Singularities of Solutions to System of Wave Equations with Different Speed

Keiichi Kato
Dedicated to the sixtieth anniversary of Professor ShigeToshi Kuroda

§1. Introduction and results

We consider the following system of wave equations

$$
\left\{\begin{array}{l}
\square_{c_{1}} u=f(u, v) \tag{1.1}\\
\square_{c_{2}} v=g(u, v)
\end{array}\right.
$$

where $\square_{c}=\left(1 / c^{2}\right) \partial^{2} / \partial t^{2}-\sum_{j=1}^{n} \partial^{2} / \partial x_{j}^{2}$ and c_{1} and c_{2} are positive constants. We assume that $f(\cdot, \cdot)$ and $g(\cdot, \cdot)$ are in C^{∞}. In what follows, we shall study the singularities of the solutions to (1.1) when the solutions are 'conormal distributions' to some hyperplanes. Before the statement of main theorems, we define conormal distributions.

Definition (Conormal distributions). Let $\Omega \subset \mathbb{R}^{n}$ be a domain. Let L be a C^{∞}-manifold in Ω. We call that u is in $H^{s}(L, \infty)$ in Ω if

$$
M_{1} \circ M_{2} \circ \cdots \circ M_{l} u \in H_{l o c}^{s}(\Omega) \quad \text { for } l=0,1,2, \ldots,
$$

where each M_{j} is a C^{∞} vector field which is tangent to L.
We can define the space of conormal distributions not only for a C^{∞}-manifold but also for a union of two hypersurfaces which intersect each other transversally.

Now we shall state the main results. Let $\omega \in S^{n-1}$ and $L_{i j}=$ $\left\{(t, x) \in \mathbb{R}^{n} ; c_{i} t+(-1)^{j} \omega \cdot x=0\right\}$ for $i, j=1,2$.

Theorem 1. Let Ω be a neighborhood of the origin of $\mathbb{R}^{n+1}, i=1$ or 2 and $j=1$ or 2 . Suppose that u, v are in $H_{\mathrm{loc}}^{s}(\Omega)$ for $s>(n+1) / 2$, u and v are solutions to (1.1) and

$$
u, v \in H^{s}\left(L_{i j}, \infty\right) \quad \text { in } \Omega \cap\{t<0\}
$$

then

$$
u, v \in H^{s}\left(L_{i j}, \infty\right) \quad \text { in } K
$$

where K is the domain of dependence with respect to $\Omega \cap\{t<0\}$.
Theorem 2. Let Ω be a neighborhood of the origin of \mathbb{R}^{n+1} and $i, i^{\prime}, j, j^{\prime} \in \mathbb{N}$ with $i+i^{\prime}=3, j+j^{\prime}=3$. Suppose that $0<c_{1}<c_{2}, u, v$ are in $H_{\text {loc }}^{s}(\Omega)$ for $s>(n+1) / 2, u$ and v are solutions to (1.1) and

$$
u, v \in H^{s}\left(L_{i j} \cup L_{i^{\prime} j}, \infty\right) \quad \text { in } \Omega \cap\{t<0\}
$$

then

$$
u, v \in H^{s}\left(L_{i j} \cup L_{i^{\prime} j} \cup L_{i j^{\prime}} \cup L_{i^{\prime} j^{\prime}}, \infty\right) \quad \text { in } K
$$

where K is the domain of dependence with respect to $\Omega \cap\{t<0\}$.
Theorem 3. Let Ω be a neighborhood of the origin of \mathbb{R}^{n+1} and $i, i^{\prime}, j, j^{\prime} \in \mathbb{N}$ with $i+i^{\prime}=3, j+j^{\prime}=3$. Suppose that $0<c_{1}<c_{2}, u, v$ are in $H_{\mathrm{loc}}^{s}(\Omega)$ for $s>(n+1) / 2, u$ and v are solutions to (1.1) and

$$
u, v \in H^{s}\left(L_{i j} \cup L_{i j^{\prime}}, \infty\right) \quad \text { in } \Omega \cap\{t<0\}
$$

then

$$
u, v \in H^{s}\left(L_{i j} \cup L_{i^{\prime} j} \cup L_{i j^{\prime}} \cup L_{i^{\prime} j^{\prime}}, \infty\right) \quad \text { in } K
$$

where K is the domain of dependence with respect to $\Omega \cap\{t<0\}$.
J.M. Bony has obtained the same result for scalar strictly hyperbolic equations in [3]. So our results are not full of originalities. But the author believes that our proofs are new and simple.

§2. Proof of Theorem 1

We set $M=t \partial_{t}+x \cdot \partial_{x}$ and $M_{k}=\omega_{k} \partial_{t}+c_{i} \partial_{x_{k}}$ for $k=1, \ldots, n$. It is easy to prove the following proposition.

Proposition 1. M_{1}, \ldots, M_{n} are linearly independent on \mathbb{R}^{n+1} and M, M_{1}, \ldots, M_{n} are linearly independent on $\mathbb{R}^{n+1} \backslash L_{i j}$.

Proof of Theorem 1.

$$
\begin{align*}
\square(M u) & =[\square, M] u+M f(u, v) \\
& =2 \square u+M f(u, v) \tag{2.1}\\
& =2 f(u, v)+M f(u, v) .
\end{align*}
$$

Similarly we have

$$
\begin{equation*}
\square(M u)=2 g(u, v)+M f(u, v) \tag{2.2}
\end{equation*}
$$

Since u and v are in $H_{\mathrm{loc}}^{s}(\Omega)$, we have that $2 f(u, v)+M f(u, v)$ and $2 g(u, v)+M f(u, v)$ are in $H_{\mathrm{loc}}^{s-1}(\Omega)$ and $M u, M v$ are in $H_{\mathrm{loc}}^{s}(\Omega \cap\{t<0\})$. Using the energy estimate for $\square_{c_{1}}$ and $\square_{c_{2}}$, we consequently have that $M u, M v \in H_{\text {loc }}^{s}(K)$. Repeating this argument, we have

$$
\begin{equation*}
M^{l} u, M^{l} v \in H_{\mathrm{loc}}^{s}(K) \tag{2.3}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
M_{k}^{l} u, M_{k}^{l} v \in H_{\mathrm{loc}}^{s}(K) \quad \text { for } \forall k, \forall l \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

(2.3) and (2.4) yield Theorem 1.

§3. Proof of Theorem 2 and Theorem 3

Proof of Theorem 2. We put $M_{a}=t \partial_{t}+(x-a) \cdot \partial_{x}$ for $a \in \mathbb{R}^{n}$. Using the same argument as in the proof of Theorem 1, we have

$$
\begin{equation*}
M_{a}^{l} u, M_{a}^{l} v \in H_{\mathrm{loc}}^{s}(K) \text { for } \forall a \text { with } a \cdot \omega=0 \text { and } \forall l \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

We divide $K \backslash \bigcup_{i, j=1}^{2} L_{i j}$ into the following three parts,

$$
\begin{aligned}
K_{1}= & \left\{(t, x) \in K ; c_{1} t-\omega \cdot x>0, c_{1} t+\omega \cdot x>0\right\} \\
K_{2}= & \left\{(t, x) \in K ; c_{1} t-\omega \cdot x<0, c_{2} t-\omega \cdot x>0\right\} \cup \\
& \left\{(t, x) \in K ; c_{2} t+\omega \cdot x>0, c_{1} t+\omega \cdot x<0\right\} \\
K_{3}= & \left\{(t, x) \in K ; c_{2} t-\omega \cdot x<0 \text { or } c_{2} t+\omega \cdot x<0\right\} .
\end{aligned}
$$

We prove first that $u, v \in C^{\infty}$ in K_{1}. Let $\left(t_{0}, x_{0}\right)$ be any point in K_{1}. Let $\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right)$ be any point in $T_{\left(t_{0}, x_{0}\right)}^{*} \backslash 0$. We use the same argument
as in the proof of the main theorem of M. Beals [1]. If M_{a} is elliptic at ($t_{0}, x_{0}, \tau_{0}, \xi_{0}$) for some $a \in \mathbb{R}^{n}$, then from (3.1) we have

$$
\begin{equation*}
u, v \in H^{s+1} \quad \text { at } \quad\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right) \tag{3.2}
\end{equation*}
$$

When M_{a} is not elliptic at $\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right)$ for all $a \in \mathbb{R}^{n}, \square_{c_{1}}$ and $\square_{c_{2}}$ are elliptic at $\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right)$. In fact, we can choose $a_{0} \in \mathbb{R}^{n}$ with $a_{0} \cdot \omega=0$ such that $c_{1}^{2} t_{0}^{2}-\left|x_{0}-a_{0}\right|^{2}>0$. Then we have

$$
\begin{aligned}
c_{1} t_{0}\left(\frac{1}{c_{1}}\left|\tau_{0}\right|-\left|\xi_{0}\right|\right) & <t_{0}\left|\tau_{0}\right|-\left|\xi_{0}\right|\left|x_{0}-a_{0}\right| \\
& =\left|\xi_{0} \cdot\left(x_{0}-a_{0}\right)\right|-\left|\xi_{0}\right|\left|x_{0}-a_{0}\right| \\
& \leq 0
\end{aligned}
$$

The same argument works for $\square_{c_{2}}$. Hence

$$
\begin{equation*}
u, v \in H^{s+1} \quad \text { at } \quad\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right) \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), we have

$$
u, v \in H^{s+1} \quad \text { at }\left(t_{0}, x_{0}\right)
$$

Repeating this argument, we have

$$
\begin{equation*}
u, v \in C^{\infty} \quad \text { at }\left(t_{0}, x_{0}\right) \tag{3.5}
\end{equation*}
$$

Next we prove that u, v is in C^{∞} on K_{2}. Let $\left(t_{0}, x_{0}\right)$ be any point in K_{2}. Let $\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right)$ be any point in $T_{\left(t_{0}, x_{0}\right)}^{*} \backslash 0$. When M_{a} is elliptic at ($t_{0}, x_{0}, \tau_{0}, \xi_{0}$) for some $a \in \mathbb{R}^{n}$, then from (3.1) we have

$$
\begin{equation*}
u, v \in H^{s+1} \quad \text { at } \quad\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right) \tag{3.5}
\end{equation*}
$$

When M_{a} is not elliptic at $\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right)$ for all $a \in \mathbb{R}^{n}$, the same method as in the first step proves that $\square_{c_{2}}$ is elliptic at ($t_{0}, x_{0}, \tau_{0}, \xi_{0}$). So it suffices to show that $\square_{c_{1}}$ is elliptic at $\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right)$. Since $\tau_{0} t_{0}+\left(x_{0}-\right.$ $a) \cdot \xi_{0}=0$ for all $a \in \mathbb{R}^{n}$ with $a \cdot \omega=0, \tau_{0} t_{0}+x_{0} \cdot \xi_{0}=a \cdot \xi_{0}=0$. Then $a \cdot \xi_{0}=0$ for all $a \in \mathbb{R}^{n}$ with $a \cdot \omega=0$. Hence ξ is parallel to ω. We decompose $x_{0}=x_{0}^{(1)}+x_{0}^{(2)}$ such that $x_{0}^{(1)}$ is parallel to ω and $x_{0}^{(2)}$ is perpendicular to ω. We put $a_{0}=x_{0}^{(2)}$. Hence $x_{0}-a_{0}=x_{0}^{(1)}$ is parallel to ω. Since $c_{1}^{2}\left|t_{0}\right|^{2}<\left|x_{0}-a\right|^{2}$ for all $a \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
c_{1} t_{0}\left(\frac{1}{c_{1}}\left|\tau_{0}\right|-\left|\xi_{0}\right|\right) & >t_{0}\left|\tau_{0}\right|-\left|\xi_{0}\right|\left|x_{0}-a_{0}\right| \\
& =t_{0}\left|\tau_{0}\right|-\left|\xi_{0} \cdot\left(x_{0}-a_{0}\right)\right| \\
& =0 \quad\left(\text { since } t_{0} \tau_{0}-\xi_{0} \cdot\left(x_{0}-a_{0}\right)=0\right)
\end{aligned}
$$

Consequently we have

$$
\begin{equation*}
u, v \in H^{s+2} \quad \text { at } \quad\left(t_{0}, x_{0}, \tau_{0}, \xi_{0}\right) \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6), we have

$$
u, v \in H^{s+1} \quad \text { at }\left(t_{0}, x_{0}\right) .
$$

Repeating this argument, we have

$$
\begin{equation*}
u, v \in C^{\infty} \quad \text { at }\left(t_{0}, x_{0}\right) \tag{3.7}
\end{equation*}
$$

The same argument for u in the second step yields that

$$
\begin{equation*}
u, v \in C^{\infty} \quad \text { in } K_{3} \tag{3.8}
\end{equation*}
$$

(3.1), (3.4), (3.7) and (3,8) imply Theorem 2.

We can prove Theorem 3 by the same argument as in the proof of Theorem 2.

References

[1] M. Beals, Interaction of radially smooth nonlinearwaves, Lecture Notes in Mathematics, 1256 (1987), 1-27.
[2] M. Beals, "Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems", Birkhäuser, 1989.
[3] M.J. Bony, Interaction des singularités pour les équations aux dérivées partielles non-lineaires, Seminaire Goulaouic-Mayer-Schwartz (19811982).
[4] J. Rauch, Singularities of solutions to semilinear wave equations, J. Math. Pures et Appl., 58 (1979), 299-308.

Department of Mathematics
Osaka University
Toyonaka 560
Japan

