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Helmholtz-Type Equation 
on Non-compact Two-Dimensional 

Riemannian Manifolds 

Reiji Konno 

§1. Introduction 

We shall consider the existence, or rather non-existence of square 
integrable solutions of the equation -D.f = >..J on a non-compact Rie
mannian manifold which is homeomorphic to Rn minus a ball, where D. 
is the Laplace-Beltrami operator and>.. is an arbitrary positive constant. 
The source of this problem is the study of the non-existence of positive 
eigenvalues of the Schrodinger operator - D. + q in a region of Rn, and 
the method used there was found to be applicable to problems of the 
above type. 

There may be several ways of physical interpretation of the equation 
- !':J = >..J on manifolds. But probably the most essential one is as 
follows: Let a Riemannian manifold M represent a non-Euclidean space 
which is filled up with a medium whose displacement on some quantity, 
e.g. pressure, electric field etc., obeys Hooke's law isotropically and 
homogeneously in each small portion of the medium. We suppose further 
that the displacement is transferred entirely to the neighboring portions 
without influence of the curvature. (This situation occurs, for example, 
if M is a surface and the medium is distributed on and moving along 
M without friction or obstruction.) Then, the displacement D should 
enjoy the "wave equation" Du = !':.D (by taking an appropriate scale), 

therefore -!':.f = >..J describes the standing wave D = eiv'>.t f(x). 

We notice that the total energy JM (1Dtl 2 + l'vDl 2 )dM is finite if 

and only if JM IJl 2dM is finite. Therefore, what we are asking is the 

conditions for M not to admit a standing wave of finite energy. 
Before describing the general statement, let us see examples of M 

which have L2-solutions. 
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Examples. ( a) Mis the semi-infinite cylinder whose metric ds2 = 
dr2 + p5d02 , r E ( r0 , oo), 0 E S 1, where po is a positive constant. Since 
6 = 8 2 / 8r2 + io28 2 / 802 ' the function f = e-ar+21rniO is an L2-solution 
for .,\ = -a2 + 41r2n 2 / p5 if the constant a and the integer n satisfy 
0 <a< 21rn/po. (b) Let ds2 = dr2 + e2ard02 , r E (ro,oo), 0 E S1 . 

If a and bare constants such that O < b < a < 2b, then f = e-br is a 
solution for .,\ = b( a - b) which is square integrable since dM = ear drd0. 

The above examples suggest that, in so far as 2-dimensional rota
tionally symmetric manifolds are concerned, the following theorem is in 
some sense a satisfactory one. 

Theorem 1 ([2],[4]). If M is a two-dimensional manifold whose 
metric has the form 

ds 2 = dr2 + p(r) 2d02 , r E (r0 , oo ), 0 E S1 

where p(r) is a positive absolutely continuous nondecreasing function of 

r which e~joys (i) p(r)--. oo (r--. oo) and (ii) 1"" d(r) = oo, then for 
ro Pr 

any constant .,\ > 0 and any nontrivial locally square integrable solution 
of -l:::,.f = .,\f, there exist constants C > 0 and r 1 2: r0 such that 

1 lfl2dM > C 1R dr (R 2: r1) 
ro<r<R - r0 p(r) 

holds where dM = p(r)drd0. (Therefore f (/. L 2 (M) unless f = 0.) 

The previous example ( a) does not satisfy (i), while (b) breaks (ii). 

Corollary. Let M be a surface of revolution in R 3 obtained by 
rotating the graph of an arbitrary absolutely continuous function z = 
z(p), Po < p < oo, around the z-axis. Then M has the same property 
with respect to the natural metric. In particular, any non-vanishing 
solution of -l:::,.f = ..\f, .,\ > 0 can not be square integrable. 

As to the higher dimensional cases, we have the following theorem. 

Theorem 2 ([3],[4]). Let M = {(r,w) I r0 < r < oo, w E 
sn-l} (n 2: 2) with the metric ds2 = dr2 + p(r)2ds2 where p is a 
positive function and ds is the line element of the (n - l)-sphere sn-l. 
Suppose that 

(i) p E C 2 (r0 , oo), p'(r) > 0 and p(r)--. oo (r--. oo). 
(ii) p'(r)/p(r)--. 0 (r--. oo). 
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(iii) p"(r)/p'(r)--+ 0 (r--+ oo). 
(iv) There exists a number a > 0 such that 

100 dr 
- 00 

ro p(r)"' - · 
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Then for any A > 0 and any non-zero solution of -l:,f = .Xf and for 
an arbitrary € > 0, we can take C > 0 and r1 2: ro so that 

1 lfl2dM > c1R _±_ (R 2: r1)-
ro<r<R - ro p(r)" 

We see that Theorem 2 assumes weaker growth of p(r) than Theorem 
1. Moreover, the obtained estimate is better. But it requires higher 
smoothness of p and restricts the magnitude of p" in return. 

§2. Not symmetric manifolds 

T. Tayoshi's work [6] treated the case in which the metric itself is 
not rotationally symmetric but approaches such one asymptotically. His 
theorem is a generalization of Theorem 2 above, though not completely. 
Here we want to have an extension of Theorem 1. 

Let M be a two-dimensional manifold whose metric has the form 

ds2 = a(r, 0)dr2 + 2b(r, 0)p(r)drd0 + c(r, 0)p(r) 2 d02 , 

where a, b, c and p are real-valued functions. To describe the conditions 
altogether, let us begin with definitions. 

Definition 1. (i) t(r) = exp(-1r d(s) ). 
ro p S 

(ii) For each number m > 0, the quantity h(r;m) is the one that 
satisfies 

1r+h(r;m) -5!!_ _ 
( ) - mt(r). 

r p S 

(iii) cp(r; m) = essinf p(s)2 p'(s). 
r::,;s::,;r+h(r;m) 

Assumption on p. 
(i) p(r) is positive, nondecreasing and absolutely continuous with 

p'(r) > 0 a.e. 
(ii) p(r)--+ oo (n--+ oo). 
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1= dr 
(iii) -( ) = =· 

ro Pr 

(iv) t(r)/p'(r)-; 0 (r-; =). 

1= cp(r; m) 
(v) ro p(r + h(r; m)) dr = =· 

Remark. If p(r)t(r) is bounded and p'(r) ~ 1, and moreover 
p(r)2 p'(r) is nondecreasing or nonincreasing, then the condition (v) is 
fulfilled. 

Definition 2. g = ✓ac - b2 , A= a/g, B = b/g, C = c/g. 

Definition 3. A function f(t, 0) is said to satisfy the condition of 
Definition 3 if it enjoys the inequality 

lf(point 1) - f(point 2)1 ~ '¢(distance) 

where '¢(x) is a positive continuous nondecreasing function of x > 0 

which fulfills 1 {'¢( x) / x }dx < =· By the way, if the two points are 
-++O 

(t1, 01) and (t2, 02) then the distance is Jti + t§ - 2t1t2 cos(01 - 02). 

Remark. This condition is a generalization of the uniform Holder 
continuity, the latter corresponding to '¢(x) = Kxo:. 

Assumptions on a, b, c. 

(i) a, b, c E C 1((r0 , =) x S1 ), a > 0, a/c -; 1, and b -; 0 as 
r-; = and there exist numbers k, land r 1 (k > 0, 0 < l < 2, r 1 2 r0 ) 

such that 

g 2 k, 9r/g 2 -lp'/p (r 2 r1, 0 E S1 ). 

(ii) g0b/(g2 p') - O (r - =), 

g0t/(g2 p')-; 0 (r-; =). 

(iii) As functions oft and 0, 

have the limits at t = 0 (i.e., r = = ), and satisfy the condition of 
Definition 3 near t = 0. 

Our main theorem is as follows: 
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Theorem 3. Under the above assumptions, the equation -l:,f = 
>..J on M has no non-trivial solution of integrable square, provided 
>.. > 0. 

It should be noted that the conditions do not make reference to the 
second order derivatives of the metric. 

This theorem is proved by combining the following two lemmas. 

Lemma 1 (Estimate by isothermal coordinates). 
Let the two-dimensional Riemannian manifold M admit a global 

system of coordinates u, v, u0 < u < oo, v E S1 so that they are 
isothermal, that is, the metric has the form 

ds2 = T(u, v)(du2 + dv2 ) 

by a positive function T ( u, v). We suppose that T is absolutely continuous 
with respect to u for a.e. v E S1 and of class C 1 with respect to v for 
a.e. u. Moreover let 

<p(u) = ess inf 8
8 T(U, v) 

vES 1 U 

satisfy 

100 
<p(u)du = oo. 

UQ 

Then for every non-trivial solution of -D,f = >..J on M (>.. > 0), we 
can find numbers C > 0 and u1 ~ uo such that 

1 lfl 2du ~ CU (U ~ u1) 
uo<u<U 

holds ( dM = Tdudv). 

Lemma 2 (Existence of suitable isothermal coordinates). 
If a two-dimensional Riemannian manifold satisfies the assumptions 

of Theorem 3, there exist a number r1 and C 1 -functions u(r, 0) and 
v(r, 0) defined for r ~ r 1 , 0 E S1, which satisfy 

Ve= Cpur - Bue. 

Here (i) for each 0, u(r, 0) is strictly increasing with r, ur(r, 0) is abso
lutely continuous and u(r, 0) __, oo as r --, oo. On the other hand ve > 0 
and the value of v(r, 0) is determined up to the difference of 2k7r (k E Z). 
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(ii) In terms of u and v, the metric is expressed as 

ds2 = T(u,v)(du2 + dv2 ), 

(iii) <p(u) = essinf 8Tj8u enjoys 
vES1 

100 
<p(u)du = oo. 

Uo 

Lemma 1 together with Lemma 2 claims that if the solution f is 
square integrable over M then f(r, 0) = 0 for sufficiently larger, say, r 2: 
r 1 . But, in our situation, we can easily verify the unique continuation 
property so that f = 0 holds throughout M. (So far as the unique 
continuation applies, M itself need not be of the shape described before. 
If only a part of M has that shape, we must have the same conclusion 
again.) 

§3. Sketch of the proof of Lemma 2 

The proof of Lemma 1 can be got by a standard argument. Therefore 
we will leave it to the full paper [5]. 

The main point of the proof of Lemma 2 is to obtain the solution 
of l:,.u = 0 which has the asymptotic form u ~ f dr / p. To this end we 
change the variables from r, 0 tot, 0 and look for the solution of £:,.u = 0 
having the form u = -logt + ~(t,0), ~ E C 2 in the neighborhood of 
t = 0. In fact,~ enjoys the equation 

where x = t cos 0, y = t sin 0 and .A, iJ, and C are quadratic forms of 
cos 0 and sin 0 whose coefficients are linear combinations of A, B and C. 
Thus we can apply the classical theory of Korn and Lichtenstein or its 
extended version by Hartman and Wintner. We cite here a part of their 
theorem. 

Theorem (Hartman & Wintner [1]). Suppose A 1(x,y), B 1(x,y), 
B2(x, y) and C1(x, y) are C 1-functions whose first order derivatives sat
isfy the condition of Definition 3. We assume A1C1 -(B1 +B2)2 /4 > 0. 
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Moreover, let D(x, y) and E(x, y) are functions which satisfy the condi
tion of Definition 3. Then the equation 

has a C 2 -solution in some neighborhood of x = y = 0. 

From the assumed regularity of A, B and C, it is easy to see that 
the conditions of this theorem are fulfilled by putting A1 = A, B1 = 
B 2 = B, C1 = C. Thus we obtain the desired~- Set 

ln(t,0) 
v(t, 0) = (But+ AC1u0)dt - (Ctut + Buo)d0. 

fixed point 

Then a straightforward calculation shows that the pair of u = - log t + ~ 
and v form a set of isothermal coordinates. The estimates for their 
derivatives up to second order are derived from the C2 property of ~ 
with respect tot and 0. 

What is left is to show J= cp(u)du = oo, cp(u) being essinfv 8T/8u. 
This calculation is somewhat involved, but eventually we are led to the 
conclusion that there exist constants K > 0 and r 1 2: r0 for which 

Tu 2'. Kp2p' (r 2'. r1) 

holds and that the contour { u = const.} lies between the circles of radii 
r and r + h(r; m), m being some constant not depending on r. We 
know that cp(u) is the infimum of Tu on the contour {u = const.} while 
cp(r; m) is the infimum of Tu in the region between those circles. This 
fact establishes the lemma. 

Example. Consider p(r) which has the form p(r) =p0 (r)-pb(r)(l
k(r)) sinr where p0 (r) is a positive function having absolutely continu
ous derivative and k(r) is an absolutely continuous function. We assume 
(i) p0 (r)----+ oo (ii) 0 ~ p'(r) ~ 1 (iii) 0 < k(r) ~ 1 (iv) k(r)- 1k'(r)----+ 0 
(v) Pb(r)k(r) is nonincreasing (vi) Pb(r)k(r)exp(J~[p0 (s) + 1J-1ds)----+ 

oo (vii) fr"; Po(r)pb(r)k(r)dr = oo (viii) p'(r)- 1p~(r)k(r)-1 ----+ 0. Then 
we can show that p( r) satisfies all the conditions. If we choose Po ( r) = 
ra (0 < a~ 1) or p0 (r) = logr then it fulfills (i)(ii)(iii). It also satis
fies (vi)(vii) and (viii) if we choose a nondecreasing k(r). In particular, 
by setting k(r) = 1, p(r) = ra and p(r) = logr themselves meet the 
conditions. 

Example. The following example shows how fast A, B, C should 
tend to their limits. Let p(r) =rand put a= l-r-a cos 0, b = r-a sin0 
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and c = l+r-°' cos0 where a> 2. Then t = r- 1 and g = JI - r- 2<>. The 
crucial terms are C 3Cr and C 2 Be. But they are close to -at°'-2 cos 0 
and -t°'-2 cos 0 respectively. Therefore they fit the conditions. 
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