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§1. Introduction

Let k be an algebraically closed field and X an irreducible complete
non-singular algebraic curve over k. We denote by 7,(X) the algebraic
fundamental group of X (see [3, Exp. V]). The group =,(X) may be
canonically identified with the Galois group Gal (k(X)"//k(X)), where
k(X) is the function field of X over k and k(X)"r is the maximum unramified
extension of k(X). When char k=0, it is a classical fact that the structure
of 7,(X) is determined by the genus g of X. Namely 7,(X) is isomorphic
to I',, the pro-finite completion of the fundamental group I', of a Riemann
surface of genus g;

Fg=<als"‘, ag& bl”", bglalblaflbi—l"‘agbgazlbzl=1>.

However when char k>0, the group 7,(X) has not been determined yet.
In particular, we do not know the set of all finite quotient groups of n,(X).
(We know that there exists a surjective homomorphism [ s~ (X) (see
Grothendieck [3, Exp. X]), but to determine its kernel is a difficult open
problem.)

In the previous paper [4], the author considered a finite étale Galois
covering Y— X and determined the action of G=Gal (Y/X) on the space of
holomorphic differentials on Y. As its consequence the following Theorem
A was obtained ([4, Theorem 5]). Here the integer #(G) is defined as the
minimum number of generators.of the k[G]-module I;={>,.ca, 0|
Y seG 4,=0}, the augmentation ideal of the group algebra k[G].

Theorem A. If a finite group G is a quotient of the pro-finite group
7,(X), then we have t(G)<g (g is the genus of X).
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When char k=0, {(G)=1 holds for every G, and Theorem A becomes
trivial. In this paper we shall discuss some consequences of Theorem A,
assuming char k>0. In Section 2, we first give some general properties
of #(G) and then we computc #(G) when G has a normal Sylow p-subgroup
(p=char k). 1In Section 3, we give a result which is proved by combining
Theorem A and the results of Section 2 (Proposition 5). By use of
Proposition 5 we can find examples of finite groups which can not be
quotients of 7,(X). But Proposition 5 itself has another proof which does
not depend on Theorem A. (It is also given in Section 3.) - Accordingly we
have, for the present, no examples which show definitely that Theorem A
gives a new restriction on the structure of 7,(X).

I would like to express my sincere gratitude to Professor Y. Tsushima
and late Professor T. Miyata for their kind advice.

§2. Some properties of #(G)

Hereafter we assume that p=char k is positive. For a finite group G,
#(G) denotes, as before, the minimum number of generators of the augmen-
tation ideal of k[G].. In this section we give elementary properties and a
method for computation of #G).

The following two Propositions are derived easily from the definition
of #(G). Here, for a finite group G, d(G) is the minimum number of
generators of G.

Proposition 1. (i) We have t(G)<d(G).
(ii) IfGisa p-group, HG)=1.
(iii) If G is a p-group, {G)=d(G).

Proof. From the equality et—1=0(t—1)+(c—1) for o, 1€G, we
easily obtain (i). If G is a p’-group, k[ G] is semi-simple and hence k[G]=
k®I; holds. Therefore we have #G)=1 because there exists the pro-
jection k[G]—1;. When G is a p-group, I; is the Jacobson radical of k[G]
([2, (5.24)]). Hence we have #G)=dim, (I;/I3) in view of Nakayama’s
lemma. Since dim, (I5/1Z)=dimg, (G/[G, G]GF)=d(G), we obtain (iii)
([G, G]G? is the Frattini subgroup of G).

Proposition 2. (i) If G is a quotient group of G, then {G)< t(G).
(ii)) If G’ is a subgroup of G, then {(G')—1Z(G: G')H(G)—-1).

Proof. The surjective homomorphism G—G induces a surjective
homomorphism k[G]—k[G]. Hence (i) is immediate. Putting t=1G),
we have a surjective k[G]-homomorphism ¢: k[G]*—I;. For a k[G]-
module M, denote by M|, the module M regarded as a k[G']-module.
Then we have k[G]' |, ~k[G']'"™ and Iglg ~k[G']" '@®I;, where m=
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(G: G'). (The latter isomorphism follows from Schanuel’s lemma [2,
(2.24)].) Hence ‘¢ induces a surjective k[G’]-homomorphism k[G']'"—
k[G'I™'®I;. Therefore we obtain HG)Z<tm—m+1 ie. (G)—1=Z
(G: GHYHG)-1).

Next we show a method for computing the number #(G). First we
introduce some notations. Let V,,---, V, be the isomorphism classes of
all irreducible k[ G]-modules (V, is the trivial module). Denote by J=J
and I=1I; the Jacobson radical and the augmentation ideal of k[G],
respectively. We define the integers a; (i=0,---,n) by the following
decomposition as k[ G]-module;

~® a;-V,.
i=0

Putting f;=dim,V,, we have the decomposition k[G]/J~ é,fi‘Vi.
i=0

Hence by Nakayama’s lemma we easily obtain

1(G)= max {—[———j,:—]’i=0,--~, n} .

where [x] denotes the largest integer not exceeding x. (Hence m= —[—x]
is the smallest integer satisfying m=x.) To calculate g;, consider the
projective k[ G]-module U which satisfies U/JU~V,. (For the existence of
U, see e.g. [2, §6].) Then we have the following

Proposition 3. (i) Define the integers s; (i=0,--+, n) by the decom-
position

JUIJ2U~ @ s;- V.
i=0

Then ag=sy and a;=s;+f; for i=1.
(i) We have so=dim, (I/I*)=dimg, (G/[G, G]G?), where G/[G, G]GP is
the maximum elementary p-abelian quotient of G.

Proof. We have a decomposition k[G] U®W, where W is the
projective k[G]-module satisfying W/JW~ @ fi-Vi. Hence I=JUDW
holds. Consequently I/JI= (JU/JZU)G-)(W/JW) (JU/JZU)Q—)((-D fi- V),

which proves (i). From IW=W, we obtain I?=IJUDW. Therefore
I/IPP=JU/IJU=s4-V,, ie. so=dim, (I/I?). The latter equality in (ii)
is easily obtained by considering the map ¢: G—1I/I* which is defined by
@(o)=0—1 (mod I?) for c € G.

As a consequence of Proposition 3 we obtain
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Corollary. (G)=max {so, — [ - —;:4] +1(i= 1)} .

Remarks. (1) From the exact sequence 0—->JU->U-V,;—0, we
obtain s;=dim, Ext}(V,, V) (i=0,---, n).
(2) Following the argument of [1], we see that #(G™)=1(G) holds if s, =0
for G, while we have t(G™)=m-(G) for m=HG) if s, =1 (G™ is the direct
product of m copies of G).

Assume that a finite group G has a normal Sylow p-subgroup. In that
case we can express t(G) more explicitly than in Corollary to Proposition 3.
Hereafter we shall give the result. In the above situation G is isomorphic
to a semi-direct product H-S, where S is a p-group and H is a p’-group
acting on S. Let V,,---, V, be the isomorphism classes of all irreducible
k[H]-modules (V; is the trivial module). Recalling p=char k, we see that
S acts trivially on irreducible k[G]-modules. Let N=[S, S]S? be the
Frattini subgroup of S, and put P=S/N. Then P is an elementary abelian
p-group and G (hence H) acts on P through conjugation. (Since N is a
characteristic subgroup of S, it is a normal subgroup of G.) The integers
m; (i=0,--+, n) are defined by the following isomorphism of k[ H]-modules;

n
P®p, k=~ @O m;-V;.
=
With notations as above, we have

Proposition 4. Put f;=dim, V;. Then

t(G)=max {—[—ﬂ]+1—5i

i=0,.--, n}
fi

where 6;=0 for i=1 and 6,=1.

Proof. We use the symbols J, U and s; in the same sense as above.
Let ¢: k[G]—k[H] be the surjective homomorphism induced by the
natural projection G>H=G/S. Then J=Ker ¢. Further we have U=
kc+JU, where c=3 ..y 1€ k[G]. Using this equation we obtain JU=Jc¢
because J is nilpotent. Let Ig be the augmentation ideal of k[S]; Is=
Jnk[S]. Then by using the semi-direct product decomposition G=H - S,
we easily get J'c=TI%c for every natural number I. Therefore we obtain
JU[J?U~I[I% as k[G]-modules (G acts on S through conjugation; S is
acting trivially on both sides). Since Is/I3~P ®p, k, the above iso-
morphism shows the equality s;=m, for i=0,---, n. - Hence, by Corollary
to Proposition 3, we obtain Proposition 4.
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§3. A consequence of Theorem A

Apply Theorem A when G is a finite p-group (p=chark). Then
we obtain the classical inequality y<g, where y is the p-rank of X (cf.
Proposition 1 (iii)). Hence Theorem A is surely a non-trivial assertion
when char k>0. However, for a general finite group G, it is not easy
to determine the number #G), and so we do not know exactly to what
extent Theorem A gives restriction on the set of finite quotient groups
of n,(X).

In the following situation we can describe a consequence of Theorem A
in a “down-to-earth’” form: Let G’ be a subgroup of a finite group G and
let K be a normal subgroup of G’ for which the quotient G’/K has a normal
Sylow p-subgroup (p=char k). Then G’/K is isomorphic to a semi-direct
product H - S, where S is a p-group and H is a p’-group actingon S. For H
and S above, let P, V; and m; (i=0,---, n) be the same as defined before
Proposition 4. Then as a consequence of Theorem A we obtain the
following

Proposition 5. Let the situation be as above. If G is a quotient of
n,(X), then

m;=<(G: G')(g—1)dim, V;+;
holds for each i=0,---, n, where 8;=0 for i=1 and é,=1.

Proof. Put f;=dim, V,, Then applying Proposition 4 to G'/K=
H .S, we obtain m; =({G'|K)—1) f;+ 9, for each i=0,---, n. Proposition 2
shows HG'|K)—1Z2t(G)—1=(G: G'X(G)—1). Further HG)=<g holds
by Theorem A. Thus the proof of Proposition 5 is completed.

Finally we shall give a different proof of Proposition 5, which does
not use Theorem A: Take a finite étale Galois covering Y— X satisfying
G=Gal(Y/X), and let Y->X' be the covering corresponding to G’, i.e.
G'=Gal(Y/X’). Denoting by g’ the genus of X', we have g'—1=(G: G’)
(g—1) by the Riemann-Hurwitz formula. So we should prove m;=<
(g—Dfi+6; (fi=dim, V,). Since H-P=H-S/N (N=[S, SIS?) is a
quotient of G’, we have a covering Z— X' with Gal(Z/X")=H-P. Let
f: W—=X' be the covering corresponding to P (P=Gal(Z/W)). The
group H=Gal (W/X") acts naturally on the cohomology group HY(W, Oy).
Since P=Gal(Z/W), P*=Hom(P, F,) is an F [H]-submodule of
Hom,,, (n,(W), F,)=HYW, Oy)¥, where F is the p-th power Frobenius
map and HY(W, Oy)F ={{ € H(W, Oy)|F({)=¢,}. Therefore (P ®p, k)*
=P*®p, k is a k[H]-submodule of H'(W, 0y) because HY W, Oy)*
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®p, k is naturally contained in H'(W, Oy). On the other hand, H acts
naturally on the locally free sheaf &#=f,(0y) on X'. For i=0,---, n,
let #(V}) be the isotypical part of & with respect to the irreducible k[H]-

module V;. Since H is a p’-group, we have a direct sum decomposition

F = (-TB Z(V;) and rank F(V)) =f2. Asis easily verified, the V-isotypical

part (;fOH‘(VIC Ow)=HY X', #) coincides with H'(X', #(V;)). Recalling
that (P ®p, k)* is a k[H]-submodule of H(W, 0y), we see that the
inequality m;f;<dim, H\(X', #(V¥)) holds for each i=0,---, n, where V¥
is the dual module of V;. Since deg #(V¥)=0 and dim, H(X’, #(V}))=
J;, the Riemann-Roch theorem shows dim, H\(X', F(V¥)=(g'—1)f?+ .
Consequently we obtain m;<(g’—1)f;+J;, which completes the proof of
Proposition 5.
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