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In this paper, we shall be interested in the properties of the rational 
numbers N(l -j(a)q-n 12) which are the norm of the difference of 1 and 
j(a)q-n 12 (algebraic numbers of absolute value 1 in a cyclotomic field) 
where j(a) are the Jacobi sums defined below by (1.3), a being suitable 
(n + 2)-tuples of integers modulo m. Typically, a formula of the form 

N(l -j(a)q-n 12)= (square)(m-power)/(q-power) 

seems to hold for m prime and n even, and we want to understand such a 
phenomenon in connection with arithmetic geometry of the Fermat varie­
ties. The main result is Theorem 7.1 in Section 7 for the case n=2. The 
plan of the paper will be found at the end of Section 1. 

Notation. Throughout the paper, the following notation will be used. 
m: a fixed positive integer >2 
K = Q(Cm): the m-th cyclotomic field (Cm= e2•ifm) 
n: a non-negative integer 
~::;: the set of (n + 2)-tuples a= (a0, • • ·, an+ 1) such that 

n+l 

ai e Z/m, ai::;t=O, I; ai=O 
i=O 

II a 11= I;t!6 <aJm)-1. ( <x) is the fractional part of x e Q/Z). 
p: a prime number, p)(m. 
q=p": a power of p such that q=I (modm) 
j(a): the Jacobi sum (see § 1, (1.3)) 
X,;:(q): the Fermat variety I;?~l xf=O in pn+t defined over Fq. 
G:!i=(µm)n+1/(diagonal) regarded as a subgroup of Aut(X:!i(q)) 
6;;. = the character group of G;;. 

={(a 0, • • ·, an+1)lai E Z/m, I;?,!lai=O} 
0(6;;.): the set of (Z/m)X-orbits in 6;;. 
O(~;;.): " ~;;, 
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m;:.,q, m;:.(p), 5t;:.,q, 5t;:.(p), 0(5t::,(p)), etc: see Section 5. 
pa, p A: see Section 4 

§ 1. The Jacobi sums 

Fix a positive integer m>2 and let K=Q(t;m) be them-th cyclotomic 
field (t:m=ez.tfm). For any integer n>O, let 

(1.1) ~::.={(ao, • • •, an+1) I ai E Z/m, ai=1=-o, I:t!J ai=O}. 

Take a finite field Fq with q elements such that 

(1.2) (modm), 

and choose a character X: F;--+Kx ccx of exact order m. For any a= 
(a0, · · ·, an+i) e ~;:., the Jacobi sum j(a) (relative to Fq with chosen X) is 
defined by 

(1.3) 

where the summation is taken over all (n+ 1)-tuples (v1, • • ·, Vn+i)(vi e F;) 
subject to the relation v1 + · · · + Vn+i = -1. 

This definition is the same as that of Weil [Wl] except for the sign, 
and we refer to that paper for the basic properties of Jacobi sums. In 
particular, eachj(a) is an algebraic integer in K of absolute value qn12: 

(1.4) lj(a)l=qn/2 

which depends symmetrically on a0, a 1, • • ·, an+i and which has the 
property that 

(1.5) (t E (Z/m)X). 

Here a1 is the automorphism of K over Q such that r:;·•=t;1 and t·a 
denotes (ta0, ••• , tan+i) e ~;:.. The latter determines an action of the 
group (Z/mY on the set ~;:.. Let us write A=[a] for the (Z/m)x-orbits 
of a, and O(~;:.) for the set of (Z/m)X-orbits. If a=(ai) and d is the 
g.c.d. of m and a/s, then let KA= Q(t;~). For any a e A, j(a) belongs to 
KA. 

In this paper, we shall study the properties of the rational numbers 

(1.6) (A e 0(~;:.)) 

for n even, especially for n=2. To have some idea, let us write down the 
value of (1.6) for a few explicit examples in the case where 
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(1.7) n=2, m=prime>3, q=p=prime=I (modm). 

(1.8) 

Example 1.1. 

(a) m=5, a=(ll12) 

N(l-j(a)/p)=m 3/p for p= 11, 31, 41 

(b) m=7, a=(lll4), {3=(1123) 

N(l-j(a)/p)=m 3/p2 

N(l -j({3)/p)=m 3/p 

(c) m= 11. 

for p=29, 43, 71 
II 

a p=23 p=67 

(1118) m3/p3 23zms/p3 

(1136) 43zm3/p3 m3/p3 

(1145) m3/pz ms/pz 

(1127) m3/pz ms/pz 

(1235) ms/p ms/p 

We are naturally led to the following 

p=89 

67zm3/p3 
m3/p3 
m3/pz 

232ms/p2 
m3/p 

Question 1.2. Under the condition (I. 7), is it true that 

N x1Q(l -j(a)/p)=(square)-m 3/ pw<•) (a E W;,.) 

121 

for some w(a) depending only on a and independent of p with P= I (modm)? 
What is the meaning of such a formula, especially of the square factor? 
More generally, what can one say about the quantity (1.6) without assuming 
the condition (1. 7)? 

In the next two sections (§ 2, § 3) we deduce from the known proper­
ties of Jacobi sums the results concerning the "p-part" (for any m) and 
the "m-part" (for m prime) in a formula like (1.8). The remaining 
"square(?) part" will be considered in Section 6 after we recall some facts 
on Fermat varieties in Section 4 and Section 5. A partial answer to 
Question 1.2 will be given by Theorem 7.1 in Section 7. 

§ 2. The denominator of N(l -j(a)q-nl 2) 

Fix m>2, n even and p a prime number not dividing m. Let H= 
(pmodm) be the subgroup of(Z/m)X generated by p modm, and letfbe 
the order of H. Write q0=p 1 • 

Propoition 2.1. For a e w::i, A=[a] and q=q;, the Jacobi sum j(a) 
relative to Fq, (1.3), has the property that 
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(2.1) ( j(a)) 1 Nx,.;Q u-~- E-Z 
qn/2 qw 

(u E Z) 

where w=w(A;p) is a non-negative integer, defined below by (2.8), which 
depends only on A and p. 

Proof We may assume that the coefficients ai of a and mare rela­
tively prime and so KA= K. (If dis the g.c.d. of m and a/s, then replace 
a by a'=(ai/d) and m by m'=m/d.) 

The proof is based on the Stickelberger's theorem on the prime 
decomposition ofj(a) in o=Z[(m], which we now recall (cf. Weil [W2]). 

First we consider the case q= q0• Take a prime ideal 'p of o over p 
and identify o/'p with Fq. Then, for a standard choice of the character X 
in the definition of j(a) in (1.3), we have 

(2.2) 

for an element w(a) of the group ring Z[Gal (K/Q)]: 

(2.3) w(a)= I; llt·alla=z 
tE (Z/m)X 

where, for any a= (ai) e ~~, we set 

(2.4) llall= '%: < ~ )-1. 
Taking a set of coset representatives {t1, ••• , t g }(g = rp(m)/f) of H in 
(Z/m)X, we set 'p,='p'" with -r,=a=L-Then 'p1, ···,'pg are the primes in o 
over p, and we have 

(2.5) 

Further (2.2) can be rewritten as 

(2.6) c,= I; II tJ1all-
neH 

Thus (j(a) - uqn12) (u E Z) is divisible by f1. 'p~in cc,,nf/2', and hence 
N KIQ(j(a)-uqnl 2)) is divisible by q °2:., min (c,,nf/ 2', i.e. 

(2.7) 

Define 

q(n/2)~(m)-'J:.,min(c,,nf/2)NK/Q(u- j(a)) E z. 
qn/2 
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(2.8) 
n g 

w(A; p)= -sa(m) - I:; min (c., ef/2) 
2 v=l 

g 

= I:; max (ef/2-c., O)~O. 
v=l 

Then (2.1) holds with this definition of w=w(A;p). 
In the general case q=q'fi, we have by the theorem of Davenport­

Hasse (see [WI]) 

where j(ex)0 is the Jacobi sum relative to Fqo· Hence the same argument 
as above applies with the same w= w(A; p). q.e.d. 

The following special case is worth mentioning. 

Corollary 2.2. Assume p is a prime number satisfying P= I (mod m), 
and let q=p". Then,for any ex em:;;,, we have 

(2.9) (ex E A) 

where 

(2.10) w=w(A)= I:; max (!.:_-llexll, o). 
aEA 2 

In particular, in case n = 2, we have 

(2.11) w(A)=#{a e A I llexll=O}. 

The reader may check that, in Example 1.1, the power of p in the 
denominator of N(I -j(ex)/p) is exactly the value of w given by (2.11). 

§ 3. The m-part 

Proposition 3.1. Assume m is a prime number, m > 3. For any prime 
power q such that q=.1 (mod m) and for ex e m:;;, (n = even), the Jacobi sum 
j(ex) relative to Fq satisfies the congruence: 

(3.1) (modm3). 

Proof This is an immediate consequence of a theorem of Iwasawa 
(see [Iw]), according to which one has 

(3.2) 
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for any a e ~~. any n, provided that m is a prime number > 3. q.e.d. 

By making use of a recent result of lhara generalizing lwasawa's 
theorem ([Ih, II, § 6]), we also have 

Proposition 3.2. Suppose that m is a prime power such that m=m~ 
with m0 odd prime and r > 1 if m0 = 3. Then, for any q= 1 (mod m) and 
a e ~~ (n=even), we have 

(3.3) (modmZ). 

Combining Proposition 3.1 with Corollary 2.2, we obtain a prelimi­
nary result about Question 1.2: 

Corollary 3.3. Assume m is a prime > 3, K = Q((,,,) the m-th cyclo­
tomic field and n = even. Then for any a e ~~. there is a non-negative integer 
B such that 

(3.4) ( j(a)) Bm 3 

Nx 1a 1--- =--qn12 qw 

where q=.1 (mod m) and w is defined by (2.8). 

Thus Question 1.2 now becomes: 

Question 3.4. In the above situation, is the integer B a square for those 
a E ~~ withj(a)=t=qn12? 

Example 3.5. Assume the condition (1.7): n=2, m=prime>3, p=I 
(mod m). Letj(a) be the Jacobi sum relative to Fp. For any a e ~"' such 
thatj(a)=f=p (cf. Theorem 7.1), we can write by (3.4) 

(3.5) ( j(a)) Bm 3 
NK/Q 1--- =--, 

p PW 
( j(a)) C 

NK/Q 1+-- =-
p PW 

for some positive integers Band C (the latter comes from the case q=p 2). 
D. Zagier has verified by computor that B, C are always squares for all 
such a in the case where 

m<20 and p<S00, p=.1 (modm). 

To understand Question 3.4, at least in the case n=2, we turn to the 
geometric objects behind the Jacobi sums-the Fermat varieties. 

§ 4. The Fermat motives 

Given m> 1 and n>0, let 

(4.1) 
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be the Fermat variety of degree m and of dimension n in characteristic· 
p>O. It is always assumed that p,j'm. Letting µm be the group of m-th 
roots of unity, the group 

(4.2) 

acts naturally on x,::. The character group G:-:,, of G:-:,, is identified with the 
set of (n+2)-tuples (a0, • • ·, a,.+1) such that ai e Z/m and I; ai=O. Hence 
the set&:-:,, (defined in § 1) is a subset of G:-:,,. 

For any a e G:-:,_, let A=[a] be the (Z/m)x-orbit of a and let Ka=KA 
be defined as in Section I. We define the following elements in the group 
ring K[G:-:,_] or Z[l/m][G:-:,_]: 

(4.3) Pa= -b- I; a(g)- 1g 
m gEG:I, 

(4.4) 

It is easy to check that they satisfy 

(4.5) ta 
(a=[3) 

I:Pa=l P«·Pp = O 
(a =f= /3)' aeo 

(4.6) {PA 
(A=B) 

PA ·PB= O ' I: PA=l. (A=t=B) AEO(G) 

Here O(G) denotes the set of (Z/m)X-orbits in G=G;-:.. By identifying each 
automorphism g of x,:: with its graph, we can view p A as an algebraic n­
cycle on X,;:xx,;: with coefficients in Z[l/m]. Since PA is idempotent as a 
correspondence by (4.6), the pair 

(4.7) (A E O(G:-:,_)) 

defines a motive (cf. [D, II. § 6]), which may be called a Fermat submotive 
of x,:: corresponding to the (Z/m)X-orbit A in G:!,. 

From now on, assume p >O, and take a prime number / such that 
l ,!' pm. Letting H"(X, Z 1) be the /-adic cohomology group of X = 
X,::®Fp Fp, we define 

(4.8) 

as the image of PA (equivalently, the kernel of PA-1) acting on H"(X, Z 1); 

note that this makes sense since m is invertible in Z 1• Then we have 
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(4.9) 

where O(~;;.)' is the set O(~;;.) of (Z/m)X-orbits in ~;;. (n: odd) or the set 
O(~;;. U {O}) (n: even). This follows from a similar decomposition of the 
Hodge structure of Hn(X'!/,,,@C, Q) into G;;.-stable sub-Hodge structures 
(cf. [S2] or [S4]) via the comparison theorem of etale and classical coho­
mologies. 

For any p-power q, let us write 

(4.10) 

By Weil [WI], the zeta function of X::,,(q) is expressed in terms of the Jacobi 
sums (1.3). Assuming q-=-I (mod m), we have 

n 

{
Z(X::,,(q), T) = 1/ Do (l-qiT)P(T)Hln 

(4.11) 
P(T)= IT (l-j(rx)T). 

aE&;h 

If <pis the Frobenius endomorphism of X::,,(q), then the characteristic poly­
nomial of the induced map <p* on Hn(X, Q1) is equal to P(T) or P(T) 
X (l -qn 12T) according to the parity of n. Now the action of <p* is com­
patible with (4.9), tensored by Q1, because <p commutes with each g e G;;. 
(note that we are assuming q-=-1 (mod m)) so that we have 

(4.12) 

If we set 

(4.13) 

then 

(4.14) 

(A E 0(~;;.)) 

RiT)= IT (l-j(rx)T) 
aEA 

(cf. [D, I. § 7]). The rational number (1.6) is nothing but the value of 
RiT) at T=q-n 12: 

(4.15) (A E 0(~;;.)). 

§ 5. The Artin-Tate formula for Fermat surfaces 

We keep the notation of the previous sections. For n even, we define 
the following subsets of ~;;.: 



(5.1) 

Jacobi Sums 

jm~,q={a E U~!j(a)=qn 12} 

m~(p)={a E U~U(a)q-n/ 2 is a root of unity} 

'.t~,q=U~-m~,q 

'.t~(p)=U~-m~(p). 

By (4.11), we see that 

(5.2) l+#m~,q=the order ofpole of Z(X~(q), T) at T=q-n1 2• 
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The set m~,q is a subset of m~(p) which depends only on p but not on 
eachp-power q. In fact, by Stickelberger's theorem (2.6), we have (with the 
notation there) 

(5.3) m~(p)={a e U~l:Z::: llthall=nf/2, Vt e (Z/m)X}. 
hEH 

For suitable choice of q, m~,q is equal to m~(p); this is always the case if 
q is replaced by q 2m. 

The order of pole (5.2) is not smaller than the middle Picard number 
of X~(q) (i.e. the rank of cohomology classes of Fq-rational algebraic 
cycles of middle dimension on X,;;), and the two numbers will be equal if 
the Tate conjecture is true, which is known to hold for certain m, n, q (cf. 
[SI]). 

From now on, we consider the case n=2. First we note: 

Proposition 5.1. The Tate conjecture holds for the Fermat surface 
X;,.(q) over Fq, and the Picard number p(X;,.(q)) (i.e. the rank of the Neron­
Severi group NS(X;,.(q)) is given by 

(5.4) p(X;,.(q))= I+ tm;,.,q. 

Proof By Tate [T2], the Tate conjecture holds for a product of 
curves over a finite field, and hence, in particular, for the product Y=X;. 
XX;. of the Fermat curve X;. over Fq. On the other hand, there is a 
dominant rational map of Y to X;,. as a special case of the inductive struc­
ture (cf. [K-S]). Hence the Tate conjecture holds for X;,.(q), and (5.4) 
follows from (5.2). 

Now the zeta function (4.11) for X=X;.(q) takes the form 

l/(I-T)(I-qT)P(l-q 2T)R(T) (p=p(X;,.(q)) 

where 

(5.5) R(T)= [1 (1-j(a)T), 
a EZ~,q 
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By the Artin-Tate formula (Tate [Tl], Milne [Mil]), the rational number 
R(q- 1) is related to other arithmetic or geometric invariants such as the 
Brauer group Br (X) and the Neron-Severi group NS (X). In the present 
case, we have 

Proposition 5.2. The notation being as above, the Artin-Tate formula 
for the Fermat surface X=X!,(q) over Fq reads as follows: 

(5.6) D (i-j(a))= jBr(X)j-jdetNS(X)j 
2 q qPg{X) 

aEstm,q 

where 

(5.7) pg(X)=(m- l)(m-2)(m-3)/6. 

Proof Note that for X a nonsingular surface in p 3 (i) the Neron­
Severi group NS (X) is torsion-free, (ii) the Picard variety is trivial and (iii) 
the geometric genus is given by (5.7). Then we have only to apply the 
results of [Tl] and [Mil] in view of Proposition 5.1. q.e.d. 

By (4.14) and (4.15), we have 

Corollary 5.3. For X = X~(q ), the following formula holds. 

(5.8) jBr(X)l·!detNS(X)j=qPg{X) n RA(q- 1), 

AEO(Z!,,q) 

with 

(5.9) (a EA). 

For any prime number l=t-p and any rational number a (a=t-0), let jaj1 

denote the !-part of a, i.e. the power of l such that a/14 is an /-adic unit. 
From (5.8), we deduce 

(5.10) jBr(X)j 1 -jdetNS(X)lz= CT jRiq-1)1i (l=t-p). 
AEO(Z!,,q) 

In the next section, we shall obtain a refined version of this formula 
which reflects the "motivic decomposition" of X and which will lead to a 
partial answer to the question 3.4 in case n=2. 

Example 5.4. Under the condition (1.7), we have st~,P=st~(p), and 
the a in Example 1.1 are the representatives of the set O(st~(p)) up to 
permutation, for m, p given there. If we call V the value of the right hand 
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side of (5.8) for X = X!,(p), then I Br (X) I· I det NS (X) I= V is computed by 
using Example 1.1 : 

(a) m=5, Pc=4. V=p 4(m3/p)4 =m 12 for p= 11, 31, 41 

(b) m=7, Pc=20. V=p 20(m3/p2)4(m3/p)12=m 46 for p=29, 43, 71 

(c) m= 11, pc= 120. 

V=p12o(ms;ps)4(432ms;ps)12(ms;p2)12(ms/p2)12(ms/p)24=4324m102 for P= 23 

V = 238m192 for p = 67 

V = 6782324m192 for p = 89. 

§ 6. The refined Artin-Tate formula 

As before, let X=X!.(q) be the Fermat surface of degree m over Fq, 
q=l (modm). Take a prime number l such that 11pm. Let Br(X)(/) 
denote the /-primary part of Br (X), and let 

(6.1) Br (MA)(l)=Br (X)(/)P" 

be the image of PA (equivalently the kernel of PA -1), where PA is the idem­
potent (4.4) corresponding to A e O(G!,). By (4.6), we have 

(6.2) 

(6.3) 

(6.4) 

Br(X)(l)= EB Br(MA)(l). 
AEO(G!,) 

Proposition 6.1. The notation being as above, we have: 

if A e O('.t!,(p)) 

if A e O(G!,-'.t!,(p)) 

provided that l f pm. 

Proof The idea is to modify the proof of the Artin-Tate formula in 
[Tl] or [Mil]. From the Kummer sequence on X, we have the exact 
sequence 

Taking the direct limit for l,1-oo, we get 

0---?NS (X)@Qi/Z 1---?H 2(X, µ1 .. )---?Br (X)(!)---?0. 

For any (Z/m)X-orbit A in G!,, this gives the exact sequence 
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Further, if A is in st;,.(p), then the first term vanishes since PA kills NS (X) 
®Q 1 so that we have 

H 2(X, µi=)P"-==:. Br (X)(/)P"-. 

Let I'= Gal (Fq/ Fq), and take the I'-invariants of both sides: 

(6.6) (A e O(;it;,.(p)). 

Now observe that the actions of I' and PA commute. For if a denotes 
the standard generator of I', a commutes with the projectors PA (any A) 
because a is the inverse of the geometric Frobenius element <p* (cf. [Mi2, 
p. 292]), and one has (4.12). Hence (6.6) can be rewritten as 

(6.7) (A e O(;it;,.(p))). 

On the other hand, there is a commutative diagram (see [Tl, (5.1)] or 
[Mil, (3.2)]): 

H 2(X, µi=)--»H2(X, µi=Y 

(6.8) 1 l 
Br (X)(/) ~ Br (X)(lY 

with the arrow--»being surjective. Considering the images under PA of 
(6.8) and using (6.7), we deduce that 

(6.9) (A e O(;it;,.(p)). 

Now we claim that 

(6.10) (A e O(;it;,.(p))). 

To see this, we note first that Br (X)(/) is a divisible group, as follows from 
[G, (8.2)] in view of the fact that NS (X) is torsion-free. Thus its direct 
factor Br (X)(/)P"- is also divisible and isomorphic to (Qi/Z 1)' for some r. 
Then it is easy to see that the order of the kernel of a-1 on Br (X)(l)P"- is 
equal to the order of the co kernel of the map induced by a - I on the Tate 
module T1 Br(X)(l)P"-, which is isomorphic to H2(X, Z 1(I))P"-for A e st;,.(p) 
(use the projective limit of (6.5)). By the method of [Tl, § 5], the order 
of the cokernel in question is equal to 

ldet(a-1: H2(X, Zi(I))P"-)li=IRA(q- 1)li, 

which proves (6.10). 
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It follows from (6.9) and (6.10) that the order of Br (X)(l)P..t is divisi­
ble by IR_iq- 1)11• Now we rewrite the formula (5.10) using (6.2) as follows; 

(6.11) IT IBr(MA)(/)I IT IBr(MA)(l)l·ldetNS(X)lz 
AEOCt;(p)) IR_iq- 1)lz AEO(~;(p)) 

= IT IR_iq-1)1z. 
AEO(~;,q-~;(p)) 

But the right side is 1, because, for A e 0(5t~,q-5t~(p)), j(a)/q is a root 
of unity (:pl) in K=Q(r.m) and we are assuming /)(pm. Therefore we 
conclude that 

I Br (M.4)(/)I= IRA(q-1)1z 

I Br (MA)(l) I= 1 

ldet NS (X)lz= 1 

if A e 0('.it~(p)) 

if A E 0(G~-St~(p)) 

which proves (6.3), (6.4) and also Corollary 6.3 below. q.e.d. 

Proposition 6.2. For any a e St~(p), a prime factor l of the numerator 
of Nx..t1Q(I-j(a)/q) appears with an even power provided that 1)(2pm. 

Proof By [Tl], there is a nondegenerate skewsymmetric pairing on 
Br (X)(/) for X a surface over a finite field satisfying the Tate conjecture. In 
our case, it induces a nondegenerate pairing on the direct factor Br (MA)(l) 
for each A e 0(St~(p)), and so the order of Br (MA)(l) is a square if /::p2. 
It follows from Proposition 6.1 that IR_iq- 1)J1 is a square if [::p2 and 
l )(mp. In view of (4.15) this proves the assertion. 

Corollary 6.3. The discriminant of the Neron-Severi group NS (X) of 
the Fermat surface of degree mover Fq (q=p"=.1 (modm)) divides a power 
ofpm. 

Remark 6.4. It is likely that if pis "ordinary" in the sense that p= 1 
(mod m) then the discriminant of NS (.X) divides a power of m. This is 
true if g.c.d. (m, 2. 3) = 1, which can be shown by using the results of [S3, 
§ 7]. On the other hand, if pis "supersingular" in the sense that P"= -1 
(modm) for some v, then the discriminant ofNS(X) is a power of p; this 
follows from (5.i5). 

§ 7. Conclusion and open questions 

Concerning our original question 1.2 ( or 3.4), we can state our results 
in the following way. 
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Theorem 7.1. Assume mis a prime number >3, and let K=Q(Cm) be 
them-th cyclotomic field. Let p be a prime number >3 such that p:'.::l 
(modm) and.fix a p-power q=p". For any a=(a 0, a1, a2, a8) e ~~ (i.e. ate 
Z/m, a,=;t=O, a0 + · ·. +a8 =0), let j(a) be the Jacobi sum (1.3) relative to 
Fq. Then the following three conditions are equivalent to each other: 

(7.1) 

(7.2) 

(7.3) 

(1 j(a)) 0 N K/Q - -q- =i= 

w(a)= i{t e (Z/m)X[t < :, )=1 }>o 
for i-=f=.j. 

When these conditions are satisfied, then 

(7.4) 

with a positive integer B which is a square, possibly multiplied by a divisor of 
2mp. 

Proof Granting the first half, the second assertion follows from 
Corollary 2.2, Corollary 3.3 and Proposition 6.2. 

The first part is a consequence of the known results as follows: 
a) By definition (5.1) and Proposition 5.1, the condition (7.1) holds 

precisely when a belongs to 5t~,q-
b) When p= l(m), the set m~(p) defined by (5.1) equals the set m~ 

of [S2] related to Hodge cycles on the complex Fermat variety X;!(C) (n: 
even). 

c) Suppose n=2 and g.c.d. (m, 2-3)=1. Then m~ coincides with 
the set~~ consisting of a=(a,) with a,+aJ=O for some i-=!=-j (see [S3, Th. 
6]). 

d) If p=l(m) and g.c.d. (m, 2.3)=1, then the Neron-Severi group 
of X =X~(p)@FP has generators of FP-rational cycles, because the lines 
defined over Fp span NS (X)@Q (cf. [S3, Th. 7] where the complex case 
is treated; the proof is the same in this situation). Hence m~,q=m~(p) 
for any p-power q. 

Now (7.1), (7.2) or (7.3) respectively says that (l') a e 5t~,q, (2') a~ 
m~ or (3') a ~ ~~- Hence these conditions are equivalent in the case under 
consideration. q.e.d. 

Letting A=[a] be the (Z/m)X-orbit of a, and writing B=B(A) and 
w(a)=w(A) in (7.4), we .can rewrite the Artin-Tate formula (5.8) for X= 
X~(q) as follows: 
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(7.5) jBr(X)!·ldetNS(X)I={ IT B(A)}m 8<m-s)•. 
AEO(:t~) 

where St;.=~!.- Q:3;.. It should be noted here that we have 

(7.6) ~ w(A)=pg(X) (any m) 
AEO(:t~) 

by (2.11), and form odd prime, we also have (cf. [S3]) 

(7.7) #0(St!.)=(#~!,-#;tl!,)/(m-1) 

=(m-3) 2• 
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On the other hand, we know that det NS (X) is a power of m in our case, 
as mentioned in Remark 6.4. Hence it seems natural to ask the following 

Question 7.2. For the Fermat surface X =X;. of prime degree m in 
characteristic p= 1 (mod m), does one have 

(7.8) jdet NS (X)j=m 3<m-s)•? 

or equivalently, with the notation of (7.4) and (7.5), 

(7.9) jBr(X)I= IT B(A)? 
AEO(:t~) 

In this paper, we have mainly considered the case n=2 of Question 
1.2 about N(l-j(a)/qnt 2) (a e ~;:.), but it seems likely that similar phe­
nomena occur for higher n. Then, reversing the above argument, we may 
ask 

Question 7.3. Will this suggest the existence of some finite group with 
non-degenerate pairing for a higher dimensional variety (here X,;:) which 
might play the role of the Brauer group for surf aces in a possible generali­
zation of the Artin-Tate formula? 

Finally, it was in trying to compute the Neron-Severi groups of the 
complex Fermat surfaces that we came to notice the properties of Jacobi 
sums discussed in this paper. Concerning this, we formulate some related 
questions: 

Question 7.4. Are the following statements (7.10), ·. ·, (7.13) true? 
(i) For the complex Fermat surface X;, of prime degree m (m>2): 

(7.10) 

(7.11) 

ldet NS (X!.)l=m 8<m-s)• 

NS (X;.) is spanned by the classes of lines on X;,. 
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(ii) Similarly, for the product X;,, XX;,, of the complex Fermat curve 
with itself, with m prime> 3: 

(7.12) !det NS (X;,,xX;,,)l=m 3r 

where r=m 3 -5m 2 +2m+ 17. 

(7.13) NS (X;,, XX;,,) is spanned by the classes of the graphes I' g of the 
automorphisms g e G;,, (see (4.2)). 

We know that (7.11) and (7.13) are true over Q, and so the question 
is whether it is true over Z or not. 
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Added in proof (I) The first statement of the Remark 6.4 can be 
proven for any m., by making use of a result of P. Berthelot and A. Ogus 
"F-Isocrystals and De Rham Cohomology, I", Invent. Math. 72 (1983). 
Also the corresponding fact for the complex Fermat surfaces is true. 
Namely the discriminant of the Neron-Severi group of the complex 
Fermat surface of degree m divides a power of m for arbitrary m. 

(2) The results of Section 6 have since been extended to the case 
l = p by N. Suwa and N. Yui (in preparation). 
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