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H 1-Blow up Solutions for 
Peker-Choquard Type Schrodinger Equations 

Hitoshi Hirata 

§1. Introduction and the main results 

In this paper, we study the H 1-solution for the following nonlinear 
Schrodinger equation 

(1-1) { 
i8tu = -L\.,u - (r-7 * lul2)u 

u(0,x) = uo(x) E H 1 (RN) ' 

where r = !xi and 2 :5 1 < 4, 1 :5 N - 1, and show a sufficient condi
tion of 'H1-blowing up'. Here we say that u is an H 1-local solution of 
(1-1) when for some T > 0, u E C([0, T); H 1 ) and satisfies next integral 
equation 

(1-2) u(t) = U(t)uo - i Lt U(t - s){(r--y * lu2 l)u}(s)ds, 

where U(t) =exp(itL\.,) is the evolution operator for the free Schrodinger 
equation. Above type nonlinear Schrodinger equation is appeared in 
some approximations of many body problems, so-called Hartree approx
imation. As for detailed arguments of this approximation, see e.g. [5], 
[6] and [7]. 

Before stating the main results, we define several notations. For 
p E [1, oo] and k EN, we define Sobolev space 

wk,p = {f Es' : ll!llw,.,p = L l18~ JIIP < 00 }, 

Jaj:s;k 

where II · IIP is usual .LP-norm. Hk = wk,2 and H-k = (Hk)*. For an 
interval I and a Banach space X, Ck(J; X) is the space of X-valued Ck
functions on I, k = 0, 1, 2 ... and LP(J; X) is the space of LP-functions. 
We say u E Lf0 c(J; X) if u E .LP(J; X) for any compact JC I. 
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For the existence of HI-local solution of (1-1) and (1-2), we have 
obtained following theorem. (e.g. [2),(3)) 

Theorem 0. Let 2 S I S 4, 1 < N and u0 E HI. Then, there 
exist T* > 0 and u E C([0,T*);HI), which satisfies (1-2), and has 
following properties (1) ~ (4). 

(l) u is unique solution of (1-2) in Lf0 c(0, T*; WI,P), where l/p = 
1/2 - (, - 2)/4N and 0 = 8/(,- 2). 

(2) u satisfies following conservation laws. 

(1-3) llu(t)ll2 = lluoll2, 

(1-4) E(u(t)) = IIVxu(t)II~ -1/2(lu(t)l2,r--r * lu(t)l2) = E(uo), 

fort E (0, T*). Here(·,•) is L2 -dual coupling. 
(3) If 2 S 1 < 4 and T* < oo, then IIV xu(t) ll2 ---+ oo as t ---+ T*. 
(4) u satisfies (1-1) in H-I sense. 

Remark. (1) If u satisfies llu(t)ll2 ---+ oo as t---+ T* for some T* < 
oo, we say u blows up at blow up time T*. 

(2) The assumption 2 S I is not essential. Since the space in which 
u is unique becomes simple, we state this assumption. On the other 
hand, the assumption 4 2: 1 is essential for the existence of HI-local 
solution. 

On the blow up of HI-solutions, 2 S I is a necessary condition, 
i.e. when O S 1 < 2, the HI-solution with any initial data u0 E HI 
is global. On the other hand, it is well-known that when 2 S 1 , uo E 
HI n L2(RN; lxl2dx) and E(u0 ) < 0, the HI-solution of (1-1) blows up 
in finite time (e.g. (1)). K. Kurata and T. Ogawa ([4]) dealt with more 
complicated potential -(r--r1 * lul 2)u - (r--r2 * lul 2)u, and showed there 
exists a blow up solution under the assumption 'YI < 2 < ,2 < 4 and 
, 2 < N - l. Recently, in the local nonlinear case, i.e. -lulP-Iu instead 
of -(r--r * lul 2)u, T. Ogawa and Y. Tsutsumi ((8)) showed that for any 
radially symmetric HI-initial data u0 , the HI-solution of corresponding, 
equation blows up in finite time. We shall prove that we can use their 
methods in the non-local nonlinear case in this paper. Our main result 
is following. 

Theorem 1. Let 2 S 1 < 4 and 1 + l S N. Suppose that u0 be 
radially symmetric in HI(RN) and E(u0 ) < 0. Then the HI-solution u 
blows up in finite time. 

Remark. (1) Since uo is unique in Lf0 c(0, T*; WI,P) and the equa
tion is symmetric by spatial rotation, u is also radially symmetric. 
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(2) Since E(K¢) = K 2llv'x¢11~ - K 4 /2 · (1¢1 2,r-7 * 1¢1 2) for any 
¢ E H 1 and K > 0, E( u0 ) < 0 is attained by some u0 E H 1. This 
observation shows the assumption E(u0 ) < 0 means 'u0 is not small'. 

§2. General lemmas 

In this chapter, we state two well-known lemmas which hold in H 1. 
The first one is so-called Gagliardo-Nirenberg's inequality. 

Lemma 2-1. Let u E H 1 (RN) and N ~ 3. Then, there exists a 
constant C such that 

(2-1) 

where l/p = 1/2 - a/N. 

The second one holds on radially symmetric functions. 

Lemma 2-2 (Strauss[9]). Let u be a radially symmetric function 
in H 1 (RN). Then, there exists a constant C such that for any R > 0 
and p E [2, oo], 

( ) II II CR-(1/2-1/p)(N-1) II 111/2+1/p II" 111/2-1/p 2-2 U LP(R<lxl) :S: U L2(R<lxl) v xU L2(R<lxl)" 

§3. Proof of Theorem 1 

Choose¢ E W3 ,00 ([0,oo)) such that 

(3-1) ¢(r) = 

and put 

for O ::; r ::; 1, 

for 1 ::; r ::; 1 + ...;'3/3, 
{ 

~ - (r - 1)3 

s
0
mooth and ¢' ::; 0 for 

for 

1 + ../3/3 ::; r ::; 2, 
2 ::; r, 

<Pm(r) = m · ¢(r/m), 

'lfm(x) = x/lxl · <Pm(lxl)-

Remark that if we put cI>(r) = J; <Pm(s)ds, cI> E L00 (RN) and v'xcI> = 
'lfm· We also obtain next lemma. 
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Lemma 3-1. Let u be the H 1 -solution of (1-1). Then, 
(3-2) 

';s J uo'l/Jm · Vxuodx - ';s J u(t)'l/Jm · Vxu(t)dx 

= 1t[2R L J aj('l/Jm)k aju(T)8ku(T)dx 
0 j,k 

- 1/2 J Llx(V x · 'l/Jm) · lu(T)l 2 , dx + ,E( uo) - ,IIV xU(T)II~ 

+ ')' /2 J 1 a(x, y)lx - Yl_'_ 2 lu(T, x)l 2 lu(T, y)l 2 dxdy]dT 
lxlVIYl~m 

for all t E [O, T*), 

where ';s and R mean imaginary and real parts respectively, ('l/Jm)k is k th 

component of 'l/Jm and 

(3-3) a(x,y) = lx-yl2 - ('l/Jm(x)-'l/Jm(Y)) · (x-y). 

Now, remarking that u is radially symmetric, we have 

(3-4) 

2R L J aj('l/Jmh8ju8kudx 
j,k 

= 2 j IV xul 2dx + 21 ¢~IV xul 2dx. 
lxl~m m~lxl~2m 

And, simple calculation shows that there exists a constant C such that 

(3-5) ILlx(V X. 'l/Jm(x))I { s cm-2 for ms l_xl s 2m, 
= 0 for otherwise. 

The next lemma is the key estimate to obtain our result. 

Lemma 3-2. Let O < a < 1 and m ~ 1. For lxl V IYI 2: m and 
lx-yl Sm°', there exists a constant C, which is independent of x, y and 
m, such that 

(3-6) a(x,y) S C(b(lxl) + b(IYl))lx - Yl 2 -

Here 

{ 
0 for r Sm, 

(3-7) b(r) = 1- ¢',,,,(r) for m Sr S 2m, 

1 for 2m Sr. 



Blow up for Peker-Choquard Schrodinger Equations 147 

Using this lemma, we obtain 

(3-8) 

J r a(x, y)lx - y1--r- 2 1u(x)l21u(y)l2dxdy 
}lxlVIYl~m,lx-yl$;m"' 

~cf r (b(lxl) + b(lyl))lx -y1--r1u(x)l21u(y)l 2dxdy 
JlxlV IYI ~m, lx-yl Sm"' 

~2C f b(r)lu(x)l2({x({r ~ma})· r-1'} * lul 2 )(x)dx 
11:xl~m 

(by Holder's and Young's inequalities) 

(by Lemma 2-2) 

Here we used £ 2-conservation law (1-3) and defined 

x(A)(x) = { ~ xEA, 

x~A. 

On the other hand, since l('lj;m(x) - 'lj;m(Y)) · (x - Y)I ~ ll'lj;~lloolx - Yl 2 , 

we get 
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After all, by (3-2),(3-4);(3-8) and (3-9), we have 

';)< J uo'I/Jm · v' xuodx - ';)< J u(t)'I/Jm · v' xu(t)dx 

::; 1t [,E(uo) - ('y- 2)llv' xu(r)II~ 

(3-10) 
- 2 / b(r)lv'xu(r)l2dx - cm-2 lluoll~ 

+ C(m-7 °' + ma(N-7 )-(N-l))lluollt 

+ Cma(N-7 )-(N-l)lluoll~ J b(r)lv'xu(r)l2dx]dr. 

Thus, if we take sufficiently large m such that 

7E(uo) + C(m-7 °' + ma(N-7 )-(N-l))lluollt =-'Tl< O, 

and 
Cma(N-7 )-(N-l) lluoll~ - 2::; O, 

we obtain 

(3-11) ';)< J Uo 1Pm · v' xUo dx - ';)< J u(t) 1Pm · v' xu(t)dx ~ ,,,t. 

Since 

d/dt(j '11lu(t)l2dx) = -2';)< J u(t) 1Pm · v' xu(t)dx, 

integrating the both hands of (3-12), we deduce that 

(3-12) 
J '11lu(t)l2dx ::; -"lt2 - 2t ';)< J Uo 1Pm · v' xUo dx 

+ j '11luol 2dx for all t E [O, T*). 

Now, we assume u is a global solution. Then, (3-12) is satisfied for 
any t < oo and the r.h.s. of (3-12) is negative for sufficiently large t. 
This is contradiction since the l.h.s. of (3-12) is non-negative. Thus, 
u is not global solution and T < oo. Using Theorem 0.(3), we obtain 
llv' xu(t) 112 ---+ oo as t ---+ T*. This means our desired result. 

§4. The proofs of lemmas 

Proof of Lemma 3-1. We first assume u0 E H 2 . Under this as

sumption, the solution u belongs to C([O, T*); H 2 ) n C 1 ([0, T*); L2 ) and 
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satisfies (1-1) in £ 2-sense (see e.g. [2]). Note that the maximum ex
istence time T* is the same as that of the H 1-solution. We take the 
real part of £ 2-inner product between (1-1) and 1/Jm · v' .,u. Here, using 
equality (1-1) and integrating by parts, we have 

2~(i8tu, 1Pm · v' .,u) 

=if 8tU1Pm·v'.,udx-if 1Pm·v'.,u8tudx 

(4-1) 
=id/dt J u'I/Jm · v'.,udx + J v'., · 1/Jmlul2 (r-'Y * lul 2)dx 

-J v'., · 1/Jmlv' .,ul2dx + 1/2 J ..:1.,(v' x • 'I/Jm)lul2dx, 

2~(-..:1.,u, 1/Jm · v' .,u) 

{4-2) =2~~! 83(1/Jm)k8ju8kudx- J v'.,·'I/Jmlv'.,ul 2dx, 
3,k 

and 

2~(u(r-'Y * lul2), 1Pm · v' .,u) 

(4-3) 

= J (v'., · 1/Jm)lul2 (r-'Y * lul 2 )dx + J lul 21/Jm · v' .,(r-'Y * lul 2 )dx. 

Here, since 

1/2 J lu(x)l21/Jm(x) · v'.,(j Ix -yi-'Ylu(y)l 2dy)dx 

=1/2 J lu(x)l2{v' .,(j 1/Jm(x)lx - Yl-'Ylu(y)l 2dy) 

- (v'.,1/Jm)(x) · J Ix -yl-'Ylu(y)l2dy}dx 

=1/2 J lu(x)l2v' x • [j {(1/Jm(x) -1/Jm(Y))lx -yl-'Ylu(y)l2 

+ Ix - Yl-'Y'I/Jm(Y)lu(y)l 2 }dy]dx 

-1/2 J (V x · 'I/Jm)(x)lu(x)l2(j Ix -yl-'Ylu(y)l 2dy)dx 

= -1/2 J v'.,lu(x)l2 · (j 1/Jm(Y)lx -yl-'Ylu(y)l 2dy)dx 



150 H. Hirata 

+ 1/2 / lu(x)l2[/ v7., · {('¢m(x) -'¢m(Y))lx -yl--y}lu(y)l 2dy]dx 

-1/2 j(v., · 1Pm)(x)lu(x)l2(j Ix -yl--rlu(y)l 2dy)dx 

= -1/2 / lu(y)l 27Pm(Y) · (/ v7.,lu(x)l21x -yl-'Ydx)dy 

+ 1/2 / lu(x)l2{/(7Pm(x) - "Pm(Y)) · (Vr--Y)(x - y)lu(y)l2dy}dx 

= -1/2 / lu(x)l2'¢m(x) · V.,(r--Y * lul 2 )(x)dx 

-,y/2 f lu(x)l2{j(1Pm(x) -'¢m(Y)) · (x -y) Ix -yi--r-2 1u(y)2dy}dx, 

the second term of r.h.s. of (4-3) is equal to 

-,y/2 J J lu(x)l 2 (a(x,y)lx -y1--r-2 - Ix -yl--Y)lu(y)l 2 dydx. 

Thus, by (4-1)~(4-3), we get 

id/dt J u'¢m · V.,udx + 1/2 / L1.,(v7., · '¢m)lul 2dx 

=211? L J 8j("Pm)k 8jU8kudx 
j,k 

+ ,y/2 / / lu(x)l2a(x, y)lx -yi--r-2 1u(y)l2dydx 

- ,y/2 / lul2 (r--Y * lul2)dx. 

Taking real part of b.h.s. and using the definition of energy (1-4), we 
obtain 

- d/dtS:S J U"Pm. V.,udx 

(4-4) 
=211?~ J 8j("Pm)k8ju8kudx-1/2 J L1.,(v7., ·'¢m)lul2dx 

J,k 

+ ,yE( uo) - 'YIIV .,ull~ 

+,y/2 J f lu(x)l2a(x,y)lx-yl--r-2 1u(y)l 2dydx. 

Thus, integrating (4-4) over (0, T*) by t, we obtain (3-3). 
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For the case of uo E H 1 , we take { uo,1} C H 2 such that uo,1 --+ uO 
in H 1 as l --+ oo. For each uo,l, we can construct strong solutions ui(t) 
of (1-1) in a certain common time interval [O, T], and {u1(t)} converges 
to the H 1-solution u(t) in H 1 uniformly. (See [2].) Thus, we obtain 
(3-2) on [O, T]. Since T is depend only on lluo IIH1, we can repeat this 
procedure, and we obtain (3-2) as long as u(t) exists. Q.E.D. 

Proof of Lemma 3-2. It suffices to consider on x, y 2-dimensional 
plain, then let x = (r cos 0, r sin 0) and y = (p, 0). By taking m suf
ficiently large and using renormalization, we can assume m = 1 and 
0 «: 1. For the case of 1 ~ r, p ~ 1 + ./3/3, we calculate 

Ix -yl 2 - (¢(x) - ¢(y)) · (x -y) 

=(r - p){(r - ¢(r)) - (p - ¢(p))} 

+ (1- cos0){r(p- ¢(p)) + p(r - ¢(r))} 

=(r - p){(r - 1)3 - (p - 1)3 } + (1 - cos0){r(p - 1)3 + p(r - 1)3 } 

=(r - p) 2{(r -1)2 + (r - l)(p-1) + (p - 1)2 } 

+ (1- cos0){r(p - 1)3 + p(r -1)3 }. 

Since b(r) = 3(r-1)2 on 1 ~ r :5 1 + ./3/3, it suffices to show that there 
exists a constant C, independent of r and p, such that 

(r - p) 2{(r - 1)2 + (r - l)(p - 1) + (p - 1)2} 

+ (1 - cos0){r(p - 1)2 + p(r - 1)2 } 

~C[(r - p)2{(r - 1)2 + (p - 1)2 } 

+ 2(1- cos0)rp{(r - 1)2 + (p-1)2 }]. 

This is possible obviously since 1 ~ r, p. For the case of r I\ p < 1, the 
similar calculation shows the statement, and we omit the details. 

Q.E.D. 
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