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§ 1. A remark on spectral theory 

The Boltzmann equation, linearized around the equilibrium, has the 
form 

8f 8t + A f + K f = 0. 

We want to deduce the exponential decay of f(t) as t---+ oo. The operator 
A+ K is neither symmetric nor skew-symmetric. Nor is K compact. 
However, it enjoys the following properties: 

(i) Spec (A+ K) c {Re .X ~ O} 

(ii) A+ K has no point spectrum on Re .X = 0. 

(iii) Spec (A) C {Re .X ~ a 0 } for some a 0 > 0. 

(iv) K is A -smoothing. 

Property (iv) means, roughly, that the operator 

e-tiAKe-t2AK ... e-ttAK 

is compact for all ti > 0, ... , t1, > 0. 

Theorem [Vidav, Shizuta]. The spectrum of A + K in the strip 
{ 0 ~ Re .X < a 0 } is discrete, and 

II e-t(A+K) II~ e-a1t 

for some a 1 > 0. 

This is a generalization of Weyl's classical theorem on the perturba
tion of spectra. We will see at the end of the lecture how this theorem 
proves the stability of the equilibrium of the relativistic Boltzmann equa
tion. 
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§2. The relativistic Boltzmann equation 

Consider a gas with particle density F(t, x, v) where t = time, x = 
position, and v = momentum. The particles interact only through col
lision. Thus 

Vo at F + V • v' X F = scattering term. 

If the particles are treated relativistically, then the momentum v is any 
vector in R3 and the velocity v satisfies lvl < c. They are related by 

A V 
v=c-. 

Vo 

The mass of a particle is m and the energy is cv0 • Henceforth we set 
c = m = I and rewrite the equation as 
(RB) at F + v . v., F = Q(F) 
with the scattering term 

Q(F)(v) = f f VMa[F(u')F(v')- F(u)F(v)] dOdu. 
}Rs }s2 

Here u and v are interpreted as the momenta of a pair of incoming 
particles, and u' and v' as the scattered ones. Thus the term F(u')F(v') 
represents the gain and F(u)F(v) the loss. Conservation of momentum 
and energy is expressed by 

u + v = u' + v', uo + vo = ub + vb, 

where vo = JI+ lvl2 , ub = JI+ iubl2 , etc. (This is in contrast to 
the classical non-relativistic case where v0 = const · lvl 2). The scattering 
kernel is the product of two quantities. The M!llller velocity VM is given 
by 

vi = Iv - ul 2 - Iv x ui2 • 

The scattering cross-section a= a(g, 8) is a function of the generalized 
momentum difference g and the generalized scattering angle 0. Notice 
that, for a given incoming momentum v, the three vectors u, u' and v' 
are constrained by the four scalar conservation laws given above. The 
integration in the scattering term runs over the five remaining variables. 

A solution of (RB) has the conserved quantities 

J J Fdvdx, J J vFdvdx, J J v0 Fdvdx, 

the mass, momentum and energy, respectively. Furthermore, the entropy 
increases: 

! J J F logFdvdx ~ 0. 
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(The last integral is the negative entropy.) The equilibrium of greatest 
entropy comes from minimizing the negative entropy subject to fixed 
mass, momentum and energy. It is 

µ(v) = ea+b•v-c~, 

the maxwellian distribution. Our goal is to prove the asymptotic stabil
ity of µ(v). 

In the classical case, µ( v) is a gaussian. After the introduction of 
the equation by Boltzmann in 1872, it was not until Carleman in 1933 
that the stability was proved for the case of space-independent solutions. 
Grad in a series of papers around 1963 proved the stability for a finite 
time for general solutions. Finally in 1974 Ukai proved the asymptotic 
stability, and hence the global existence of solutions near equilibrium, 
in the case of spatial periodicity. Then Nishida and Imai and Ukai in 
1976 solved the problem without a periodicity assumption. Many others 
have made substantial contributions to the classical theory in the last 
15 years. Here we announce the resolution of the relativistic problem 
with spatial periodicity. 

Main Theorem. Assume that the scattering cross-section a sat
isfies k1g(l + g)-1 ~ a(g, 0) ~ k2 for some constants k1, k2 > 0. Let 
the initial distribution F 0 satisfy 

(i) F 0 (x,v) 2: 0 

(ii) F 0 is continuous 

(iii) F 0 is periodic in x 

(iv) J J(a + b · v - cJl + lvl 2 ) [F0 (x, v) - µ(v)] dv dx = 0 
for all a, b, c. 

(v) IF0 (x, v) - µ(v) I ~ s/µ(vj (1 + lvl)-,-3 / 2 

for some "( > 0 and for sufficiently small E:. Then there exists a global, 
continuous, x-periodic solution of (RB) with F(O, x, v) = F 0 (x, v), and 
there exist {j > 0 and c1 > 0 such that 

for O ~ t < oo. 

This theorem is also true with Ck and Hk norms for arbitrarily large 
k. Hence there exist arbitrarily smooth solutions. It is also true under 
more general conditions on a. 
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§3. Sketch of the proof of stability 

We may normalize µ(v) = exp(-✓1 + lvl2 ). Next we write the 
perturbation as F - µ = '1fi,J, so that f satisfies 

where 

A=v·v"x+a(v), 

8tf +Af +K f = Q(J), 

K = a linear integral operator in v, 

Q = a quadratic term. 

We wish to solve this equation globally with small initial data. To do 
this, we choose a space Yon which Q is bounded: 

II Qf lly ~ell F II~ 
and a similar Lipschitz property for Qf - Qg, together with decay of 
the linearized problem: 

100 II e-t(A+K) II dt < oo .C(Y,Y) · 
0 

It is a standard fact that these two properties imply the asymptotic 
stability. 

To prove the Main Theorem, we choose the space Y of continuous 
functions f(x, v), periodic in x, which satisfy 

J j(a+ b · v + c✓l + lvl 2 ) '1fi,J dvdx = 0 

for all a, b, c, such that the norm 

II f IIY = sup(l + lvl)"+3/ 2 IJ(x, v)I 
x,v 

is finite. We omit the proof of boundedness of Q on this space in order 
to concentrate on the linearized problem. 

The linearized entropy identity is 

(Af + Kf, J) 

= VMaµ(u)µ(v) f(v') + f(u') - J(µ) - J(v) [ l 2 

!!!! yµ[0 ~ \/µ{u) Mv) 

x dudfldvdx. 
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This expression is manifestly non-negative, and in fact is positive for all 
f -:/:- 0 in Y because of the orthogonality conditions. Thus properties (i) 
and (ii) from the beginning of this lecture are satisfied. Furthermore, 
A= v · V x + a(v) where 

a(v) =~ff VMu(g, 0)µ(u)dudn 

is bounded above and below: 0 < ao $ a( v) $ a2 < oo. Hence (Af, J) ~ 

aoll f lli2• 
In the classical case a(v) is like a constant times lvl, which means 

that the dissipation is large for large lvl, In the mid-1970's Shizuta 
showed how the concept of an A-smoothing operator can be applied to 
the classical Boltzmann equation. In fact, Grad showed in the 1960's 
that 

KJ(t,x,v) = f k(u,v)f(t,x,u)du 

where k(u,v) $ c1 lu -v1-1 exp(-c2lu -vl2), in the case of the hard 
sphere. 

In the relativistic case the exponent is much weaker. Nevertheless 
we can improve the denominator to obtain 

This estimate implies that 

and, for all /3 ~ 0, 

/ (1 + lul)13 lkldu $ c (1 + lvl)-/3-l . 

Following Shizuta, we approximate the kernel as a sum 

with nice functions p3 and % . Therefore the A-smoothing property of 
K would follow from the compactness of the operator 



110 R. T. Glassey and W.A. Strauss 

where Q is multiplication by qj(v) and Pis integration with Pi(u). In 
this string of operators it suffices to prove the boundedness of the various 
factors and the compactness of one of the factors. In fact, one string of 
three factors is 

Pe-tAQJ(x) = J e-tA[q(v)f(x)]p(v)dv 

= J e-ta(v)q(v)f(x - tv)p(v)dv. 

We apply Bx to both sides of this identity. Inside the integral, Bx is 
converted to r 18,;. A change of variables from v to v thus leads to the 
identity 

1 / a Bx[Pe-tAQJ] = t av (akernel) · f · dv. 

Thus we gain regularity in x and therefore Pe-tAQ is compact. For 
details, see [3]. 
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