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On Polarized Manifolds Whose Adjoint Bundles 
Are Not Semipositive 

Takao Fujita 

Introduction 

Let L be an ample (not necessarily very ample) line bundle On a pro
jective variety M with dim M = n having only rational normal Gorensteib. 
singularities. Let m be the dualizing sheaf and let K be the line bundle 
such that (!}M(K)=m. We will study the line bundles K+tL, where t is a 
positive integer. By the base point free theorem (cf. [K2; Theorem 2.6]), 
we have Bslm(K+tL)I=0 for m~O if K+tL is numerically semipositive 
(=nej, for short), which means (K+tL)C~O for any curve C in M. We 
do not know, however, how large m should be. Here we just pose the 
following: 

Conjecture. Bslm(K+ tL) 1= 0 ifm>n+l-t and if K+tL is nef 

In this paper we will study the case in which K + tL is not nef. Our 
result is similar to those in [MI] and is based on the theory in [K2], [KMM]. 
We use also techniques in [MI] and [M2]. 

Basically we use the customary notation in algebraic geometry. Line 
bundles and the invertible sheaves of their sections are used interchange
ably. Tensor products of them are denoted additively while we use multi
plicative notation for intersection products in Chow rings. The pull-back 
of a line bundle B on V by a morphism h: T~V is denoted by B r , or 
often just by B when confusion is impossible or harmless. 
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based on a theorem which we use in (2.13) to prove Theorem 4. Without 
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Theorem 4 by ruling out the possibility of bad contractions. I thank him 
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various results on a threefold which contains a surface of non-general type 
as an ample divisor. 

§ 1. Statement of main results 

Definition. The L1-genus of the polarized variety (M, L) is defined by 
L1(M, L)=n+Ln-hO(M, L). 

A precise definition of the sectional genus geM, L) can be found in 
[Fl], [F2; (1.2)]. Here we recall the formula (K+(n-l)L)Ln-!=2g(M, L) 
-2, which may be used to define geM, L). 

The polarized variety (M, L) is said to be a scroll over a variety W if 
there exists a surjective morphismf: M~Wsuch that (F, LF)~(pr, (!J(1» 
with r=n-dim Wfor every fiber F of f. This condition is equivalent to 
saying that (M, L)~(Pw($), (!J(1» for some ample vector bundle $ on W. 

Theorem 1. K+nL is nef unless (M, L)~(pn, (!J(l». In particular, 
K+(n+l)L is always nef. 

Theorem 2. Suppose that K+nL is nef. Then K+(n-l)L is nef 
except in the following cases.' 

(a) M is a hyperquadric in pn+! and L=(!JM(l). 
(b) (M, L)~(P2, (!J(2». 
(c) (M, L) is a scroll over a smooth curve. 

Corollary 1. geM, L) = 0 if and only if L1(M, L)=O. Moreover, 
geM, L) >0 always. 

Corollary 2. geM, L)= 1 if and only if one of the following conditions 
is satisfied: 

(a) (M, L) is a del Pezzo variety, which means, K+(n-l)L is linearly 
equivalent to zero (more precisely, see [F2; (5.6)]). 

(b) (M, L) is a scroll over a smooth elliptic curve. 

Theorem 3. Suppose that K+(n-l)L is nef. Then K+(n-2)L is 
nef except in the following cases: 

(a) There exist a birational morphism f: M~ Wand an effective Wei! 
divisor Eon M such that feE) is a point and that K+(n-l)L is trivial in 
Pic (E). 

(b) There exists a surjective morphism f onto a normal projective 
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variety Wwith Picard number p(W)=p(M)-I and dim W~2. Moreover, 
any general fiber F off is of one of the following types: 

bO) .if dim W=O, then (F, LF)=(M, L) is isomorphic to either (PS, 
(!J(j» withj=2 or 3, (P" (!J(2», a hyperquadric in p 4 with L=(!JM(2), or a del 
Pezzo variety. 

bI) .if W is a curve, then (F, L F) is either (P 2, (!J(2» or a hyperquadric 
in pn with LF=(!JF(1). 

b2) .if dim W=2, then (F, LF)~(pn-2, (!J(1». 

Theorem 3'. Let things be as in Theorem 3 and suppose in addition 
that M is non-singular. Then: 

In the above case (a), (E, LE)~(pn-t, (!J(I» andf is the contraction of 
E to a smooth point. 

In case bI) and if(F, LF)~(P2, (!J(2», then every fiber off is (P2, (!J(2». 
In case b2), Wis smooth andfmakes (M, L) a scroll over W. 

Theorem 4. Suppose that M is non-singular, n>4 and K+(n-2)L is 
nef Then K + (n - 3)L is nef except in the following cases: 

(a) There is a birational morphismf: M~W onto a normal projective 
variety W with Picard number p(W)=p(M)-l. Moreover, X={x e WI 
dimf-l(x»O} is at most of dimension one and E=f-I(X) is a prime divisor 
on M. The type of E is classified further as follows,' 

aI) dim X = 1 and (E"" L",)~(pn-2, (!J(I» for any smooth point x on 
X, where E", is the fiber of E~X over x and L", is the restriction of L to E",. 
In this case the restriction of (!JM[E] to E", is (!J( -1). 

a2) X is a point and E is isomorphic to a (possibly singular) hyper-
quadric in pn. In this case LE=(!JE{l) and (!J[E]E=(!JE(-I). 

a3) X is a point and (E, LE)~(PS, (!J(2». In this case (!J[E]E=(!J( -1). 
a4) X is a point, (E, LE)~(pn-t, (!J(I» and (!J[ElE = (!J( -2). 
(b) There is a morphism f: M ~ W onto a normal projective variety W 

with dim W~3 and p(W)=p(M)-I such that any generai fiber F off is 
connected. Moreover, the type of the polarized manifold (F, L F) is classified 
as follows: 

bO) .if dim W=O, then (F, LF)=(M, L) is isomorphic to either (P6, 
(!J(2», (PS, (!J(2», (P\ (!J(j» with j=3 or 4, a hyperquadric in p6 with L= 
(!J(2), a hyperquadric in ps with L=(!J(2) or (!J(3), (M, 2A)for some del Pezzo 
4-fold (M, A), or a Mukai manifold (this means K=(2-n)L). 

bI) .if dim W= 1, then (F, L F) is isomorphic to either (PS, (!J(j» with 
j=2 or 3, (P" (!J(2», a hyperquadric in p 4 with L=(!J(2), or a del Pezzo 
manifold. 

b2) .if dim W=2, then (F, L F) is isomorphic to either (P2, (!J(2» or a 
hyperquadric in pn-I with L=(!J(I). 

b3) .if dim W=3, then (F, LF)~(pn-S, (!J{l». 
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§ 2. Proofs 

(2.1) Let 7r : M' ~ M be a desingularization of M and let w' (resp. K') 
be the canonical sheaf (resp. bundle) of M'. Then 7r*w'=w since M has 
only rational singularities. Hence, by [GR], [KI] and [V], we have 
hi(M, K+A)=hi(M', K' +7r* A)=O for any i>O and any nef line bundle 
A on M with An>o. 

(2.2) Using the natural homomorphism rr*7r*w' ~w', we infer that 
K'=rr*K+E for some effective divisor E on M'. Hence M has only 
canonical singularities. Now we apply the theory in [K2] (Cone Theorem 
and Contraction Theorem, see also [KMMD to obtain: 

Key Lemma. If K+tL is not neffor t>O, there exist a curve R in M 
and a morphism f: M ~ W onto a normal projective variety W such that 

I) every fiber off is connected, 
2) a curve C in M is numerically proportional to R (this means C - mR 

for some m > 0, where - denotes the numerical equivalence) if and only if 
f( C) is a point, 

3) BEPic(M) comes from Pic(W) if and only if BR=O, 
4) BE Pic(M) is relatively ample with respect to f if and only if BR>O, 
5) (K+tL)R<O. 

Such a morphism f will be called the contraction of the extremal ray 
spanned by R. Note that p(W)=p(M)-1 by the condition 3). 

(2.3) Lemma. Let things be as in (2.2) and suppose in addition that f 
is birational. Let x be a point on Wand let X be a subscheme of M with 
dimX>O such that Supp(X)Cf-I(X). Then Hq(X, @x(K+B»=Ofor any 
q>dimf-I(x) and any B E Pic(M) with BR~O. 

Proof (due to the idea in [M2]). Clearly it suffices to consider the 
case q= dimf-I(x) = dim X. Take a very ample line bundle H on Wand 
let A be the linear subsystem of IHI consisting of members containing x. 
Take general members D1, •• " Dn _ q off* A and let Vj=dD 1 n ... n dDj. 
Then codim Vj=j. Moreover, we take a sufficiently large d such that X is 
a subscheme of Vn _ q. Setting Vo=M, we claim HP(Vj, K+B+sH)=O 
for any p>O,j;:;;O, s:?>O. 

Whenj=O, the assertion follows from (2.1) because of the properties 
3) and 4) in (2.2). So suppose j>O. Since dim Vj=n-j, the defining 
equations of D/s form a regular sequence at every point of Vj' Hence we 
have an exact sequence O~@Vj-l( -dH)~@Vj_l~@Vj~O. This gives an 
exact sequence HP(Vj _ l , K+B+sH)~HP(Vj' K+B+sH)~HP+I(Vj_I' 

K + B + (s - d)H). So we easily finish the proof of the claim by induction 
onj. 
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Now we use O~~~@Vn_q~@X~O, where ~ is the ideal of the sub
scheme X in Vn _ q. Since dim(Supp(~)):::;;q, we infer hq(X, K+B+sH) 
<hq(Vn _ q, K+B+sH)=O for s»O from the above claim. On the other 
hand Hx=O sincef(X) is a point. So Hq(X, K+B)=O. 

(2.4) Lemma. Let f, x be as in (2.3) and let X be an irreducible 
component of f-l(X) such that dimX=dimf-l(x)=q>O. Let g: Y~X be 
a desingularization of X. Then Hq(y, g*(K+ B)) = 0 for any BE Pic(M) 
with BR?:.O. 

Proof Let Cf? be the cokernel of the natural homomorphism @ x~ 

g*@y. Since Supp(Cf?) is the set of points at which X is not normal, its 
dimension is <q. So hq(X, g*@y(K+B)):::;;hq(X, K+B)=O by (2.3). Next 
we use the Leray spectral sequence with E~,J=Hi(X, RJg*@y(K+B)) con
verging to Hi+J(Y, K+B). In order to prove the lemma, it is enough to 
show m,J=O if i+j=q,j>O. 

Now, since x E Supp(RJg*@y) implies dimg-l(x)> j, we infer 

dim (Supp (Rig *@y)) <dim E-j <q - j, 

where E is the exceptional divisor of g. This implies E~,j=O for j=q
i>O. 

(2.5) Lemma. Let f be as in (2.3) (in particular birational) and sup
pose that r=dimf-l(x»O for some point x on W. Then (K+rA)R;;;;:;O 
for any ample line bundle A on M. 

Proof We will derive a contradiction assuming (K+rA)R<O. We 
may assume that there is X as in (2.4) such thatdimX=dim(j-l(x))=r 
for x=f(X). Let g: Y~X be as above. By the property 4) in (2.2), we 
infer that -(K+sA) is ample on X for s:::;;r. So Hi(y, K+sA)=O for 
i<r, s<r. Combining this with (2.4), we obtain X(Y, K+sA)=O for 
O<s<r. This implies X(Y, K+sA)=O because X(Y, K+sA) is a poly
nomial in s of degree :::;;r. This is impossible by the Riemann-Roch 
theorem because Ay>O. 

(2.6) Proof of Theorem 1. Suppose that K + nL is not nef. Take R 
and f as in (2.2) such that (K+nL)R<O. By (2.5), f is not birational. 
Any general fiber F of f has only rational Gorenstein singularities, and its 
canonical bundle is the restriction of K. So Hi(F, K+sL)=O for any 
s>O, i>O. 

On the other hand, -(K+nL) is ample on F by the property 4) in 
(2.2). Hence X(F, K+sL)=O for 1 <s:::;;n. If dimF<n, this would imply 
X(F, K+sL)=O, which is absurd. Thus we conclude dimF=n, M=F 
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and W is a point. 
Moreover we may set X(M, K+sL)=c(s-1)(s-2)· .. (s-n) for some 

constant c. On the other hand, by the Riemann-Roch theorem, we have 
X(M, K+sL)=ds njn!+ksn-1j(n-1)!+@(sn-2) for d=P and k=KLn-Ij2. 
Hence d=c(n!)= -KLn-Ij(n+ 1). So (K+(n+1)L)p- I=O while haeM, K 
+(n+ l)L)=X(M, K+(n+ l)L)=c(n!)=d>O. Therefore K+(n+ l)L=O 
since L is ample. Moreover d= 1. Now we have haeM, L)=hO(M, K+ 
(n+2)L)=X(M, K+(n+2)L)=n+ 1. So J(M, L)=O. This implies (M, L) 
-::::::.(pn, mel)). Thus we complete the proof. 

(2.7) Proof of Theorem 2. Assume that K + (n - l)L is not nef. 
Take Rand f as in (2.2) such that (K+(n-l)L)R<O. Then f is not 
birational by (2.5). 

Suppose that dim W>O. Since any general fiber F of f has only 
rational Gorenstein singularities, Theorem 1 applies to (F, LF). Thus we 
obtain dim W= 1, (F, LF)-::::::.(pn-I, @(1)). Now, for every fiber Z off, we 
have L n -I Z = L n -IF = 1 since W is smooth. So Z is irreducible and reduced 
because L is ample. Moreover we have J(Z, Lz)=O by the lower-semi
continuity of the J-genus since f is flat. So (Z, Lz) -::::::. (pn -I, @(1)). Thus 
we are in Case c). 

Suppose that dim W = O. Then every curve in M is numerically pro
portional to R, hence every line bundle on M is numerically proportional 
to L. 

If L=aA numerically for some a> 1 and A e Pic(M), then K+ 
(n-1)aA is not nef. So (n-l)a:=;:n by Theorem 1. This is possible only 
when n=a=2. Moreover (M, A)-::::::.(P2, @(1)). Thus we are in Case b). 

If the above is not the case, any line bundle on M is numerically an 
integral multiple of L. Since K + nL is nef while K + (n - l)L is not so, we 
have K= -nL numerically. Moreover, by the property 3) in (2.2), we 
have K+nL=O in Pic(M). Using (2.1) and the Serre duality, we obtain 
O=hi(M, sL)=hi(M, K+ (n+s)L) =hn-i(M, -(s+n)L) for i>O, s> -no 
So X(M, sL)=Ofor -n<s<O and 1 =X(M, @M)=(-l)nX(M, -nL). From 
this we obtain X(M, sL)=(s+ 1)· . . (s+n-1)(2s+n)jn!. So Ln=2 and 
haeM, L)=X(M, L)=n + 2. Hence J(M, L)=O and M is a (possibly 
singular) hyperquadric in pn+1 with L=@M(l). Thus we are in Case a). 

(2.8) Proof of Corollary 1. The "if" part is well-known. So it suffices 
to show J(M, L)=O assuming geM, L)~O. Since (K+(n-1)L)P- 1= 
2g(M, L)-2<O, K+(n-1)L is not nef. In Case a) or b) of Theorem 2, 
we have J(M, L)=O. So we may assume (M, L) is a scroll over a smooth 
curve C. Then (M,L)-::::::. (Pc(0"), @(l))forsomevectorbundle0" on C. Hence 
K= -nL+f*(Kc+det 0"). So 2g(M, L)-2=(f*(Kc+det 0")-L)Ln-l= 
deg(Kc+deg0")-cl0")=degKc. Thus the genus of C is geM, L) and C 
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is a rational curve. One easily sees J(M, L)=O for rational scrolls. Thus 
we complete the proof. 

(2.9) Proof of Corollary 2. The "if" part is easy and well~known. 
We will prove the "only if" part. If K +(n-I)L is not nef, we argue as 
in (2.8) to conclude that we are in Case b). If K+(n-l)L is nef, we have 
De Jm(K+(n-I)L)J for some m>O. Since Ln-1D=m(2g(M, L)-2)=0, 
we infer D=O because L is ample. So there is a cyclic etale covering 
g: M~M such that g*(K+(n-I)L)=O. By (2.1) we have X(M, @M)=I 
and similarly X(M, @jJ)=1. Hence g must be an isomorphism. Thus 
K+(n-I)L=O in Pic(M) and we are in Case a). 

(2.10) Proof of Theorem 3. Assume that K + (n - 2)L is not nef and 
let/, R be as in (2.2) such that (K+(n-2)L)R<0. 

If w=dim W<n, let F be a general fiber of f By Theorem I, K+ 
(n-w+ I)L is nef on F. So w<2. Moreover, if w=2, we have (F, LF) 
::::.(pn-z, (!J(1)) and b2) is the case. 

If w= I, -KF is numerically proportional to LF. If (F, LF) is a scroll 
over a curve, then we get KF=(I-n)LF by restricting to fibers ::::.pn-Z. 
This implies that (F, L F ) is a hyperquadric. If (F, L F ) is not a scroll, we 
apply Theorem 2 to show that bl) is valid. 

If w=O, every line bundle on M is numerically a multiple of L. By 
Theorem I, (K+(n+l)A)R>O for any ample A. So the number AR is 
bounded below. Let us take an ample line bundle A such that AR attains 
the minimum. Then, numerically, K-kA and L-IA for some integers 
k, I. By assumption we have k+(n-I)/>O and k+(n-2)/<0. More
over k> -n-I by Theorem 1. From these inequalities we infer 1= I and 
k= I-n unless (n, -k, 1)=(3,4,2), (3,4,3), (3,3,2) or (4,5,2). Using 
preceding results we easily see that we are in Case bO). 

If w=n,jis birational and we apply (2.5) to infer that dim f-I(x) = 
n-l for some x e W. If(K+(n-I)L)R>O, then we can find A e Pic(M) 
such that LR=mAR for some integer m> 1. This is impossible by (2.5). 
Hence (K+(n-I)L)R=O. So K+(n-I)L comes from Pic(M) by the 
property 3) in (2.2). Thus we are in Case a). 

(2.11) Proof of Theorem 3'. 
Case a): Take a prime divisor E as in Theorem 3, a). Taking hyper

plane sections successively and applying the index theorem for surfaces, 
we infer that EC<O for some curve C in E. So ER<O. Hence EZ<O 
for every curve Z such thatf(Z) is a point. This implies ZcE. Thus, f 
contracts E to a point, but nothing else. 

Now, using the exact sequence O~@M[ -E]~@M~@E~O, we infer 
Hi(E, K+sL) =0 for any ;>0, s>O similarly as in (2.3) because Hi(M, K+ 
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sL+tH)=Hi(M, K+sL+tH-E)=O for t~O. Now, since K+(n-1)L 
=0 in Pic(M), we infer X(E, sL)=O for l-n:::;:s<O and X(E, (T)= 1. 
Since this is a polynomial in s of degree n-l, we infer that X(E, sL)= 
(s+ 1) .. ·(s+n-l)/(n-l)!. This implies P-1E= I by the Riemann-Roch 
Theorem. Now we have hO(E, L)=X(E, L)=n and hence J(E, L)=O. So 
(E, L)==(pn-t, (T)(l». By the adjunction formula we obtain [Eh=(J)(-I). 
So f(E) is a smooth point on w. 

In Case bl) and (F, L F)==(P2, (J)(2», set A=K+2L. Then, for every 
fiber X of f, we have A2X=A2F= 1. Similar as in (2.7; case c), we infer 
thatfmakes (M, A) a scroll over W. S6 (X, L X )==(P2, (T)(2». 

In Case b2), similarly as above, we have (X, L x )==(pn-2, (T)(l» for the 
fiber over any smooth point of W. Moreover, dim Z=n-2 for every fiber 
Z off Indeed, if f(D) is a point for some effective divisor D on M, we 
would have DR<o. similarly as in Case a). So DC<O for any curve C 
such that f( C)is a point, which is clearly absurd. Thus we reduce the 
problem to the following: 

(2.12) Lemma. Let f: M -+ S be a surjective morphism from a 
manifold M onto a normal projective variety S. Let L be an ample line 
bundle on M and suppose that (F, LF)==cpr, (J)(l» for every general fiber F 
of f Suppose further that dim Z = r for every fiber Z off Then S is 
non-singular andfmakes (M, L) a scroll over S. 

Proof Let B be the singular locus of S. Then f is flat over S - B 
and makes (M, L) a scroll there. So we will derive a contradiction as~ 
suming B* 0. Cutting by hyperplane seCtions on S if necessary, we reduce 
the problem to the case dimB=O. 

Take a point x on B. Note that, for any irreducible component Xi 
off-I(x), we have dimXi=r by assumption. Set di=L'Xi for each i. 

Take a large integer a such that aL is very ample and let DIO .. " Dr 
be general members of laLI. Then N=D1n ... nDr is non-singular. 
Moreover, applying Bertini's theorem to the restriction of laLI to each Xi; 
we infer that N n Xi is a non-singular subscheme consisting of ar di points. 

Now, take a small enough neighborhood (with respect to the metric 
topology) U of x such that any connected component Ul of f-I(U) n N 
meetsf-I(x) at only one point. This is possible becausefN: N-+S is proper 
and finite over x. Let h. be the restriction off to Ul. We may assume 
thath. is a finite morphism of degree ml. Then deg(fN) = L:lml~L:iaTdi' 
because the number of Ul's are equal to # (Nnf-I(x» = L:,aTdi • On the 
other hand, we have F==pr and D J e 1(J)(a)1 for any general fiber F off 
So deg(fN)=aT. Combining them we obtainL:idt= I and 111l= 1 for every 
.t In particular h.: Ul -+ U is bimeromorphic. So, by the analytic version 
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of Zariski's Main Theorem, h. is an isomorphism. Since U), C N is smooth, 
U must be non-singular, contradicting x E B. 

(2.13) In order to prove Theorem 4, we need the following: 

Lemma. Let things be as in (2.2) and suppose that M is non-singular. 
Let X={x E W[dimf-1(x»0} and E=f-l(X). Then there is a curve C in 
E such that f( C) is a point and that KC~n -1-2 dim E. 

This is just a reformulated version of [10; (0.4)]. 

(2.14) Outline of the proof of Theorem 4. First we apply the Key 
Lemma (2.2) and consider f: M -+ W. If f is not birational, similarly as 
in (2.10), we can show that (b) is the case. So, let us assume that f is 
birational. 

Take X and E as in (2.13). If dimE<n-l, then KC?:.3-n for some 
curve C withf(C) being a point. Since LC>I, we have (K+(n-3)L)C 
>0, contradicting the property 5) in (2.2). Thus we conclude dimE=n-l. 

Similarly as in (2.11 ; a), we infer EiZ < 0 for some component Ei of 
E and a curve Z in Ei such that feZ) is a point. Then EiR<O. So Ei 
contains every curve which is mapped to a point. This implies Ei = E. 
Hence E is a prime divisor. 

By the method in (2.5), we conclude that dimE",?:.n-2 for every 
x E X, where E", is the fiber of E-+X. Hence dimX:-:;:l. 

When dimX=l, take a general hyperplane section H of Wand let 
x be a point on Xn H. Then E", is the divisor Enf-1(H) on the manifold 
f-l(H). Similarly as in Case (a) in (2.11), we infer that (E"" L",)::::=.(pn-2, 
(9(1)) and (9[Eh~= (9( -1). Since E-+X is flat and the fiber is irreducible 
and reduced over every smooth point x of X, this is a scroll over the 
smooth part of X. Thus we are in case aI). 

When dim X = 0, take an ample line bundle A on M such that AR 
attains the minimum. Then we may set LR=jAR and KR=kAR for some 
integers j, k. From k+(n-2)j?:.0, k+(n-3)j<0 and k+n-I ?:.O we 
infer j= 1 and k=2-n unless (n, k,j) = (4, -3,2). 

In the latter case we infer (E, A E )::::=.(P3, @(I)) similarly as in (2.11; a). 
So (E, L E ) is of the type a3). 

In casej= 1 and k=2-n, we may assume A=L. We setER= -eLR 
for some positive integer e. Since K+(n-2)L=0 in Pic(E) as before, the 
dualizing sheaf WE is (2-n-e)L E • Moreover, similarly as in (2.11; case a), 
we have Hi(E, K+sL)=O for any i>O, s>O. This implies X(E, sL)=O 
for 2-n::::::s<0. Moreover hi(E, _sL)=hn-1-i(E, WE [sL]) =0 if i<n-l 
and s>e. Hence X(E, -sL)=O for e::::::s<n-2+e. Since X(E, sL) has 
at most (n-I) zeros, [2-n, 0)U(2-n-e, -e] contains at most (n-I) 
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integers. Hence e::;;2. 
If e=2, we infer (E, LE)~(pn-l, (9(1)) similarly as in (2.6). Thus a4) 

is the case. If e = I, similarly as in (2.7), we infer that a2) is the case. 

§ 3. Comments 

(3.1) Our Theorem 3' can be viewed as a polarized version of the 
following classical: 

Theorem. The canonical bundle of a smooth projective surface S is nef 
except in the following cases,' 

a) There exists a curve E such that E ~ pI and E2 = -1. 
bO) S~P2. 

bI) S is isomorphic to a pI-bundle over a smooth curve. 

(3.2) Our Theorem 4 can be viewed as a polarized version of Mori's 
theory in [MI], [M2]. 

(3.3) For general t >0, we have the following: 

Proposition. Let L be a line bundle on a manifold M with dim M = n 
such that Lis nefand big (so Ln>o). Then IC(K+tL, M)<n+l-t or =n. 

Proof By virtue of [Ii], there is a birational morphism 7': : M' ---+ M 
together with a surjective morphism (f): M' ---+ W such that dimW=IC(K+tL), 
that every general fiber F of (f) is connected and that IC(K + tL, F) = O. 
For the canonical bundle K' of M' we have HO(M', m(K' + t7':* L)) ~ 
HO(M', m7':*(K+tL)) for any m>O. So IC(K'+tL, F)=O. Moreover, LF 
is nef and big if F is general. Hence it suffices to show the following: 

(3.4) Lemma. Let L be a line bundle on a manifold F with dimF=f 
such that L is nef and big. Then IC(K' +tL, F)~Ofor t>f So IC(K+tL) 
=fift> f+2. 

Proof If IC(K+(f+I)L)<O, then hO(K+tL)=O for l::;;t~f+l. 
Using Kawamata.Viehweg's vanishing theorem, we infer X(K+tL) =0 for 
l<t<f+1. Hence X(K+tL)=O because this is a polynomial in t of 
degree <f This contradicts £'>0 by the Riemann-Roch theorem. 

(3.5) Remark. In Case a) of Theorem 3, E is not necessarily a 
Cartier divisor. A simple example can be constructed as follows. 

Take a manifold X whose canonical bundle is sufficiently ample. Let 
XI be the blow-up of X at a point and let El be the exceptional divisor on 
it. Let X2 be the blow-up of XI at a point p on EI. Let E2 be the ex
ceptional divisor over p and let E~ be the proper transform of E1• This is 
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isomorphic to the blow-up of E1 c:::.pn-l atp and is a pI-bundle over pn-Z. 
The restriction of the normal bundle of Ei to each fiber c:::.Pl is (D( -2). 
Let g: Xz~M be the contraction of Ei along this direction. So, g(Ei)c:::. 
pn -2 and M has a hypersurface singularity of the type x 2 = yz at any point 
on g(Ei). Let A be the pull-back of an ample line bundle on X. Then 
sA - El - E2 = sA - Ei - 2E2 is the pull-back of an ample line bundle L on 
M for s~O. One easily sees that E=g(E2) is the obstruction for K+ 
(n-2)L to be nef, and we are in Case a) of Theorem 3. E is not a Cartier 
divisor although so is 2E. 

(3.6) Sommese obtained similar results assuming Bs[L[=0. How
ever, his assumption on the singularity of M is weaker than ours. 

(3.7) If M is a smooth threefold, as [BP] pointed out, our results 
follow from Mori's theory [MI], [M2]. 

(3.8) Theorems 3 and 3' will be useful in the study of polarized mani
folds with g (M, L) = 2. See [BP] and a forthcoming paper of the author. 
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