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Trudinger's Inequality and Related Nonlinear 
Elliptic Equations in Two-Dimension 

Taka.yoshi Ogawa and Takashi Suzuki 

§1. Introduction and results 

(1) 

We are concerned with the following nonlinear elliptic equations: 

{
-au = >..ueu2

, 

u=O, 

xEB, 

xE an, 

where B = B1 (0) C R2 is a unit disk in R2 and..\ is a positive parameter. 
We consider a family of solutions of (1) satisfying 

(2) llullvx, - 00 as A - 0. 

The nonlinearity of the equation (1) is the Sobolev critical exponent 
in two-dimension. For any domain n E R2 , It is well known that the 
Sobolev space HJ(n) is continuously imbedded in V'(O) for any p < oo 
but is false in the case p = oo. Trudinger [18] showed that for any 
u E HJ(O) with llv'ull2 = 1, there are two constants a> 0 and C > 0 
such that 

(3) In exp{au2 }dx :$ CIOI. 

Later, Moser [7] simplified the proof and improved that (3) is also valid 
for a :$ 41r. Here 41r is the constant of the isoperimetric inequality. The 
inequality (3) is also valid for any unbounded domain (Ogawa [9]). That 
is when O is any domain in R2 , we have for all u E HJ(O), 

(4) 

(See also Ogawa-Ozawa (10] and Ozawa (12] for further extensions). 
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These inequalities (3)-(4) indicates that the order of local singular
ities of H 1 functions are allowed as far as exp(u2) is integrable. In other 

words eu2 is the critical order of integrability for H 1-functions. 
Concerning our problem (1), there are two different approaches. One 

is the variational method. When we consider the maximizing problem 
of the functional 

(5) lo exp{au2}dx for u E HJ(n), llv7ull2 = 1 

on a bounded domain. Then the extremal function (if it is achieved) 
becomes a solution of (1). Shaw [14] showed the existence of a positive 
solution of (1) for each parameter .X > 0 (see also Adimurti [1]). When 
the domain is a ball in ~n, the maximum can be attained by some 
function even when n = 2 and a= 41r (Carleson-Chang [4]). 

When the domain is a unit disk, all the positive smooth solution 
must be radially symmetric by Gidas-Ni-Nirenberg's result [5]. There
fore the Dirichlet problem may be written as the nonlinear ordinary 
differential equation: 

(6) { 
- Urr - !Ur= .Xueu2

, XE [0, 1), 

u(l) = O,r u'(0) = 0. 

By solving (6), we can obtain the details of the properties of the positive 
solution of (1), which is the second method. Atkinson-Peletier [2], [3] 
applied the shooting method to (6) and proved that the existence of 
radially symmetric solution of ( 1) satisfying 

llullu'° - oo as .X - 0. 

Our aim of this paper is to specify more precise behavior of the 
family of solutions { ( u, .X)} as .X - 0. We have two results. First one 
states a global behavior of the solutions. 

Theorem A. Let u be a positive solution of (1) with the blow up 
condition ( 2) . That is 

llullL00 (B) = u(0) - oo as .X - 0. 

Then we have 



Trudinger's Inequality and Nonlinear Elliptic Equations 285 

for all x EB\ {O}. Moreover we have 

(7) 

(8) 

(9) 

lim A f ueu2 dx = O, 
.X--+O }B 

lim A f (eu2 
- l)dx = 0, 

.\--+O jB 

lim r 1Vul2dx 2:: 471". 
>.-.o jB 

This theorem says that the solution satisfying (2) must blow-up only 
at the origin. The inequality (9) shows the solution concentrates to the 
origin with its energy density 1Vul2 • The lower bound in (9) arise from 
the sharp exponent of the Trudinger inequality (3). 

The second result is a microscopic behavior near the origin. When 
we rescale the solution by some sequence, then the solution has a limit 
function. 

Theorem B. There is a subsequence {(um, Am)} of a family of 
solutions of (1) with (2) and a scaling sequance hm} such that 'Ym - 0 
as Am - 0 which satisfy 

(10) 
2 

u2 (,mx) - u2 (,m) - 2log( 1 + lxl2 ) as Am - 0 

locally uniformly on B \ { 0}. 

The limit function of (10) is an exact solution of -~v = 2ev. Re
mark that since the nonlinearity of our problem is nonhomogeneous, the 
usual scaling u - ,"u( ,x) does not work well. (For other nonlinearity 
or the higher dimensional case, see Nagasaki-Suzuki [8] and Itoh [6].) 

The property (10) was firstly observed by Carleson-Chang in an 
implicit way. Later Struwe [15] obtained the similar result for the non
compact maximizing sequence for the variational problem (5) for the 
case a= 41r. Our result Theorem B is, however, different from theirs, 
because in our case, the each factor of the sequence { Um, Am)} satisfies 
the equation (1). Moreover even the energy integral might blow up as 
A - 0 and therefore we can not obtain a priori estimate of {Um} from 
the Dirichlet integral. This is the crucial difference from the variational 
setting. 

§2. Proof of Theorem A 

We begin with the following lemma. 
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Lemma 1. Let u be a positive, mdially symmetric smooth solution 
of (1). We put r = lxl- Then we have 

(11) r2ur(r)2 + 2.Xr2(eu2(r) - 1) = 2~ lr (eu2 - l)dx, 

(12) .X 1 2 rur(r) = -- ueu dx, 
271' Br 

where Br= {y E IR.2 , IYI < r }. 

The first relation (11) is nothing else but the Pohozaev identity ([13]) 
associated to the equation (1). 

Proof. Let u be a radially symmetric smooth solution of (1). Then 
u satisfies (6). Mutiplying (6) by rur(r) and integrating on Bro, we have 

Integrating by parts, we obtain 

l .X 2( ) .X 1 2 --r2u (r )2 = -r2eu ro - - eu dx 
2 O r O 2 0 271' ' 

Br0 

which implies (11). The second relation (12) is a direct consequence of 
integration of the equation (6) on Br. Q.E.D. 

Proof of Theorem A. Combining (11) and (12) in Lemma 1 with 
choosing r = 1, we get 

(13) _!_(.X { ueu2 dx) 2 = .X { (eu2 - l)dx. 
471' }B jB 

For any k > O, we put 

2 1- e-u 
Ck=max--

u?_k U 

Then we see Ck s ljk-+ 0 ask-+ oo. From (13) 

4
1 (.X { ueu2 dx) 2 = .xJ (eu2 - l)dx + .xJ (eu2 - l)dx 
71' jB u?_k u<k 

s .xck l ueu2dx+.XIBl{ek2 -1}. 
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Accordingly we have 

Since k is arbitrary, we can take k so large to obtain 

(14) lim(>. f ueu2 dx)=0, 
>.----.o jB 

which shows (7) and therefore (8) by (13). Using (12) again, we have 

(15) rur ---. 0 as >. ---. 0 uniformly on B. 

This proves that u vanishes except the origin, since 

Finally, if 

u(x) = -11 
urdr 

lxl 

111 ::; - rur(r)dr---. 0. 
c c 

then there is a subsequence {(um,>-m)} such that limm----.00 ll'vumll~ = 
4n - 8 for some 8 > 0. By virtue of the sharp version of Trudinger's 
inequality (3), we see 

l exp{au;Jdx::; CIOI. 

with a= l+c. Since u E LP(B) for any 2::; p < oo, we have AmUmeu:'n E 
£Hc/2. By the standard elliptic regularity theorem, ll~umllu+•/2 ::; C 
and 

llumll£00 (B) ::; C (independent of m), 

which contradicts our assumption (2). Therefore we obtain (9). Q.E.D. 
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§3. Proof of Theorem B 

By the transform r = e-t/2 and u(r) = w(t), we rewrite the equation 
(6) into the following: 

(16) {
- w"(t) = ~w(t)ew(t) 2 -t 

w(O) = 0, 

w'(t)et/2 --+ 0 (t--+ 0). 

on [0,oo), 

For some scaling parameter T such that T--+ oo, we define the rescaling 
function v(t) as 

v(t) = w2 (t + T) - w2 (T). 

Putting w,,.(t) = w(t + T), we see that v satisfies 

(17.a) 

(17.b) 

(17.c) 

- v"(t) = k(w,,.(t))ev(t)-t - p(w,,.), 

v(O) = 0, 

. v'(t)e(t+-r)/2 

hm ( () ) = 0, 
t->oo w,,. t 

where we have put 

k(w,,.) = ~w,,.(t) 2ew(-r) 2 --r, 

p(w,,.(t)) = 2w~(t)2. 

We first show that; 

Lemma 2. Let T > 0 satisfies w(t + T) > 1 as .X --+ 0 for all 
t E [-8, oo) where O < 8 < T. Then we have 

(18) 

(19) 

as .X--+ 0. 

p(w,,.(t))--+ 0 uniformly on [-T, oo), 

w,,.(t)2 --+ 1 locally uniformly on [-8, oo) 
w(T)2 

Proof. Since from (15), we have for "Y = e--r/2 , 

uniformly for r E [0, lh] and therefore t E [-T, oo). This shows (18). 
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To show (19), we use 

We only show the case when t ~ 0. The other case is similar. Since 
w7 (t) is increasing int, 

Wr(t) 2 2 t I 

1:::; w(r)2 = 1 + w(r)2 l0 w7 (s)wr(s)ds 

< 1 + 2 t wr(s)2 w~(s) ds. 
- lo w(r)2 wr(s) 

By (20), we can choose A small so that lw~(s)I < £. Then since w7 (s) > 
1, 

_ Wr(t)2 t 
1:::; X(t) = w(r)2 :::; 1 + 2£ lo X(s)ds. 

This yields 
1 :::; X(t) :::; e2et fort E (0, oo). 

In particular, 

X(t) -+ 1 uniformly fort E (0, T] as .X-+ 0 

for some fixed T. Q.E.D. 

Proof of Theorem B. In the following, we shall omit the subscrip
tions for each subsequences. 

We split the proof into two cases. 

Case 1. 

(.X - 0). 

Since w(0) = 0, we can choose the scaling sequence {r} as 

(21) 

for the family of solutions {(u, .X)}. It is easy to see 

T-+OO, 

w(t) -+ oo as .X -+ 0. 
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Therefore we may assume wr(t) 2: w(r) > 1 fort> -8 and from Lemma 
2, 

(22) 

(23) 

wr(t) 2 ---+ 0 uniformly on [-r,oo), 

wr(t)2 
---+ 1 locally uniformly on [-8, oo). 

w(r) 2 

Next we claim that for any fixed T > 0, 

llvllL00 (0,T) ~ C 

and there is a limit function v0 (t) such that 

v(t) ---+ v0 (t) locally uniformly on [O, oo ). 

For that purpose, we set q(r) = v(t) with r = e-t/z_ Then the equation 
(17) can be written as follows: 

(24) {
-liq= 4k(u(,r))eq(r) - p(u(,r))r-2 

q = 0 on 8B, 

on B,-1, 

where Ba= {y E IR.2 , IYI < a} and 

k(u(,r)) = %,y2u(,r)2eu(,)2, 

p(u(,r)) = 2,y2r2u(,r)2. 

Since from (21), (22) and (23), we have for r E [c, 1 + 8], 

(25) 

and 

(26) - A ( )2 W-r(t)2 1 
k(u(,r) = -wr(t)2ew r -r = -- ---+ -

2 2w(r)2 2 

as >. ---+ 0. Therefore by the standard elliptic estimate, we have for fixed 
€ > 0, 

(27) 

(28) 
lqr(l)I ~ C, 

llq\\L00 (Bi+6 \B) ~ C. 
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According to (24), (25) and (27), 

(29) 

llk(u)eqllLl(B\B.) = r k(u)eqdx 
jB\B. 

= f -llqdx + f p(u)r-2dx 
jB\B. jB\B. 

= 211" 11 
-(rqrr + qr)dr + 411" 11 

('Yr)2u;('Yr)r- 1dr 

S -27rqr(l) + Cr,211 
r-1dr 

S C - Cr,2 log c S C. 

Hence by (24), (25), (26) with (29), q satisfies 

-llq = 4k(u)eq - pr-2 S 3eq 

with 
ll3eqllu(B\B.) S C independent of>.. 

Then the nonlinear Harnack principle (Suzuki [16], [17]) implies the 
blow-up points of q in B \ Be is finite. However q is radially symmetric, 
the blow-up points of q must be empty set. That is 

This proves 
llvllLoo(o,T) SC for small A. 

By this a priori estimate with the equation (17) and Lemma 2, we obtain 
by Ascori-Arzela theorem, that there is a smooth function v0 such that 

v(t) - v0 (t) locally uniformly on [0, oo) 

with 

(30) 

We may solve (30) and conclude that 

This proves the theorem in the case 1. 
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Case 2. 

(31) (>.--+ 0). 

This cruse is rather simple. We choose { r} rus 

(32) lim w(t) 2 - w(r) 2 = 2log2. 
t-+oo 

This choice of r russures us that 

and a priori estimate 

(33) 

T--+ oo, 

w(r)2 --+ oo 

0 ~ v(t) ~ 2log2. 

By the russumption (31), we can choose a subsequence such that 

(34) 

for some constantµ> 0. Lemma 2 with (33) and (34) implies that 

v(t)--+ v0(t) locally uniformly on [O, oo) 

with 

In fact, by the boundary condition at t--+ oo, we find thatµ= l and 

2 
vo(t) = 2 log( 1 + e-t ). 

This proves our conclusion of Theorem B. Q.E.D. 
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