H^{1}-Blow up Solutions for Peker-Choquard Type Schrödinger Equations

Hitoshi Hirata

§1. Introduction and the main results

In this paper, we study the H^{1}-solution for the following nonlinear Schrödinger equation

$$
\left\{\begin{align*}
i \partial_{t} u & =-\Delta_{x} u-\left(r^{-\gamma} *|u|^{2}\right) u \tag{1-1}\\
u(0, x) & =u_{0}(x) \in H^{1}\left(\mathbf{R}^{N}\right)
\end{align*}\right.
$$

where $r=|x|$ and $2 \leq \gamma<4, \gamma \leq N-1$, and show a sufficient condition of ' H^{1}-blowing up'. Here we say that u is an H^{1}-local solution of (1-1) when for some $T>0, u \in C\left([0, T) ; H^{1}\right)$ and satisfies next integral equation

$$
\begin{equation*}
u(t)=U(t) u_{0}-i \int_{0}^{t} U(t-s)\left\{\left(r^{-\gamma} *\left|u^{2}\right|\right) u\right\}(s) d s \tag{1-2}
\end{equation*}
$$

where $U(t)=\exp \left(i t \Delta_{x}\right)$ is the evolution operator for the free Schrödinger equation. Above type nonlinear Schrödinger equation is appeared in some approximations of many body problems, so-called Hartree approximation. As for detailed arguments of this approximation, see e.g. [5], [6] and [7].

Before stating the main results, we define several notations. For $p \in[1, \infty]$ and $k \in \overline{\mathbf{N}}$, we define Sobolev space

$$
W^{k, p} \equiv\left\{f \in \mathcal{S}^{\prime}:\|f\|_{W^{k, p}} \equiv \sum_{|\alpha| \leq k}\left\|\partial_{x}^{\alpha} f\right\|_{p}<\infty\right\}
$$

where $\|\cdot\|_{p}$ is usual L^{p}-norm. $H^{k} \equiv W^{k, 2}$ and $H^{-k} \equiv\left(H^{k}\right)^{*}$. For an interval I and a Banach space $X, C^{k}(I ; X)$ is the space of X-valued C^{k} functions on $I, k=0,1,2 \ldots$ and $L^{p}(I ; X)$ is the space of L^{p}-functions. We say $u \in L_{\text {loc }}^{p}(I ; X)$ if $u \in L^{p}(J ; X)$ for any compact $J \subset I$.

Received January 5, 1993.

For the existence of H^{1}-local solution of (1-1) and (1-2), we have obtained following theorem. (e.g. [2],[3])

Theorem 0. Let $2 \leq \gamma \leq 4, \gamma<N$ and $u_{0} \in H^{1}$. Then, there exist $T^{*}>0$ and $u \in C\left(\left[0, T^{*}\right) ; H^{1}\right)$, which satisfies (1-2), and has following properties (1) ~ (4).
(1) u is unique solution of (1-2) in $L_{\mathrm{loc}}^{\theta}\left(0, T^{*} ; W^{1, p}\right)$, where $1 / p=$ $1 / 2-(\gamma-2) / 4 N$ and $\theta=8 /(\gamma-2)$.
(2) u satisfies following conservation laws.
(1-3) $\|u(t)\|_{2}=\left\|u_{0}\right\|_{2}$,
$(1-4) \quad E(u(t)) \equiv\left\|\nabla_{x} u(t)\right\|_{2}^{2}-1 / 2\left(|u(t)|^{2}, r^{-\gamma} *|u(t)|^{2}\right)=E\left(u_{0}\right)$,
for $t \in\left[0, T^{*}\right)$. Here (\cdot, \cdot) is L^{2}-dual coupling.
(3) If $2 \leq \gamma<4$ and $T^{*}<\infty$, then $\left\|\nabla_{x} u(t)\right\|_{2} \rightarrow \infty$ as $t \rightarrow T^{*}$.
(4) u satisfies (1-1) in H^{-1} sense.

Remark. (1) If u satisfies $\|u(t)\|_{2} \rightarrow \infty$ as $t \rightarrow T^{*}$ for some $T^{*}<$ ∞, we say u blows up at blow up time T^{*}.
(2) The assumption $2 \leq \gamma$ is not essential. Since the space in which u is unique becomes simple, we state this assumption. On the other hand, the assumption $4 \geq \gamma$ is essential for the existence of H^{1}-local solution.

On the blow up of H^{1}-solutions, $2 \leq \gamma$ is a necessary condition, i.e. when $0 \leq \gamma<2$, the H^{1}-solution with any initial data $u_{0} \in H^{1}$ is global. On the other hand, it is well-known that when $2 \leq \gamma, u_{0} \in$ $H^{1} \cap L^{2}\left(\mathbf{R}^{N} ;|x|^{2} d x\right)$ and $E\left(u_{0}\right)<0$, the H^{1}-solution of (1-1) blows up in finite time (e.g. [1]). K. Kurata and T. Ogawa ([4]) dealt with more complicated potential $-\left(r^{-\gamma_{1}} *|u|^{2}\right) u-\left(r^{-\gamma_{2}} *|u|^{2}\right) u$, and showed there exists a blow up solution under the assumption $\gamma_{1}<2<\gamma_{2}<4$ and $\gamma_{2}<N-1$. Recently, in the local nonlinear case, i.e. $-|u|^{p-1} u$ instead of $-\left(r^{-\gamma} *|u|^{2}\right) u$, T. Ogawa and Y. Tsutsumi ([8]) showed that for any radially symmetric H^{1}-initial data u_{0}, the H^{1}-solution of corresponding equation blows up in finite time. We shall prove that we can use their methods in the non-local nonlinear case in this paper. Our main result is following.

Theorem 1. Let $2 \leq \gamma<4$ and $\gamma+1 \leq N$. Suppose that u_{0} be radially symmetric in $H^{1}\left(\mathbf{R}^{N}\right)$ and $E\left(u_{0}\right)<0$. Then the H^{1}-solution u blows up in finite time.

Remark. (1) Since u_{0} is unique in $L_{\text {loc }}^{\theta}\left(0, T^{*} ; W^{1, p}\right)$ and the equation is symmetric by spatial rotation, u is also radially symmetric.
(2) Since $E(K \phi)=K^{2}\left\|\nabla_{x} \phi\right\|_{2}^{2}-K^{4} / 2 \cdot\left(|\phi|^{2}, r^{-\gamma} *|\phi|^{2}\right)$ for any $\phi \in H^{1}$ and $K>0, E\left(u_{0}\right)<0$ is attained by some $u_{0} \in H^{1}$. This observation shows the assumption $E\left(u_{0}\right)<0$ means ' u_{0} is not small'.

§2. General lemmas

In this chapter, we state two well-known lemmas which hold in H^{1}. The first one is so-called Gagliardo-Nirenberg's inequality.

Lemma 2-1. Let $u \in H^{1}\left(\mathbf{R}^{N}\right)$ and $N \geq 3$. Then, there exists a constant C such that

$$
\begin{equation*}
\|u\|_{p} \leq C\left\|\nabla_{x} u\right\|_{2}^{a}\|u\|_{2}^{1-a} \tag{2-1}
\end{equation*}
$$

where $1 / p=1 / 2-a / N$.
The second one holds on radially symmetric functions.
Lemma 2-2 (Strauss[9]). Let u be a radially symmetric function in $H^{1}\left(\mathbf{R}^{N}\right)$. Then, there exists a constant C such that for any $R>0$ and $p \in[2, \infty]$,

$$
\begin{equation*}
\|u\|_{L^{p}(R<|x|)} \leq C R^{-(1 / 2-1 / p)(N-1)}\|u\|_{L^{2}(R<|x|)}^{1 / 2+1 / p}\left\|\nabla_{x} u\right\|_{L^{2}(R<|x|)}^{1 / 2-1 / p} \tag{2-2}
\end{equation*}
$$

§3. Proof of Theorem 1

Choose $\phi \in W^{3, \infty}([0, \infty))$ such that

$$
\phi(r)= \begin{cases}r & \text { for } 0 \leq r \leq 1 \tag{3-1}\\ r-(r-1)^{3} & \text { for } 1 \leq r \leq 1+\sqrt{3} / 3 \\ \text { smooth and } \phi^{\prime} \leq 0 & \text { for } 1+\sqrt{3} / 3 \leq r \leq 2 \\ 0 & \text { for } 2 \leq r\end{cases}
$$

and put

$$
\begin{aligned}
\phi_{m}(r) & =m \cdot \phi(r / m), \\
\psi_{m}(x) & =x /|x| \cdot \phi_{m}(|x|)
\end{aligned}
$$

Remark that if we put $\Phi(r)=\int_{0}^{r} \phi_{m}(s) d s, \Phi \in L^{\infty}\left(\mathbf{R}^{N}\right)$ and $\nabla_{x} \Phi=$ ψ_{m}. We also obtain next lemma.

Lemma 3-1. Let u be the H^{1}-solution of (1-1). Then, (3-2)

$$
\begin{aligned}
& \quad \Im \int u_{0} \psi_{m} \cdot \nabla_{x} \overline{u_{0}} d x-\Im \int u(t) \psi_{m} \cdot \nabla_{x} \overline{u(t)} d x \\
& =\int_{0}^{t}\left[2 \Re \sum_{j, k} \int \partial_{j}\left(\psi_{m}\right)_{k} \partial_{j} u(\tau) \partial_{k} \overline{u(\tau)} d x\right. \\
& \quad-1 / 2 \int \Delta_{x}\left(\nabla_{x} \cdot \psi_{m}\right) \cdot|u(\tau)|^{2}, d x+\gamma E\left(u_{0}\right)-\gamma\left\|\nabla_{x} u(\tau)\right\|_{2}^{2} \\
& \left.\quad+\gamma / 2 \iint_{|x| \vee|y| \geq m} a(x, y)|x-y|^{-\gamma-2}|u(\tau, x)|^{2}|u(\tau, y)|^{2} d x d y\right] d \tau \\
& \quad \text { for all } t \in\left[0, T^{*}\right)
\end{aligned}
$$

where \Im and \Re mean imaginary and real parts respectively, $\left(\psi_{m}\right)_{k}$ is $k^{t h}$ component of ψ_{m} and

$$
\begin{equation*}
a(x, y)=|x-y|^{2}-\left(\psi_{m}(x)-\psi_{m}(y)\right) \cdot(x-y) \tag{3-3}
\end{equation*}
$$

Now, remarking that u is radially symmetric, we have

$$
\begin{align*}
& 2 \Re \sum_{j, k} \int \partial_{j}\left(\psi_{m}\right)_{k} \partial_{j} u \partial_{k} \bar{u} d x \tag{3-4}\\
& \quad=2 \int_{|x| \leq m}\left|\nabla_{x} u\right|^{2} d x+2 \int_{m \leq|x| \leq 2 m} \phi_{m}^{\prime}\left|\nabla_{x} u\right|^{2} d x
\end{align*}
$$

And, simple calculation shows that there exists a constant C such that

$$
\left|\Delta_{x}\left(\nabla_{x} \cdot \psi_{m}(x)\right)\right| \quad \begin{cases}\leq C m^{-2} & \text { for } m \leq|x| \leq 2 m \tag{3-5}\\ =0 & \text { for otherwise }\end{cases}
$$

The next lemma is the key estimate to obtain our result.
Lemma 3-2. Let $0<\alpha<1$ and $m \gg 1$. For $|x| \vee|y| \geq m$ and $|x-y| \leq m^{\alpha}$, there exists a constant C, which is independent of x, y and m, such that

$$
\begin{equation*}
a(x, y) \leq C(b(|x|)+b(|y|))|x-y|^{2} \tag{3-6}
\end{equation*}
$$

Here

$$
b(r)= \begin{cases}0 & \text { for } r \leq m \tag{3-7}\\ 1-\phi_{m}^{\prime}(r) & \text { for } m \leq r \leq 2 m \\ 1 & \text { for } 2 m \leq r\end{cases}
$$

Using this lemma, we obtain

$$
\begin{align*}
& \iint_{|x| \vee|y| \geq m,|x-y| \leq m^{\alpha}} a(x, y)|x-y|^{-\gamma-2}|u(x)|^{2}|u(y)|^{2} d x d y \tag{3-8}\\
\leq & C \iint_{|x| \vee|y| \geq m,|x-y| \leq m^{\alpha}}(b(|x|)+b(|y|))|x-y|^{-\gamma}|u(x)|^{2}|u(y)|^{2} d x d y \\
\leq & 2 C \int_{|x| \geq m} b(r)|u(x)|^{2}\left(\left\{\chi\left(\left\{r \leq m^{\alpha}\right\}\right) \cdot r^{-\gamma}\right\} *|u|^{2}\right)(x) d x \\
\leq & 2 C\left\|b^{1 / 2}(r) u(x)\right\|_{L^{\infty}(|x| \geq m)}^{2}\left\|\chi\left(\left\{r \leq m^{\alpha}\right\}\right) \cdot r^{-\gamma}\right\|_{1} \cdot\left\|u_{0}\right\|_{2}^{2}
\end{align*}
$$

(by Hölder's and Young's inequalities)
$\leq C m^{-(N-1)}\left\|\nabla_{x}\left\{b^{1 / 2}(r) u(x)\right\}\right\|_{L^{2}(|x| \geq m)}^{2} \cdot m^{\alpha(N-\gamma)}\left\|u_{0}\right\|_{2}^{2}$
(by Lemma 2-2)

$$
\leq C m^{\alpha(N-\gamma)-(N-1)}\left\|u_{0}\right\|_{2}^{2} \int b(r)\left|\nabla_{x} u(x)\right|^{2} d x+C m^{\alpha(N-\gamma)-(N-1)}\left\|u_{0}\right\|_{2}^{4}
$$

Here we used L^{2}-conservation law (1-3) and defined

$$
\chi(A)(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

On the other hand, since $\left|\left(\psi_{m}(x)-\psi_{m}(y)\right) \cdot(x-y)\right| \leq\left\|\psi_{m}^{\prime}\right\|_{\infty}|x-y|^{2}$, we get

$$
\iint_{|x| \vee|y| \geq m,|x-y| \geq m^{\alpha}} a(x, y)|x-y|^{-\gamma-2}|u(x)|^{2}|u(y)|^{2} d x d y
$$

$$
\begin{align*}
& \leq C \iint_{|x| \vee|y| \geq m,|x-y| \geq m^{\alpha}}|x-y|^{-\gamma}|u(x)|^{2}|u(y)|^{2} d x d y \tag{3-9}\\
& \leq C m^{-\gamma \alpha}\left\|u_{0}\right\|_{2}^{4}
\end{align*}
$$

After all, by (3-2),(3-4);(3-8) and (3-9), we have

$$
\begin{align*}
& \Im \int u_{0} \psi_{m} \cdot \nabla_{x} \overline{u_{0}} d x-\Im \int u(t) \psi_{m} \cdot \nabla_{x} \overline{u(t)} d x \\
& \leq \int_{0}^{t}\left[\gamma E\left(u_{0}\right)-(\gamma-2)\left\|\nabla_{x} u(\tau)\right\|_{2}^{2}\right. \\
& \quad-2 \int b(r)\left|\nabla_{x} u(\tau)\right|^{2} d x-C m^{-2}\left\|u_{0}\right\|_{2}^{2} \tag{3-10}\\
& \quad+C\left(m^{-\gamma \alpha}+m^{\alpha(N-\gamma)-(N-1)}\right)\left\|u_{0}\right\|_{2}^{4} \\
&\left.\quad+C m^{\alpha(N-\gamma)-(N-1)}\left\|u_{0}\right\|_{2}^{2} \int b(r)\left|\nabla_{x} u(\tau)\right|^{2} d x\right] d \tau
\end{align*}
$$

Thus, if we take sufficiently large m such that

$$
\gamma E\left(u_{0}\right)+C\left(m^{-\gamma \alpha}+m^{\alpha(N-\gamma)-(N-1)}\right)\left\|u_{0}\right\|_{2}^{4} \equiv-\eta<0,
$$

and

$$
C m^{\alpha(N-\gamma)-(N-1)}\left\|u_{0}\right\|_{2}^{2}-2 \leq 0
$$

we obtain

$$
\begin{equation*}
\Im \int u_{0} \psi_{m} \cdot \nabla_{x} \overline{u_{0}} d x-\Im \int u(t) \psi_{m} \cdot \nabla_{x} \overline{u(t)} d x \geq \eta t \tag{3-11}
\end{equation*}
$$

Since

$$
d / d t\left(\int \Psi|u(t)|^{2} d x\right)=-2 \Im \int u(t) \psi_{m} \cdot \nabla_{x} \overline{u(t)} d x
$$

integrating the both hands of (3-12), we deduce that

$$
\begin{align*}
& \int \Psi|u(t)|^{2} d x \leq-\eta t^{2}-2 t \Im \int u_{0} \psi_{m} \cdot \nabla_{x} \overline{u_{0}} d x \\
&+\int \Psi\left|u_{0}\right|^{2} d x \quad \text { for all } t \in\left[0, T^{*}\right) \tag{3-12}
\end{align*}
$$

Now, we assume u is a global solution. Then, (3-12) is satisfied for any $t<\infty$ and the r.h.s. of (3-12) is negative for sufficiently large t. This is contradiction since the l.h.s. of (3-12) is non-negative. Thus, u is not global solution and $T<\infty$. Using Theorem 0.(3), we obtain $\left\|\nabla_{x} u(t)\right\|_{2} \rightarrow \infty$ as $t \rightarrow T^{*}$. This means our desired result.

§4. The proofs of lemmas

Proof of Lemma 3-1. We first assume $u_{0} \in H^{2}$. Under this assumption, the solution u belongs to $C\left(\left[0, T^{*}\right) ; H^{2}\right) \cap C^{1}\left(\left[0, T^{*}\right) ; L^{2}\right)$ and
satisfies (1-1) in L^{2}-sense (see e.g. [2]). Note that the maximum existence time T^{*} is the same as that of the H^{1}-solution. We take the real part of L^{2}-inner product between (1-1) and $\psi_{m} \cdot \nabla_{x} u$. Here, using equality (1-1) and integrating by parts, we have

$$
\begin{align*}
& \quad 2 \Re\left(i \partial_{t} u, \psi_{m} \cdot \nabla_{x} u\right) \\
& = \\
& =i \int \partial_{t} u \psi_{m} \cdot \nabla_{x} \bar{u} d x-i \int \psi_{m} \cdot \nabla_{x} u \partial_{t} \bar{u} d x \tag{4-1}\\
& = \\
& \quad i d / d t \int u \psi_{m} \cdot \nabla_{x} \bar{u} d x+\int \nabla_{x} \cdot \psi_{m}|u|^{2}\left(r^{-\gamma} *|u|^{2}\right) d x \\
& \quad-\int \nabla_{x} \cdot \psi_{m}\left|\nabla_{x} u\right|^{2} d x+1 / 2 \int \Delta_{x}\left(\nabla_{x} \cdot \psi_{m}\right)|u|^{2} d x \\
& \quad \begin{array}{l}
2 \Re\left(-\Delta_{x} u, \psi_{m} \cdot \nabla_{x} u\right) \\
\quad= \\
\quad 2 \Re \sum_{j, k} \int \partial_{j}\left(\psi_{m}\right)_{k} \partial_{j} u \partial_{k} \bar{u} d x-\int \nabla_{x} \cdot \psi_{m}\left|\nabla_{x} u\right|^{2} d x
\end{array} .
\end{align*}
$$

and

$$
2 \Re\left(u\left(r^{-\gamma} *|u|^{2}\right), \psi_{m} \cdot \nabla_{x} \bar{u}\right)
$$

$$
\begin{equation*}
=\int\left(\nabla_{x} \cdot \psi_{m}\right)|u|^{2}\left(r^{-\gamma} *|u|^{2}\right) d x+\int|u|^{2} \psi_{m} \cdot \nabla_{x}\left(r^{-\gamma} *|u|^{2}\right) d x \tag{4-3}
\end{equation*}
$$

Here, since

$$
\begin{aligned}
& 1 / 2 \int|u(x)|^{2} \psi_{m}(x) \cdot \nabla_{x}\left(\int|x-y|^{-\gamma}|u(y)|^{2} d y\right) d x \\
= & 1 / 2 \int|u(x)|^{2}\left\{\nabla_{x}\left(\int \psi_{m}(x)|x-y|^{-\gamma}|u(y)|^{2} d y\right)\right. \\
& \left.-\left(\nabla_{x} \psi_{m}\right)(x) \cdot \int|x-y|^{-\gamma}|u(y)|^{2} d y\right\} d x \\
= & 1 / 2 \int|u(x)|^{2} \nabla_{x} \cdot\left[\int \left\{\left(\psi_{m}(x)-\psi_{m}(y)\right)|x-y|^{-\gamma}|u(y)|^{2}\right.\right. \\
& \left.\left.+|x-y|^{-\gamma} \psi_{m}(y)|u(y)|^{2}\right\} d y\right] d x \\
& -1 / 2 \int\left(\nabla_{x} \cdot \psi_{m}\right)(x)|u(x)|^{2}\left(\int|x-y|^{-\gamma}|u(y)|^{2} d y\right) d x \\
= & -1 / 2 \int \nabla_{x}|u(x)|^{2} \cdot\left(\int \psi_{m}(y)|x-y|^{-\gamma}|u(y)|^{2} d y\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& +1 / 2 \int|u(x)|^{2}\left[\int \nabla_{x} \cdot\left\{\left(\psi_{m}(x)-\psi_{m}(y)\right)|x-y|^{-\gamma}\right\}|u(y)|^{2} d y\right] d x \\
& -1 / 2 \int\left(\nabla_{x} \cdot \psi_{m}\right)(x)|u(x)|^{2}\left(\int|x-y|^{-\gamma}|u(y)|^{2} d y\right) d x \\
= & -1 / 2 \int|u(y)|^{2} \psi_{m}(y) \cdot\left(\int \nabla_{x}|u(x)|^{2}|x-y|^{-\gamma} d x\right) d y \\
& +1 / 2 \int|u(x)|^{2}\left\{\int\left(\psi_{m}(x)-\psi_{m}(y)\right) \cdot\left(\nabla r^{-\gamma}\right)(x-y)|u(y)|^{2} d y\right\} d x \\
= & -1 / 2 \int|u(x)|^{2} \psi_{m}(x) \cdot \nabla_{x}\left(r^{-\gamma} *|u|^{2}\right)(x) d x \\
& -\gamma / 2 \int|u(x)|^{2}\left\{\int\left(\psi_{m}(x)-\psi_{m}(y)\right) \cdot(x-y)|x-y|^{-\gamma-2} \mid u(y)^{2} d y\right\} d x
\end{aligned}
$$ the second term of r.h.s. of (4-3) is equal to

$$
-\gamma / 2 \iint|u(x)|^{2}\left(a(x, y)|x-y|^{-\gamma-2}-|x-y|^{-\gamma}\right)|u(y)|^{2} d y d x
$$

Thus, by $(4-1) \sim(4-3)$, we get

$$
\begin{aligned}
& \quad i d / d t \int u \psi_{m} \cdot \nabla_{x} \bar{u} d x+1 / 2 \int \Delta_{x}\left(\nabla_{x} \cdot \psi_{m}\right)|u|^{2} d x \\
& = \\
& 2 \Re \sum_{j, k} \int \partial_{j}\left(\psi_{m}\right)_{k} \partial_{j} u \partial_{k} \bar{u} d x \\
& \quad+\gamma / 2 \iint|u(x)|^{2} a(x, y)|x-y|^{-\gamma-2}|u(y)|^{2} d y d x \\
& \quad \\
& \quad-\gamma / 2 \int|u|^{2}\left(r^{-\gamma} *|u|^{2}\right) d x
\end{aligned}
$$

Taking real part of b.h.s. and using the definition of energy (1-4), we obtain

$$
\begin{align*}
& -d / d t \Im \int u \psi_{m} \cdot \nabla_{x} \bar{u} d x \\
= & 2 \Re \sum_{j, k} \int \partial_{j}\left(\psi_{m}\right)_{k} \partial_{j} u \partial_{k} \bar{u} d x-1 / 2 \int \Delta_{x}\left(\nabla_{x} \cdot \psi_{m}\right)|u|^{2} d x \tag{4-4}\\
& +\gamma E\left(u_{0}\right)-\gamma\left\|\nabla_{x} u\right\|_{2}^{2} \\
& +\gamma / 2 \iint|u(x)|^{2} a(x, y)|x-y|^{-\gamma-2}|u(y)|^{2} d y d x
\end{align*}
$$

Thus, integrating (4-4) over $\left[0, T^{*}\right)$ by t, we obtain (3-3).

For the case of $u_{0} \in H^{1}$, we take $\left\{u_{0, l}\right\} \subset H^{2}$ such that $u_{0, l} \rightarrow u_{0}$ in H^{1} as $l \rightarrow \infty$. For each $u_{0, l}$, we can construct strong solutions $u_{l}(t)$ of (1-1) in a certain common time interval $[0, T]$, and $\left\{u_{l}(t)\right\}$ converges to the H^{1}-solution $u(t)$ in H^{1} uniformly. (See [2].) Thus, we obtain (3-2) on $[0, T]$. Since T is depend only on $\left\|u_{0}\right\|_{H^{1}}$, we can repeat this procedure, and we obtain (3-2) as long as $u(t)$ exists.
Q.E.D.

Proof of Lemma 3-2. It suffices to consider on x, y 2-dimensional plain, then let $x=(r \cos \theta, r \sin \theta)$ and $y=(\rho, 0)$. By taking m sufficiently large and using renormalization, we can assume $m=1$ and $\theta \ll 1$. For the case of $1 \leq r, \rho \leq 1+\sqrt{3} / 3$, we calculate

$$
\begin{aligned}
& |x-y|^{2}-(\phi(x)-\phi(y)) \cdot(x-y) \\
= & (r-\rho)\{(r-\phi(r))-(\rho-\phi(\rho))\} \\
& \quad+(1-\cos \theta)\{r(\rho-\phi(\rho))+\rho(r-\phi(r))\} \\
= & (r-\rho)\left\{(r-1)^{3}-(\rho-1)^{3}\right\}+(1-\cos \theta)\left\{r(\rho-1)^{3}+\rho(r-1)^{3}\right\} \\
= & (r-\rho)^{2}\left\{(r-1)^{2}+(r-1)(\rho-1)+(\rho-1)^{2}\right\} \\
& \quad+(1-\cos \theta)\left\{r(\rho-1)^{3}+\rho(r-1)^{3}\right\} .
\end{aligned}
$$

Since $b(r)=3(r-1)^{2}$ on $1 \leq r \leq 1+\sqrt{3} / 3$, it suffices to show that there exists a constant C, independent of r and ρ, such that

$$
\begin{aligned}
& \quad(r-\rho)^{2}\left\{(r-1)^{2}+(r-1)(\rho-1)+(\rho-1)^{2}\right\} \\
& \quad+(1-\cos \theta)\left\{r(\rho-1)^{2}+\rho(r-1)^{2}\right\} \\
& \leq C\left[(r-\rho)^{2}\left\{(r-1)^{2}+(\rho-1)^{2}\right\}\right. \\
& \left.\quad+2(1-\cos \theta) r \rho\left\{(r-1)^{2}+(\rho-1)^{2}\right\}\right]
\end{aligned}
$$

This is possible obviously since $1 \leq r, \rho$. For the case of $r \wedge \rho<1$, the similar calculation shows the statement, and we omit the details.
Q.E.D.

References

[1] R.T. Glassey, On the blowing up of solutions to Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.
[2] H. Hirata, The Cauchy problem for Hartree type Schrödinger equations in weighted Sobolev space, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 38-3 (1991), 567-588.
[3] H. Hirata, The Cauchy problem for Hartree type Schrödinger equations in H^{s}, preprint.
[4] K. Kurata and T. Ogawa, Remarks on blowing-up of solutions for some nonlinear Schrödinger equations, Tokyo J. Math., 13-2 (1990), 399-419.
[5] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194.
[6] P.L. Lions, Solutions of Hartree-Fock equation for Coulomb systems, Comm. Math. Phys., 109 (1987), 33-97.
[7] P.L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1073.
[8] T. Ogawa and Y. Tsutsumi, Blow-up of H^{1}-solution for the nonlinear Schrödinger equation, J. Diff. Eq., 92 (1991), 317-330.
[9] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

Department of Mathematical Science
University of Tokyo
Komaba, Meguro-ku, Tokyo 153, Japan

