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§1. Introduction 
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Erik Skibsted 

In studying the detailed properties of Schrodinger operators, the 
method of micro-localization seems to be indispensable. For the many
body problem, this point of view was introduced by Enss [3], Mourre [11] 
and then by Sigal-Soffer [13] to investigate the propagation properties 
of the unitary group. These sorts of estimates not only lead us to a 
deep understanding of the space-time behavior of the solution to the 
Schrodinger equation, but also give us many applications. The aim of 
this paper is to prove a certain variation of these kinds of estimates for 
the resolvent of the N-body Schrodinger operator. 

We consider a system of N-particles moving in Rv with mass mi 
and position xi E Rv(l ::; i ::; N). Let X be defined by 

N 

1 N " ' X = {(x , · · ·, x ); L.J mix' = O}, 
i=l 

and consider the Schrodinger operator 

H =Ho+ L½i, 
i<j 

where -H0 is the Laplace-Beltrami operator on X equipped with the 
Riemannian metric induced from ds2 = 2E~1 mi(dxi)2 on RNv_ Each 
pair potential ½i = ½j(xi - xi) is assumed to be a real-valued C 00-

function on Rv and satisfies for some constant p > 0 

(1.1) 
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for any m = O, 1, 2, •••,where 8;:' denotes an arbitrary derivative of order 

m and <y> = (1+ jyj2 ) 112 • Let R(z) = (H-z)- 1 . Let A be the set of 
thresholds of H. For >. E aess(H) n ap(Hf n Ac, we define 

(1.2) a(>.)= inf{.X- µ;µEA,µ<>.}. 

Note that a(>.) = >. if>. > 0, which follows.from the absence of positive 
eigenvalues of Schrodinger operators (see [5]). We consider a pseudo
differential operator (Ps.D.Op.) P with symbol p(x, c;) belonging to the 
following class. For a positive integer k and a ER, let Rk(a) be the set 
of C 00-functions p(x, c;) having the following estimates: 

and also satisfying 

(1.4) 
X·c; 

sup -- < a on supp p(x, c;). 
x,e <x> 

A typical example of the element of Rk(a) is given as follows. We take 
p(t) E C00 (R) such th~t p(t) = 1 if t < a - 2t:, p(t) = 0 if t > a - t:, € 

being a small positive constant. Then 

p(-=-1_) <c;>-2kE Rk(a). 
<x> 

For a Ps.D.Op. P, P E Rk(a) means that the symbol of P belongs 
to R,k(a). As is well-known, for a sufficiently large k, P E Rk(a) is 
L2-bounded. Let B denote the totality of bounded operators on L2 (X). 
The main result of this paper is the following 

Theorem 1.1. For any s > -1/2 and t > 1, there exists k = 
k(s) > 0 such that 

for any PE Rk( .Jaw). 
Although the above theorem is formulated by Ps.D.Op.'s, the main 

part of the proof consists in the calculus of commutators in an algebra 
consisting of functions of several operators, which is one of the interesting 
features of the many-body problem. This commutator calculus has its 
origin in the work of Mourre [11], was developed by Sigal~Soffer [13], 
[14] with great success and is now considered as a basic tool for the 
many-body problem. 
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One of the authors proved a slightly weaker theorem in [15] and we 
should note that the above Theorem 1.1 is implicitly suggested in [16], 
where the commutator of H and 

- 1 
A = 2/x · v' x + v' x • x) - C < x > 

was used. In this paper, we shall explain a method which treats directly 
the resolvent. Our idea is very close to those of Sigal-Soffer [13] and 
Derezinski [2]. One of the applications of the above theorem is the 
study of the detailed structure of the S-matrix ([9], [10], [16]). Other 
applications will be given elsewhere. 

Finally, we remark that throughout the paper we neglect the domain 
question and treat freely the product of unbounded operators. This is 
justified by defining them by quadratic forms on S x S, where S is the 
space of rapidly decreasing functions. 

§2. Commutator Algebra 

For two operators P and A, we introduce their multiple commutators 
by 

ado(P, A) = P, 

adn(P,A) = [adn-1(P,A),A], n ~ 1. 

The fundamental formulas to calculate the commutators are as follows: 

(adn(P,A))* = (-ltadn(P*,A*), 

adn(PQ,A) = ~ (~) adn-k(P,A)adk(Q,A), 

n 

[P, An] = L Cn,k adk(P, A)An-k, 
k=l 

Cn,k being constants. 
We choose the coordinates x = (x1, · · · ,x(N-l)v) on X such that 

(N-l)v 

Ho= - L (8/8xi) 2 • 

i=l 

As in [2] and [13], an important role is played by the self-adjoint operator 
B defined by 

(2.1) 
1 X X 

B= --:(- ·v'x+v'x· -). 
~ <x> <x> 
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We first consider the commutation relations between H, B and X 
< x >. Let Lo be the differential operator defined by 

(N-l)v a 
Lo= L Xi~-

i=l X, 

Let V be the set of 0 00-functions v on X such that L'0v is bounded on 
X for any n ~ 0. This set V forms an algebra and is independent of the 
choice of the Jacobi coordinates. 

Example. If V E C 00 (RV) satisfies 18:~nv(y)I :::; Cm < y >-m, 
\:/m ~ 0, then v(xi - xi) E V. In particular, each two-body potential 
¼J(xi - xi) belongs to V. 

Let Vm = xmv. Let Pk,m be the set of differential operators of 
order k with coefficients E Vm• Vm is invariant by the action of L0 , 

which implies that, if LE Pk,m, [L, B] E Pk,m-1• We have, therefore, 

Lemma 2.1. For n ~ 1, we have 
(1) adn(X, B) E Po,1-n-
(2) adn(H, B) E P2,-n• 
(3) adn(B,H) E 'Pn+l,-1· 

These commutation relations suggest us to introduce the following 

Definition 2.2. PE Opm(X) (m ER) {=::::} 

xa adn (P, B)Xf3 E B, for any a, /3 E R and n ~ 0 such that a + /3 = 
n-m. 

The analogy of the class Opm(X) to that of Ps.D.Op.'s is appar
ent when one thinks of Beals' characterization of the standard class of 
Ps.D.Op.'s ([1]). The basic properties of Opm(X) are summarized in 
the following lemma whose proof follows easily from the definition. 

Lemma 2.3. (1) P E Opm(X) {=::::} There exists Po E Op0 (X) 
such that P = xm Po. 
(2) PE Opm(X) ==> [P,B] E Opm-1(X). 
(3) PE Opm(X) ==> XkPX1 E Opm+k+l(X), \:/k,l ER. 
(4) PE Opm(X) ==> P* E Opm(X). 
(5) PE Opm(X), Q E Opn(X) ==> PQ E Opm+n(X). 

Therefore, UmOpm(X) forms an algebra which is our basic tool in 
this paper. 
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The basic subject of this section is to calculate the commutators of 
· functions of operators. For m E R, let Frn be the set of C 00-functions 

on R such that 

Then for f E Frn (m ER), there exists F(z) E C 00 (C), called an almost 
analytic extension off, having the following properties: 

F(x) = f(x), x ER, 

l8zF(z)I ~ CN <z>rn-l-N IImzlN, \/N ;2:: 0, 

suppF(z) C {llmzl ~ E(l + IRezl)}, 0 < E « 1. 

Furthermore, B!F(z) is an almost analytic extension of j(kl(x) (see [6]). 
Let f E F-• ( E > 0) and F be its almost analytic extension. Then for 
any self-adjoint operator A we have 

(2.2) f(A) = ~ [ 8zF(z)(z - A)-1dz I\ az 
27ri le 

(see [8]). One can also prove the following formula of the asymptotic 
expansion of the commutator: If f E Frn (m ER) and A is self-adjoint, 
we have 

N-1 

(2.3) [P, J(A)] = L (-1r-1 /n! adn(P, A)j(nl(A) + RN, 

(2.4) 

n=l 

RN=~ [ 8zF(z)(A- z)- 1 adN(P, A)(A- z)-N dz I\ az. 
27ri }c 

RN is bounded if there exists k such that m+k < N and adN(P, A)(A+ 
i)-k EB. This commutator expansion formula turns out to be a pow
erful tool of analysis (see also [6], [7]). 

An important example of the element of Oprn(X) is given by 

Lemma 2.4. J(H), f(B) E Op0 (X) if f E F-e, E > 0. 

Proof. By (2.2), we have 

adn(J(H), B) = ~ [ BzF(z) adn((z - H)-1 , B)dz I\ az. 
27ri }c 
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For a, /3 ER such that a+ /3 = n, one can show 

with, = ,(a, /3) > 0. The above mentioned properties of the almost 
analytic extensions then prove that f(H) E Op0 (X). To prove the 
lemma for f(B), we have only to note that 

It is convenient to introduce the following notation: Let Pn E 
Opk(n)(X), k(l) > k(2) > • • • -+ -oo. Then an operator Pis said to 
have the asymptotic expansion ~n~l Pn, written as P ~ ~n~l Pn, if 
and only if 

N-1 

P- L Pn E Opk(N)(x), 'vN ~ 2. 
n=l 

Using (2.3), one can show the following 

Lemma 2.5. Let PE Opm(X), f E ;=-n, m,n ER. Then 

[P, f(B)] ~ L Pkf(k)(B), Pk E Opm-k(X). 
k~l 

By the same methods as above, we can also show 

Lemma 2.6. Let <p E C0 (R) and f E P,m E R. Then we 
have: 

(1) adn(<p(H),X) E Op0 (X), n ~ 0. 

(2) [<p(H),f(X)] ~ E(-1t-1 /n! adn(<p(H),X)j<n)(x). 
n~l 

Lemma 2.7. Let f E P,g E ?,m,n ER. Then we have: 

(1) adk(g(X), B) E Opn-k(X), k ~ 0. 

(2) [g(X), f(B)] ~ E(-1t-1 /k! adk(g(X), B)f(k)(B). 
k~l 
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§3. Resolvent Estimates (1) 

We fix>. E O"ess(H) n a-p(H)c nAc and let Co(>.)= a(>.)-E for small 
E > 0. Let r.p E C8°(R) be such that r.p(t) = 1 if It - >-I < 8, r.p(t) = 0 if 
It - >-I > 28. Our starting point is the following Mourre type estimate 
which holds for small 8 > 0 ([4]): 

(3.1) r.p(H)i[H, A]r.p(H) ::::: 2C0 (>.)r.p(H)2 , 

where 
1 

A = 2/ x · v' x + v' x · x). 

We now introduce 

Definition 3.1. f E ~(>.), m E R {=::} f E Fm, supp f C 

(-oo, y'a(X)). 

For a small Eo > 0, we take F0(t) E ~(>.) such that 

{ 

F0 (t) = 0 

Fo(t) = 1 

F~(t) ::::: O, 

F0 (t)::; 0, 

if t > JCa(>.) - Eo, 

if t < JC0 (>.) - 2Eo, 

JFo(tj E ~(>.), 

J-F~(t) E ~(>.). 

For O < E1 < Eo, let C1(>.) = JC0 (>.) - E1 and define 

Fm(t) = (C1 (>.) - tr Fa(t), 

~(t) = (C1(>.) - t)Fm(t)2. 

In the following arguments, ( *) denotes an operator having the asymp
totic expansion: 

L Pnf n(B), Pn E Op2m+l-n(x), 
n:,::2 

fn E :F_:_m+l-n(>.), supp fn C supp Fa. 

The crucial step is the following lemma. 

Lemma 3.2. Let m > -1/2. With Fm(t) and r.p(t) introduced 
above, we define Pm = xm Fm ( B)r.p( H). Then there exists a constant 
C0 > 0 such that 

- Re r.p(H)i[H, x 2m+i ~(B)]r.p(H)::::: CoP:;,Pm + (*). 
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Proof. To calculate the commutator i[H, x 2m+1 ~ (B)] in the 
category of the algebra explained in §2, we make the following device. 
Let <p1(t) E C0 (R) be such that <p1(t) = 1 on supp <p, and put 'lj;(t) = 
t<p1 (t). Then 

<p(H)i[H, x2m+i ~(B)]<p(H) 

= <p(H)i['lj;(H), x 2m+1 ~ (B)]<p(H) 

= <p(H)i['l/J(H), x 2m+l ]~ (B)<p(H) 

+ <p(H)X2m+li['l/J(H), ~(B)]<p(H). 

We first show that 

(3.2) - Re <p(H)X2m+1i['lj;(H), ~1(B)]<p(H) 

2: (2m + l)P,'.;,,(2Co(A) - 2B2 - E2)Pm + (*), 

E2 being a sufficiently small positive constant. In fact, we have 

d ~ 2 
dtF2m+1(t) = -(2m+ l)Fm(t) - G(t), 

where 
G(t) = -2(C1(A) - t)2m+i Fo(t)F~(t). 

Then using (2.3), we see that the left-hand side of (3.2) is written as 

(2m + 1) Re <p(H)X2m+1i['lj;(H), B]Fm(B)2<p(H) 

+ Re <p(H)X2m+1i['lj;(H), B]G(B)<p(H) + ( * ). 

Taking note of the relation, 

<p(H)X112i[H, B]X112<p(H) 

= <p(H)(i[H, A] - 2B2 + K)<p(H), 
K being a compact operator, we have 

Re <p(H)X2m+1i['lj;(H), B]G(B)<p(H) 

= xmJG(B)<p(H)X112i[H, B]X112<p(H).,jc[B)xm + (*) 

2: xmJG(B)<p(H)(2C0 (A) - 2B2 + K)<p(H).,/G[B)Xm + (*) 

2: (*), 

where we have used Lemmas 2.5, 2.6 and 2.7 in the first line, (3.1) in the 
second line and the fact that -2t2 2: -2(Co(A)-Eo) on supp G(t) in the 
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third line. We can then see that the left-hand side of (3.2) is estimated 
from below by 

(2m + I)Fm(B)Xm<p(H)X112i[H, B]X112<p(H)XmFm(B) + (*) 

2'.: (2m + I)P;,(2Co(A) - 2B2 - E2)Pm + (*)-

We next show that 

(3.3) - Re <,0(H)i['¢(H),X2m+1]~(B)<,0(H) 

2'.: (2m + l)P;,(2B2 - 2C1(A)2 )Pm + (*). 

In fact, the left-hand side of (3.3) is written as 

- Re <,0(H)i[H,x2m+1]~(B)<,0(H) + (*) 

= - Re 2(2m + I)<,0(H)X2m B(C1(A) - B)Fm(B)2<,0(H) + (*)-

Since t ~ C1(A) on supp Fm(t), we have 

-B(C1(A) - B)Fm(B)2 2'.: (B2 - C1(A)2)Fm(B)2, 

which proves (3.3). 
The lemma now follows from (3.2) and (3.3). • 

Let Fm(t) be as above. We call xm Fm(B) the operator of canonical 
type. 

Lemma 3.3. Let m ER, PE Op2m(X) and f E .1:_m(A). Take 
n > m. Then for any N 2'.: 1, there exist the operators of canonical type 
xn-k/2 Fn-k;2(B) (k = 1, · · ·, N - I), PN E Op2n-N (X) and a constant 
C > 0 such that 

N-1 

Re Pf(B) ~CL Fn-kj2(B)x2n-k Fn-kj2(B) + PN. 
k=O 

Proof. By enlarging the support of Fn(t) suitably, we see that 
'lj)(t) = f(t)Fn(t)-2 E .r-=€(A), f > 0. Then we have 

Pf(B) = P'¢(B)Fn(B)2 

= Fn(B)P'lj)(B)Fn(B) + [P'¢(B), Fn(B)]Fn(B). 

One can then see that 
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where Po= P0 E Op0 (X). Therefore, for a suitable constant C > 0, 

xn Fn(B) being the operator of canonical type. Since [P'l/J(B), Fn(B)] 
has an asymptotic expansion: 

[P'l/J(B), Fn(B)] ~ L PkFJk)(B), Pk E Op2m-k(X), 
k21 

we repeat the above procedure to conclude the lemma. • 

The main purpose of this section is the following 

Theorem 3.4. Let rr, > -1/2, t > 1 and F E .r~(>.). Then we 
have 

xm F(B)cp(H)R(>. + iO)x-m-t E B. 

Proof. We take 'ljJ E C0 (R) such that 'ljJ = 1 on supp <p. Let 
u = 'ljJ(H)R(>. + iE)f, E > 0. By Lemma 3.3, we have only to consider 
the case where xm F(B) is the operator of canonical type xm Fm(B). 

We introduce a notation here: Q E Op:_'(>.; X) if and only if Q = 
Pf(B) for some PE Opm(X) and f E .r~(>.). 

By Lemma 3.2, we have 

CollXm Fm(B)cp(H)ull 2 :S - Re (i[H, Q]cp(H)u, cp(H)u) 

(3.4) N-1 

+ Re L (Qnu, u) + (QNu, u), 
n=2 

where Q = x 2m+l ~ (B), Qn E Op:__m+l-n(>.; X) and QN E 

Op2m+l-N (X). Note that 

- Re (i[H, Q]cp(H)u, cp(H)u) 

= Im {(Qcp(H)f, cp(H)u) - (Qcp(H)u, cp(H)f)} 

- 2E Re (Qcp(H)u, cp(H)u). 

Let 8 = t - 1. Since Q is written as 

N-1 

Q= I:ifPi+QN, 
i=O 
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where Pi E Op:_i-i-c(.X;X), P; E Op:_>+t(.X;X) and QN E 

Op2m+l-N (X), we have 

N-1 

l(Qcp(H)u,cp(H)f)l :S: L IIPi'P(H)ull 2 +c11xm+t111 2 . 

i=O 

79 

Here and in the sequel C denotes a constant independent of E > 0. 
l(Qcp(H)f, cp(H)u)I is estimated from above in the same way. Since Q 
can be written as 

Q = ✓~(B)X2m+1J~(B) 

+ [✓~(B),[✓~(B),X2m+l]], 
one can show that 

- Re cp(H)Qcp(H) :S: L Pt Pi+ QN, 
i?:O 

with a finite number of Pi E Op:'-112-\.X; X), and QN E Op-N (X). 
Therefore 

- Re (Qcp(H)u, cp(H)u) :S: L 11Piull2 + CIIXm+tJll 2 -

i?:O 

Re (Qnu, u) in (3.4) is estimated from above similarly. We then arrive 
at 

(3.5) 11xm Fm(B)cp(H)ull 2 :s; L IIPiull 2 + c11xm+t 111 2 ' 

i?:O 

with a finite number of Pi E Op:."-6 ( .X; X). In view of Lemma 3.3, one 
can use (3.5) with m replaced by m - 8 to estimate 11Piull 2 • We. repeat 
this procedure and finally obtain 

withs > 1/2. The limiting absorption principle then implies the theorem 
(see [12]). • 

§4. Resolvent Estimates {2) 

In this section, we shall give the proof of Theorem 1.1 which consists 
in translating Theorem 3.4 in terms of Ps.D.Op.'s. Let cp(H) be as in 
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the previous section. Then by Lemma 2.4, 

Xm(l - cp(H))R(>.. + i0)x-m EB, Vm ER. 

Therefore to prove Theorem 1.1, we have only to consider cp(H)R(>..+i0). 
For a small Eo > 0, we define C(>..) = ✓a(>..) - E + 3t:0 so that C(>..) < 
Ja(.ij. We take F_(t) E :pl such that F_(t) = 1 if t < C(>..) - t:0 , 

F_(t) = 0 if t > C(>..). Let F+(t) = 1- F_(t). Throughout this section, 
we shall use the Weyl calculus of Ps.D.Op.'s. 

Let P E R,k( Jaf.ij). Then for s > -1/2 one can take k large 
enough so that xs P < B >-s x-s E B. Therefore by Theorem 3.4, 

xs PF_ (B)cp(H)R(>.. + iO)x-s-t 

= xs P <B>-s x-s · xs <B>s F_(B)cp(H)R(>.. + i0)x-s-t EB 

for s > -1/2 and t > 1. 
The proof of Theorem 1.1 is thus completed if we show the following 

assertion : For any s > O, there exists k = k( s) > 0 such that 

(4.1) 

Applying Lemma 2.7 to [X, F+(B)], we see that (4.1) follows from the 
following assertion: For any s > O, there exists k = k( s) > 0 such that 

(4.2) 

Suppose (4.2) is proved for some s 2 0. Let C1 (>..) = ✓a(>..) - E + t:0 . 

Then by taking E and Eo small enough we have 

on supp p(x, () and t 2 C1(>..) + Eo on supp F+(t). Let B1 = B - C1(>..) 
and consider 

P(t) = e-tB1 F+(B)P*X28+1PF+(B)e-t81 , t 2 0. 

Let b1 (x,() be the symbol of B 1 . Namely, 

b1 (x, () = ~ - C1 (>..). 
<x> 

Then on supp p(x,(), b1 (x,() < - t:0 • Let P0 be the Ps.D.Op. with 
symbol 
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As is easily seen Po E 'Rk-l( y'a(>J). We now take k large enough and 
apply the standard symbolic calculus to obtain 

2P; x2s+1 Po = - B1P* x2s+1 p - p* x2s+l p B1 

finite 

+Re L P/X28 Pi +Q, 
i 

where Pi, A E 'R1( .Jaw), l = l(k, s) satisfies l(k, s) --t oo as k --t oo, 
and the symbol of Q is rapidly decreasing in x. We have, therefore, 

B1P* x2s+1 p + P* x2s+1 PB1 

::; Re I:PtX28 Pi +Q. 
i 

Hence by the induction hypothesis 

with some constant C > 0, if k is chosen large enough. Since 

F+(B)P*X28+1PF+(B) = P(O) = - 1= !P(t)dt, 

one can see that xs+1/2PF+(B) E B, which completes the proof of 
Theorem 1.1. 
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