Trudinger's Inequality and Related Nonlinear Elliptic Equations in Two-Dimension

Takayoshi Ogawa and Takashi Suzuki

§1. Introduction and results

We are concerned with the following nonlinear elliptic equations:

$$
\left\{\begin{array}{cll}
-\Delta u=\lambda u e^{u^{2}}, & & x \in B \tag{1}\\
u=0, & & x \in \partial \Omega
\end{array}\right.
$$

where $B=B_{1}(0) \subset \mathbb{R}^{2}$ is a unit disk in \mathbb{R}^{2} and λ is a positive parameter. We consider a family of solutions of (1) satisfying

$$
\begin{equation*}
\|u\|_{L^{\infty}} \rightarrow \infty \quad \text { as } \lambda \rightarrow 0 \tag{2}
\end{equation*}
$$

The nonlinearity of the equation (1) is the Sobolev critical exponent in two-dimension. For any domain $\Omega \in \mathbb{R}^{2}$, It is well known that the Sobolev space $H_{0}^{1}(\Omega)$ is continuously imbedded in $L^{p}(\Omega)$ for any $p<\infty$ but is false in the case $p=\infty$. Trudinger [18] showed that for any $u \in H_{0}^{1}(\Omega)$ with $\|\nabla u\|_{2}=1$, there are two constants $\alpha>0$ and $C>0$ such that

$$
\begin{equation*}
\int_{\Omega} \exp \left\{\alpha u^{2}\right\} d x \leq C|\Omega| \tag{3}
\end{equation*}
$$

Later, Moser [7] simplified the proof and improved that (3) is also valid for $\alpha \leq 4 \pi$. Here 4π is the constant of the isoperimetric inequality. The inequality (3) is also valid for any unbounded domain (Ogawa [9]). That is when Ω is any domain in \mathbb{R}^{2}, we have for all $u \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}\left\{\exp \left(u^{2}\right)-1\right\} d x \leq C\|u\|_{2}^{2}, \quad\|\nabla u\|_{2}=1 \tag{4}
\end{equation*}
$$

(See also Ogawa-Ozawa [10] and Ozawa [12] for further extensions).

These inequalities (3)-(4) indicates that the order of local singularities of H^{1} functions are allowed as far as $\exp \left(u^{2}\right)$ is integrable. In other words $e^{u^{2}}$ is the critical order of integrability for H^{1}-functions.

Concerning our problem (1), there are two different approaches. One is the variational method. When we consider the maximizing problem of the functional

$$
\begin{equation*}
\int_{\Omega} \exp \left\{\alpha u^{2}\right\} d x \quad \text { for } u \in H_{0}^{1}(\Omega), \quad\|\nabla u\|_{2}=1 \tag{5}
\end{equation*}
$$

on a bounded domain. Then the extremal function (if it is achieved) becomes a solution of (1). Shaw [14] showed the existence of a positive solution of (1) for each parameter $\lambda>0$ (see also Adimurti [1]). When the domain is a ball in \mathbb{R}^{n}, the maximum can be attained by some function even when $n=2$ and $\alpha=4 \pi$ (Carleson-Chang [4]).

When the domain is a unit disk, all the positive smooth solution must be radially symmetric by Gidas-Ni-Nirenberg's result [5]. Therefore the Dirichlet problem may be written as the nonlinear ordinary differential equation:

$$
\left\{\begin{array}{l}
-u_{r r}-\frac{1}{r} u_{r}=\lambda u e^{u^{2}}, \quad x \in[0,1), \tag{6}\\
u(1)=0, \quad u^{\prime}(0)=0
\end{array}\right.
$$

By solving (6), we can obtain the details of the properties of the positive solution of (1), which is the second method. Atkinson-Peletier [2], [3] applied the shooting method to (6) and proved that the existence of radially symmetric solution of (1) satisfying

$$
\|u\|_{L^{\infty}} \rightarrow \infty \text { as } \lambda \rightarrow 0
$$

Our aim of this paper is to specify more precise behavior of the family of solutions $\{(u, \lambda)\}$ as $\lambda \rightarrow 0$. We have two results. First one states a global behavior of the solutions.

Theorem A. Let u be a positive solution of (1) with the blow up condition (2). That is

$$
\|u\|_{L^{\infty}(B)}=u(0) \rightarrow \infty \text { as } \lambda \rightarrow 0 .
$$

Then we have

$$
u(x) \rightarrow 0 \text { as } \lambda \rightarrow 0
$$

for all $x \in B \backslash\{0\}$. Moreover we have

$$
\begin{align*}
& \lim _{\lambda \rightarrow 0} \lambda \int_{B} u e^{u^{2}} d x=0 \tag{7}\\
& \lim _{\lambda \rightarrow 0} \lambda \int_{B}\left(e^{u^{2}}-1\right) d x=0 \tag{8}\\
& \frac{\lim _{\lambda \rightarrow 0}}{} \int_{B}|\nabla u|^{2} d x \geq 4 \pi \tag{9}
\end{align*}
$$

This theorem says that the solution satisfying (2) must blow-up only at the origin. The inequality (9) shows the solution concentrates to the origin with its energy density $|\nabla u|^{2}$. The lower bound in (9) arise from the sharp exponent of the Trudinger inequality (3).

The second result is a microscopic behavior near the origin. When we rescale the solution by some sequence, then the solution has a limit function.

Theorem B. There is a subsequence $\left\{\left(u_{m}, \lambda_{m}\right)\right\}$ of a family of solutions of (1) with (2) and a scaling sequance $\left\{\gamma_{m}\right\}$ such that $\gamma_{m} \rightarrow 0$ as $\lambda_{m} \rightarrow 0$ which satisfy

$$
\begin{equation*}
u^{2}\left(\gamma_{m} x\right)-u^{2}\left(\gamma_{m}\right) \rightarrow 2 \log \left(\frac{2}{1+|x|^{2}}\right) \quad \text { as } \lambda_{m} \rightarrow 0 \tag{10}
\end{equation*}
$$

locally uniformly on $B \backslash\{0\}$.
The limit function of (10) is an exact solution of $-\Delta v=2 e^{v}$. Remark that since the nonlinearity of our problem is nonhomogeneous, the usual scaling $u \rightarrow \gamma^{\mu} u(\gamma x)$ does not work well. (For other nonlinearity or the higher dimensional case, see Nagasaki-Suzuki [8] and Itoh [6].)

The property (10) was firstly observed by Carleson-Chang in an implicit way. Later Struwe [15] obtained the similar result for the noncompact maximizing sequence for the variational problem (5) for the case $\alpha=4 \pi$. Our result Theorem B is, however, different from theirs, because in our case, the each factor of the sequence $\left.\left\{u_{m}, \lambda_{m}\right)\right\}$ satisfies the equation (1). Moreover even the energy integral might blow up as $\lambda \rightarrow 0$ and therefore we can not obtain a priori estimate of $\left\{u_{m}\right\}$ from the Dirichlet integral. This is the crucial difference from the variational setting.

§2. Proof of Theorem A

We begin with the following lemma.

Lemma 1. Let u be a positive, radially symmetric smooth solution of (1). We put $r=|x|$. Then we have

$$
\begin{align*}
& r^{2} u_{r}(r)^{2}+2 \lambda r^{2}\left(e^{u^{2}(r)}-1\right)=\frac{\lambda}{2 \pi} \int_{B_{r}}\left(e^{u^{2}}-1\right) d x \tag{11}\\
& r u_{r}(r)=-\frac{\lambda}{2 \pi} \int_{B_{r}} u e^{u^{2}} d x \tag{12}
\end{align*}
$$

where $B_{r}=\left\{y \in \mathbb{R}^{2},|y|<r\right\}$.
The first relation (11) is nothing else but the Pohozaev identity ([13]) associated to the equation (1).

Proof. Let u be a radially symmetric smooth solution of (1). Then u satisfies (6). Mutiplying (6) by $r u_{r}(r)$ and integrating on $B_{r_{0}}$, we have

$$
-\int_{0}^{r_{0}} r^{2} u_{r} u_{r r} d r-\int_{0}^{r_{0}} r u_{r}^{2} d r=\lambda \int_{0}^{r_{0}} u e^{u^{2}} r^{2} u_{r} d r
$$

Integrating by parts, we obtain

$$
-\frac{1}{2} r_{0}^{2} u_{r}\left(r_{0}\right)^{2}=\frac{\lambda}{2} r_{0}^{2} e^{u^{2}\left(r_{0}\right)}-\frac{\lambda}{2 \pi} \int_{B_{r_{0}}} e^{u^{2}} d x
$$

which implies (11). The second relation (12) is a direct consequence of integration of the equation (6) on B_{r}.
Q.E.D.

Proof of Theorem A. Combining (11) and (12) in Lemma 1 with choosing $r=1$, we get

$$
\begin{equation*}
\frac{1}{4 \pi}\left(\lambda \int_{B} u e^{u^{2}} d x\right)^{2}=\lambda \int_{B}\left(e^{u^{2}}-1\right) d x \tag{13}
\end{equation*}
$$

For any $k>0$, we put

$$
C_{k}=\max _{u \geq k} \frac{1-e^{-u^{2}}}{u}
$$

Then we see $C_{k} \leq 1 / k \rightarrow 0$ as $k \rightarrow \infty$. From (13)

$$
\begin{aligned}
\frac{1}{4 \pi}\left(\lambda \int_{B} u e^{u^{2}} d x\right)^{2} & =\lambda \int_{u \geq k}\left(e^{u^{2}}-1\right) d x+\lambda \int_{u<k}\left(e^{u^{2}}-1\right) d x \\
& \leq \lambda C_{k} \int_{B} u e^{u^{2}} d x+\lambda|B|\left\{e^{k^{2}}-1\right\}
\end{aligned}
$$

Accordingly we have

$$
\varlimsup_{\lambda \rightarrow 0}\left(\lambda \int_{B} u e^{u^{2}} d x\right) \leq 4 \pi C_{k}
$$

Since k is arbitrary, we can take k so large to obtain

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}\left(\lambda \int_{B} u e^{u^{2}} d x\right)=0 \tag{14}
\end{equation*}
$$

which shows (7) and therefore (8) by (13). Using (12) again, we have

$$
\begin{equation*}
r u_{r} \rightarrow 0 \quad \text { as } \lambda \rightarrow 0 \quad \text { uniformly on } B . \tag{15}
\end{equation*}
$$

This proves that u vanishes except the origin, since

$$
\begin{aligned}
u(x) & =-\int_{|x|}^{1} u_{r} d r \\
& \leq \frac{1}{\varepsilon} \int_{\varepsilon}^{1} r u_{r}(r) d r \rightarrow 0
\end{aligned}
$$

Finally, if

$$
\varliminf_{\lambda \rightarrow 0} \int_{B}|\nabla u|^{2} d x<4 \pi
$$

then there is a subsequence $\left\{\left(u_{m}, \lambda_{m}\right)\right\}$ such that $\lim _{m \rightarrow \infty}\left\|\nabla u_{m}\right\|_{2}^{2}=$ $4 \pi-\delta$ for some $\delta>0$. By virtue of the sharp version of Trudinger's inequality (3), we see

$$
\int_{\Omega} \exp \left\{\alpha u_{m}^{2}\right\} d x \leq C|\Omega|
$$

with $\alpha=1+\varepsilon$. Since $u \in L^{p}(B)$ for any $2 \leq p<\infty$, we have $\lambda_{m} u_{m} e^{u_{m}^{2}} \in$ $L^{1+\varepsilon / 2}$. By the standard elliptic regularity theorem, $\left\|\Delta u_{m}\right\|_{L^{1+\varepsilon / 2}} \leq C$ and

$$
\left.\left\|u_{m}\right\|_{L^{\infty}(B)} \leq C \quad \text { (independent of } m\right)
$$

which contradicts our assumption (2). Therefore we obtain (9). Q.E.D.

§3. Proof of Theorem B

By the transform $r=e^{-t / 2}$ and $u(r)=w(t)$, we rewrite the equation (6) into the following:

$$
\left\{\begin{array}{l}
-w^{\prime \prime}(t)=\frac{\lambda}{4} w(t) e^{w(t)^{2}-t} \quad \text { on }[0, \infty) \tag{16}\\
w(0)=0, \\
w^{\prime}(t) e^{t / 2} \rightarrow 0 \quad(t \rightarrow 0)
\end{array}\right.
$$

For some scaling parameter τ such that $\tau \rightarrow \infty$, we define the rescaling function $v(t)$ as

$$
v(t) \equiv w^{2}(t+\tau)-w^{2}(\tau)
$$

Putting $w_{\tau}(t) \equiv w(t+\tau)$, we see that v satisfies

$$
\begin{align*}
& -v^{\prime \prime}(t)=k\left(w_{\tau}(t)\right) e^{v(t)-t}-\rho\left(w_{\tau}\right) \tag{17.a}\\
& v(0)=0 \tag{17.b}\\
& \lim _{t \rightarrow \infty}\left(\frac{v^{\prime}(t) e^{(t+\tau) / 2}}{w_{\tau}(t)}\right)=0 \tag{17.c}
\end{align*}
$$

where we have put

$$
\begin{aligned}
& k\left(w_{\tau}\right)=\frac{\lambda}{2} w_{\tau}(t)^{2} e^{w(\tau)^{2}-\tau} \\
& \rho\left(w_{\tau}(t)\right)=2 w_{\tau}^{\prime}(t)^{2}
\end{aligned}
$$

We first show that;
Lemma 2. Let $\tau>0$ satisfies $w(t+\tau) \geq 1$ as $\lambda \rightarrow 0$ for all $t \in[-\delta, \infty)$ where $0<\delta<\tau$. Then we have

$$
\begin{align*}
& \rho\left(w_{\tau}(t)\right) \rightarrow 0 \text { uniformly on }[-\tau, \infty) \tag{18}\\
& \frac{w_{\tau}(t)^{2}}{w(\tau)^{2}} \rightarrow 1 \quad \text { locally uniformly on }[-\delta, \infty) \tag{19}
\end{align*}
$$

as $\lambda \rightarrow 0$.
Proof. Since from (15), we have for $\gamma=e^{-\tau / 2}$,

$$
\begin{equation*}
\rho\left(w_{\tau}(t)\right)=2 w_{\tau}^{\prime}(t)^{2}=\frac{1}{2}(\gamma r)^{2} u_{r}(\gamma r)^{2} \rightarrow 0 \tag{20}
\end{equation*}
$$

uniformly for $r \in[0,1 / \gamma]$ and therefore $t \in[-\tau, \infty)$. This shows (18).

To show (19), we use

$$
w_{\tau}(t)^{2}=w(\tau)^{2}+2 \int_{0}^{t} w_{\tau}(s) w_{\tau}^{\prime}(s) d s
$$

We only show the case when $t \geq 0$. The other case is similar. Since $w_{\tau}(t)$ is increasing in t,

$$
\begin{aligned}
1 \leq \frac{w_{\tau}(t)^{2}}{w(\tau)^{2}} & =1+\frac{2}{w(\tau)^{2}} \int_{0}^{t} w_{\tau}(s) w_{\tau}^{\prime}(s) d s \\
& \leq 1+2 \int_{0}^{t} \frac{w_{\tau}(s)^{2}}{w(\tau)^{2}} \frac{w_{\tau}^{\prime}(s)}{w_{\tau}(s)} d s
\end{aligned}
$$

By (20), we can choose λ small so that $\left|w_{\tau}^{\prime}(s)\right|<\varepsilon$. Then since $w_{\tau}(s)>$ 1,

$$
1 \leq X(t) \equiv \frac{w_{\tau}(t)^{2}}{w(\tau)^{2}} \leq 1+2 \varepsilon \int_{0}^{t} X(s) d s
$$

This yields

$$
1 \leq X(t) \leq e^{2 \varepsilon t} \quad \text { for } t \in[0, \infty)
$$

In particular,

$$
X(t) \rightarrow 1 \quad \text { uniformly for } t \in[0, T] \quad \text { as } \lambda \rightarrow 0
$$

for some fixed T.
Q.E.D.

Proof of Theorem B. In the following, we shall omit the subscriptions for each subsequences.

We split the proof into two cases.
Case 1.

$$
\max _{t>0} \lambda w(t)^{2} e^{w(t)^{2}-t} \rightarrow \infty \quad(\lambda \rightarrow 0)
$$

Since $w(0)=0$, we can choose the scaling sequence $\{\tau\}$ as

$$
\begin{equation*}
\lambda w(\tau)^{2} e^{w(\tau)^{2}-\tau}=1 \tag{21}
\end{equation*}
$$

for the family of solutions $\{(u, \lambda)\}$. It is easy to see

$$
\begin{aligned}
& \tau \rightarrow \infty \\
& w(t) \rightarrow \infty \quad \text { as } \lambda \rightarrow 0
\end{aligned}
$$

Therefore we may assume $w_{\tau}(t) \geq w(\tau)>1$ for $t>-\delta$ and from Lemma 2,

$$
\begin{align*}
& w_{\tau}(t)^{2} \rightarrow 0 \text { uniformly on }[-\tau, \infty) \tag{22}\\
& \frac{w_{\tau}(t)^{2}}{w(\tau)^{2}} \rightarrow 1 \quad \text { locally uniformly on }[-\delta, \infty) \tag{23}
\end{align*}
$$

Next we claim that for any fixed $T>0$,

$$
\|v\|_{L^{\infty}(0, T)} \leq C
$$

and there is a limit function $v_{0}(t)$ such that

$$
v(t) \rightarrow v_{0}(t) \quad \text { locally uniformly on }[0, \infty)
$$

For that purpose, we set $q(r)=v(t)$ with $r=e^{-t / 2}$. Then the equation (17) can be written as follows:

$$
\left\{\begin{align*}
-\Delta q & =4 \tilde{k}(u(\gamma r)) e^{q(r)}-\tilde{\rho}(u(\gamma r)) r^{-2} \quad \text { on } B_{\gamma^{-1}} \tag{24}\\
q & =0 \text { on } \partial B
\end{align*}\right.
$$

where $B_{a}=\left\{y \in \mathbb{R}^{2}, \quad|y|<a\right\}$ and

$$
\begin{aligned}
& \tilde{k}(u(\gamma r))=\frac{\lambda}{2} \gamma^{2} u(\gamma r)^{2} e^{u(\gamma)^{2}} \\
& \tilde{\rho}(u(\gamma r))=2 \gamma^{2} r^{2} u(\gamma r)^{2}
\end{aligned}
$$

Since from (21), (22) and (23), we have for $r \in[\varepsilon, 1+\delta]$,

$$
\begin{equation*}
\left|\tilde{\rho}(u) r^{-2}\right| \leq C \frac{\eta^{2}}{\varepsilon^{2}} \rightarrow 0 \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{k}\left(u(\gamma r)=\frac{\lambda}{2} w_{\tau}(t)^{2} e^{w(\tau)^{2}-\tau}=\frac{w_{\tau}(t)^{2}}{2 w(\tau)^{2}} \rightarrow \frac{1}{2}\right. \tag{26}
\end{equation*}
$$

as $\lambda \rightarrow 0$. Therefore by the standard elliptic estimate, we have for fixed $\varepsilon>0$,

$$
\begin{align*}
& \left|q_{r}(1)\right| \leq C \tag{27}\\
& \|q\|_{L^{\infty}\left(B_{1+\delta} \backslash B\right)} \leq C . \tag{28}
\end{align*}
$$

According to (24), (25) and (27),

$$
\begin{align*}
\left\|\tilde{k}(u) e^{q}\right\|_{L^{1}\left(B \backslash B_{\varepsilon}\right)} & =\int_{B \backslash B_{\varepsilon}} \tilde{k}(u) e^{q} d x \tag{29}\\
& =\int_{B \backslash B_{\varepsilon}}-\Delta q d x+\int_{B \backslash B_{\varepsilon}} \rho(u) r^{-2} d x \\
& =2 \pi \int_{\varepsilon}^{1}-\left(r q_{r r}+q_{r}\right) d r+4 \pi \int_{\varepsilon}^{1}(\gamma r)^{2} u_{r}^{2}(\gamma r) r^{-1} d r \\
& \leq-2 \pi q_{r}(1)+C \eta^{2} \int_{\varepsilon}^{1} r^{-1} d r \\
& \leq C-C \eta^{2} \log \varepsilon \leq C .
\end{align*}
$$

Hence by (24), (25), (26) with (29), q satisfies

$$
-\Delta q=4 \tilde{k}(u) e^{q}-\tilde{\rho} r^{-2} \leq 3 e^{q}
$$

with

$$
\left\|3 e^{q}\right\|_{L^{1}\left(B \backslash B_{\varepsilon}\right)} \leq C \quad \text { independent of } \lambda .
$$

Then the nonlinear Harnack principle (Suzuki [16], [17]) implies the blow-up points of q in $B \backslash B_{\varepsilon}$ is finite. However q is radially symmetric, the blow-up points of q must be empty set. That is

$$
\varlimsup_{\lambda \rightarrow 0}\|q\|_{L^{\infty}\left(B \backslash B_{\varepsilon}\right)}<\infty
$$

This proves

$$
\|v\|_{L^{\infty}(0, T)} \leq C \quad \text { for small } \lambda
$$

By this a priori estimate with the equation (17) and Lemma 2, we obtain by Ascori-Arzela theorem, that there is a smooth function v_{0} such that

$$
v(t) \rightarrow v_{0}(t) \quad \text { locally uniformly on }[0, \infty)
$$

with

$$
\begin{equation*}
-v_{0}^{\prime \prime}(t)=\frac{1}{2} e^{v_{0}(t)-t} \tag{30}
\end{equation*}
$$

We may solve (30) and conclude that

$$
v(t)=u(\gamma x)^{2}-u(\gamma)^{2} \rightarrow v_{0}(t)=2 \log \left(\frac{2}{1+e^{-t}}\right)=2 \log \left(\frac{2}{1+|x|^{2}}\right)
$$

This proves the theorem in the case 1.

Case 2.

$$
\begin{equation*}
\max _{t>0} \lambda w(t)^{2} e^{w(t)^{2}-t}<\infty \quad(\lambda \rightarrow 0) \tag{31}
\end{equation*}
$$

This case is rather simple. We choose $\{\tau\}$ as

$$
\begin{equation*}
\lim _{t \rightarrow \infty} w(t)^{2}-w(\tau)^{2}=2 \log 2 \tag{32}
\end{equation*}
$$

This choice of τ assures us that

$$
\begin{aligned}
& \tau \rightarrow \infty \\
& w(\tau)^{2} \rightarrow \infty
\end{aligned}
$$

and a priori estimate

$$
\begin{equation*}
0 \leq v(t) \leq 2 \log 2 \tag{33}
\end{equation*}
$$

By the assumption (31), we can choose a subsequence such that

$$
\begin{equation*}
\lambda w(\tau)^{2} e^{w(\tau)^{2}-\tau} \rightarrow 2 \mu \quad \text { as } \lambda \rightarrow 0 \tag{34}
\end{equation*}
$$

for some constant $\mu>0$. Lemma 2 with (33) and (34) implies that

$$
v(t) \rightarrow v_{0}(t) \quad \text { locally uniformly on }[0, \infty)
$$

with

$$
\left\{\begin{aligned}
-v_{0}^{\prime \prime}(t) & =\frac{\mu}{2} e^{v_{0}(t)-t} \\
v_{0}(0) & =0
\end{aligned}\right.
$$

In fact, by the boundary condition at $t \rightarrow \infty$, we find that $\mu=1$ and

$$
v_{0}(t)=2 \log \left(\frac{2}{1+e^{-t}}\right) .
$$

This proves our conclusion of Theorem B. Q.E.D.

References

[1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa, 17 (1990), 393-413.
[2] F.V. Atkinson and L.A. Peletier, Ground states of $-\Delta u=f(u)$ and the Emden-Fowler equation, Arch. Rat. Mech. Anal., 93 (1986), 103-127.
[3] F.V. Atkinson and L.A.Peletier, Ground states and Dirichlet problems for $-\Delta u=f(u)$ in \mathbb{R}^{2}, Arch. Rational Mech. Anal., 96 (1986), 147-165.
[4] L. Carleson and S-Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113-127.
[5] B. Gidas, Ni W-M. and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
[6] T. Itoh, Asymptotic behavior of solutions of nonlinear elliptic equations with the critical Sobolev exponent, Preprint, Tokai University.
[7] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 11 (1971), 1077-1092.
[8] K. Nagasaki and T. Suzuki, Asymptotic analysis for two dimensional elliptic eigenvalue problems with exponentially dominated noninearities, Asymptotic Anal., 3 (1990), 173-188.
[9] T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal. T.M.A, 14 (1990), 765-769.
[10] T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540.
[11] T. Ogawa and T. Suzuki, Nonlinear elliptic equations with critical growth related to the Trudinger inequality, Preprint Nagoya University.
[12] T. Ozawa, An explicit form of Trudinger's inequality, Preprint Hokkaido University.
[13] S.J. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk. SSSR, 165 (1965), 1408-1411.
[14] Mei-Chi Shaw, Eigenfunctions of the nonlinear equation $\Delta u+\nu f(x, u)$ $=0$ in \mathbb{R}^{2}, Pacific J. Math., 129 (1987), 349-356.
[15] M. Struwe, Critical points of embeddings of $H_{0}^{1, n}$ into Orlicz spaces, Ann. Inst. Henri Poincaré, Anal. Nonlineaire., 5 (1988), 425-464.
[16] T. Suzuki, Introduction to geometric potential theory, in "Functional -Analitic Method for Partial Differential Equations (Springer Lecture Notes in Math. 1450)", H. Fujita, T. Ikebe, S.T. Kuroda eds., 1990, pp. 88-103.
[17] T. Suzuki, Harnack principle for spherically subharmonic functions, Ann. Inst. Henri Poincaré, Anal. Nonlineaire, to appear.
[18] N. Trudinger, On imbedding into Orlicz space and some applications, J. Math. Mech., 17 (1967), 473-484.
T. Ogawa

Department of Mathematics
Nagoya University
Furô-chô, Chikusa-ku, Nagoya 464-01
Japan
T. Suzuki

Department of Mathematics
Ehime University
Bunkyo-chô, Matsuyama-shi, Ehime, 790
Japan

