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of Remainder Term over a Space 

of Large Dimension 

Daisuke Fujiwara 

Abstract. 

Let rd(v) denote the remainder term of the stationary phase 
method over Rd_ Then an estimate of vdf2+1rd(v), as d _. oo, is 
given under certain assumptions, which are tolerable for application 
to Feynman path integrals. 

§ 1. Stationary phase method 

Stationary phase method is a method to evaluate asymptotically, as 
v--+ oo, oscillatory integrals over Rd of the following form: 

I(S, a, v) = J e-ivS(x)a(x)dx, 
Rd 

where S(x) is a real valued C 00 function called the phase function, a(x) is 
a C 00 function called the amplitude and v is a large positive parameter. 
In the simplest case that a(x) E C0 (Rd) and that S(x) has only one 
critical point x*, where Hess S ( x*) is non-degenerate, it gives 

d/2 

I(S, a, v) = (~:) [det{Hess S(x*)}i-112(e-ivS(x*)a(x*) + rd(v)) 

and an estimate of the remainder term 

If support of a(x) is not compact, we have to require some addi­
tional assumption that control the behaviour of a(x) at the infinity. For 
instance (cf. [1]), the same conclusion holds if we assume the following 
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Hypothesis (H.O). (i) sup,, I 8';S(x) I< oo for any multi-index a 
with I a I~ 2. (ii) There exists a constant 8 > 0 such that I det Hess S(x) I 
~ 8. (iii) For any multi-index a, supx I 8';a(x) I< oo. 

Since the stationary phase method is closely related to the mathe­
matical theory of Feynman path integrals (cf. [3], [4], [5] and [6]), we 
wish to investigate the following 

Question. Can one control vdf2Hrd(v) as d----, oo ? 

We give a positive answer to this question. Detailed discussions can 
be found in [2]. Applications are discussed in [4], [5] and [6]. 

§2. Statement of results 

We shall treat the following oscillatory integral over L - l dimen­
sional space: 

I( { tj },S, a, v)(xL, xo) 

L . L-1 
= II (~)1/2 r e-ivS(xL,··•,Xo)a(xL,··•,xo) II dxj, 

27rtj }RL-1 
j=l j=l 

with large positive parameter v and small positive parameters { tj }. Our 
hypothesis for the phase function is 

Hypothesis (H.l). S(xL, ... , x 0 ) is of the form 

where 

L 

S(xL, ... , xo) = L Sj(tj, Xj, Xj-1), 

j=l 

For any m 2'. 2 there exists a positive constant Km such that 

sup I aijatj-lwj(tj,Xj,Xj-i) l:S Km 
Xj,Xj-1 

if 2 :S a + /3 ::; m. 

We will give two examples of phase functions satisfying hypothesis 
(H.l). 
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Example 1. Let L(e, x) = ½e2-V(x), (e, x) E R2 , be a Lagrangian 
with a potential V(x). Assume that the potential V(x) is a real-valued 
C 00-function satisfying estimates: 

sup I y(k)(x) I< oo for any k ~ 2. 
"' 

Then for a small T > O, there exists a unique classical orbit -ycl(t) such 
that -ycl{O) = y, -ycl(T) = x. Let 

be the classical action. Then Bel (T, x, y) is of the form 

and for any m ~ 2 there exists a constant Cm such that 

sup I a::ae<1>cl(T,x,y) 1:::; Cm 
"' 

if 2 :::; a + f3 :::; m. Therefore, S(xL, ... , xo) = I:f=l S(ti, Xj, Xj-1) 
satisfies the hypothesis (H.1). 

Example 2. Let L(e, x) be the same lagrangian. Let -y1n(t) be 
the straight line connecting {0,y) and (T,x) in the time-space, i.e., 

ln t T-t 
'Y (t) = TX+ ---;y-Y· 

Let 

Then function S1n(T,x,y) is of the form 

and for any m ~ 2 there exists a positive constant Cm such that 

sup I a::ae<1>1n(T,x,y) 1:::; Cm 
"' 
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if 2 5 a+ /3 5 m. Therefore, S 1n(xL, ... , xo) = I::f=l S 1n(tj, Xj, Xj-1) 
satisfies the hypothesis (H.1). 

Under hypothesis (H.1) the critical point of the function (xL-1, ... , 

x1)-+ S(xL,XL-l, ... ,xi,xo) is unique if TL= I::f=l ti is small. We 
denote it by (xi,_1 , ... ,xi)- We abbreviate S(xL,xi,_ 1 , ••• ,xi,xo) as 
S(xL, x0 ). We can write the Hessian of Sat the critical poit as H + W, 
where 

and 

It is clear that 

1 0 -"i; 
..!.. + ..!.. 1 
t2 t3 -ta 

1 ..!..+..!.. -ta t3 t4 

t28x1 8x2 W2 
t28;2 w2+t38;2 w3 

t38x2 8x3 W3 

We can state our first result. 

0 

··-i 0 ... 
_..!.. 

t4 

0 

t38x2 8x3 W3 
h8;3 w3 +t48;3 w4 

... ... ) 

Theorem 1. Under the hypothesis (H.1) there exists a positive 
constant 81 independent of L such that if TL = ti + ... + tL 5 81 then 

I( { tj}, S, 1, v)(xL, xo) 

( 
. ) 1/2 

= 2:;L e-ivS(xL,Xo) [det(J + H-lw)rl/2 (1 + r(v, XL, xo))' 

where the remainder term r(v, XL, x0 ) satisfies the estimate: For any 
K 2:: 0 there exists positive constants CK such that if I ao I, I CT£ 15 K 

I ar:gar:ir(v, XL, Xo) 15 CKTlv-1 • 

Remark. 81 and CK are independent of Las far as TL is bounded. 
Therefore, we can control r(v, XL, x0 ) even when L tends to oo. 

In order to state the result for general integral with amplitude a(x), 
we require a little more preparations. Let 1 5 k 5 l 5 L. Then the 



Stationary Phase Method 61 

critical point of the function (xi-1, ... , Xk+1) - E~=k+l Sj (tj, Xj, Xj-1) 
is unique iftk+l + .. . +ti is small. Let (xj_ 1 , ... , xk+l) denote the critical 
point, which is a function of xi and Xk- We abbreviate a(xL, ... , xi, xj_ 1 , 

... , xk+l• Xk, ... , xo) to a(xL, ... , xi+1, xi, xk, Xk-1, ... , xo)-
Our hypothesis concerning the amplitude function is the following: 

Hypothesis (H.2). For any integer K 2: 0 there exists a positive 
constant AK with the following properties: (i) If I O.j I~ K for i = 
0, 1, ... ,L, then 

L 

I IJ 8';Ja(xL,··•,xo) I~ AK. 
j=O 

(ii) For any sequence of positive integers {i1, ... ,is} satisfying 

0 = io < i1 - 1 < i1 < h - 1 < ... < is - 1 < is < L 

we have 

as far as I O.j I~ K for i = 0,i1 - l,i1, ... ,is -1,is, L. 

Before stating our second theorem, we give an example of amplitude 
functions satisfying hypothesis (H.2). 

Example. Let bj(Xj, Xj-l), i = 1, ... , L, be functions bounded 
together with their derivatives of all order, i.e., for any positive integer 
K there exists CK such that 

sup I 8';J8';J~;bi(xj,Xj_i) I~ CK 
X 

Then ( ) - <EL-1 t;b;(x;,x;-i)) t· fl h th · (H.2) a XL, ... ,x0 - e ,_ sa 1s es ypo es1s 
above. 

Now we can state our main 

Theorem 2. Under the hypotheses (H.1) and (H.2) there exists a 
positive constant 81 such that if O < TL ~ 81 

I( { tj}, S, a, v)(xL, xo) 

x (a(xL, xo) + r(v, XL, xo)), 
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where r(v, XL, x0 ) satisfies the estimate: For any K 2: 0 there exists 
positive constants CK and M(K) such that if I ao I, I aL IS K we have 

Remark. 61 , CK and M(K) are independent of Las far as TL is 
bounded. Therefore, we can control r(v, XL, x 0 ) even when L tends to 
00. 

§3. Sketch of the proof 

We begin with our key lemma, which is valid under hypothesis (H.3) 
weaker than (H.2) and is interesting in its own sake. 

Hypothesis (H.3). For any integer K 2: 0 there exists a positive 
constant AK such that if I ai IS K for j = 0, 1, ... , L, 

We can state 

L 

I IT 8';Ja(xL,··•,xo) ISAK. 
j=O 

Key Lemma. Under the hypotheses (H.l) and (H.3) there exists 
a positive constant 60 such that if TL S 60 we have 

where b(v, XL, x0 ) satisfies the estimate: For any K 2: 0 there exists 
positive constants C1(K) and M(K) such that if I ao I, 1 aL IS K we 
have 

Remark. C(K) and M(K) are independent of {ti}, L, (xL, x0) and 
v as long as TL S 60. 

Above Lemma can be proved by modifying the proof of Theorem 
6.8 in Chapt. 10 of Kumano-go [7]. 
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Omitting the proof of lemma we proceed to the proof of Theorem 

2. To make notations simpler we denote vi by E. With this notation 
21r 

we can write 

I( { tj }, S, a, v)(xL, xo) 

L (E)l/2 . L-1 
= II ~ J e-ivS(x£, ... ,xo)a(xL, ... 'xo) II dxj. 

j=l J nL-1 j=l 

We perform integration over x 1 -space. Using stationary phase 
method, we have 

Here T(2, 1) =t2+t1,S21 (x2, x 0) denotes the critical value of S2(t2, x2, x 1 ) 

+S1 ( t 1 , x 1, x 0 ) with respect to the variable x 1, P1 a is the main part and 
R1a is the remainder term of the stationary phase method. 

Remark. (A) Clearly, we have 

here 

(B) The remainder term R 1a is a very complicated function with 
respect to x2 but is simple with respect to the variable (xL, ... , X3, xo). 
In fact, we have Oxi (R1a) = R18xia for j = 0 and 3 ~ j ~ L. And 
R 1a is small in the following sense: For any integer K 2:: 0 there exists 
a constant CK such that 

I a~ga~; ... a~z R1a(xL, · · ·, X2, xo) I 
-1 ti t2 ao /31 /32 0<3 °'L ~ CKv -t +t maxsupl8x0 8x 1 8x2 ax3 ••• axLa(xL,··•,x2,x1,xo)l -

1 2 X1 

Here max is taken with respect to (31, f32 for f31 ~ a2 + 4, f32 ~ a2. 
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Next we integrate the term P1a over x2-space and apply the sta­
tionary phase method. We obtain 

(E) 1;2 (__!!_) 1/2 

t3 T(2,1) 

l e-iv{S3(t3,X3,x2)+s;,(x2,xo)} P1a(xL, ... , X2, Xo)dx2 

= (re: 1)) 112 
e-ivs;,(x3,xo) 

(P2Pia(xL, ... , x3, xo) + R2Pia(xL, ... , x3, xo)). 

Here s;1 (x3, x 0 ) denotes the critical value of the function x2 --t S3(t3, x3, 
x2) + S21 (x2, xo), P2Pia is the main term and R 2Pia is the remainder. 
Since P2Pia is a simple function of x3 , we integrate it over x3-space and 
apply the stationary phase method. The main term includes P3P2Pi a 
and the remainder includes R 3P2Pia. 

Repeating this procedure L - 1 times, we obtain 

_ -ivSi,1 (xL,xo) ( 
E ) 1;2 

Ao(xL, xo) - T(L, l) e PL-1 ... Pia(xL, xo), 

which is nothing but the main term of Theorem 2. 
Now we must treat the remainder term. Since R1a is a complicated 

function of x2 , we skip integration over x2 space and perform integration 
over x3-space. Then we obtain 

(E) 1;2 (E) 1/2 (__!!_) 1/2 

t4 t3 T(2, 1) 

1 e-iv{S4(t4,x4,x3)+S3(t3,x3,x2)+S;1(x2,xo)}R a(x X X X X )dx 1 L,···,4,3,2,.0 3 
R 

Here S.i3(x4, x2) denotes the critical value of the function x3 --t S4 (t4 , x 4 , 

x3) + S3(t3, X3, x2), P3R1a denotes the main term and R 3R 1a is the 
remainder. P3R1a is a simple function of the variable x 4 but R 3R 1a is 
not. We integrate P3R 1a over x4-space but we skip integration of R 3R 1a 
over x4-space. 
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Similarly, we skip integration of R2Pi a over X3-space and integrate 
it over x4-space. We obtain 

(E)l/2 (E)l/2 (~)1/2 
ts t4 T(3, 1) 

1 e-iv{Ss(t5,X5,x4)+S4(t4,x4,X3)+s;1(x3,xo)R P a(x X X X )dx 
2 1 L, · · ·, 4, 3, 0 4 

R 

We continue this process. The rule is that we apply the stationary 
phase method when we integmte over Xk-space and if Rk appears then 
we skip integmtion over Xk+l -space. We finally obtain the following 
expression: 

* 

I( { tj }, S, a, v)(xL, xo) = Ao(xL, xo) + L Aj.J.-1 ... ji (xL, xo), 

where I:* denotes summation with respect to indices (js, ... ,ii) satis­
fying 

1 < i1 < i2 - 1 < i2 < iJ - 1 < • • • < is - 1 < is, 

and each term is an oscillatory integral 

Aj112 ... j. (xL, xo) 

= s ( E ) 1;2 JI T(im,im -1) 
s 1 e-iVSjB .. ;i(xL,Xjs,···,"'h,"'O)b. . (xL x· x· xo) II dx· 

Js·•·Jl 'Js,•••, J1, ]rn' 
W m=l 

whose phase function is 

Sj •... j1 (xL, Xj 8 , ••• , Xj1, Xo) 

= Sr,j.(xL, Xj.) + SJ.J._,(Xj8 , Xj 8 _i) + ... + Sj1 o(Xj1 , Xo) 

and the amplitude is 
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with 
for j = is,is-1, • • • ,j1, 

for j = j 8 - 1, is-1 - 1, ... , j1 - 1, 

otherwise. 

Furthermore, we can prove that bj, ... j 1 (xL, Xj,, ... , Xj1 , x0) satisfies 
hypothesis (H.3). 

Proposition. For any integer K 2 0 there exist positive constants 
C2 (K) and integer m(K) such that 

I a0 L8°1• 8°11 8°0 b ( ) I XL Xj, ••• XJi Xo j •... j1 XL,Xj,,•··,xii,xo 
s 

~C2(K) 8 Am(K) II V-1tjk. 
k=l 

Now we apply our key lemma to Aj.j,_ 1 ... Jl (xL, xo) and use the 
proposition above. Then we obtain 

( ) 
1/2 

. . . _ _!!}__ -ivS(xL,xo) . . . 
AJsJs-l••·Jl (xL, xo) - T e aJ,Js-l•··Jl (xL, xo), 

L,1) 

where the function ai,is-l•··Jl (xL, xo) satisfies the following estimates: 
For any integer K 2 0 we have 

s 

I a;::;a::iaj,j,-l···Jl (xL,Xo) I~ C1(K)8C2(M(K))8 Am(M(K)) II v-1tjk• 
k=l 

This implies that the remainder term r(v, XL, x 0 ) can be written as 

* 
r(v, XL, xo) = L aisis-l•••Jl (xL, xo). 

If a 0 , aL ~ K we have 

* 
I a;::;a::ir(v, XL, xo) I~ LI a;::;a;:gaj,js-l•··Jl (xL, xo) I 

* s 

~ L C3(K)8 Am(M(K)) II v- 1tjk 
k=l 

,;A,,.(M(K)) (D (1 + C,(K)v - 't;) - 1) , 
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where we abbreviated C1 (K)C2 (M(K)) as C3 (K). This proves Theorem 
2. 

Theorem 1 can be proved similarly. 
More detailed dicussions are given by [2]. 

References 

[ 1 ] K. Asada and D. Fujiwara, On some oscillatory integral transformations 
in L 2 (Rd), Japan J. Math., 4 (1978), 299-361. 

[ 2 ] D. Fujiwara, The stationary phase method with an estimate of the re­
mainder term on a space of large dimension, Nagoya Math. J., 124 
(1991), 61-97. 

[ 3] D. Fujiwara, Remarks on convergence of the Feynman path integrals, 
Duke Math. J., 47 (1980), 559-600. 

[ 4] D. Fujiwara, The Feynman path integrals as an improper integral over 
the Sobolev space, Proc. of Journees d'equations aux derives partielles, 
St. Jean de Monts 1990 Societe Mathematiques de France. 

[ 5] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over 
a Sobolev manifols, Preprint. 

[ 6] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a 
Sobolev manifolds, Proc. International conference on Functional Anal­
ysis in memory of Professor Kosaku Yosida, Lecture Notes in Math., 
1540, Springer (1993), 39-53. 

[ 7] H. Kumano-go, "Pseudo-differential operators", MIT press, Cambridge, 
Mass. U.S.A., 1982. 

Department of Mathematics 
Tokyo Institute of Technology 
2-12-1 Oh-okayama 
Meguroku, Tokyo 152 
Japan 

present address: 
Department of Mathematics 
Gakushuin University 
1-5-1 Mejiro 
Toshimaku, Tokyo 171 
Japan 




