Some Problems on Three Point Ramifications and Associated Large Galois Representations

Yasutaka Ihara
Dedicated to Professor Ichiro Satake for his 60th birthday

Introduction

Let \boldsymbol{Q} be the rational number field, $\overline{\boldsymbol{Q}}$ be its algebraic closure, and l be a fixed prime number. Then the absolute Galois group $G_{\boldsymbol{Q}}=\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ admits a canonical representation

$$
\varphi=\varphi_{\boldsymbol{Q}}: G_{\boldsymbol{Q}} \longrightarrow \text { Out } \pi_{1}^{\text {pro-l }}\left(\boldsymbol{P}_{\bar{Q}}^{1} \backslash\{0,1, \infty\}\right),
$$

in the outer automorphism group of the pro-l fundamental group of the punctured projective line, which arises from the exact sequence

$$
1 \longrightarrow \pi_{1}^{\mathrm{prol}}\left(\boldsymbol{P}_{\boldsymbol{Q}}^{1} \backslash\{0,1, \infty\}\right) \longrightarrow \pi_{1}^{\mathrm{prol}}\left(\boldsymbol{P}_{\boldsymbol{Q}}^{1} \backslash\{0,1, \infty\}\right) \longrightarrow G_{\boldsymbol{Q}} \longrightarrow 1 .
$$

Recently, several authors started (perhaps more or less independently) to work on this type of "large Galois representations"; Belyì [3], Grothendieck [7], Deligne [5], [6], the author [9], [10], etc. In this report, we pose and discuss various basic open problems related to this represetation φ and its natural "subrepresentations" ψ.

§ 1. The Galois representation φ

(1-1) First, let us repeat the definition of the Galois representation φ_{Q} more precisely in terms of function fields. Let M be the maximum pro- l extension of the rational function field $K=\overline{\boldsymbol{Q}}(t)$ unramified outside $t=0,1, \infty$. Then $M / Q(t)$ is also a Galois extension. So, identifying the two Galois groups $\operatorname{Gal}(K / \boldsymbol{Q}(t))$ and $G_{\boldsymbol{Q}}=\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$ in the obvious way, we obtain an exact sequence of Galois groups

$$
1 \longrightarrow \operatorname{Gal}(M / K) \longrightarrow \operatorname{Gal}(M / \boldsymbol{Q}(t)) \longrightarrow G_{\boldsymbol{Q}} \longrightarrow 1 .
$$

Put $\mathfrak{F}=\operatorname{Gal}(M / K)$ and $\widetilde{\mathfrak{F}}=\operatorname{Gal}(M / Q(t))$. Then the composite of three canonical homomorphisms

[^0]
factors through G_{Q} and defines the homomorphism
$$
\varphi_{\boldsymbol{Q}}: G_{\boldsymbol{Q}} \longrightarrow \text { Out } \mathfrak{F} ; \quad \mathscr{F}=\operatorname{Gal}(M / K) .
$$

Here, for any topological group X, Aut X, Int X and Out $X=$ Aut $X /$ Int X denote the groups of automorphisms, inner automorphisms and outer automorphisms of X, respectively. The canonical homomorphism $X \rightarrow$ Int X is defined by $x \rightarrow \operatorname{Int} x$, where (Int $x) y=x y x^{-1}(x, y \in X)$, and Res: Int $\tilde{\mathscr{F}} \rightarrow$ Aut \mathfrak{F} is the restriction homomorphism.
(1-2) This definition, starting from $\boldsymbol{P}^{1} \backslash\{0,1, \infty\}$ over \boldsymbol{Q}, can of course be generalized to the case of an arbitrary scheme over any field. But here, we want to look closely at this special case which is rigid with respect to deformations and which gives a canonical representation of G_{Q} determined only by l. While the ordinary linear representation of the Galois group is a representation in the automorphism group of a vector space, our representation is in the (outer) automorphism group of the Galois group $\mathfrak{V}=\operatorname{Gal}(M / K)$ which is isomorphic to the free pro-l group of rank 2. (In the general case, what corresponds to $\operatorname{Gal}(M / K)$ is the geometric part of the pro-l fundamental group of the given scheme, which, except for the case of curves, is usually either difficult to determine or too small.)

We may also replace "pro-l" by either "almost pro-l", or "profinite". Namely:
(i) The almost pro-l case. Choose any finite Galois extension K^{\prime} / K unramified outside $t=0,1, \infty$, and define M to be the maximum pro- l extension of K^{\prime} unramified outside $t=0,1, \infty$. Then $\operatorname{Gal}(M / K)$ is a free almost pro-l group of rank 2 in the sense of [10], i.e., the completion of the abstract free group F of rank 2 with respect to the pro- l topology of some normal subgroup $F^{\prime} \subset F$ of finite index. If an intermediate field $\boldsymbol{Q}^{*}\left(\boldsymbol{Q} \subset \boldsymbol{Q}^{*} \subset \overline{\boldsymbol{Q}}\right)$ is such that $K^{\prime} / \boldsymbol{Q}^{*}(t)$ is a Galois extension, we obtain a representation of $G_{Q^{*}}$ in $\operatorname{Out}(\operatorname{Gal}(M / K))$.
(ii) The profinite case. Take M to be the maximum Galois extension of K unramified outside $0,1, \infty$. Then $\operatorname{Gal}(M / K)$ is the free profinite group of rank 2, and we obtain a canonical representation of $G_{\boldsymbol{Q}}$ in Out $(\operatorname{Gal}(M / K))$.

These two cases are equally important as the pro-l case, but we shall mainly restrict our attention to the pro- l case and occasionally give remarks related to other cases.

As a final remark here, we note that one may also replace the base field \boldsymbol{Q} by any other perfect field k with characteristic $\neq l$ (without changing
the structure of $\operatorname{Gal}(M / K))$. But the only basic cases are $k=\boldsymbol{Q}$ and $k=\boldsymbol{F}_{p}=\boldsymbol{Z} / p(p \neq l)$. The representation φ_{k} for other cases can be obtained from $\varphi_{\boldsymbol{Q}}$ or $\varphi_{\boldsymbol{F}_{p}}$ by restriction. (Even then, the study of $\varphi_{\boldsymbol{Q}_{l}}\left(\boldsymbol{Q}_{l}\right.$: the l-adic number field) is of an independent interest.) We shall mainly consider the case over \boldsymbol{Q}, and abbreviate as $\varphi=\varphi_{\boldsymbol{Q}}$.
(1-3) Two basic problems are:
(P1) What is the kernel of φ ?
(P2) What is the image of φ ?
(1-4) About (P1). (i) Let k_{φ} denote the Galois extension over \boldsymbol{Q} corresponding to the kernel of φ. Then k_{φ} has the following interpretation. For any intermediate field k of $\overline{\boldsymbol{Q}} / \boldsymbol{Q}$, a k-model of M will mean any intermediate field M_{k} of $M / k(t)$ such that $M_{k} \cdot \bar{Q}=M$ and $M_{k} \cap \bar{Q}=k$. It will be called a Galois k-model if moreover $M_{k} / k(t)$ is a Galois extension. Now, in each of the pro- l, almost pro- l and the profinite case, the group $\operatorname{Gal}(M / K)$ has trivial center. (In fact, a free pro-l (resp. almost pro-l, profinite) group of finite rank >1 has trivial center.) From this follows immediately that k_{φ} is the smallest algebraic extension of \boldsymbol{Q} for which M has a Galois k_{φ}-model.

Incidentally, as for non-Galois models of M, there is a convenient \boldsymbol{Q}-model M_{Q} used by Beylǐ [3] (also by Deligne [6] and the author [9]) cf. [9] I § 4.
(ii) In the profinite case, Belyĭ [3] proved that φ is injective. He proved this by showing that every algebraic curve defined over an algebraic number field can be realized as a finite covering of \boldsymbol{P}^{1} unramified outside $0,1, \infty$. In particular, an elliptic curve with any given absolute invariant $j \in \overline{\boldsymbol{Q}}$ is so, and this leads to that $k_{\varphi}=\overline{\boldsymbol{Q}}$.
(iii) In the pro- l case, k_{φ} cannot be as large as $\overline{\boldsymbol{Q}}$, because k_{φ} must be a pro-l extension of the cyclotomic field $\boldsymbol{Q}\left(\boldsymbol{\mu}_{l_{\infty}}\right)$ unramified outside l ([5], [9] § I). Thus, one may ask:
($\mathrm{P} 1^{\prime}$) Is k_{φ} in the pro- l case the maximum pro- l extension of $\boldsymbol{Q}\left(\boldsymbol{\mu}_{l_{\infty}}\right)$ unramified outside l ?

Our present knowledge is so narrow, and we cannot even put it as a conjecture.

A closely related geometric question is this:
(P3) Which curve over $\overline{\boldsymbol{Q}}$ (or $\overline{\boldsymbol{Q}}_{l}$) can be realized as an l-covering of \boldsymbol{P}^{1} unramified outside $0,1, \infty$?

Here, an l-covering means a finite covering such that the degree of its Galois closure is a power of l.

We know that such curves have good reduction outside l [9] §I. As for the special fiber above l of the integral closure of $\boldsymbol{P}_{Z_{l}}^{1}$ in such a covering
of $\boldsymbol{P}_{\overline{\boldsymbol{Q}}_{l}}^{1}$, what we know at present is the following elementary
Theorem 1. Let $P_{Z_{l}}^{1}=\operatorname{Spec} Z_{l}[t] \cup \operatorname{Spec} Z_{l}\left[t^{-1}\right]$ be the projective t-line over Z_{l} with the geometric general fiber $\boldsymbol{P}_{\overline{\boldsymbol{Q}}_{1}}^{1} . \quad$ Let $X_{\bar{\eta}} / \boldsymbol{P}_{\overline{\boldsymbol{Q}}_{l}}^{1}$ be an l-covering of degree $l^{n}(n \geqslant 1)$ unramified outside $t=0,1, \infty$, and X be the integral closure of $\boldsymbol{P}_{\bar{Z}_{l}}^{1}$ in $X_{\bar{\eta}}$. Then the special fiber X_{s} of X is an integral scheme, and its normalization X_{s}^{n}, considered as a $\boldsymbol{P}_{\bar{F}_{l}}^{1}$-scheme via the projection $X_{s} \rightarrow$ $\boldsymbol{P}_{\bar{F}_{l}}^{1}$, is isomorphic to

$$
\operatorname{Spec} \overline{\boldsymbol{F}}_{l}\left[t^{1 / l^{n}}\right] \cup \operatorname{Spec} \overline{\boldsymbol{F}}_{l}\left[t^{-1 / l^{n}}\right]
$$

i.e., the unique purely inseparable covering $\boldsymbol{P}_{\overline{\boldsymbol{F}}_{l}}^{1} \rightarrow \boldsymbol{P}_{\overline{\boldsymbol{F}}_{l}}^{1}$ of degree l^{n}.

For example, if $X_{\bar{\eta}}$ is the Fermat covering of level l corresponding to the function field $\bar{Q}_{l}\left(t^{i / l},(1-t)^{1 / l}\right)$, then X_{s} is the projective t_{1}-line $\left(t_{1}=t^{1 / l^{2}}\right)$ with cuspidal singularities at each of the $(l-2)$ distinct F_{l}-rational points t_{1} $=a$ of $\boldsymbol{P}_{\boldsymbol{F}_{l}}^{1} \backslash\{0,1, \infty\}$, and the completion of the local ring of X_{s} at $t_{1}=a$ is given by

$$
\overline{\boldsymbol{F}}_{l}\left[\left[T^{2}, T^{l}\right]\right], \quad T=t_{1}-a .
$$

The proof of Theorem 1 is reduced to this Fermat case by passage to the Frattini subcovering of (a suitable enlargement of) $X_{\bar{\eta}}$.
(1-5) About (P2). The Galois group $\mathfrak{F}=\operatorname{Gal}(M / K)$ is equipped with the conjugacy classes of three special subgroups, the inertia groups above $t=0,1, \infty$. The outerly action of G_{Q} on \widetilde{F} respects this structure. To be more precise, call any place of M over $\overline{\boldsymbol{Q}}$ lying above $t=0,1, \infty$, a cuspidal place of M. Then the inertia group in M / K of a cuspidal place is (topologically) generated by a single element, and hence is a quotient of \hat{Z}. It is isomorphic to $\boldsymbol{Z}_{l}\left(\operatorname{resp} .(\boldsymbol{Z} / m) \times \boldsymbol{Z}_{l}\right.$ with some $m \neq 0(\bmod l)$, resp. $\left.\hat{\boldsymbol{Z}}\right)$, according to whether the case is pro- l (resp. almost pro-l, resp. profinite). A primitive parabolic element is a generator of one of such an inertia group, and an \mathfrak{F}-conjugacy class of such an element is a primitive parabolic conjugacy class. Call $\tilde{\Phi}$ the group of all $\sigma \in$ Aut $\mathscr{\lessgtr}$ that raises each primitive
parabolic conjugacy class c to some power $c^{\alpha}\left(\alpha \in \hat{\boldsymbol{Z}}^{\times}\right)$. Here, α depends on σ but not on c. Define $\Phi=\overleftarrow{\Phi} /$ Int $\mathfrak{F} \subset$ Out \mathfrak{F}. Then $\varphi\left(G_{Q}\right)$ is contained in Φ. Moreover, it is contained in the \widetilde{S}_{3}-symmetric part $S \Phi$ defined as follows. Let the symmetric group \mathbb{S}_{3} act on $K=\overline{\boldsymbol{Q}}(t)$ as the group of linear fractional transformations stabilizing and acting on $\{0,1, \infty\}$ as the group of permutations (the " λ-group"). The fixed field is $\bar{Q}(j)$, with

$$
j=2^{8}\left(t^{2}-t+1\right)^{3} / t^{2}(1-t)^{2}
$$

The exact sequence of Galois groups

$$
1 \longrightarrow \mathscr{F} \longrightarrow \operatorname{Gal}(M / \bar{Q}(j)) \longrightarrow \widetilde{S}_{3} \longrightarrow 1
$$

defines an injective homomorphism $\widetilde{S}_{3} \longleftrightarrow$ Out \mathfrak{F}. We define $S \Phi$ to be the centralizer of \mathbb{S}_{3} in Φ. One checks easily that $\varphi\left(G_{Q}\right) \subset S \Phi$. These are rather obvious restrictions of the image. Deligne thinks that the image is much smaller than $S \Phi$, and our study of the ψ-representation ([9] II, IV; cf. §3) seems to support this. See also [11] "the \mathbb{S}_{4}-symmetricity of $F_{\rho} * F_{\rho}$ ", and [1].

The situation is completely parallel in the profinite case. Namely, the groups Φ and $S \Phi$ are defined analogously, and $\varphi\left(G_{Q}\right) \subset S \Phi$. As φ is injective in this case, φ induces an isomorphism between G_{Q} and its image.

Now for the "coordinate system". Recall that the topological fundamental group $\Gamma=\pi_{1}\left(P_{\boldsymbol{C}}^{1} \backslash\{0,1, \infty\}\right)$ is a free group of rank 2 generated by such loops $x_{\boldsymbol{C}}, y_{\boldsymbol{C}}, z_{\boldsymbol{C}}$ around $0,1, \infty$, respectively that $x_{\boldsymbol{C}} y_{\boldsymbol{C}} z_{\boldsymbol{C}}=1$. Therefore, its completion \mathfrak{F} is free pro- l (resp. almost pro-l, or profinite, depending on the case) with rank 2 , generated by such x and y that x, y and $z=(x y)^{-1}$ each generates some inertia group above 0,1 and ∞, respectively. The group $\tilde{\Phi}$ can be expressed as

$$
\tilde{\Phi}=\left\{\begin{array}{c}
\sigma x \sim x^{\alpha} \\
\sigma \in \operatorname{Aut} \mathfrak{F} ; \sigma y \sim y^{\alpha}\left({ }^{\exists} \alpha \in \hat{Z}^{\times}\right) \\
\sigma z \sim z^{\alpha}
\end{array}\right\} .
$$

As for the exponent α, if the case is pro- l (resp. profinite), it is uniquely determined by σ as an element of $\boldsymbol{Z}_{\imath}^{\times}$(resp. $\hat{\boldsymbol{Z}}^{\times}$), called the norm $N(\sigma)$ of σ. For $\rho \in G_{Q}, \chi(\rho)=N(\varphi(\rho))$ is the l-cyclotomic (resp. the cyclotomic) character describing the action of ρ on the group of l-powerth (resp. all) roots of unity.

As for the freedom in the choice of (x, y) : If we only impose that they generate \mathfrak{F} and each of $x, y, z=(x y)^{-1}$ is primitive parabolic above $0,1, \infty$, respectively, then the choice of (x, y) is up to $\tilde{\Phi}$-transforms. But if we further impose that they come from x_{C}, y_{C} via an embedding $\overline{\boldsymbol{Q}} \subset C$,
then this will define a narrower class. The triple $\left(x_{C}, y_{c}, z_{C}\right)$ described above is, roughly speaking, unique up to simultaneous Γ-conjugation, and it is precisely so if we impose x_{C} any y_{C} to be positively oriented. The class of (x, y) thus defined is unique up to $\widetilde{\varphi\left(G_{Q}\right)}$-transformations, where $\widetilde{\varphi\left(G_{\boldsymbol{Q}}\right)}$ is the preimage of $\varphi\left(G_{\boldsymbol{Q}}\right)$ in Aut \mathfrak{F}. This means that, for a free pro-l (or profinite) group \mathscr{F} of rank 2 given together with a set of free generators (x, y), there is a uniquely determined subgroup of Out \mathscr{F} that corresponds with $\varphi\left(G_{\boldsymbol{Q}}\right)$. What is THIS?
(1-6) Similar problems for $\varphi_{\boldsymbol{Q}_{l}}$. The representation $\varphi_{\boldsymbol{Q}_{l}}: G_{\boldsymbol{Q}_{l}} \rightarrow \Phi$ can be identified with the restriction of $\varphi_{\boldsymbol{Q}}$ to the decomposition group of an (arbitrary) extension \bar{l} / l to $\overline{\boldsymbol{Q}}$. Therefore, Image $\varphi_{\boldsymbol{Q}_{l}} \subset$ Image $\varphi_{\boldsymbol{Q}}$, and as for the kernel, the Galois extension $k_{\varphi_{l}} / \boldsymbol{Q}_{l}$ corresponding to $\operatorname{Ker} \varphi_{\boldsymbol{Q}_{l}}$ can be identified with the \bar{l}-adic completion of k_{φ}.

At present, we have nothing to add about the image. As for $k_{\varphi_{l}} / \boldsymbol{Q}_{l}$, it is obvious that $k_{\varphi_{l}}$ is some pro-l extension over $\boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l_{\infty}}\right)$. But at least when l is a regular prime, $k_{\varphi_{l}} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l_{\infty}}\right)$ cannot be the maximum pro-l extension. In fact, denote by Σ_{l} the maximum pro- l extension over $\boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l_{\infty}}\right)$ (or equivalently, over $\boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l}\right)$), and Σ^{\prime} the maximum pro-l extension over $\boldsymbol{Q}\left(\boldsymbol{\mu}_{l_{\infty}}\right)$ (or equivalently, over $\left.Q\left(\mu_{l}\right)\right)$ unramified outside l. Call Σ_{l}^{\prime} the \bar{l}-adic completion of Σ^{\prime}, which can be regarded as a Galois subextension of $\Sigma_{l} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{\iota_{\infty}}\right)$. The minimum number of generators of the pro-l groups $\operatorname{Gal}\left(\Sigma_{l} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l}\right)\right)$ and $\operatorname{Gal}\left(\Sigma^{\prime} \mid \boldsymbol{Q}\left(\boldsymbol{\mu}_{t}\right)\right)$ are $l+1$ and $\frac{1}{2}(l+1)$ respectively. (Here and in the following, when $l=2, \frac{1}{2}(l+1)$ should be replaced by 2.) Now, if l is regular, then it follows (by Frattinization and the Hilbert classfield theory) that $\operatorname{Gal}\left(\Sigma^{\prime} / \boldsymbol{Q}\left(\boldsymbol{\mu}_{t}\right)\right) \simeq \operatorname{Gal}\left(\Sigma_{l}^{\prime} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l}\right)\right)$ canonically, and from [13] Satz 11.5 follows directly that this group is a free pro-l group of $\operatorname{rank} \frac{1}{2}(l+1)$. Since $k_{\varphi} \subset \Sigma^{\prime}$, we conclude that if l is regular, the minimum number of generators of $\operatorname{Gal}\left(k_{\varphi_{l}} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l}\right)\right)$ is at most $\frac{1}{2}(l+1)$, and if furthermore $\left(\mathrm{P}^{\prime}\right)$ is valid then $\operatorname{Gal}\left(k_{\varphi_{l}} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l}\right)\right)$ must be a free pro- l group of rank $\frac{1}{2}(l+1)$.
(P4) What is $k_{\varphi_{l}}$? What is the structure of the pro-l group $\operatorname{Gal}\left(k_{\varphi_{l}} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l}\right)\right)$? (Is it free with $\operatorname{rank} \frac{1}{2}(l+1) ?$)

Unfortunately, the choice of standard generators of the Demǔskin $\operatorname{group} \operatorname{Gal}\left(\Sigma_{l} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l}\right)\right)$ seems "too arbitrary" to study $\operatorname{Gal}\left(k_{\varphi_{l}} / \boldsymbol{Q}_{l}\left(\boldsymbol{\mu}_{l}\right)\right)$ as its quotient.
(1-7) $\quad \varphi_{\boldsymbol{F}_{p}}$ for $p \neq l$. The representation $\varphi_{\boldsymbol{F}_{p}}: \operatorname{Gal}\left(\overline{\boldsymbol{F}}_{p} / \boldsymbol{F}_{p}\right) \rightarrow \Phi$ is determined by the image of the Frobenius element. Its conjugacy class is the same as the one determined by the φ_{Ω}-image of a Frobenius above p. This conjugacy class is contained in the subset $\{\sigma \in \Phi ; N(\sigma)=p\}$, but as shown in [9] I, this set consists of more than one Φ-conjugacy class (and in fact, infinitely many Φ-conjugacy classes; cf. Kanako [12]).
(P5) Can one give a good parametrization of Φ-conjugacy classes and pinpoint the Frobenius conjugacy class?

$\S_{i}^{\mathbf{2}}$ 2. Approximation of φ; the canonical filtration of $G_{\boldsymbol{Q}}$

(2-1) In Sections 2 and 3, we shall consider two different types of "approximations" of φ. First, in Section 2, we restrict ourselves to the pro- l case and consider the first type. This arises from the filtration $\{\mathscr{\mho}(m)\}_{m \geqslant 1}$ of the free pro-l group $\mathfrak{F}=\operatorname{Gal}(M / K)$ by the descending central series; $\mathfrak{\gamma}(1)=\mathfrak{F}, \overparen{\mathcal{Y}}(m+1)=[\widetilde{\gamma}, \tilde{\mathcal{Y}}(m)](m \geqslant 1)$. Here, $[$,$] is the commutator$ operation (closure of the algebraic commutator). Take any positive integer m. Then each outer automorphism of $\mathfrak{\lessgtr}$ induces an outer automorphism of $\mathfrak{z} / \mathfrak{\mho}(m+1)$ and hence an automorphism of its center $\mathfrak{F}(m) / \mathscr{F}(m+1)$. Therefore, Φ and hence also G_{Q} act outerly on $\mathfrak{F} / \mathfrak{F}(m+1)$, and in particular on $\mathfrak{f}(m) / \mathscr{F}(m+1)$. We have three things here to look at.
(i) First, $\mathfrak{f}(m) / \mathcal{F}(m+1)$ is a free \boldsymbol{Z}_{l}-module of finite rank

$$
\rho_{m}=\frac{1}{m} \sum_{d \mid m} \mu\left(\frac{m}{d}\right) 2^{a} ; \quad \text { (Witt); }
$$

hence $\operatorname{Aut}(\mathfrak{\gamma}(m) / \mathfrak{Y}(m+1)) \simeq G L_{\rho_{m}}\left(\boldsymbol{Z}_{l}\right)$. But for any $\sigma \in \operatorname{Aut} \mathfrak{\mathcal { F }}$, the action of σ on $\mathfrak{F}(m) / \mathscr{F}(m+1)$ is determined by its action on $\mathfrak{F} / \mathfrak{F}(2) \simeq \boldsymbol{Z}_{l}^{\oplus 2}$. In particular, for $\sigma \in \Phi$, it acts on $\mathfrak{F}(m) / \mathscr{F}(m+1)$ via scalar multiplication by $N(\sigma)^{m}$. Therefore, this representation of $G_{\boldsymbol{Q}}$ in $\overparen{\mathcal{F}}(m) / \widetilde{\mathcal{S}}(m+1)$ is simply the scalar representation given by $\rho \rightarrow \chi(\rho)^{m}\left(\rho \in G_{Q}\right)$.
(ii) Each quotient $\mathfrak{\lessgtr} / \mathfrak{F}(m+1)$ is a finitely generated pro-l group, and is nilpotent with finite level. So, as Deligne did in [6], one may look at its Malcev's Lie algebra \mathfrak{g}_{m} over \boldsymbol{Q}, and try to determine the Galois image in $\operatorname{Der}\left(\mathrm{g}_{m}\right) / \operatorname{Int}\left(\mathrm{g}_{m}\right)$; the algebra of outer derivations of g_{m}. By using the Belyí lifting of φ, one may replace Out \mathfrak{F} by Aut \mathfrak{F}, and $\operatorname{Der}\left(\mathfrak{g}_{m}\right) / \operatorname{Int}\left(\mathfrak{g}_{m}\right)$ by $\operatorname{Der}\left(\mathfrak{g}_{m}\right)$. In [6], Deligne gives a description of the Galois image in $\operatorname{Der}\left(\mathrm{g}_{m}\right)$ modulo some ideal. It corresponds to some essential part of the study [9] of the Galois representation in Out ($\overparen{(\Im /[\overparen{\mho}(2), ~} \mathfrak{\Im}(2)])$ (cf. [9] IV §7).
(iii) Let $\Phi(m)(m \geqslant 1)$ denote the kernel of the homomorphism $p_{m}^{1}: \Phi$ $\rightarrow \operatorname{Out}(\mathfrak{F} / \mathfrak{W}(m+1))$. Then $\Phi(1)$ is the kernel of the norm $N: \Phi \rightarrow \boldsymbol{Z}_{l}^{\times}$, and $\{\Phi(m)\}_{m \geqslant 1}$ gives a descending filtration of Φ. For $m \geqslant 2, \Phi(m)$ is the same as the group $\Phi_{1}(m)$ of [9$]$. In particular, $\Phi(1)=\Phi(2)=\Phi(3)$, and $[\Phi(m), \Phi(n)]$ $\subset \Phi(m+n)(m, n \geqslant 1)$. For each $m \geqslant 2$, the quotient $\mathrm{gr}^{m} \Phi=\Phi(m) / \Phi(m+1)$ is a free Z_{l}-module of rank $2 \rho_{m}-\rho_{m+1}$. The group $\Phi / \Phi(1) \simeq \boldsymbol{Z}_{l}^{\times}$acts on $\operatorname{gr}^{m} \Phi$ via conjugation $\operatorname{Int} \sigma(\sigma \in \Phi)$, and this action is nothing but the α^{m} multiplication ($\alpha \in \boldsymbol{Z}_{\downarrow}^{\times}$). As for the symmetric part $S \Phi$ of Φ, we also put $S \Phi(m)=S \Phi \cap \Phi(m) . \quad$ Then $\operatorname{gr}^{m} S \Phi=S \Phi(m) / S \Phi(m+1)$ can be considered naturally as a submodule of $\mathrm{gr}^{m} \Phi$, and its rank is approximately $1 / 6$ times
rank $\mathrm{gr}^{m} \Phi$. More precisely, it is given by the following formula of Deligne*);

$$
\operatorname{rank} \operatorname{gr}^{m} S \Phi=\alpha_{m}-\beta_{m+1} \quad(m \geqslant 3, l \neq 2,3)
$$

with

$$
\begin{aligned}
& \alpha_{m}=\left(r_{m}: \pi\right)=\frac{1}{3 m} \sum_{\substack{d, m \\
m / d \equiv 0(\bmod 3)}}\left\{\mu\left(\frac{m}{d}\right) 2^{d}-\varepsilon_{m}\right\}, \\
& \beta_{m}=\left(r_{m}: 1\right)=\frac{1}{6 m}\left\{\sum_{d \mid m} \delta\left(\frac{m}{d}\right) \mu\left(\frac{m}{d}\right) 2^{d}+2 \varepsilon_{m}\right\},
\end{aligned}
$$

where

$$
\varepsilon_{m}=\left\{\begin{array}{c}
-1 \cdots m=3^{\alpha} \\
2 \cdots m=2 \cdot 3^{\alpha} \\
0 \cdots \text { otherwise }
\end{array}, \quad \delta(m)=\left\{\begin{array}{lr}
1 \cdots m \equiv \pm 1 \\
3 \cdots & 3 \\
4 \cdots & \pm 2 \\
6 \cdots & 0
\end{array} \quad(\bmod 6) .\right.\right.
$$

Here, r_{m} is the character of the \widetilde{S}_{3}-action on $\mathfrak{F}(m) / \mathfrak{F}(m+1)$, and π is the irreducible character of \mathfrak{S}_{3} with degree 2 . For small m we have

m	2	3	4	5	6	7	8	9	10	11	12
${\operatorname{rank~} \mathrm{gr}^{m} \Phi}^{\operatorname{rank} \mathrm{gr}^{m} S \Phi}$	0	1	0	3	0	6	4	13	12	37	40
	0	1	0	1	0	2	1	4	2	9	7

Now call $G_{Q(m)}$ the kernel of $p_{m} \circ \varphi: G_{\boldsymbol{Q}} \rightarrow \operatorname{Out}(\mathfrak{F} / \mathfrak{F}(m+1))$. In other words, $G_{Q(m)}=\varphi^{-1}(\Phi(m))$. Then $\left\{G_{Q(m)}\right\}_{m \geqslant 1}$ gives a descending filtration of $G_{\boldsymbol{Q}}$ such that $\cap_{m} G_{\boldsymbol{Q}(m)}=G_{k_{\boldsymbol{Q}}}$. We have

$$
Q\left(\mu_{l_{\infty}}\right)=Q(1)=Q(2)=Q(3) \subset Q(4)=Q(5) \subset Q(6) \cdots
$$

The basic properties of this tower are:
(a) $\{\boldsymbol{Q}(m)\}_{m \geqslant 1}$ is an increasing sequence of Galois extensions of \boldsymbol{Q}, with $\boldsymbol{Q}(1)=\boldsymbol{Q}\left(\boldsymbol{\mu}_{l_{\infty}}\right)$.
(b) Each extension $\boldsymbol{Q}(m) / \boldsymbol{Q}(1)$ is pro-l, and is unramified outside l;
(c) $\operatorname{Gal}(\boldsymbol{Q}(m+1) / \boldsymbol{Q}(m))$ is central in $\operatorname{Gal}(\boldsymbol{Q}(m+1) / \boldsymbol{Q}(1))$.
(d) Consider $\operatorname{Gal}(\boldsymbol{Q}(m+1) / \boldsymbol{Q}(m))$ as a \boldsymbol{Z}_{l}-module. Then the natural action of $\boldsymbol{Z}_{l}^{\times}=\operatorname{Gal}(\boldsymbol{Q}(1) / \boldsymbol{Q})$ on $\operatorname{Gal}(\boldsymbol{Q}(m+1) / \boldsymbol{Q}(m))$ is given by the α^{m} multiplication $\left(\alpha \in \boldsymbol{Z}_{l}^{\times}\right)$.
*) This formula appears already in his letter [5]; the author also calculated it independently.
(2-2)
(P6) Determine the sequence $\{\boldsymbol{Q}(m)\}$ explicitly. Is each $\boldsymbol{Q}(m)$ maximal under the conditions (a) $\sim(\mathrm{d})$?

For each $m \geqslant 1$, the quotient $\operatorname{gr}^{m} G_{\boldsymbol{Q}}=\operatorname{Gal}(\boldsymbol{Q}(m+1) / \boldsymbol{Q}(m))$ can be identified with the submodule of $\mathrm{gr}^{m} S \Phi$ consisting of the image of $G_{Q(m)}$. Hence $\mathrm{gr}^{m} G_{\boldsymbol{Q}}$ is a free Z_{l}-module of finite rank \leqslant rank $\mathrm{gr}^{m} S \Phi$.
(P^{\prime}) Determine \quad rank $\mathrm{gr}^{m} G_{\boldsymbol{Q}} \quad(m \geqslant 1)$.
What we know at present about this rank is as follows.
Proposition 1. We have $c_{m}^{\prime} \leqslant \operatorname{rank~gr}{ }^{m} G_{Q} \leqslant c_{m}$, where

$$
c_{m}^{\prime}=\left\{\begin{array}{l}
1 \cdots m: \text { odd } \geqslant 3 \\
0 \cdots \text { otherwise },
\end{array} \quad c_{m}=\left\{\begin{array}{l}
a_{m}-b_{m}+1 \cdots m: \text { odd } \geqslant 3 \\
a_{m} \quad \cdots \text { otherwise },
\end{array}\right.\right.
$$

with $a_{m}=\operatorname{rank} \mathrm{gr}^{m} S \Phi$ (given above), and $b_{m}=[(m+3) / 6](m:$ odd $\geqslant 3)$. Here, $[*](* \in \boldsymbol{Q})$ denotes the greatest integer $\leqslant *$.

m	1	2	3	4	5	6	7	8	9	10	11
c_{m}	0	0	1	0	1	0	2	1	3	2	8
$\operatorname{rank~} \mathrm{gr}^{m} G_{\boldsymbol{Q}}$	0	0	1	0	1	0	1 or 2	0 or 1	$1 \leqslant \leqslant 3$	$0 \leqslant \leqslant 2$	$1 \leqslant \leqslant 8$

(P7) Can $\mathrm{gr}^{m} G_{\boldsymbol{Q}}$ be non-trivial for some even m ?
When $l=2$, there exists some $m \geqslant 7$ such that rank $\operatorname{gr}^{m} G_{\boldsymbol{Q}}>c_{m}^{\prime}$ (cf. § 3).
(2-3) An interpretation of $\boldsymbol{Q}(m)$ in terms of the Belyu's \boldsymbol{Q}-models. Let M_{Q} be the \boldsymbol{Q}-model of M corresponding to the Belyî's representative [9] I $\S 4, K(m+1)(m \geqslant 1)$ be the subextension of M / K corresponding to $\mathscr{F}(m+1)$ and put $K(m+1)_{Q}=K(m+1) \cap M_{\boldsymbol{Q}}$. Then $K(m+1)_{\boldsymbol{Q}}$ is a \boldsymbol{Q}-model of $K(m+1)$, but it is not Galois over $\boldsymbol{Q}(t)$.

Proposition 2. (i) $k=\boldsymbol{Q}(m)(m \geqslant 1)$ is the smallest Galois extension of \boldsymbol{Q} which makes $K(m+1)_{Q} \cdot k / \boldsymbol{Q}(t) \cdot k$ a Galois extension.
(ii) $\boldsymbol{Q}(m+1)$ coincides with the residue field of each cuspidal place of $K(m+1)_{\boldsymbol{Q}} \cdot \boldsymbol{Q}(m)$.

The proof is an easy exercise using [9] I.

§ 3. Subrepresentations ψ

(3-1) The approximation of φ of the second type is, roughly speaking, as follows. Suppose $\mathfrak{n} \subset \mathfrak{F}$ is a normal subgroup invariant by the action of the Galois group $G_{Q^{*}}$, for some $\boldsymbol{Q} \subset \boldsymbol{Q}^{*} \subset \overline{\boldsymbol{Q}}$, and suppose we know already
the (outerly) action of $G_{Q^{*}}$ on the quotient $\mathfrak{g}=\mathfrak{F} / \mathfrak{n}$. Consider the "finer" quotient $\mathfrak{F}^{*}=\mathfrak{F} /[\mathfrak{n}, \mathfrak{n}]$. The main subject of Section 3 is a certain group theoretic framework convenient to describe the $G_{Q^{*}}$ action on \mathfrak{F}^{*}. An advantage of considering this extension $\mathfrak{F}^{*} \rightarrow \mathfrak{g}$ is that \mathfrak{F}^{*} has trivial center (under a mild assumption on \mathfrak{n}). The main "new part" to describe is the $G_{Q^{*}}$-action on $\mathfrak{n}^{*}=\mathfrak{n} /[\mathfrak{n}, \mathfrak{n}]$ which (again, under a mild assumption on \mathfrak{n}) can be identified with the projective limit $\varliminf T_{l}\left(\operatorname{Jac} X_{n}^{*}\right)$ of the Tate module of the Jacobian of X_{n}^{*}, where $\left\{X_{n}^{*} / \boldsymbol{P}^{1}\right\}$ is the g-tower corresponding to \mathfrak{n}. The basic reference for Section 3 is [10].
(3-2) To be more precise, let \mathfrak{F} be a free almost pro-l group of rank $2,\{x, y\}$ be a generator of \mathfrak{F}, and put $z=(x y)^{-1}$. Let \mathfrak{n} be a closed normal subgroup of \mathscr{F} such that \mathfrak{n} is pro- l and

$$
\mathfrak{n} \cap\langle x\rangle=\mathfrak{n} \cap\langle y\rangle=\mathfrak{n} \cap\langle z\rangle=1
$$

Put $\mathfrak{n}^{*}=\mathfrak{n} /[\mathfrak{n}, \mathfrak{n}], \mathfrak{F}^{*}=\mathfrak{F} /[\mathfrak{n}, \mathfrak{n}]$ and $\mathfrak{g}=\mathfrak{F} / \mathfrak{n}$;

$$
1 \longrightarrow \mathfrak{n}^{*} \longrightarrow \mathfrak{F}^{*} \longrightarrow \mathfrak{g} \longrightarrow 1 \quad \text { (exact). }
$$

Denote by $x^{*}\left(\right.$ resp. $\left.y^{*}, z^{*}\right)$ the projection of $x($ resp. $y, z)$ on \mathscr{J}^{*}.
Theorem 2. (i) The centralizer of $x^{*}\left(\right.$ resp. $\left.y^{*}, z^{*}\right)$ in $\mathfrak{\mho}^{*}$ is the cyclic group topologically generated by $x^{*}\left(\right.$ resp. $\left.y^{*}, z^{*}\right)$;
(ii) the center of \mathfrak{F}^{*} is trivial.

As for (i), one can prove a little more, that if $s^{*} x^{*} s^{*-1}\left(s^{*} \in \mathscr{F}^{*}\right)$ is a power of x^{*} then s^{*} must be a power of x^{*} (and similarly for y^{*}, z^{*}). These proofs reduce easily to Lemma 5.3 of [10] by using free differentiations.

Now let us define the group " Φ for $\mathscr{Y} /[\mathfrak{n}, \mathfrak{n}]$ ", called Ψ, as follows.

$$
\Psi=\left\{\sigma \in \text { Aut } \mathfrak{F}^{*} ; \sigma \mathfrak{n}^{*}=\mathfrak{n}^{*}, \begin{array}{l}
\sigma x^{*} \sim x^{* \alpha} \\
\left.\sigma y^{*} \sim y^{* \alpha}(\exists) \alpha \in \hat{Z}^{\times}\right) \\
\sigma z^{*} \sim z^{* \alpha}
\end{array}\right\} / \operatorname{Int}\left(\mathfrak{F}^{*}, \mathfrak{n}^{*}\right),
$$

where \sim denotes conjugacy in \mathfrak{F}^{*}, and $\operatorname{Int}\left(\mathfrak{F}^{*}, \mathfrak{n}^{*}\right)$ denotes the group of all inner automorphisms of \mathfrak{F}^{*} of the form Int $n\left(n \in \mathfrak{n}^{*}\right)$. The exponent α is again determined uniquely by σ (call it also $\alpha=N(\sigma)$). This group contains a normal subgroup

$$
\Psi_{1}=\left\{\begin{array}{c}
\sigma x^{*} \approx x^{*} \\
\sigma \in \operatorname{Aut} \mathfrak{F}^{*} ; \\
\sigma y^{*} \approx y^{*} \\
\sigma z^{*} \approx z^{*}
\end{array}\right\} / \operatorname{Int}\left(\mathscr{\mathscr { F }}^{*}, \mathfrak{n}^{*}\right),
$$

where \approx denotes conjugacy by element of \mathfrak{n}^{*}.
Our first result related to these groups is the existence of a certain anti 1-cocycle $\varepsilon: \Psi \rightarrow \mathscr{A}^{\times}$, where $\mathscr{A}=Z_{l}[[g]]$, the completed group algebra of g. Before stating this result, we need some preliminaries.
(3-3) Denote by $\mathscr{B}=\boldsymbol{Z}_{l}\left[[\lceil\mathfrak{F}]]\right.$ (resp. $\left.\mathscr{A}=\boldsymbol{Z}_{l}[[\mathrm{~g}]]\right]$) the completed group algebra of \mathscr{F} (resp. g) over Z_{l}, and $\pi: \mathscr{B} \rightarrow \mathscr{A}$ the projection. As \mathscr{F} is a free almost pro- l group of rank 2 generated by x and y, \mathscr{B} is equipped with the free differentiations $\partial / \partial x, \partial / \partial y: \mathscr{B} \rightarrow \mathscr{B}$ defined as follows. Every element $\theta \in \mathscr{B}$ is expressed uniquely as

$$
\theta=s(\theta) \cdot 1_{\tilde{F}}+\theta_{1}(x-1)+\theta_{2}(y-1) \quad\left(\theta_{1}, \theta_{2} \in \mathscr{B}\right)
$$

where $s: \mathscr{B} \rightarrow Z_{l}$ is the augmentation homomorphism. We define $\partial \theta / \partial x=$ $\theta_{1}, \partial \theta / \partial y=\theta_{2}$ (cf. [10] Theorem 2.1).

Now the group Ψ acts naturally on the quotient g of \mathfrak{F}^{*}, and hence also on \mathscr{A} and \mathscr{A}^{\times}. Note that Ψ_{1} is contained in the kernel of this action. A continuous map $\varepsilon: \Psi \rightarrow \mathscr{A}^{\times}$will be called an anti 1-cocycle, if

$$
\varepsilon\left(\sigma^{\prime} \circ \sigma\right)=\sigma^{\prime}(\varepsilon(\sigma)) \cdot \varepsilon\left(\sigma^{\prime}\right), \quad \text { for all } \sigma, \sigma^{\prime} \in \Psi
$$

(3-4) The following theorems are basic for the presentations of Ψ and Ψ_{1}.

Theorem 3. There exists a unique continuous anti 1-cocycle

$$
\varepsilon: \Psi \rightarrow \mathscr{A}^{\times}
$$

satisfying the following property. For any $\sigma \in \Psi$, any $\tilde{\sigma} \in$ Aut \mathfrak{F}^{*} representing σ, and any $\alpha \in \hat{Z}^{\times}, s, t \in \mathfrak{\vartheta}$ such that $s x^{\alpha} s^{-1}$ (resp. ty ${ }^{\alpha} t^{-1}$) represents $\tilde{\sigma} x^{*}$ (resp. $\check{\sigma} y^{*}$) modulo $[\mathfrak{n}, \mathfrak{n}]$, one has

$$
\varepsilon(\sigma)=\pi\left(s-\frac{\partial(s-t)}{\partial x}(x-1)\right)=\pi\left(t-\frac{\partial(t-s)}{\partial y}(y-1)\right) .
$$

The proof is parallel to that of Theorem A in [10].
Theorem 4. (i) For $\sigma \in \Psi, \varepsilon(\sigma)=1$ if and only if $\sigma=1$.
(ii) The restriction of ε to Ψ_{1} gives an anti-isomorphism

$$
\varepsilon_{1}: \Psi_{1} \rightarrow[1+\mathscr{R}(\boldsymbol{x}-1) \cap \mathscr{R}(\boldsymbol{y}-1)]^{\times}
$$

where \boldsymbol{x} (resp. \boldsymbol{y}) is the projection of $x($ resp. y) on $\mathfrak{g} \subset \mathscr{A}$, and \mathscr{R} is the right ideal of \mathscr{A} defined by

$$
\begin{aligned}
\mathscr{R} & =\{r \in \mathscr{A} ;(\boldsymbol{x}-1) r \in(\boldsymbol{x} \boldsymbol{y}-1) \mathscr{A}\} \\
& =\{r \in \mathscr{A} ;(\boldsymbol{y}-1) r \in(\boldsymbol{y} \boldsymbol{x}-1) \mathscr{A}\} .
\end{aligned}
$$

Note that in the pro-l case every element of $1+\mathscr{R}(\boldsymbol{x}-1) \cap \mathscr{R}(\boldsymbol{y}-1)$ is invertible. The proof of Theorem 4 can be obtained by the combination of methods used in [9] II (proof of Theorem 3B) and [10] § 3.

Thus if Δ denotes the image of the canonical homomorphism $\delta: \Psi \rightarrow$ Aut \mathfrak{g}, then Ψ can be embedded into the semi-direct product $\Delta \ltimes\left(\mathscr{A}^{\times}\right)^{\circ}$ via (δ, ε), where $\left(\mathscr{A}^{\times}\right)^{\circ}$ denotes the aniti-isomorphic dual of \mathscr{A}^{\times}.
(3-5) Consider now the restriction homomorphism $\mu: \Psi \rightarrow$ Aut n^{*}. How can this be explicitly presented? The following two theorems answer this question.

Theorem 5 ([10] §1). Consider the pro-l abelian group \mathfrak{n}^{*} as a left \mathfrak{g}-module by conjugation, and hence also as a left \mathscr{A}-module. Then as left \mathscr{A}-modules,

$$
\mathfrak{n}^{*} \xrightarrow{\sim} \mathscr{A}(\boldsymbol{x}-1) \cap \mathscr{A}(\boldsymbol{y}-1) \quad \text { (canonically). }
$$

This is induced from the mapping

$$
\mathfrak{n} \ni n \longrightarrow \pi(\partial n / \partial x)(x-1)=-\pi(\partial n / \partial y)(y-1) \in \mathscr{A}(x-1) \cap \mathscr{A}(y-1) .
$$

Theorem 6. The action of $\sigma \in \Psi$ on \mathfrak{n}^{*}, when translated to an action on $\mathscr{A}(\boldsymbol{x}-1) \cap \mathscr{A}(\boldsymbol{y}-1)$ via Theorem 5 , is given as

$$
\alpha \longrightarrow \sigma(\alpha) \cdot \varepsilon(\sigma) \quad(\alpha \in \mathscr{A}(\boldsymbol{x}-1) \cap \mathscr{A}(\boldsymbol{y}-1)) .
$$

The proof is completely parallel to that of Theorem C of [10].
(3-6) The Galois representation in Ψ. A natural representation of the Galois group $G_{Q^{*}}$ in Ψ arises when there is an infinite Galois extension L / K and its \boldsymbol{Q}^{*}-model $L^{*} / \boldsymbol{Q}^{*}(t)\left(\boldsymbol{Q} \subset \boldsymbol{Q}^{*} \subset \overline{\boldsymbol{Q}}\right)$, satisfying the following properties.
(i) L / K is unramified outside $t=0,1, \infty$;
(ii) L / K is an almost pro-l extension, i.e., $\mathfrak{g}=\operatorname{Gal}(L / K)$ contains an open normal pro-l subgroup;
(iii) the ramification index of each of $0,1, \infty$ in L is infinite;
(iv) $L^{*} \cdot \overline{\boldsymbol{Q}}=L, L^{*} \cap \overline{\boldsymbol{Q}}=\boldsymbol{Q}^{*}$ (but $L^{*} / \boldsymbol{Q}^{*}(t)$ need not be Galois).

There are many interesting examples of L, such as those obtained from the tower of Fermat (or Heisenberg) curves of level $l^{n}(n \rightarrow \infty)$, the tower of modular curves of level $2 m l^{n}(n \rightarrow \infty)$, etc. (cf. [10]). Since we shall later refer to the "Fermat case", we recall here what this means. With the
notation of Section $2(2-3)$, this is the pro-l case with $L=K(2), \boldsymbol{Q}^{*}=\boldsymbol{Q}$, and $L^{*}=K(2)_{\boldsymbol{Q}}$ (hence $g=\widetilde{F} / \mathfrak{F}(2)=\boldsymbol{Z}_{l} \times \boldsymbol{Z}_{l}$).

Now L and L^{*} being given, denote by M the maximum pro- l extension of L unramified outside $0,1, \infty$, and put

$$
\begin{gathered}
\mathfrak{n}=\operatorname{Gal}(M / L), \quad \mathfrak{F}=\operatorname{Gal}(M / K), \quad \mathfrak{g}=\operatorname{Gal}(L / K) \\
1 \longrightarrow \mathfrak{n} \longrightarrow \mathfrak{F} \longrightarrow \mathfrak{g} \longrightarrow 1 \quad \text { (exact). }
\end{gathered}
$$

Then \mathfrak{F} is a free almost pro-l group of rank 2 generated by two such elements x, y that x, y and $z=(x y)^{-1}$ each generates some inertia group above $0,1, \infty$ respectively. Note that \mathfrak{n} satisfies the assumptions of (3-2). Identify $G_{Q^{*}}$ with $\operatorname{Gal}\left(L / L^{*}\right)=\operatorname{Gal}\left(M / L^{*}\right) / \mathfrak{n}$ in the canonical way, and for each $\rho \in G_{Q^{*}}$ choose an element $\rho^{*} \in \operatorname{Gal}\left(M / L^{*}\right)$ which lifts ρ. Then the conjugation Int ρ^{*} induces an automorphism of \mathscr{F} which is well-defined by ρ modulo inner automorphisms by elements of \mathfrak{n}. Clearly, Int ρ^{*} stabilizes \mathfrak{n} and hence also $[\mathfrak{n}, \mathfrak{n}]$. Thus, $\rho \rightarrow \operatorname{Int} \rho^{*}$ induces a homomorphism

$$
\psi: G_{Q^{*}} \longrightarrow \Psi
$$

Note that the natural action of $G_{Q^{*}}$ on \mathfrak{g}, or on \mathfrak{n}^{*} factors through ψ.
The composite $\varepsilon \circ \psi: G_{Q^{*}} \rightarrow \mathscr{A}^{\times}$is the anti 1 -cocycle constructed and studied in [10]. (In [10], $\varepsilon \circ \psi$ is denoted as ψ. It is constructed without making explicit reference to the group Ψ; cf. also [9] §II for the case $\mathfrak{n}=[\widetilde{\mathscr{F}}, \mathfrak{F}]$.) The composite $\mu \circ \psi: G_{Q^{*}} \rightarrow$ Aut \mathfrak{n}^{*} is the natural action of $G_{Q^{*}}$ on $\mathfrak{n}^{*}=\varliminf \prod_{l}\left(\operatorname{Jac} X_{n}^{*}\right)$, and by Theorems 4,5 , this can be explicitly presented as the "twisted right multiplication" of

$$
\begin{equation*}
\varepsilon(\psi(\rho)) \in \mathscr{A}^{\times} \quad \text { on } \quad \mathfrak{n}^{*} \simeq \mathscr{A}(\boldsymbol{x}-1) \cap \mathscr{A}(\boldsymbol{y}-1) \quad\left(\rho \in G_{Q^{*}}\right) . \tag{3-7}
\end{equation*}
$$

(P8) What is the kernel $\operatorname{Ker} \psi=\operatorname{Ker}(\varepsilon \circ \psi)$?
(P9) What is the image of $\varepsilon \circ \psi$ in \mathscr{A}^{\times}?
In the Fermat case, both questions are closely related to the Vandiver conjecture, as shown by Coleman [4].
(3-8) Since Φ and Ψ are, roughly speaking, outer automorphism groups of $\mathscr{F}^{\text {and }}$ of $\mathfrak{F}^{*}=\mathfrak{F} /[\mathfrak{n}, \mathfrak{n}]$ respectively, one wants to connect them by a "canonical homomorphism" $\gamma: \Phi \rightarrow \Psi$ and study its image and the kernel. This would help obtain some information on the representation φ from that on ψ. But strictly speaking, there is no canonical homomorphism $\gamma: \Phi \rightarrow \Psi$ unless one replaces Int $\left(\mathscr{F}^{*} ; \mathfrak{n}^{*}\right)$ by Int \mathscr{F}^{*} and makes a further assumption on \mathfrak{n} that \mathfrak{n} is Φ-invariant. Here, the latter assumption on \mathfrak{n} would not be so harmful, because we are mostly interested in
the case where \mathfrak{n} is a characteristic subgroup of \mathfrak{F}. But the former replacement would define a group Ψ^{\prime} for which an analogue of Theorem 3 would be more complicated (at least in general). So, here, we simply restrict our attention to some suitable subgroups of Φ and Ψ, imposing the following assumption on \mathfrak{n};

$$
\langle\boldsymbol{x}\rangle \cap\langle\boldsymbol{y}\rangle \cap\langle\boldsymbol{z}\rangle=(1) \quad \text { on } \mathrm{g} .
$$

This is satisfied if \mathfrak{g} has trivial center, or if \mathfrak{F} is pro- l and $\mathfrak{n} \subset[\mathscr{F}, \mathfrak{F}]$. Let $\Psi_{1} \subset \Psi$ be as given in (3-2), and put

$$
\Phi_{1}=\Phi_{1, \mathrm{n}}=\left\{\begin{array}{r}
\sigma x \approx x \\
\sigma \in \text { Aut } \mathfrak{r} ; \sigma y \approx y \\
\sigma z \approx z
\end{array}\right\} / \operatorname{Int}(\mathfrak{F} ; \mathfrak{n}),
$$

where \approx denotes conjugacy by element of \mathfrak{n}, and $\operatorname{Int}(\mathfrak{F} ; \mathfrak{n})$ denotes the group of inner automorphisms of \mathscr{F} of the form Int $n(n \in \mathfrak{n})$. Under the above assumption on n, the canonical homomorphisms $\Phi_{1} \rightarrow$ Out $\mathfrak{F}, \Psi_{1} \rightarrow$ Out \mathscr{F}^{*} are injective; hence Φ_{1} can also be considered as a subgroup of Φ. There is an obvious homomorphism

$$
\gamma_{1}: \Phi_{1} \longrightarrow \Psi_{1},
$$

and we have $\gamma_{1} \circ \varphi(\rho)=\psi(\rho)$ for all $\rho \in G_{Q^{*}}$ such that $\varphi(\rho) \in \Phi_{1}$.
(P 10) What is the image of $\varepsilon \circ \gamma_{1}$ in $[1+\mathscr{R}(\boldsymbol{x}-1) \cap \mathscr{R}(\boldsymbol{y}-1)]^{\times}$?
In the Fermat case, this is answered in [9] III (Theorem 8). Namely, the image of $\varepsilon \circ \gamma_{1}$ in this case is precisely the "odd part" of $[1+\mathscr{R}(\boldsymbol{x}-1)$ $\cap \mathscr{R}(\boldsymbol{y}-1)]=1+u v w \mathscr{A}$.
(3-9) Now put $\Theta=\operatorname{Ker} \gamma_{1}$ and $G_{k_{\psi}}=\operatorname{Ker} \psi$. It is easy to see that $\varphi\left(G_{k_{\psi}}\right) \subset \Phi_{1}$, and then that $\varphi\left(G_{k_{\psi}}\right) \subsetneq \Theta$;

This defines a representation $\theta: G_{k_{\psi}} \rightarrow \Theta$, which factors through a faithful representation $\operatorname{Gal}\left(k_{\varphi} k_{\psi} / k_{\psi}\right) \rightarrow \Theta$. The question whether φ is richer than ψ, for a given \mathfrak{n}, is equivalent to asking whether θ is non-trivial. Interesting concrete problems arise if one specifies \mathfrak{n} and looks at the filtrations of these groups and morphisms compatible to the filtration of Φ defined in Section 2. But we shall restrict our attention to the Fermat case.
(3-10) Now, the Fermat case. In this case, $\Phi_{1}=\Phi(1)$, and Φ_{1} and Ψ_{1} coincide with the groups treated in [9] under the same symbols. Obviously, $\boldsymbol{Q}\left(\boldsymbol{\mu}_{L^{\infty}}\right) \subset k_{\psi} \subset k_{\varphi}$. Moreover, k_{ψ} is abelian over $\boldsymbol{Q}\left(\boldsymbol{\mu}_{L_{\infty}}\right)$ [9]. Define a filtration $\left\{\Psi_{1}(m)\right\}_{m \geqslant 1}$ of Ψ_{1} using the descending central series $\left\{\mathscr{\mathscr { F }}^{*}(m)\right\}_{m \geqslant 1}$ of $\mathfrak{F}^{*}=\mathfrak{W} /[\mathfrak{n}, \mathfrak{n}]=\mathfrak{F} /[\mathfrak{F}(2), \mathfrak{F}(2)]$. Namely, $\Psi(m)$ is the kernel of the canonical homomorphism $\Psi_{1} \rightarrow$ Out ($\mathfrak{F}^{*} / \widetilde{\mho}^{*}(m+1)$). Correspondingly, we define another filtration of $G_{\boldsymbol{Q}}$, by $G_{\boldsymbol{Q}[m]}=\psi^{-1}\left(\Psi_{1}(m)\right)$. Then $\boldsymbol{Q}[1]=\boldsymbol{Q}\left(\boldsymbol{\mu}_{l \infty}\right)$, and $\{\boldsymbol{Q}[m]\}_{m \geqslant 1}$ satisfies all properties (a) $\sim(\mathrm{d})$ for $\boldsymbol{Q}(m)$. (Besides this, $\boldsymbol{Q}[m] / \boldsymbol{Q}\left(\boldsymbol{\mu}_{\iota^{\infty}}\right)$ is abelian, and $\cup \boldsymbol{Q}[m]=k_{\psi}$.) It is clear that $\boldsymbol{Q}[m] \subset \boldsymbol{Q}(m)$ for each $m \geqslant 1$.

Theorem 7. The Galois group $\operatorname{Gal}(\boldsymbol{Q}[m] / Q[m+1])(m \geqslant 1)$ is a free Z_{l}-module of rank $c_{m}^{\prime}=1(m$:odd $\geqslant 3),=0$ (otherwise).

This is a direct consequence of the combination of [11] Theorem B (first proved by Coleman [4]) and [8] Theorem B (by C. Soulé). From all these follow that $k_{\varphi}=k_{\psi}$ if and only if $\boldsymbol{Q}[m]=\boldsymbol{Q}(m)$ for all $m \geqslant 1$, or equivalently, rank $\mathrm{gr}^{m} G_{Q}=c_{m}^{\prime}$ for all $m \geqslant 1$.

Corollary. θ in the Fermat case is non-trivial if and only if there exists some $m \geqslant 7$ with rank gr ${ }^{m} G_{Q}>c_{m}^{\prime}$.
(Incidentally, Proposition 1 (§2) follows by using the above filtration of Ψ_{1}. In fact, $\operatorname{Gal}(Q[m] / Q[m+1])$ can be regarded as a submodule of $\operatorname{gr}^{m} \Psi_{1}$, and it lies in $\operatorname{gr}^{m} S \Psi_{1}^{-}$, where-specifies the "odd part" [9] III, and S specifies the \Im_{3}-symmetric part (analogous to $S \Phi$). The number $b_{m}=$ [$(m+3) / 6]$ is the rank of $\mathrm{gr}^{m} S \Psi_{1}^{-}$, and this gives Proposition 1.)

At present, it is only for $l=2$ that we know the non-triviality of θ;

Proposition 3. When $l=2, \theta$ is non-trivial.

To prove the non-triviality of θ, it suffices to show that $k_{\varphi} / \boldsymbol{Q}\left(\boldsymbol{\mu}_{L^{\infty}}\right)$ is non-abelian. When $l=2$, this last statement can be checked by using the following two special circumstances.
(i) When $l=2$, the modular curves of 2 -power levels constitute a pro-2 tower of coverings of \boldsymbol{P}^{1} unramified outside $0,1, \infty$ (because \boldsymbol{P}^{1} can be regarded as the modular curve of level 2 with cusps at $0,1, \infty$).
(ii) There exists an elliptic curve over \boldsymbol{Q} with conductor 2^{7}, which is a Weil curve and has no CM [15].*)

For $l>3$, one may try to use Heisenberg curves instead, but at present, the author does not know whether their Jacobians do not really have enough CM.

[^1]
References

[1] Anderson, G., The hyperadelic gamma function, this volume,
[2] Asada, M. and Kaneko, M., On the automorphism group of some pro-l fundamental groups, this volume,
[3] Belyǐ G. V., On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk. USSR, 43 (1979) 2; (Math. USSR Izv., 14 (1980) 2, 247-256).
[4] Coleman, R, Algebra Colloquium lecture at Univ. of Tokyo, Oct. 22, 1985 (still unpublished).
[5] Deligne, P., Letters to A. Grothendieck; Nov. 19 (1982), and an earlier one, undated.
[6] -, Letters to S. Bloch; Feb. 2, March 14 (1984).
[7] Grothendieck, A., Esquisse d'une programme, mimeographed note (1984).
[8] Ichimura, H. and Sakaguchi, K., The non-vanishing of a certain Kummer character χ_{m} (after C. Soulé) and some related topics, this volume,
[9] Ihara, Y., Profinite braid groups, Galois representations and complex multiplications, Ann. of Math., 123 (1986), 43-106.
[10] - On Galois representations arising from towers of covering of \boldsymbol{P}^{1} $\{0,1, \infty\}$; Invent Math., 86 (1986), 427-459.
[11] Ihara, Y., Kaneko, M. and Yukinari, A., On some properties of the universal power series for Jacobi sums, this volume
[12] Kaneko, M., On conjugacy classes of the pro-l braid group of degree 2; Proc. Japan Acad., 62A (1986), 274-277.
[13] Koch, H., Galoissche Theorie der p-Erweiterungen, Springer (1970).
[14] Kohno, T. and Oda, T., The lower central series of the pure braid group of an algebraic curve, this volume
[15] Ogg, A. P., Abelian curves of 2-power conductor, Proc. Camb. Phil. Soc., 62 (1966), 143-148.

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo 7, Tokyo 113, Japan

[^0]: Received April 9, 1986.

[^1]: *) The author is grateful to M. Asada for pointing out this fact together with the reference.

