right\}, k>1$,
(3) $\left\{\begin{array}{ccc}0 & 1 & c \\ 0 & 0 & k-c \\ k & k-1 & 0\end{array}\right\}, \begin{aligned} & k=\gamma\left(\gamma^{2}+3 \gamma+1\right), \\ & c=\gamma(\gamma+1), \gamma>0,\end{aligned}$
(4) $\left\{\begin{array}{cccc}0 & 1 & k-1 & k \\ 0 & 0 & 0 & 0 \\ k & k-1 & 1 & 0\end{array}\right\}, k>1$,
(5) $\left\{\begin{array}{ccccc}0 & 1 & 2 \gamma & 4 \gamma-1 & 4 \gamma \\ 0 & 0 & 0 & 0 & 0 \\ 4 \gamma & 4 \gamma-1 & 2 \gamma & 1 & 0\end{array}\right\}, \gamma>0$,
(6) $\left\{\begin{array}{cccccc}0 & 1 & c & k-c & k-1 & k \\ 0 & 0 & 0 & 0 & 0 & 0 \\ k & k-1 & k-c & c & 1 & 0\end{array}\right\}, \begin{aligned} & k=\gamma\left(\gamma^{2}+3 \gamma+1\right), \\ & c=\gamma(\gamma+1), \gamma>0,\end{aligned}$
(7) $\left\{\begin{array}{ccccc}0 & 1 & \cdots & 1 & 2 \\ 0 & 0 & \cdots & 0 & 0 \\ 2 & 1 & \cdots & 1 & 0\end{array}\right\}, d>1$,
(8) $\left\{\begin{array}{ccccc}0 & 1 & \cdots & 1 & 1 \\ 0 & 0 & \cdots & 0 & 1 \\ 2 & 1 & \cdots & 1 & 0\end{array}\right\}, d>1$,
(9) $\left\{\begin{array}{ccccccc}0 & 1 & 2 & 3 & \cdots & k-1 & k \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ k & k-1 & k-2 & k-3 & \cdots & 1 & 0\end{array}\right\}, k=d$,
(10) $\left\{\begin{array}{ccccccc}0 & 1 & 2 & 3 & \cdots & d-1 & d \\ 0 & 0 & 0 & 0 & \cdots & 0 & d+1 \\ 2 d+1 & 2 d & 2 d-1 & 2 d-2 & \cdots & d+2 & 0\end{array}\right\} d>1$.

Remark. The intersection arrays in the above list are realized by the following graphs:
(1) complete graph K_{k+1},
(2) complete bipartite graph $K_{k, k}$,
(3) antipodal quotient of 5 -dimensional hypercube when $\gamma=1$,

Higman-Sims graph when $\gamma=2$, the existence of graphs is unknown when $\gamma>2$,
(4) complement of $2 \times(k+1)$-grid,
(5) Hadamard graph of valency $k=4 \gamma$,
(6) antipodal double cover of (3),
(7) cycle $C_{2 d+1}$ of length $2 d+1$,
(8) cycle $C_{2 d}$ of length $2 d$,
(9) d-dimensional hypercube,
(10) antipodal quotient of $(2 d+1)$-dimensional hypercube.

Now we prove Theorem 5.1. Let $\Gamma=(X, E)$ be an almost bipartite 2-homogeneous distance-regular graph of diameter d and valency k with the intersection array:

$$
\left\{\begin{array}{cccccc}
0 & c_{1} & c_{2} & \cdots & c_{d-1} & c_{d} \\
0 & a_{1} & a_{2} & \cdots & a_{d-1} & a_{d} \\
b_{0} & b_{1} & b_{2} & \cdots & b_{d-1} & 0
\end{array}\right\} .
$$

We have $a_{i}=0(i=1, \ldots, d-1), c_{1}=1, b_{0}=k, b_{1}=k-1$ and $a_{d}=k-c_{d}$. If $k \leq 2$ or $d \leq 1$, then Γ is isomorphic to a cycle or a complete graph and the intersection array of Γ becomes (1), (7) or (8). So in the following we assume $k>2$ and $d>1$. In particular we have $a_{1}=0$ and hence Γ has no 3 -cycle.

By Lemma 3.1 and Lemma 3.2, Γ satisfies condition (H2), so that there are constants $\gamma_{1}, \ldots, \gamma_{d}$ such that

$$
\gamma_{i}=\left|\Gamma_{i-1}(u) \cap \Gamma_{1}(x) \cap \Gamma_{1}(y)\right|
$$

holds for all vertices $u, x, y \in X$ with $\partial(u, x)=\partial(u, y)=i$ and $\partial(x, y)=$ $2(i=1, \ldots, d)$.

Lemma 5.2. (i) $c_{2}>1$,
(ii) $(k-2)\left(\gamma_{2}-1\right)=\left(c_{2}-1\right)\left(c_{2}-2\right)$,
(iii) $\gamma_{i}\left(c_{i+1}-1\right)=c_{i}\left(c_{2}-1\right),(0<i<d)$,
(iv) $\left(c_{2}-1\right)\left(\gamma_{i}-1\right)=\left(c_{i}-1\right)\left(\gamma_{2}-1\right),(0<i<d)$.

Proof. Fix a vertex u in X.
(i) We claim that $\gamma_{i}>0$ if $c_{i}=1$. Pick a vertex w in $\Gamma_{i-1}(u)$. Then w has at least two neighbours x, y in $\Gamma_{i}(u)$, since we have $b_{i-1}=$ $k-c_{i-1} \geq k-c_{i}=k-1>1$. So we have $\partial(x, y)=2$ and $w \in$ $\Gamma_{i-1}(u) \cap \Gamma_{1}(x) \cap \Gamma_{1}(y)$, and hence $\gamma_{i}>0$.

First assume $c_{d}=1$. We have $\gamma_{d}>0$ as shown above. Each vertex v in $\Gamma_{d}(u)$ has at least two distinct neighbours x, y in $\Gamma_{d}(u)$ since $a_{d}=k-c_{d}=k-1 \geq 2$. Then $\partial(x, y)=2$ since Γ has no 3 -cycle, and hence x and y has at least one common neighbour z in $\Gamma_{d-1}(u)$ by $\gamma_{d}>0$. We have $\partial(v, z)=2$ and x, y are common neighbours of v and z, so that $c_{2}>1$.

Next assume $c_{d}>1$. Since $1=c_{1} \leq c_{2} \leq \cdots \leq c_{d}$ and $c_{d}>1$, there is an integer r such that $1=c_{1}=c_{2}=\cdots=c_{r}<c_{r+1}$. Pick a vertex z in $\Gamma_{r+1}(u)$. Since $c_{r+1}>1, z$ has at least two distinct neighbours x^{\prime}, $y^{\prime} \in \Gamma_{r}(u)$. Since $\partial\left(x^{\prime}, y^{\prime}\right)=2$ and $\gamma_{r}>0$ by the above claim, x^{\prime} and y^{\prime}
have a common neighbour v in $\Gamma_{r-1}(u)$. Then $z \in \Gamma_{2}(v)$, and z has two distinct neighbours x^{\prime}, y^{\prime} in $\Gamma_{1}(v)$. This implies $c_{2} \geq 2$.
(ii) Fix an edge $v w$ with $v \in \Gamma_{1}(u)$ and $w \in \Gamma_{2}(u)$. We count the number N of edges $x y$ with $x \in \Gamma_{1}(u) \cap \Gamma_{1}(w) \cap \Gamma_{2}(v)$ and $y \in$ $\Gamma_{1}(v) \cap \Gamma_{2}(u) \cap \Gamma_{2}(w)$ in two different ways. Since $w \in \Gamma_{2}(u)$, there are precisely $c_{2}-1$ vertices $x \in \Gamma_{1}(u) \cap \Gamma_{1}(w)$ with $x \neq v$. Fix such a vertex x. Since $x \in \Gamma_{2}(v)$, there are precisely $c_{2}-2$ vertices $y \in \Gamma_{1}(v) \cap \Gamma_{1}(x)$ with $y \neq u, y \neq w$. So we have $N=\left(c_{2}-1\right)\left(c_{2}-2\right)$. On the other hand, there are precisely $k-2$ vertices $y \in \Gamma_{2}(u) \cap \Gamma_{1}(v)$ with $y \neq w$. Fix such a vertex y. Since $w, y \in \Gamma_{2}(u)$ and $\partial(w, y)=2, w$ and y have precisely $\gamma_{2}-1$ common neighbours x in $\Gamma_{1}(u)$ with $x \neq v$. So we obtain $N=(k-2)\left(\gamma_{2}-1\right)$.
(iii) Fix an edge $v w$ with $v \in \Gamma_{i}(u)$ and $w \in \Gamma_{i+1}(u)$. We count the number N of edges $x y$ with $x \in \Gamma_{i-1}(u) \cap \Gamma_{1}(v)$ and $y \in \Gamma_{i}(u) \cap$ $\Gamma_{1}(w) \cap \Gamma_{2}(v)$ in two different ways. Since $v \in \Gamma_{i}(u), v$ has precisely c_{i} neighbours x in $\Gamma_{i-1}(u)$. Fix such a vertex x. Since $w \in \Gamma_{2}(x), w$ has precisely $c_{2}-1$ neighbours y in $\Gamma_{1}(x)$ with $y \neq v$. Hence we have $N=c_{i}\left(c_{2}-1\right)$. On the other hand, since $w \in \Gamma_{i+1}(u), w$ has precisely $c_{i+1}-1$ neighbours y in $\Gamma_{i}(u)$ with $y \neq v$. Fix such a vertex y. Since v, $y \in \Gamma_{i}(u)$ and $\partial(v, y)=2, v$ and y have precisely γ_{i} common neighbours x in $\Gamma_{i-1}(u)$. So we obtain $N=\left(c_{i+1}-1\right) \gamma_{i}$.
(iv) Fix a path $z v w$ with $z \in \Gamma_{i-1}(u), v \in \Gamma_{i}(u), w \in \Gamma_{i+1}(u)$, and count the number of edges $x y$ with $x \in \Gamma_{i-1}(u) \cap \Gamma_{1}(v) \cap \Gamma_{2}(z)$ and $y \in \Gamma_{i}(u) \cap \Gamma_{1}(z) \cap \Gamma_{1}(w) \cap \Gamma_{2}(v)$ in two different ways. Since $v \in \Gamma_{i}(u), v$ has precisely $c_{i}-1$ neighbours x in $\Gamma_{i-1}(u)$ with $x \neq z$. Fix such a vertex x. Since $x, z \in \Gamma_{2}(w)$ and $\partial(x, z)=2, x$ and z have precisely $\gamma_{2}-1$ common neighbours y in $\Gamma_{1}(w)$ with $y \neq v$. So we have $N=\left(c_{i}-1\right)\left(\gamma_{2}-2\right)$. On the other hand, since $w \in \Gamma_{2}(z), w$ has precisely $c_{2}-1$ neighbours y in $\Gamma_{1}(z)$ with $y \neq v$. Fix such a vertex y. Since $v, y \in \Gamma_{i}(u)$ and $\partial(v, y)=2, v$ and y have precisely $\gamma_{i}-1$ common neighbours x in $\Gamma_{i-1}(u)$ with $x \neq z$. So we obtain $N=\left(c_{2}-1\right)\left(\gamma_{i}-1\right)$.
Q.E.D.

Lemma 5.3. If $a_{d}>0$,
(v) $c_{d}\left(c_{2}-1\right)=\left(k-c_{d}-1\right) \gamma_{d}$,
(vi) $k \geq 2 c_{d}$.

Proof. (v) Since $a_{d}>0$, there is an edge $v w$ in $\Gamma_{d}(u)$. We count the number N of edges $x y$ with $x \in \Gamma_{d-1}(u) \cap \Gamma_{1}(v)$ and $y \in \Gamma_{d}(u) \cap$ $\Gamma_{1}(w) \cap \Gamma_{2}(v)$ in two different ways. Since $v \in \Gamma_{d}(u), v$ has precisely c_{d} neighbours x in $\Gamma_{d-1}(u)$. Fix such a vertex x. Since $x \in \Gamma_{2}(w), x$ has precisely $c_{2}-1$ neighbours y in $\Gamma_{1}(w)$ with $y \neq v$, where we have
$y \in \Gamma_{d}(u)$ since there is no edge in $\Gamma_{d-1}(u)$. So we have $N=c_{d}\left(c_{2}-1\right)$. On the other hand, since $w \in \Gamma_{d}(u), w$ has precisely $a_{d}-1$ neighbours y in $\Gamma_{d}(u)$ with $y \neq v$. Fix such a vertex y. Since $v, y \in \Gamma_{d}(u)$ and $\partial(v, y)=2, v$ and y have precisely γ_{d} common neighbours x in $\Gamma_{d-1}(u)$. So we obtain $N=\left(a_{d}-1\right) \gamma_{d}=\left(k-c_{d}-1\right) \gamma_{d}$.
(vi) Let $v w$ be an edge in $\Gamma_{d}(u)$. If there is a vertex x in $\Gamma_{1}(u) \cap$ $\Gamma_{d-1}(v) \cap \Gamma_{d-1}(w)$, then $u v$ is an edge in $\Gamma_{d-1}(x)$, contradicting $a_{d-1}=$ 0 . Hence $\Gamma_{1}(u) \cap \Gamma_{d-1}(v)$ and $\Gamma_{1}(u) \cap \Gamma_{d-1}(w)$ are mutually disjoint, each of which has size c_{d} since $u \in \Gamma_{d}(v)$ and $u \in \Gamma_{d}(w)$. Hence $k=$ $\left|\Gamma_{1}(u)\right| \geq 2 c_{d}$.
Q.E.D.

To simplify notations, we put

$$
c=c_{2}, \quad \gamma=\gamma_{2}
$$

When $\gamma=1$, we have $c>1$ by Lemma 5.2 (i), and hence $c=2$ by Lemma 5.2 (ii). Then $\gamma_{i}=1(i=1, \ldots, d-1)$ by Lemma 5.2 (iv) and this implies $c_{i}=i(i=1, \ldots, d)$ by Lemma 5.2 (iii). If $a_{d}=0$ then we have $k=c_{d}=d$, so that the intersection array becomes of type (9). If $a_{d}>0$ then Lemma 5.3 (v) implies $d=(k-d-1) \gamma_{d}$, here we have $k \geq 2 c_{d}=2 d$ by Lemma 5.3 (vi). Hence we must have $\gamma_{d}=1$ and $k=2 d+1$ so that the intersection array becomes of type (10).

Now we assume $\gamma>1$. By Lemma 5.2 (i), (ii), we have $c>1$ and

$$
k=\frac{(c-1)(c-2)}{\gamma-1}+2 .
$$

First we consider the case $a_{d}>0$.
When $d=2$, Lemma 5.3 (v) becomes

$$
k=\frac{c(c-1)}{\gamma}+c+1
$$

and hence we have

$$
\frac{(c-1)(c-2)}{\gamma-1}+2=\frac{c(c-1)}{\gamma}+c+1
$$

This becomes

$$
c=\gamma(\gamma+1)
$$

and hence

$$
k=\frac{(c-1)(c-2)}{\gamma-1}+2=\gamma\left(\gamma^{2}+3 \gamma+1\right)
$$

so that the intersection array becomes of type (3) in the case $d=2$.

Assume $d>2$. We have $2 c_{3} \leq k$ by Lemma 5.3 (vi) and by $c_{3} \leq c_{d}$. By Lemma 5.2 (iii), we have

$$
c_{3}=\frac{c(c-1)}{\gamma}+1
$$

So $2 c_{3} \leq k$ implies

$$
2\left(\frac{c(c-1)}{\gamma}+1\right) \leq \frac{(c-1)(c-2)}{\gamma-1}+2
$$

and this becomes

$$
2(\gamma-1) c(c-1) \leq \gamma(c-1)(c-2)
$$

By Lemma 5.2 (i), we have $c-1>0$, so the above inequality implies

$$
2(\gamma-1) c \leq \gamma(c-2)
$$

and hence

$$
(\gamma-2) c+2 \gamma \leq 0
$$

This is impossible by our assumption $\gamma \geq 2$. Thus the case $d>2$ does not occur.

Next we consider the case $a_{d}=0$. Since $b_{0}=k, b_{1}=k-1$ and $b_{2}=k-c$, we have

$$
\begin{gathered}
b_{0}=\frac{(c-1)(c-2)}{\gamma-1}+2, \quad b_{1}=\frac{(c-1)(c-2)}{\gamma-1}+1 \\
b_{2}=\frac{(c-1)(c-2)}{\gamma-1}+2-c=\frac{(c-\gamma)(c-2)}{\gamma-1}
\end{gathered}
$$

From Lemma 5.2 (iii) with $i=2$, we obtain

$$
c_{3}=\frac{c(c-1)}{\gamma}+1=\frac{c^{2}-c+\gamma}{\gamma}
$$

and $b_{3}=k-c_{3}$ implies

$$
b_{3}=\frac{(c-1)(c-2)}{\gamma-1}+2-\frac{c^{2}-c+\gamma}{\gamma}=\frac{(c-\gamma)(c-\gamma-1)}{\gamma(\gamma-1)} .
$$

When $d>3$, Lemma 5.2 (iii), (iv) and $c_{3}=\left(c^{2}-c+\gamma\right) / \gamma$ imply

$$
c_{4}=\frac{c\left(c^{2}-2 c+2 \gamma\right)}{\gamma+\gamma c-c}
$$

and $b_{4}=k-c_{4}$ implies

$$
b_{4}=\frac{(c-\gamma)(c-2 \gamma)}{(\gamma-1)(c \gamma+\gamma-c)}
$$

When $d>4$, Lemma 5.2 (iii), (iv) imply

$$
c_{5}=\frac{c^{4}-3 c^{3}+c^{2}+3 \gamma c^{2}-2 \gamma c+\gamma^{2}}{\gamma c^{2}+\gamma^{2}-c^{2}}
$$

and $b_{5}=k-c_{5}$ implies

$$
b_{5}=\frac{(c-\gamma)\left(c-\gamma-\gamma^{2}\right)}{(\gamma-1)\left(c^{2} \gamma+\gamma^{2}-c^{2}\right)}
$$

If $d>5$, we have $b_{5} \geq 1$, so the above equation implies (noting that the denominator is positive since $\gamma>1$)

$$
(c-\gamma)\left(c-\gamma-\gamma^{2}\right) \geq(\gamma-1)\left(c^{2} \gamma+\gamma^{2}-c^{2}\right)
$$

and this becomes

$$
\gamma(c-1)(2 c-2 \gamma-c \gamma) \geq 0
$$

This implies a contradiction since $c \geq 2$ and $\gamma \geq 2$. Hence we have $d \leq 5$.

When $d=5$, we have $b_{5}=0$, and this implies $c=\gamma$ or $c=\gamma^{2}+\gamma$. But $c=\gamma$ does not occur by Lemma 5.2 (ii) since $c_{2}=k-b_{2}<k$. So we have $c=\gamma^{2}+\gamma$. Substituting this value of c in the above equations, we obtain $k=\gamma\left(\gamma^{2}+3 \gamma+1\right), c_{3}=k-c, c_{4}=k-1$. So the intersection array becomes of type (6).

When $d=4$, we have $b_{4}=0$, and this implies $c=2 \gamma(c=\gamma$ is impossible as above). So we obtain $k=4 \gamma, c_{3}=k-1$, so the intersection array becomes of type (5).

When $d=3$, we have $b_{3}=0$, and this implies $c=\gamma+1$. So we obtain $c=k-1$, and the intersection array becomes of type (4).

This completes the proof of Theorem 5.1.

References

[1] E. Bannai and Et. Bannai, Generalized generalized spin models (fourweight spin models), Pacific J. Math., to appear.
[2] E. Bannai and Et. Bannai, Spin models on finite cyclic groups, J. Algebraic Combin., 3 (1994), 243-259.
[3] E. Bannai, Et. Bannai and F. Jaeger, On spin models, modular invariance, and duality, submitted.
[4] E. Bannai and T. Ito, "Algebraic Combinatorics I", Benjamin/Cummings, 1984.
[5] A. E. Brouwer, A. M. Cohen and A. Neumaier, "Distance-Reguar Graphs", Springer-Verlag, Berlin, Heidelberg, 1989.
[6] D. M. Goldschmidt and V. Jones, Metaplectic link invariants, Geom. Dedicata, 31 (1989), 165-191.
[7] P. de la Harpe, Spin models for link polynomials, strongly regular graphs and Jaeger's Higman-Sims model, Pacific J. Math, 162 (57-96).
[8] D. Higman and C. Sims, A simple group of order 44,352,000, Math. Z., 105 (1968), 110-113.
[9] F. Jaeger, Strongly regular graphs and spin models for the Kauffman polynomial, Geom. Dedicata, 44 (1992), 23-52.
[10] F. Jaeger, On spin models, triply regular association schemes, and duality, J. Algebraic Combin., 4 (1995), 103-144.
[11] F. Jaeger, New constructions of models for link invariants, Pacific J. Math., to appear.
[12] V. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math., 137 (1989), 311-336.
[13] V. Jones, private communication.
[14] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc., 318 (1990), 417-471.
[15] K. Kawagoe, A. Munemasa and Y. Watatani, Generalized spin models, J. Knot Theory Ramifications, 3 (1994), 465-475.
[16] V. G. Kac and M. Wakimoto, A construction of generalized spin models, preprint.
[17] K. Nomura, Spin models constructed from Hadamard matrices, J. Combin. Theory Ser. A, 68 (1994), 251-261.
[18] K. Nomura, Homogeneous graphs and regular near polygons, J. Combin. Theory Ser. B, 60 (1994), 63-71.
[19] K. Nomura, Spin models with an eigenvalue of small multiplicity, J. Combin. Theory Ser. A, 71 (1995), 293-315.
[20] K. Nomura, Spin models on bipartite distance-regular graphs, J. Combin. Theory Ser. B, 64 (1995), 300-313.
[21] K. Nomura, Spin models on triangle-free connected graphs, submitted.
[22] N. Yamazaki, Bipartite distance-regular graphs with an eigenvalue of multiplicity k, J. Combin. Theory Ser. B, to appear.

Tokyo Ikashika University
Ichikawa, Chiba 272, Japan

