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Swan Conductors with Differential Values

Kazuya Kato

In this paper, we give a refinement of the classical theory of Swan
conductors for discrete valuation rings, and refer to geometric applications.

Classically, the Swan conductor of a character of the Galois group
takes values in Z. Our Swan conductor takes values in some extension S
of Z. Let K be a complete discrete valuation field. We consider the
following two cases; totally ramified Galois extensions of K (called Case I
in this paper), and Galois extensions of ramification index one whose
residue extension is purely inseparable and generated by one element
(called Case IT). 1In Case I, our group S is K*/UL (U is the group of
units which are =1 mod my, the maximal ideal of K). In Case II, our S
is a certain group isomorphic to K*/U’@® Z, and S has elements written
as [w] for some non-zero differentials w of the residue field (this is the
reason of the title of this paper). The principle is that for a Galois ex-
tension L/K and for o€ Gal(L/K), o1, it is fruitful to consider not
only the ideal I, of O generated by {a —a(a); a € 0.} as in the definition
of the classical Swan character, but also the homomorphism

@5t Qb 10k — 1,/12; adb i— a(b—o(b)).

In this paper, we define our Swan character as the pair (I,, ¢, mod m;).
(Perhaps, it will give a better theory to consider modulo higher powers of
my).

Most classical results (relations with subgroups and quotient groups,
the integrality of Hasse-Arf-.-) are generalized to our Swan conductors.
As in the classical case, our conductor is related to the local class field
theory. If the residue field is finite; our Swan conductor of a wildly
ramified character y: Gal (L/K)— C* of degree one describes not only the
maximal integer i such that y(U{)= {1}, but also the homomorphism
UPJUG+HY 5 C* induced by y. This relation is generalized to higher
local fields (Theorem (3.7)) and essentially to all K (Theorem (3.6)).

As the Swan conductor, the different also has a refinement with value
in S (§2). This “refined different’’ already appeared in the work of
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Thara [9] in a certain case of Case II (not from the standpoint of “theory of
different’’, but in connection with liftings of frobeniuses and with con-
gruence relations): The differential of degree g—1 of the residue field
associated to a lifting ¢ of the g-th power frobenius ([9] §2) gives the
refined different for the extension of Case II defined by ¢ (cf. (2.8)).

In Section 4 and Section 5, we introduce without proofs some results
on vanishing cycles in relative dimension one, in which our theory is
applied to describe the ramification of the special fiber.

Classically, the Swan character is related to Weil’s trace formula for
the cohomology of curves, and the Swan conductor is related to the
dimension formula of Grothendieck-Ogg-Shafarevich for etale sheaves on
a curve. In Section 4, we see that our Swan character in Case 11 is related
to the trace formula of Takeshi Saito [23] on vanishing cycles, and our
Swan conductor in Case II is related to the dimension formula in [14] on
vanishing cycles of sheaves.

In the last section, we refer to a result (5.6) of a joint work with Takeshi
Saito. This result is an attempt to generalize the theory of Laumon [20]
(3.4) concerning the relation between local constants and the Galois action
on some space of vanishing cycles. Here the differential in the group S
in Case II appears as the differential in local constants. The proof and
the details will be given in the joint paper [17].

I express my sincere gratitude to Osamu Hyodo and Masato Kurihara
from whom I learned that there is a good ramification theory in Case II.
I remark that this paper was written long after I learned the ramification
theory in the paper Hyodo [6], and 1 was inspired largely by results and
methods in [6]. The definition of our refined different in Section 2 is a
modification of the definition of his generalized different (called depth in
[6]). T also express my sincere gratitude to Takeshi Saito for valuable
advice on Section 4 and Section 5.

Conventions

In this paper, K denotes a complete discrete valuation field with re-
sidue field F, and F is always assumed to be of characteristic p>0. The
normalized additive valuation of K is denoted by vg. We denote by Oy,
mg, mk (i€ Z), Uy, and U (i=1), the set of all elements x of K such
that v(x)20, v(x) 21, ve(x) 21, v(x)=0, and v(x—1)=1i, respectively.
For x € O, X € F denotes the residue class of x.

If L is a finite extension of K, we denote the residue field of L by E.

For a ring B over a ring A, Q},, denotes the differential module.
The absolute differential module Q},, is denoted by Q.

For a set X, #(X) denotes the cardinal number of X.
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§1. Swan characters

(1.1) For a field k and for one dimensional k-vector spaces Vi,---, V,,
we denote by k{V,---, V,> the k-algebra

® Vl®il® ® V;@ir'
There is a non-canonical isomorphism of k-algebras
k<Vl$-'-a Vr>gk[Tl’a T;'a TII’-"a T:l]
and hence
(k<Vyseos VDY =@ Z".

For a non-zero element x of V; (1<i<r), we denote the corresponding
element of (k<{V,---, V,»)* by [x].

(1.2) Since mg/m% is a one dimensional F-vector space, the F-algebra
F{mg/m%) is defined as in (1.1). We denote the group (F<{mg/m%>)*
by Ry, and for some reasons, we denote the group law of Ry additively.

The following lemma is clear.

Lemma (1.3). There is a canonical isomorphism
K*|[UP =Ry

having the following characterization. For ue Uy, for a prime element
n of K, and for ne Z, the image of un" mod U in Ry is equal to

un" mod mEtt € mi/mitl =(mg/m%)®" < F{myg/m%) .

For ae K*, we denote the image of a mod U{"’ in R by [a]. By
our convention, we have [ab]=[a]+[b].

(1.4) Let L be a finite separable extension of K with residue field E.
Then we identify Ry with a subgroup of R, via the following injection.
Let e be the ramification index of L/K. Then the canonical isomorphism

(14.1) EQp (mg/my)=mi[mgt =(my[m})®e
induces an injective homomorphism of F-algebras
F{mg[mgy —> EC{my/mi)

and hence an injection Rx—=- R, (Another definition is that this injection
corresponds to the canonical map K*/UQ —L*/U{Y via (1.3)).
(1.5) Let L be a finite separable extension of K with residue field E.
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We say that we are in Case I if L/K is totally ramified (i.e. E=F). We
say that we are in Case II if the ramification index of L/K is one and E/F
is a purely inseparable non trivial extension generated by one element.
Of course, Case I and Casc I are particular cases and never cover all
possibilities.
(1.6) Assume that we are in Case II. Then we define groups Sy,

and S; ¢ as follows.

Let V=Ker(Q}—-Q}). Then, V is a one dimensional F-vector space
and Q},r is a one dimensional E-vector space. Let

SK,L=(F<mK/mI2(’ Vo), SL/K=(E<mL/mi’ Q}S/F>)x'

We denote the group laws of Si ; and S, additively. We regard Sy,
as a subgroup of S; . as follows. Let n=[E: F] and let f: E-F be the
homomorphism x ——x". First we remark that there exists a canonical
isomorphism

(1.6.1) EQp Vé(Q}a/p)@'
(V is as above). Indeed, the canonical map induces an isomorphism
F® ey eysry = Ve,
and hence
E®rVZE Q5 L myiriry =(Qhp)%"
where the last isomorphism is
x@f(Wf (z) —— xy™(dz)®".

Now the isomorphisms (1.6.1) and (1.4.1) (with e=1) induce a homo-
morphism of F-algebras

F{mg/mg, V) — E(m[mi, -Q}:‘/F>

and hence induces an injection Si,—S;x which we shall regard as
“inclusion”’.

Consequently the inclusion maps induce a commutative diagram of
exact sequences

0——)RK~—->SK’L—“->Z——>O

[

0———)RL——>SL/K—ﬂ—)Z—->0

where a(x)=1 for xe ¥—{0} and f(x)=1 for x € Q},r— {0}.
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Let M be a subfield of L containing K. Then, when M = L (resp.
M xK), we regard S, (resp. Sy k) as a subgroup of S, containing
Sk 1, as follows. If M=K (resp. M = L) we do this by the identity S,, ;=
Sg.1 (resp. Sy, x=S1,x). If K& MSL, the canonical maps

Ker (Q} — QL) — Ker (QF — Q}),

are isomorphisms (M denotes the residue field of M), and give the following
identifications:

Sk, =Skm<=Syk=Su,.=Sm=Srk-

Lemma (1.7). In Casel (resp.Il), the quotient group R;/Ry (resp.
Si/k/Sk,1) is annihilated by [L: K].

(1.8) Assume L is a finite Galois extension of K with Galois group G,
and that we are in Case I (resp. II). For o€ G, we define

sgle)e Ry, (resp. Sy )

as follows.
Assume first 6 1. In Case I, take a prime element k of L, and let

sge)=—[1—o(h)h '] eR;.
In Case II, take an element h of O, such that E=F(h), and let
se(0)=[dh]—[h—a(h)]

([dh] is the element of S, x corresponding to dh € Q% r— {0}, see (1.1)).

An intrinsic definition of s;(6) (6 1), from which it is seen that
sg(0) is independent of the choice of A, is as follows. « Let I, be the ideal
of O, generated by {x—o(x); xe0,}. Then we have a surjective homo-
morphism

@5t Dby j0i — 1/12: xdy —— x(y—a(y)).
In Case I (resp. II), by composing ¢,&,, E with the canonical isomorphism
mpfmy —=5 Qb 10, /M Qb, 0,5 X > dx
(resp. Q(l)L/oK/mLQ})L/oK —= 'Q}E/F) >
we have an isomorphism

my/mi —=- I, /m I, (resp. Qfp —=- I,/m1,).
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If I,=m}, tensoring this isomorphism with (m;/m3)®1 (resp. (2},,)®V)

defines a basis of the E-vector space mi~!/m} (resp. mi/miF1@(QL,)® 1)

which is, when regarded as an element of R, (resp. Sy k), equal to —s4(0).
In both Case I and Case II, we define

sg()=— Z;; sg(0)

e
ox1

Proposition (1.9). Let L be a finite Galois extension of K with Galois
group G, and assume that we are in Case 1 (resp.1I). Let H be a normal
subgroup of G. Then for any element t of G/H—{1}, we have

ZGSG(U)=SG/H(T) in R, (resp. SL/K)'

ot

Proof (cf. the proof of [25] Ch. IV §1 Proposition 3). The proofs
for Case I and for Case II are similar to each other, and hence we give here
the proof for Case II. Let h be an element of O, such that E=F(h).
Let M be the subfield of L corresponding to H and let

P(T)=T+c; T '+--4c¢c,, ¢eM, r=[L: M]
be the characteristic polynomial of h over M. Then c,,..., c,e my and
h*=—c,mod m;. Since P(T)= T[] (T—p(h)), we have t(PXT)=[] (T—
o(h)). Thus pell g9
[«(PX)]= 3, [h—o(h)]= r[dh]- 2 54(0).

On the other hand
©(P) (h)=1(P)(h)— P(h)= igl (e(e;) —c)hrt.
Since ¢, generates O,, over Ok, we have
©(e;) —cie(t(e,) —c)my
and hence
[ 2 Gled—cph [=[xte)—e1.
From this we have

[(P)(W]=T[(c,)—c,]=[—dc,]yy—56,u(r)
=r[dh]—s6,u(t) in Spx.
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Here [ ], emphasizes that the differential —dc, is regarded as a non-zero
element of Q}; but not as an element of Q}.

§2. Differents

(2.1) Let L be a finite separable extension of K. We denote by
R,k the set of all generators of the invertible E{m, /m})-module E{m,/
m}) ® Homy (E, F) (Homy here means F-linear homomorphisms). We
define the different D(L/K)€ R, x as follows. Let i be the maximal
integer such that Trpx(mj)=0g where Tr,, means the trace. The
surjection

Tryg: mi/mitt — Og/mg=F

induces an E-isomorphism m{/mi*'~Homg(E, F) and hence defines a
basis of (m;/m})®) @, Hom(E, F). We define D(L/K) to be this
element of Ry ;. The following result is proved easily.

Proposition (2.2). If Lo M>K, we have
D(L/K)=D(L/M)+DM|K).

Here we denote additively the map Ry;y X Ry x— Ry x induced by the
canonical homomorphisms

Homy; (E, M) ® y Hom (M, F) — Hom (E, F),
M{my/m3> — EXCmyp/mi).

(2.3) In Casel, Homg (E, F) is identified with E and hence R,y
is identified with R;. In Case II, we identify R, with a subset of S,
as follows. Let n=[L: K] and let Trgy: Q;—»Q} be the trace map
(The trace map of differential modules for an inseparable finite extension
is not popular. However the norm map TCK,(E)—TCK,(F) (Bloch [1]
Ch. II §7) induces on gr! of TCK, ([1] Ch. II §7, [11] §2.2 Proposition 2)
the desired trace map QL—Q}. It is an F-linear map characterized by
the property

TrE/F(d—; =d_;‘ni, TrE,F<x" %>=0 for 15isn-1

for xe EX). Then the image of Trg is V=Ker(Q}—»Q}). Hence we
have

(2.3.1) Q. r=Homg (E, V); w—(a |— Trgp(aw)).
Thus
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Homg(E, F) —2— QL ®; V®CH =, 0L ;. ®;(Q},)®C"
(2.3.1) (1.6.1)
=(~Q}€/1~‘)®(1_")-
Via this isomorphism, E{m;/m?)> ® Hom (E, F) is regarded as a sub-

E{m;/m}>-module of E{m;/m}, Q},r>, and Ry is thus regarded as a
subset of S, ¢

Proposition (2.4). Let L be a finite Galois extension of K with Galois
group G. In Casel (resp. Case 1), we have

se(D=D(L/K) in R, (resp.S;;)

Proof. In Case I (resp.II), let h be a prime element of L (resp. an
element of O, such that E=F(h)). Then O, =0y[h]. Let n=[L: K]
and let P(T) be the characteristic polynomial of & over K. Then in both
cases, we have

aan  moworo-{} § 5

(P’ is the derivative of P, see [25] Ch. III §6 Lemma 2). In Case I, this
shows
BDL/K)=—[h""'P'(R)']
and the right hand side is equal to
[t TT (h=o(h) 1= = %, sq(0)=s¢().-
o1

o1

In Case I, if P'(h)0,=mi, we have by (2.4.1) that D(L/K) is equal to the
element

(P'(hymod mi*")®0 € E{m,/m}) ® s Homg (E, F)
of Ry ,x, where 8: E—F is the map
> xhi—x,-, (x;eF).

0<i<n
Since
Trer (xdi)=0(x)d(A") in Qb forany xeE,
0 is identified with the element (1 —n)[dh] of S, x. Thus
D(L/K)=[P' (W]+(1—n)[dh]
= EG (h—o(W)]—[dh])= - EG sa(0)=s¢(1).
et

o1



Swan Conductors 323

Proposition (2.5). In Case I, if L|K is tame, we have
D(L/K)=[n] where n=[L:K]
(n is regarded as an element of F*).
Proof. Straightforwards.

Remark (2.6). Let <O, be the classical different ideal of L/K.
Then the maximal integer i such that Trp . (mi)=0g is equal to
—ord; (D)+e—1, where e is the ramification index of L/K. In Hyodo
[6], the integer ord; (D)—e+1 and certain generalization of it are studied
for wild ramifications of (not necessarily discrete) valuations, and our
definition of D(L/K) was strongly inspired by [6].

Remark (2.7). It seems strange that Swan characters work only in
Case I or in Case II whereas differents work well for any finite extensions.

(2.8) The different in this section is related to the differential
associated to_a lifting of the frobenius in Thara [9] as follows.

Let k be a subfield of K and assume the following (i) and (ii).

(i) k is a complete discrete valuation field with respect to the valu-
ation of K, and a prime element of k is a prime in K.

(i) [F: FP]=p and the residue field k of k is perfect.

Then, to a lifting ¢: K— K of the g-th power homomorphism F—F;
x|—x4(q is a power of p), an element w of (R})®(4~1 (well defined modulo
k*) is associated in [9], and is used for the study of congruence relations.
The definition of @ is w=7®4f(¥)®~1 under the notation of (2.9) below,
where we take as L the latter K in ¢: K—K regarded as an extension
of degree q of the former K via ¢. Asin (2.9), w gives the essential part of
D(L/K). For the properties and applications of w, see also Koike [18].
In this connection, [13] (5.7) gives a ramification theoretic interpretation
to the formula [9] Theorem 3.

Proposition (2.9). Assume we are given a subfield k of K, and assume
that the conditions (i) (ii) in (2.8) are satisfied. Let L be a finite extension
of K of degree n in Case II. Let  be a generator of the invertible Oy-
module be/ok=lim Qb /0. /M 0, and write n=cv in Q(I)L/ok
where c€ Ok, ¢#0 and where v is a*generator of the invertible O -module
25,0, Then

DL/K)=[c]+[V]1-nlfT'@M] in Syx

where f is the isomorphism Q} ,=Q}—=-Q} induced by E-*>F; x —
X"
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Proof. The surjectivity of Trg,: Q;—Q} shows the surjectivity of
Tryk: b, /0.—2b, /0. and hence we have

Q(I)L/ok — Hom,, (0, -Qlox/ok); ol— (al— TrL/K(ao))-

From this, we see that the i € Z such that mi{ =¢~'0, is the unique integer
satisfying Tr x(m})=0k. Hence we have

Try(x) - 1=Trgp(cx-v) in Q} forall xemi,

which proves (2.9).

§3. Swan conductors and class field theory

In this section, L denotes a finite Galois extension of K with Galois
group G. We assume that we are either in Case I or Case II.

Fix an algebraically closed field A of characteristic zero and let {
be a primitive p-th root of 1. The aim of this section is to define a Swan
conductor sw, (x) € R in Case I (resp. sw,(x) € Sk ;. in Case II) for a virtual
character ¥ of G over A and give “class field theoretic interpretations”
of sw, (x).

(3.1) We denote by R(G) the Grothendieck group of finitely generated
A[G]-modules. Let Z be the integral closure of Z in A. We identify
an element y of R(G) with the corresponding virtual character G— Z.

For y € R(G), in Case I (resp. 1), we define an element s4(x) of R, ® Z

(resp. SL,K®Z') by
se(0)= ZG s{(0)®x(0).
We modify this “primitive Swan conductor’ sg(x) as follows to

obtain an elaborate Swan conductor sw, () ({ is a primitive p-th root of 1
in A4). Let

{0)= 3 1@ e R@Z.
We have
gN=[r1+0 for reF;.

Let P be the unique p-Sylow subgroup of G. For yeR(G), in Casel
(resp. IT), we define the element sw, (x) of R, ® Z (resp. S, x® Z) by

swe (1) =sp(x | p)+(x(1) = x"(1)) - ({7 P))

where y | p denotes the restriction of y to P (sp is defined with respect to
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the Galois extension L/L? where L? is the fixed subfield of L by P) and x? is
the virtual character of G/P defined by yF(t)=#(P)"!' Y. y(o) for te G/P.
ceG

(That is, if y corresponds to a finitely generated A[G]G-module M, % cor-
responds to the A[G/P]-module M?={xe M 6(x)=x Yo e P}.

Lemma (3.2). Let P be the unique p-Sylow subgroup of G and let
m=4#(G/P).

(1) sw()=sw; () +(e(1)— 2P ()Lr] for any re F;.

(2 sl =sp(x| p)+56p(x")+ (x(1) = x (D) m].
Here, in CaseIl, G/P={1} and sg,p is the zero function (In Case Il, the
trivial extension K|K corresponding to G[P is in Case 1, and hence sgp is
defined to be the zero function G/P—Ry).

(3) sw; (O)=sw (x| )+ (D)~ x"(D))[m].

@) sw,(0)=0 if x is tame (i.e. if x belongs to the image of the
canonical map R(G/P)- R(G)).

The proofs of these formulas are easy and we omit them.
The classical formulas of the Swan conductors concerning subgroups
and quotient groups are generalized as follows.

Proposition (3.3). Let H be a subgroup of G.

(1) Assume H is normal in G, let ye€ R(G/H) and let y' € R(G)
be the image of x under the canonical map R(G/H)— R(G) (That is, x'(6)=
y(e mod H) for all 6 € G). Then we have

s¢(X)=56/u(x) and sw;(x')=sw;(2).

(2) Let yeR(H) and let e R(G) be the induced virtual represen-
tation. Then

sa()=4#(G/H) (sa () + x(1)D(LH/K))
swi () =#(G/H) (sw; () + x(DD(LA/K) — x* "P(1)DLHF[K))

where P is the p-Sylow subgroup of G and L¥ (resp. LH?) denotes the fixed
subfield in L by H (resp. HP) (Note H 0 P is the p-Sylow subgroup of H).

Proof. For s;, these are formal consequences of (1.9) (2.2) (2.4).
The formulas for sw, are deduced from those for s; and from (2.5) (3.2).
We omit the details of the proof since they are straightforwards.

The following result is a generalization of the classical theorem of
Artin that Artin character is indeed a character (or of the equivalent
result, the theorem of Hasse-Arf).

Theorem (3.4). In case I (resp. II), we have
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sw () eRg in R, ®Z
(resp. sw; (x) € Sk, in SL/K®Z)
for any y e R(G).

The corresponding fact for sg(y) does not hold. The necessity of
the modification of s;(x) into sw,(y) was pointed out by O. Hyodo to
the author.

The proof of (3.4) is given later.

(3.5) We shall give class field theoretic interpretations (3.6) (3.7) of
the Swan conductor sw,(y), generalizing the fact that the classical Swan
conductor of a character y of degree one is the minimal integer i =0 such
that y(U*V)={1}. Here we give some necessary reviews on Galois
cohomology and on higher dimensional local fields (cf. [13]).

For a field k and for an integer n which is invertible in k, let Hi(k) be
the Galois cohomology group HYk, Z/nZ(q—1)) where (¢—1) means
the Tate-twist. If char(k)=p>0 and n=n'p™ with ptn’ and m=0,
let Hi(k)=H%.(k)+ H].(k) where H.(k) is as above and

HY,.(k)=Coker (W,Qi~t —E=1, W, Q4~|dW, 24°2).

Here W, Q; is the de Rham-Witt complex.
We define

H(k)= lim HY(k).

n

Then we have canonical isomorphisms
(3.5.1) H2(k)~Br (k), the Brauer group of k,
3.5.2) H'(k)~Hom,,, (Gal (k**/k), Q| Z)

where k2P denotes the maximum abelian extension of k.
Let K¥(k) be Milnor’s K-group of k ([19]). Then we have a pairing

(3.5.3) {, }t H(H®KM(k) — Hi*"(k)
and its limit
3.5.4) {, }: H(k)@ KM(k) — H4*r(k)

as follows. If n is invertible in k, (3.5.3) is defined by the cohomological
symbol map

KM(k)y — H"(k, Z|nZ(r))
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and the cup product. If ch(k)=p>0 and n is a power p™ of p, (3.5.3) is
defined by

KY(k) — W,%; {ay, -, a,} —— dlog(a,)---d log(a,)

and the product structure of W,Q;.
In the case of a complete discrete valuation field k with residue field k,
we have a canonical homomorphism

i,2 Hi(k) — Hi(k),
for which ‘
(3.5.5) Hi(ky®H (k) — Hi(k)
X, y) = i) +{i;- (), 7}

is injective for any prime element = of k. This map (3.5.5) is bijective if n
is invertible in k, or if char (k)=p>0 and [k: k?]<pe~2. If char (k)=
p>0, the composite map

Hi(k)@H}~ (k) — Hi(k) — H*(k)

is still injective if n is a power of p.
In the case char (k)= p>0, we denote the composite

QL1 — HYEK) -2 Hi(k) —> HY(K),

where the first map comes from the definition of Hi(k), also by i,, We
then have

I
for uy,-,u,_, €U,

We call a field k an N-dimensional local field if a sequence of fields
ko, -, ky is given satisfying the following conditions.

(1) kg is a finite field.

(ii) For 1Zi=< N, k; is a complete discrete valuation field with residue
field k;_,.

(iii) k=ky.
For an N-dimensional local field k, we obtain a canonical isomorphism

(3.5.6) HN+ Y (kKy~ZInZ
by induction on N and by (3.5.5). This gives a canonical pairing

HY(K@KR (k) — H¥(k)=Q/Z
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and hence by (3.5.2), the reciprocity map
3.5.7) K¥(k) — Gal (k*®/k).

of the class field theory of k.
If further char (k)= p>0, the composite

QY — HY*1(k) — Z|pZ

is denoted by Res (called the residue map) and has an explicit description
asin [11] §2.

Theorem (3.6). Let L/K and G be as before and let y: G—>A* be a
character of degree one which is not tamely ramified. Fix an iso-
morphism Q|Z=~(A*),,. Regard y as an element of H'(K) via this
isomorphism, and let { be the primitive p-th root of 1 which corresponds

to % mod Z via this isomorphism.

(1) Assume that we are in Case I, let sw,(y)=[c], ce K*, and let
m=vg(c). Then m=1, and

{x, }: K*=K¥(K) — H*(K) (3.5.9)
annihilates U@tY.  We have
{t, 1=cz}={i|(2), 7} in HXK)

for any ze O and for any prime element n of K such that me N (L*).

(2) Assume we are in Case II. Then sw;(x)=[c]—[w] for some
ceK* and weQ}—{0}. Let m=vy(c). Then, m=1 and {y, }: K*-
H*(K) annihilates UV, We have

{t, 1—cz}=i,(Zw) in H*K) for zeOg.

In the following, for a discrete valuation field k, we denote by UmK¥ (k)
(m, g=1) the subgroup of KM(k) generated by elements of the form
{X, Y1ss Yq—1} such that xek, v(x—1)=m, and y,,..., y,_; € k*.

Theorem (3.7). Let K be an N-dimensional local field with N>1
with residue field F (=ky_,) of characteristic p>0. Let L/K and G
be as before, and let y: G—A* be a character of degree one which is not
tamely ramified. Denote also by y the homomorphism KY(K)—A*
which is induced by y and (3.5.7).

(1) In Casel, let sw,(x)=[c] (ceK*) and m=uvg(c). Then yx
annihilates U1 K¥(K) and the composite
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Q1 2<, grmKY(K) L, A%,

where (pc<)7 ;‘ Ao A d_zN_l

1 ZN-1
zy_1 € Ug), coincides with

>={1—yc, Ziyny Zy—1y (€O, z4,-,

2] | ,g(—])N‘IRes(O)_

(2) In Case1l, let sw,(y)=[c]—[w] (ce K*, we QL —{0}), and let
m=uvg(c). Then, x annihilates U K¥(K), and for any prime element
7 of K, the composite

Q)2 oe, grmKY(K) £ A7,

where (pr<.)7 d‘ZI A A d—ZN_2>={1_cy’ Z1s"tty ZN—72’ 7[} (yEOK, Zystty
Z Zn_2 .

Zy_, € Ug), coincides with

0 [__,C(—J)NReS(GAw)'
This (3.7) is easily deduced from (3.6) by using the facts in (3.5).

Remark (3.8). For K and y as in Theorem (3.7), sw,(x) is chara-
cterized by its property stated in (3.7). On the other hand, for more
general K and y considered in (3.6), the statement of (3.6) (1) (resp. (2))
becomes very weak if HL(F)=0 (resp. H3(F)=0) (for example if F is
separably closed). However (3.6) gives a characterization of sw,(y) in
the following sense. For an extension F’ of F preserving p-basis (this
means that a p-basis ([7] Ch. 0 §21) of F is still a p-basis in F’, or equi-
valently, that the map

F' ®pfF— F; x®y I— xPy

is bijective where f(x)=xF), there is a complete discrete valuation field K’
over K such that the restriction of vg. to K coincides with vg and such that
the residue field of K’ is isomorphic to F’ over F (See [12] Lemma 1, such
K’ is unique in a very strong sense). Then L'=L®g K’ is a Galois
extension of K’ whose Galois group G’ is canonically isomorphic to G.
If L/K is in Case I (resp.II), so is L'/K’. Furthermore we have sg{c")=
sg(o) for any o € G and for the corresponding ¢’ € G’, and hence

s (1) =56(0), sw (x)=sw, (1)

for any y e R(G) and for the corresponding y’ € R(G’). By the following
Lemma (3.9), when F’ ranges over all extensions of F preserving p-basis,
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(3.6) gives a characterization of sw, (x).

Lemma (3.9). Let k be a field of characteristic p>0, let r=0, and
let weQ;, w#0. Then there exist an extension k'[k preserving p-basis
and a €k’ such that the class of aw in Hy'(k') is not zero.

Proof. By a direct computation, one sees easily the following fact.
If char (k)=p>0 and [k: kP]=p"< o0, and if (b;);<;<, is a p-basis of k,
the class of T-!by!'dby A---Ab,d™'b, in HLY(k((T))) is not zero. Now
let k and o be as in (3.9), and let k'= .\;/0 k(T?™") (Tis a variable). Then

the extension k'/k preserves p-basis. Let (b,),1 be a p-basis of k where I
is a totally ordered set, and write

0=3 xb5lydbyqy A Abggdby,,
s

where s ranges over all strictly increasing functions {1,---,r}—1. Fix s
such that x,#0 and let a=(Tx,)"'. We show that the class of aw in
Hrr1(k') is not zero. To see this, it is sufficient to show that the class of
aw in Hy ' (k(T?™")) is not zero for any i. Let

k"=k(b2™"; 2eI—{s(1),---, s(r)}, i20).

Then [k": (k")*]1=pr. In Hy*'(k"((T?™"))), the class of aw is equal to
the class of TP by} dby)A -+ Abyldby,, and this class is not zero by
the remark at the beginning of the proof.

Now we prove Theorem (3.4) and Theorem (3.6). As in the classical
case, the proof of Theorem (3.4) is reduced to the case where y is a character
of degree one. Indeed, by the theory of Brauer ([26] §10), R(G) is
generated by characters which are induced by characters of degree one
of subgroups of G. But if H is a subgroup of G and if (3.4) holds for y e
R(H), then (3.4) holds for je R(G) by (3.3) (2) and (1.6) (1.7).

Our task is now to prove (3.4) and (3.6) for a character of degree one.
The reduction to the case G=P is easy, and so we assume that the order of
x: G—A* is a power of p.

We consider first the case where y: G—A* is of order p. In this case,
(3.4) and (3.6) follow from the following (3.10) and (3.11).

Lemma (3.10). Assume that L/K is of degree p, x: G— A* a non-trivial
homomorphism, o a generator of G, and let {=yx(c). In caseI (resp. 1),
let h be a prime element of L (resp. an element of Oy, such that E=F(h)).
Let

a=1—a(h)h~!, b=N_(a).



Swan Conductors 331

Then, in Case I (resp. I1), we have
sw, (x)=[—b]

(resp. sw; () =[—b]—[x"'dx]x where x=h? and where [ ]y empha-
sizes that the differential is considered as an element of Q} (not of Q} p).

Proof. The proofs for Case I and for Case Il are similar, and so
we give here the proof for Case II. By definition,

sg(6)=—[ia]+ [k~ 'dh], for 1=<i<p.
vSo,
6= % s0IBL = %, se(a)B(E-1)
=—&()+[—11+plal—p[h~'dR],
=—e)+[-b]-[x"'dx]x (x=hr),
and hence sw, (y)=[—b]—[x"'dx].

Lemma (3.11). Let L/K, y, o be as in (3.10), and let h be any
element of L*. Let a=1—o(h)h™! and b=N,(a). Then

{, 1+bz}={iy(2), Nyx(h)} in HXK)
for any ze O.

For the proof, see [11] §3.3 Lemma 15.
Next we consider homomorphisms y: G—A* of order p" (n=1) by
induction on n. By (3.3) (1), we may assume  is injective.

Lemma (3.12). Let L/K be a cyclic extension of K of degree a power
of p, H a subgroup of G such that H# {1}, and let M be the subfield of L
corresponding to H. Then for any injective homomorphism y: G—A*,
we have

swy () =sw; (x| w) +D(M/K).
Proof. Since

SW, - SWe xla)=s¢)—sg(D)+ 2 s6(0)@x(0)
ceG—H

and sg(1)— sy (1) =D(M/K) ((2.2) (2.4)), it is sufficient to prove GZ_H sa{0)®

¥(6)=0. For this, it suffices to prove for 6e G—H of order p" (r=2),

> s(0H®x(e)i=0. Since sg(6))=[i]1+s,(0), we are reduced to the
ie(z/p)*
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easy facts

ni=0, > 7'=0 for jeF)
ie(Z/pr)* ie(llly}’)x
for a primitive p"-th root  of 1 with r=2.

Assume now that L/K is a cyclic extension of degree p* (n=2). We
prove (3.4) (3.6) for an injective homomorphism y: G->A* (This is
sufficient to finish the proofs of (3.4) (3.6)). Let M/K be the subextension
of L/K of degree p. We assume that (3.4) and (3.6) are already proved
for L/M and M/K. 1In Case I (resp. II), let t=v,(1 —o(h)h~!) where his a
prime element of M (resp. an element of O,, such that M=F(h)). Then ¢
is independent of the choice of h. The study of the norm map N x:
M*—K* in [25] Ch. V §3 (for Case I) and in [10] §1 Remark 1 (for Case
IT) shows the followings. In Case I,

Ny (UStp0) = UgD, Ny r(USgtpi+1) = Ui+
Npx(1+X)=1+Try g (x) mod mighi+!

for any i=1 and for any x e mi{f?*. In Case II,
NM/K(U}‘F'”):U}(PHi)
Npx(I+x)=1+Tryk(x) mod mprit)

for any i=1 and for any x e m§}* (In fact, in [10] §1, we considered only
the case [F: FP]=p. But the above results on N, is reduced to this
case by adding to K the p/-th roots (j=0) of a lifting of a p-basis of F
over M?).

We consider Case I.  Let sw, (x| g)=[b], be M*, and let m’=v(b).
By using (1.9), we can show m’'>t (we omit the details). We can prove
further m'=tmod p as follows. By (3.9), we may assume H}(F)#O0.
If t4+pi+1<m’<t+p(i+1) for some i=1, we have N, (Uy’)=
Ny k(U +V) by the above remark on N, . But this contradicts H(F) =
0 since in H¥(K),

{6 NM/K(UR'I",*.I))}:COI'M/K({XIH’ UJ(&"’Jrl)}):O,
Ve NM/K(UI(JI”’))} =Cory,x x| 1> Uiy
=Cory,x {HY)F), Nyu(n)})={HXF), Ny ()} =0

where Cory, g is the corestriction map and 7, is a prime element of L.
Now by m’>t and m'=tmod p, and by the above remark on N, if we
put ¢=Tryx (b) and m=uvy(c), we have m'—t=p(m—t), Ny (1—bz)=
1 —cz mod myg*! for z € Oy, and
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DM/K)=[b"1c].
This last equation and (3.12) prove sw, (x)=[c]. Furthermore,
06 U9} =, Nagge(Us +19)y = Corygyx ({ | g, Ug 1) =0,
{x, 1—cz} =Corpyx ({xln, 1—bz})=Corpyx ({i1(2), Npym(mp)})
={i1(2), Nyx(mp)}

for z e O and for a prime element 7, of L.

We next consider Case Il. Let sw,(x|p)=[bl—[wly, beM*,
weKer(QLF—=QL), w=0. Let m'=vg(b) and let m=pt+(m'—1t). By
using (1.9), we have m'>t. Hence by the above description of Ny g,
we see that

BD(M/K)=[c]-[b]+ [Ty —[n]k

for some ce K* such that vg(c)=m, and for some non-zero elements
o' € Q}/r and n € Ker (24— Q};), and that

Nyx(l=by)=1—cz mod mp*!
for y € 0, and for z € O satisfying
Tryp(yo')=2zn.
We have for such y and z,
(*) {x, 1—cz}=Coryyx ({x| u» 1= by})
=Cory (i,(§0)) = i5(Trygr (Y0))

by the commutativity of the diagram (easy to prove)

Q —L2— H*(M)

TrM,Fl l CorM/K
QL 2, H¥(K).

We show that o’ e Fw in Qj;,r (This corresponds to the “Hasse-Arf
property”” m’ =t mod pin Case I). To prove this, by (3.9), we may assume
that the image of V=Ker (Q}—Q}) in H(F) is not zero. Since Try,p
factors as

Qf — Qg p/dM =, V

(*) shows
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jo'edM in QY r=—jwedM in Q.

and hence shows o’ € Fw in Q};,». Now by writing 0’ =aw in Q}, with
ae Ug, we have

DM/K)=[c]-[b]+[w]y—L[a""nlk.
By (3.12), we have
sw () =[c]—[a""nlk
proving (3.4), and now (*) shows
{6, 1 —cz}=i,(za 'n) for zeOg
proving (3.6).

Remark (3.13). If F is perfect, sw, (x) for a character y of degree one
is explained by the local class field theory of Serre [24] and of Hazewinkel
[5]. Assume that F is perfect and we are in Case I. Let Uy be the
pro-algebraic group over F associated to Uy. Then a homomorphism
x: Gal (L/K)— A* induces

x: my(Ug) — A~
(see [24] [5]). 1If x is not tame, there exists m =1 such that
wWm (U # {1}, x(m, (Ut V) ={1}.

Fix a primitive p-th root { of 1in A and a prime element = of K. Then y
and the homomorphism

G,— UP /U@ g |—> 1—an™
induce a non-zero continuous homomorphism
Hom (F, Z/pZ)= ,(Gp) = n,(UR| U V) — A%,
and this homomorphism must have the form
Hom (F, Z/pZ) — A*; h |— {*®

for a unique u e F*. Then our sw; () is equal to [7™]—[u].

By using a generalization [15] of the local class field theory [24] [5],
we can generalize the above fact as follows: If {F: FP]=p"<oo and y is
an element of H"*1(K) whose image in H"*1(K,,) has order a multiple of
p (i.e. x is not “tame’’; here K,, denotes the maximal unramified extension
of K), then there exists a unique element sw () of (F{(mg/m%, Q%) having
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the following property: sw, (x) has the form [¢]—[w] where ¢ € K*, vg(c)
=1, we Q% —{0}, and for any extension F’ of F preserving p-basis,

{x, 1—ez}={i,,(Zw), 7} in H™*K’)
for any z € Oy, and for any prime element 7 of K where K’ is as in (3.8).

Remark (3.14). There is an analogue of the argument in Section 2
for division algebras. Let D be a central division algebra over K of
dimension n?, and assume that the residue skew field E of D is commutative
and is a purely inseparable non-trivial extension of F generated by one
element. Then, [E: F]=n and the ramification index of D/K is n. Let V
=Ker (2}— Q%) and let

SK,D=(F<mK/mIZ(’ V)X, SD/K=(E<mD/m12)a Q};‘/F>)X-

Then the canonical isomorphisms E ® p mg/mi=mp/mpt! and E Q@p V<
(QF;»)®" (1.6.1) induce an inclusion map Sk p—=-Sp k. We can define the
different D(D/K) € Sp,x by using the reduced trace map D—K in the same
way as in Section 2.

In the case [F: FP]=p, this different is related to the Swan conductor
for H2(K) in (3.13) as follows (cf. [16]). If y denotes the element of H%(K)
= Br(K) corresponding to D, then yx is of order n and

DODIK)=(p—1) X p'sw ((np™""Hp)

where i ranges over all integers =0 such that p‘*'|n. This is a non-
commutative analogue of [6] (3.4).

Remark (3.15). The assumption of this section that L/K is in Case I
or Il is slightly weakened as follows. Let L/K be a finite Galois extension
with Galois group G and with the maximum unramified subextension K'/K,
and assume that L/K’ is in Case | or II. For ye R(G) and a primitive
p-th root { of 1 in A, define

SW, (0= SW, (x1 Gal(L/K’)) .

Then, we see easily that sw, (y) is fixed by Gal (K’/K) and thus obtain
(3.15.1) if L/K' is in Case I (resp. II), sw, () belongs to Ry (resp. to
Sk.=(F{mg/mg, V>)* where V=Ker (Q}—-Q})).
Furthermore, by using a standard corestriction argument, we see that
Theorem (3.6) and Theorem (3.7) are generalized to L/K of this type.

Remark (3.16). Finally we remark that the assumption of this
section that A is of characteristic zero is generalized to char (A)=p. Let
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A be an algebraically closed field such that char (4)%0, p, and let A’ be
the algebraic closure of the field of fractions of the Witt ring W(A). Then
as in [26] §15, we have a canonical surjection R (G)— R 4(G) where R ,(G)
(resp. R 4(G)) denotes the Grothendieck group of finitely generated modules
over A[G] (resp. A'[G]). For ye R,(G) and a primitive p-th root { of
1in A, let § be any element of R,.(G) with image ¥ in R ,(G) and let { be
the unique primitive p-th root of 1 in A’ with reduction {, and define

swy () =sw; (%)

Then, sw, () is independent of the choice of £ as is seen from the definition
in (3.1) and from [26] §18.3. It is easy to see that the theorems (3.4)
(3.6) (3.7) (in the situation of (3.15) also) are generalized to this sw, (x)
(In (3.6), @/ Z should be replaced with the prime to char (A)-part of Q/Z).

§4. Formulas for vanishing cycles

(4.1) In this section, k denotes a complete discrete valuation field
with algebraically closed residue field. Let A be a two dimensional
normal henselian local ring over O, obtained as the henselization of 0y ,
where X is flat of finite type over O, and x is a closed point of X lying over
m,. We assume further

(4.1.1) A @y, 0,/my is reduced.
(4.1.2) A ®p, k is essentially smooth over k.

We denote by P the finite set of all prime ideals of height one of A
lying over m,. We apply the results in Section 1-Section 3 to the study of
wild ramification of the discrete valuation rings A4, for p € P.

For the formalism of vanishing cycles, see [3]. In particular, for a
sheaf # on Spec (4 ®,, k) for the etale topology, we use the notations

RiY(F)=H(Spec (A ®o, k*P), F) (i€ Z)
Ry (F) =RI(Spec (A4 ®o, k*P)e(, F)

where kseP denotes the separable closure of k. We have Riy(#)=0 for
ix0, 1.

We denote by I a prime number which is different from the charac-
teristic of the residue field of k.

(42) Letg: A—A be a non-trivial O -automorphism of finite order.
We introduce a result (4.3) of T. Saito which describes the trace

Tr(o: Ry(@))=3 (= 1) Tr (o: RY(@))=1-Tr(a: R'Y(Q)
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(note R%(Q)=Q)).
Let P’ (resp. P”) be the set of all prime ideals p € P such that a(p)=p

and such that the induced map on the residue field o: k(p)—«(p) is the
identity (resp. not the identity). For pe P’'U P”, we define the integer s,
as follows.

Let pe P', let L be the field of fractions of the completion of the
discrete valuation ring 4,, and let K={a€ L; o(a)=a}. Then, L/K is an
extension in Case II.  So we have an element s¢(0) € S x where G=Gal (L/
K), and we can write

*) sg()=[w]—[c], weQ, —{0}, cek™

We define the integer s, to be the order of the differential w with respect to
the discrete valuation ring A/p ck(p) where A/p is the normalization of
Afp. Asis easily seen, s, is independent of the expression (*).

On the other hand, for p € P, let s, be the classical Swan character of
the induced map o: k(p)—«(p) with respect to the discrete valuation ring
Alp.

Finally, let i, be the dimension of the finite dimensional k-vector
space (A ®y, k)/I, where I, denotes the ideal of 4 ®,, k gencrated by
{a—0(a); ae A @y, k}.

Theorem (4.3) (Saito [23]). Let the notations be as above. Then we
have

Tr(o: RYQD =iy +HP)+ 5 s,

(4.4) We turn to the dimension formula. Let A be an algebraically
closed field of characteristic [ and let & be a locally constant etale sheaf of
A-modules of finite rank on a non-empty open subset U of Spec(4 ®,, k).
We assume that the following (4.4.1) holds for any p e P.

(4.4.1) Let pe P, and let K be the field of fractions of the completion
of A,. Then the representation of Gal(K*°?/K) over A defined by &
factors through a quotient Gal (L/K) such that L is a finite Galois extension
of K of ramification index one.

By Epp [4], this assumption (4.4.1) becomes satisfied after a finite
extension k'/k of the base field (replacing A by 4 ®,, O,.) without changing
the space RY/(F).

Let u: U—Spec(A4 ®4, k) be the inclusion map. We describe a
formula (4.5) in [14] §6 for

dim Ryu,(#F)= 3. (—1)! dim Riju,(F)
=dim R%u,(F)—dim RYyu(F),
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a generalization of a formula of Deligne in [19] (5.1.1) which considers
the case where % is unramified at P.

For p € P, we define the integers s, and §, as follows. Take K and L
as in (4.4.1), and let G=Gal(L/K). Then, for a primitive p-th root { of
1 in A, the element of R ,(G) corresponding to .# defines an element sw, (%)
€Sk, (cf. (3.15) (3.16)) and we can write

* sw; (#)=[c]- 3 [w],
where ce k*, w;€ Q% (,)— {0}, r=0. Define
Sp=— i ord (w;)
i=1

where ord is the order of the differential with respect to the discrete valu-
ation ring A/p. As is easily seen, s, is independent of the expression (*)
and of the choice of {. Next, let # be the restriction to Spec (x(p)) of the
direct image of # under Spec (K)—Spec(Ok). We define 5, to be the sum
of rk (#) and the classical Swan conductor of & with respect to A/p.

On the other hand, let s, be the sum of the classical Swan conductors
of # at all the maximal ideals of the Dedekind domain 4 ®,, k*'¢, where
ka's denotes the algebraic closure of k. Finally, writing A/m,A by R
and the normalization of R by R, let § be the length of the R-module R/R.

Theorem (4.5). Let the assumptions and the notations be as above.
Then

dim Ryu(#)= =5+ (T, (5,+3,)) =1k (F) 26+ N)

where N =#(Spec (A ®,, k*'8)— U ®, k?!9).

Remark (4.6). Classically, Weil’s trace formula for the cohomology
of a curve is essentially equivalent to the formula of Grothendieck-Ogg-
Shafarevich on the dimension of the cohomology of an etale sheaf on a
curve. Similarly, the theorems (4.3) and (4.5) are essentially equivalent.
However, the proof of (4.3) in Saito [23] is different from the proof of (4.5)
in [14] (the latter uses the formula of Deligne in [19] (5.1.1) whereas the
former uses the stable reduction theorem) and provides a new proof of the
formula of Deligne (cf. also [22] §4).

§5. Local constants

The result of this section was obtained in the collaboration with
Takeshi Saito, and the proof will be given in the joint paper [17].
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In [20] Theorem (3.4), Laumon obtained an important formula which
represents the local constant of a local field of positive characteristic as a
determinant of the Galois action on certain vanishing cycles. In this
section, by using our Swan conductor in Case 1I, we give a generalization
of his formula (but only for local constants of characters of degree one).
Here we can treat vanishing cycles in mixed characteristics (but the local
constants considered are for local fields of positive characteristic as in [20]).

(5.1) Let k be a complete discrete valuation field with finite residue
field F,, and let A=0,{T} be the henselization of 0,[T] at the maximal
ideal generated by T and m,. We denote the field of fractions of 4 by M.

Let I be a prime number which is different from p=char (F,), and let
A be the algebraic closure of Q,. For smooth A-sheaves # and ¢ on a
non-empty open subset U of Spec (4 ®, k), we define the homomorphism

W(F, 9): Gal (k**/k) —> A*
to be the product
det (Ryu(# ®)) - det (Rju,(A))(=)rk)
-det (Ryu,(F))"™**) . det (Ryu (&))<,

Here u: U-S-Spec(4 ®y, k) is the inclusion map, and det means the
determinant of the Galois action. If U’ is a non-empty open subscheme
of U, then YW(F, ¥)=y(F |y, %|y). So, Y(F, %) depends only on the
representations of Gal(Ms¢?/M) over A defined by &# and ¢, respectively.
We seek a formula for y(#, ).

We assume the following (5.1.1) and (5.1.2). Let p be the prime
ideal m, A, and let K be the field of fractions of the completion of the
discrete valuation ring A4,,.

(5.1.1) & is extended to a smooth A-sheaf on an open subscheme
of Spec (A) containing p.

(5.1.2) The representation of Gal(Ks¢?/K) over A defined by ¢
factors through Gal(L/K) for some finite Galois extension L of K of
ramification index one, and this representation has no non-zero fixed
vector by the inertia group of Gal (Ks¢pr/K).

The following conjecture relates (&, ¢) to a certain local constant
&F |, sW, (%)) whose definition will be given later.

Conjecture (5.2). Assume (5.1.1) and (5.1.2), and assume that at any
closed point of Spec (4 ®, k), at least one of # and ¢ is smooth. Then

UF | s sWs2 () =U(F, ) (n) - det (F, sw, (¥)) (1) - det (F, sw, (F)) (n)
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for any prime element 7 of k.
The notations here are explained in (5.3) below.

(5.3) First we introduce a notation for local constants. Fix a
primitive p-th root { of 1 in A. Let F be the residue field x(p) of K. Then
F is the field of fractions of F,{T}. For a A-sheaf s# on Spec(F) and
for w e Q} — {0}, let

8, w)y=(—1y"Fe, (o, dx, w)eo(A, dx, w) ™ F) e Ax,

where sw () e Z is the classical Swan conductor of s with respect to
the discrete valuation field F, dx is a Haar measure on the completion F
of F, w is the additive character

F— A% a |— CTrFq/Fp(res("w))
associated to w (res denotes the residue), and ¢, is the local constant in
Deligne [2] §3.4. As is easily seen, &(s#, w) is independent of the Haar
measure dx.

Now we return to (5.2). By the assumption (5.1.2), we can apply
the results of Section 1-Section 3 to the discrete valuation field K to
obtain the element sw (%) of (F(mg/m%, QF>)*. For a prime element
7 of k, by writing

*) sw, (@) =[(~m)"— 3 []
(me Z, w; e QL —{0}, r=rk(%)), we define
HF, sw, . (%)= Ul HF |, o) e 4%,

As is easily seen, this element is independent of the expression (*).
(# |, denotes the restriction to Spec (F) of a smooth extension of # to
an open set containing p).

The other notations in (5.2) are as follows. First, det (&, sw,(9))
and det(¥, sw, (%)) are homomorphisms Gal(k2*/k)—A* defined in
the following way. If char (k)=0, we define them to be the trivial homo-
morphism.  Assume char (k)=p>0. Then det (&, sw,(%)) is the product
o [T h(o)) where x ranges over all closed points of Spec(4 ®,, k) at

which ¢ is not smooth, s(x) e Z denotes the classical Swan conductor of
¢ at the unique point of Spec(A4 ®,, k!/?P7) lying over x (we made the
perfection of k since the classical Swan conductor works with the perfectness
of the residue field), and h, is the following composite map

Gal (k**/k) — Gal (k')*®/k") «=— Gal (k(x)®/k(x)) —> A*.
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Here k' is the maximum separable subextension of k(x)/k, the first arrow
is the transfer, and the last map is defined by det (& | ,) (note .# is smooth
at x by the assumption in (5.2)). We define det (¥, sw, (&)) in the same
way.
Finally, for any homomorphism h: Gal (k?®/k)— A*, h(n) € A* denotes
the image of n under

k* — Gal (k2b/k) —t A*
where the first arrow is the reciprocity map of the local class field theory.

Remark (5.4). In (5.2), assume char(k)=0. Then the sw,-terms
vanish and hence the formula (5.2) has the simple form

EF |y sW,, (D) =W(F, 9).

Hence, as is seen by changing the prime element 7, (5.2) implies that
U(F, %) is a tame representation of Gal(k?*P/k) in the mixed charac-
teristic case.

Remark (5.5). The theorem [20] (3.4) of Laumon is regarded as
the following case of (5.2): k= F (1)), # comes from a A-sheaf on Spec (F)
by the base change F—<=-A[T~!], and ¢ is the sheaf of rank one defined
by the character Gal (Ms¢?/M)— A* of order p associated to the Artin-
Schreier equation X?—X="Tr"?. In this case, det (&, sw,(%))=det (¥,
sw, (#))=1 and the Swan conductor of ¢ with respect to K is [z?]—-[dT],
and so the formula (5.2) becomes

§F,dT)=y(F, 9)(—n).

The following (5.6) will be proved in [17] (I hope that in the final
version of [17], we can weaken the assumptions in (5.6)).

Theorem (5.6). The conjecture (5.2) is true if & and % are of rank
one, and ¢ is defined by a character Gal (Ms?/M)— A* of order p.
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