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Zeta Functions of Loop Groups 

Shin-ya Koyama 

Abstract. 

We will make a preparation for defining the Selberg zeta function 
of PSL(2, Z[T]), which is a discrete subgroup of the loop group G of 
PSL(2, C). Conjugacy classes of PSL(2, Z[T]) will be classified and 
the definition of the norm of hyperbolic classes will be proposed. 

§1. Introduction 

Selberg zeta function was introduced by Selberg [6] in 1956. The def­
inition is an analogue of the Riemann zeta function as an Euler product. 
Instead of prime numbers, the product is taken over all the primitive 
hyperbolic conjugacy classes of the given discrete subgroup r of some 
Lie group G. In this paper we study an example of Selberg zeta func­
tions of infinite dimensional groups. Throughout this paper we fix r to 
be PSL(2, Z[T1, · · ·, Tn]) (n = 0, 1, 2, ... ), which is a discrete subgroup 
of the n-ple loop group of PSL(2,C). In the next section we will define 
hyperbolic, elliptic, and parabolic conjugacy classes of r. Primitive hy­
perbolic classes will be corresponded to "real" quadratic extensions of 
Q(T1, ... , Tn), Some ideas in the next section come from the paper of 
Akagawa [1], who treated the case of PSL(2, F[T]) with finite field F. 
The last section is a proposal of the definition of the norm of hyperbolic 
classes. We will define the norm via the regulator map in algebraic K­
theory. The definition is a natural generalization of the classical well­
known case (n = 0). Partial solution of the convergence of the zeta 
functions will be given. 

The author would like to thank Professor Nobushige Kurokawa who 
introduced the author to the subject and suggested some ideas used in 
the proof of Proposition 6. The author would also express his grati­
tude to his former teacher Professor Kazuya Kato for valuable personal 
communication concerning the third section in this paper. 
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228 S. Koyama 

§2. Conjugacy classes 

First we introduce three sequences of rings or fields; 

R0 :=Z, 

Ko :=Q, 

Fa :=R, 

Rn := Rn-l [Tn] 

Kn:= Kn-1(Tn) 

Fn := Fn-1((T,;1)). 

The field Fn is the completion of Kn with respect to the place T,; 1 . An 

element of Fn has the form I::=-oo akT::, (ak E Fn-1, am -/- 0). We 
define the homomorphism 

m 

degn : F; 3 L akT;;, f---t m E Z. 
k=-oo 

Let r be the group PSL(2, Rn), which acts on the algebraic closure Kn of 

Kn by the linear fractional transformation. The matrix 'Y = (: : ) E 

r fixes w E Kn when cw2 + (d - a)w - b = 0. Then w is at most 
quadratic over Kn. When w is quadratic, we put the minimal polynomial 
of w by Cw2 - Bw +A= 0, where A,B,C E Rn, (A,B,C) = 1, and 
B 2 - 4AC (/. R;,. Comparing the above two quadratic equations, there 
exists u E Rn such that Cu = c, Bu = a - d, Au = -b. Putting 
t := a + d, we have the representation as 

(
t+Bu 

"(= 2 

Cu 

-Au) 
t-

2
Bu 

In what follows in this paper we put D to be the discriminant B 2 -4AC. 
As det 'Y = 1, we have the Pell's type of equation t2 - Du2 = 4. In the 
purpose of defining hyperbolic and so on, we introduce the notion of 
real and imaginary. We call x E Kn to be n-real when x E Fn. We 
call x E Kn to be n-imaginary when x (/. Fn. By definition, 0-real 
and 0-imaginary agree with the ordinary real and imaginary. For two 

. t . . . 1 . 1· . 1 Th 1 . B ± J75 f h m egers i < J, i-rea imp 1es J-rea . e so ution w = 2C o t e 

minimal equation is n-real if and only if the degree of D is even and the 
coefficient of the highest degree term in D is ( n -1 )-real. Now we define 
hyperbolic and so on. 
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Definition. Let, be an element of r which fixes w. Then we call 
, hyperbolic when w is n-real quadratic. We call , elliptic when w is 
n-imaginary quadratic. We call, parabolic when w is not quadratic. 

For given three polynomials A, B, C E Rn we consider the following 
two sets; 

{ t+,/D 2 2 2 } SABc:= 2 ; t -Du =4,D=B -4AC, t,uERn /{±1} 

f ABC := {, E f ; 1 w = w, Cw2 - Bw +A= 0}. 

Proposition 1. The set S ABC is a multiplicative group and iso­
morphic to r ABC. The isomorphism is given by 

(
t+Bu 

t+,/D --
s ABC 3 --- f---+ 2 

2 Cu 

-Au ) E fABC· t-tu 
The above proposition is a generalization of the classical case ( n = 

0). The proof is a complete analogue. 

Proposition 2. Let, E r be elliptic. Then the order of, is either 
2 or 3. 

Proof As I is elliptic, ✓tr(,)2 - 4 is n-imaginary. Therefore tr(,) 
is an negative integer. Then the Pell's equation tells us that t and u are 
negative integers. The proof is reduced to the classical case, where the 
desired result is well-known. Q.E.D. 

The above propositions are generalizations of the well-known fact in 
the case of n = 0. But not all properties are analogous to the classical 
case. For example, there exist infinitely many elliptic conjugacy classes 
when n > 0. In what follows, we will treat hyperbolic element and 
assume ,/l5 E Fn. 

Proposition 3. The group SABC is generated by a single element. 

Proof. First we prove in the case D </c Rn-1 that degn lsAsc is an 

. . . h h. . Z T k t + ,/Du K (d ) mJective omomorp ism into . a e any E = 2 E er egn . 

Then degn(C 1 ) = -degn(E) = 0, and degn(t) = degn(E + C 1):::; 0. 
As t is in Rn, t is an integer. The Pell's equation shows that u = 0 by 
the assumption D <fc Rn-1· Hence t = ±2, and E = ±1. Next, when 
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D E Rn-l, similarly ../f5 E Fn-1 and we deduce that either degn-l is 

injective or ../I5 E Fn_ 2 • By repeating this way, we have that either degi 

is injective for some i (i = 1, 2, · · ·, n) or ../I5 E F0 = R. In the latter 
case, the Pell's equation says that t and u are integers and the proof is 
reduced to the classical case. Q.E.D. 

The above proposition assures the existence of the fundamental so­
lution of the Pell's equation. We denote the generator of S ABC by Eo = 

to+ ../Duo ( t+Bu -Au) 
2 , which corresponds to the generator "fw= Ju t--13u 

B ± ../J5 
of r ABC for w = ----. The conjugate of a quadratic element 

2 
w = X + Y ../I5 is denoted by w = X - Y ../D. These notations leads the 
following immediately. 

Proposition 4. (1) "fw = "f,::;- 1 . (2) For any <J Er, 'Yaw= <J"fw<J- 1 . 

(3) There is a bijection between the set of r-equivalence classes of n-real 
quadratic elements over Kn and primitive hyperbolic conjugacy classes 
ofr. The class ofw corresponds to the class of'Yw· 

The above proposition lets us grasp the set of all the primitive hy­
perbolic conjugacy classes of r, which will be denoted by Prim(r). For 
investigating the trace formula in the future, the following will be useful. 

Proposition 5. Let "I E r be hyperbolic. Then the centralizer r, 
is generated by a single element. 

Proof. Thanks to the Propositions 1 and 3, it suffices to say that 
r I C r w with "(W = w. Choose any "/1 E r I and put W1 = "(1W. Then 
"(W1 = "("(1W = "(1"(W = "(1W = W1. Hence W1 =Wand "/1 Er w· Q.E.D. 

§3. Norm 

We introduce an equivalence relation in Prim(r). We call "/w, "/w' E 
Prim(r) equivalent if and only if the corresponding quadratic field 
Kn(w) and Kn(w') are isomorphic as fields. Then Proposition 4(3) in­
duces a surjection from the set of equivalence classes of Prim(r) onto 
the isomorphism classes of the set of n-real quadratic fields over Kn. 
We denote the image of an equivalence class"/ by K,, which is actually 

Kn( JD(T1 , · · ·, Tn)). The field K, is the function field of the algebraic 
variety 



Zeta Functions of Loop Groups 231 

The number h, of classes in Prim(f)/ ~ which maps to an isomorphism 
class K, is called the class number of quadratic forms over Q(T). It 
is a generalization of the classical class number over Q. Another gen­
eralization of the class number is known as the order H, of the Chow 
group of V,, which should appear in special values of £-functions as in 
Assumption 3 below. It is known that H, is finite ([5]). The relation of 
the two values H, and h, seems to be difficult to investigate and is not 
known at all. We will make the following assumption in Proposition 6. 

Assumption 1. The value h, is finite and equal to H,. 

Putting the rank of the (n + 1)-th K-group of V, to be r, we have 
the regulator map 

Definition. The norm of the hyperbolic conjugacy class repre­
sented by 'Y is defined to be 

N('Y) := e2R-y, 

where R, > 0 is the higher regulator of Bloch-Beilinson ([2], [3, Lee. 
8,9]) (the volume of the cokernel of the regulator map). 

When n = 0, the above definition coincides with the original one 
by Selberg, which is equal to the square of the fundamental unit of the 
corresponding quadratic field over Q. In that case, K 1 (V,) is the unit 
group of the integer ring of K,, and the regulator map is the logarithm. 

Definition. We put formally the Selberg zeta function of r by 

(r(s) := II 
,EPrim(r)/ ~ 

Next we consider the convergence of the zeta function in the case of 
n = l. In this case V, is a hyperelliptic curve 

C, : Y2 = D(X). 

Its genus is given by g = ½(deg(D) - 2) as deg(D) is even. We can 
decompose the zeta function to the infinite product over g; 

00 

(r(s) = II (~g)(s), 
g=l 
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where (?) ( s) is defined as an Euler product over all C"Y with genus g. 

Here (i,0 l ( s) does not contribute to the product because the regulator 
map is trivial in the case of g = 0. When g = l, the zeta function 

(i,1) ( s) is defined as an Euler product over elliptic curves. The following 
conjectures are widely believed to be true. 

Assumption 2 (a part of Taniyama-Weil conjecture). For any 
elliptic curve E over Q with conductor N, there exists a cusp form f of 
weight 2 for I'0 (N) such that L(s,E) = L(s,f). 

Assumption 3 (a part of Beilinson-Bloch conjecture). Let E"Y be 

an elliptic curve which contributes to (?)(s). Let N"Y be its conductor. 
Then up to some elementary factors, 

H"YR"Y 
L(2,E"Y) = - 4-. 

N"Y 

The above assumption can be regarded as a special case of the con­
jecture of Kato [4, Conjecture 7.5] 

Lemma. The special value L(2, E"Y) is estimated by constants not 
depending on E"Y, namely, 

( 
((3)) 2 1 - 2-l-E 1 - 3-l-E 
(G) ~L(2,E"Y)~ 1-2-1/21-2.3-3/2((1+t:), 

where E is any real number satisfying 

1 log 2 
0 < E < - - --. 

2 log5 

Proof. By the Euler product expression of the £-function 

p:good p:bad 

with a(p) := 1 + p - ~E"Y(F p), we have 

L(2,E"Y) 2: IT (1- a(p)p-2 +p-3)-1. 
p:prime 
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It is known that the absolute value of a(p) is less than 2,lf5. Therefore 

L(2, E'Y) 2: II (1 + 2,/Pp-2 + p-3)-1 

On the other hand, 

p 

p 

= ( ((3) )2 
((~) 

L(2,E'Y) :S II(l- 2p-3/2)-1 
p 

1 - 2-l-c 1 - 3-l-c 

::S; 1 - 2-1/2 1 - 2. 3-3/2 ((1 + E), 

because 2 < p½-c for any prime p 2: 5. Q.E.D. 

Assumption 4. The number R'Y tends to infinity when N'Y ----; oo. 

Proposition 7. Under the above Assumptions 1 to 4, the first 

part of the Selberg zeta function c?l(s) converges for ~(s) ~ 0. 

Proof. By the above lemma and Assumption 4, we have H'Y ~ No: 

for some O < a < 4 as N'Y ----; oo. The absolutely convergence of (fl) ( s) 
is equivalent to that of the following sum; 

'Y 'Y 

'Y 

where Assumption 3 is used. We regard it to be the sum over N = N'Y. 
By Assumption 2, the number of the elliptic curves of conductor N is 
equal to 
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as N tends to infinity. Using Assumption 1, the proof is reduced to the 
convergence of 

00 

~ N~-4Rs+a(s-l). 

N=l 

5+2a 
It converges when Rs > ( ) 

24-a 
Q.E.D. 

By generalizing the classical definition of the norm of hyperbolic 
classes, there is another possibility of the definition. In the classical 
definition, for a metric space X with a distance dx and its isometry 'Y, 
the norm of 'Y is defined as exp( inf dx(x,,yx)). Now we apply it to the 

xEX 

case of loop groups. Let X be the n-ple loop space of the real three 
dimensional hyperbolic space H 3 • The distance of X is given for any 
two elements u and v in X by 

which equals 

dx(u,v) := 1 dH3 (u(T),v(T))dT, 
(S1 )n 

where eie = ( ei01 , • • · , ei0n) . A hyperbolic element 'Y of r can be diag­

onalized to ( ~ a~ 1 ) in PSL(2, Kn), which acts on X isometrically. 

Fix an element T E (S1 r, and put v(T) = z(T) + y(T)j E X with 
z(T) E C and y(T) > 0. Then it is computed that 

dH3 ( v(T), ,yv(T)) = dH3 ( v(T), a(T) 2 z(T) + la(T) l2y(T)j) 

= cosh_ 1 11 - a(T)2I2lz(T)l 2 + (1 + ia(T)l4)y(T) 2 

2y(T)2 ia(T) 12 

> h-1 ia(T)l2 + ia(T)l-2 _ cos 2 

= I log ia(T)i2I 

= logN('Y(T)), 

where N is the classical norm of PSL(2, C). The minimum is realized 
when z(T) = 0. Consequently, the norm of a hyperbolic element 'Y in 
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the loop group is written as follows using the classical norm of ry(T) in 
PSL(2,C): 

N('-y) := exp! logN(,(T))dT. 
(s1 )n 

This definition is also a natural generalization of the classical norm. 
But it is difficult at the present to have some properties about the zeta 
function by adopting this definition. 
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