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Abstract. In this note, we consider an m-dimensional stationary multivariate long
memory ARFIMA (AutoRegressive Fractionally Integrated Moving Average) process,
which is defined as : A(L)D(L) (y1(t), . . . , ym(t))

′
= B(L) (ε1(t), . . . , εm(t))

′
, where M ′

denotes the transpose of the matrix M . We determine the minimum Hellinger dis-
tance estimator (MHDE) of the parameters of a stationary multivariate long mem-
ory ARFIMA. This method is based on the minimization of the Hellinger distance
between the random function of fn(.) and a theoretical probability density fθ(.). We
establish, under some assumptions, the almost sure convergence of the estimator
and its asymptotic normality.

Résumé. Dans cette note, nous considérons un processus ARFIMA (AutoRegressive
Fractionally Integrated Moving Average) stationnaire multivarié à longue mémoire
défini par : A(L)D(L) (y1(t), . . . , ym(t))

′
= B(L) (ε1(t), . . . , εm(t))

′
, où M

′ représente
la transposée de la matrice M . Nous déterminons le minimum de distance de
Hellinger d’un estimateur (MHDE) de paramètres d’un processus ARFIMA station-
naire multivarié à longue mémoire. Cette méthode consiste à minimiser la distance
de Hellinger entre la densité de probabilité théorique fθ(.) et une fonction aléatoire
fn(.). Sous quelques hypothèses, nous établissons la convergence presque sûre de
l’estimateur et sa normalité asymptotique.
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1. Introduction

The last decades of macroeconomic and financial economic research have resulted
in a vast array of important contributions in the area of long memory modelling.
From a theoretical perspective, much effort has focussed on issues of testing and
estimation. Time series with long-range dependence appear in many contexts. This
paper studies parameter estimation for the ARFIMA model. These processes take
into account, in a modeling, the presence of long memory component in the study
of a time series. The long memory phenomenon has provided econometricians
with processes that take low frequencies into account. Such processes allow to
get forecasts to far horizon. This motivates our study. Multivariate processes with
long-range dependent properties are found in a large number of applications
including finance, macroeconomic and neuroscience. Statistical analysis of such
data is challenging because multivariate time series present phase phenomenons.

In this note, the objective is to determine the minimum Hellinger distance estima-
tor (MHDE) of the parameters of a stationary multivariate long memory ARFIMA.
Granger and Joyeux (1980) and Hosking (1981) have proposed the ARFIMA (p, d, q)
model to define a time series, which presents a character of short or long memory
following d. For −1

2 < d < 0 the process is short memory. For 0 < d < 1
2 the process

is long memory. This long memory property is characterized by a slow decay of the
autocorrelation function or the sum of unfinished autocorrelations. The process
is non-stationary for d > 1

2 and stationary for d < 1
2 . In spite of ARFIMA process,

the notion of long memory has been widely discussed by the authors such as
Bitty and Hili (2010) for linear processes with long memory, N’dri and Hili (2013)
for Strongly Dependent Multi-Dimensional Gaussian Processes. Mayoral (2007)
proposed by Minimum Distance a new method for estimating the parameters of
stationary and non-stationary ARFIMA (p, d0, q) process for d0 > −0, 75.

Our study is essentially based on the long range dependence process as in Kam-
agaté and Hili (2012). Kamagaté and Hili (2012) and Kamagaté and Hili (2013)
estimated by the Minimum Hellinger Distance method a stationary univariate
ARFIMA process and by the quasi maximum likelihood approach a non-stationary
multivariate ARFIMA process.

In this paper, we generalize the results of Kamagaté and Hili (2012) to the
multivariate case. We consider an m-dimensional ARFIMA stationary process
(y1(t), . . . , ym(t)) following d < 1

2 which is generated by

A(L)D(L) (y1(t), . . . , ym(t))
′

= B(L) (ε1(t), . . . , εm(t))
′

where M
′ denotes the transpose of the matrix M . After the invertibility of the

above process, we establish the consistence and asymptotic normality by using
the Minimum Hellinger Distance method. The reasons for choosing this estimation
technic lie in the fact that these estimators obtained are efficient and robust (cf.
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Beran (1977)).

The two main results of this work are the almost sure convergence of θ̂n to θ and
its asymptotic normality. This convergence is a consequence of Lemma 1 and
Lemma 3.1 in Hili (1995). Lemma 1 is demonstrated in three steps by applying
Prakasa-Rao’s (1983) inequality and Borel-Cantelli’s inequality. Asymptotic nor-
mality is a consequence of Lemma 2 and Lemma 3 proved by Beran (1977) and
Wu and Mielniczuk (2002) respectively.

The paper is organized as following. After some notes about the estimator, in
section 2, we present a multivariate ARFIMA model. Section 3 is devoted to
the estimation of parameters including the consistency of the estimator and its
asymptotic normality. In section 4 we establish the main results of this work.

We denote by θ the vector of parameters of interest composed of (d1, . . . , dm) and
matrix coefficients. The Minimum Hellinger Distance estimator of θ is defined by

θ̂n = arg min
θ∈Θ

H2 (fn, fθ) ,

where H2 (fn, fθ) is the Hellinger Distance defined by

H2 (fn, fθ) =

{∫
Rm
|f

1
2
n (x)− f

1
2

θ (x)|2dx
} 1

2

. (1)

The Minimum Hellinger Distance minimizes the Hellinger Distance between fn and
fθ. fθ(.) is a theoretical probability density, fn(.) is a random function of ε̂(t) and
f̃n(.) a non-parametric kernel density estimator of ε(t) defined by :

fn(x) =
1

nhmn

n∑
t=1

K

(
x− ε̂(t)
hn

)
x ∈ Rm (2)

f̃n(x) =
1

nhmn

n∑
t=1

K

(
x− ε(t)
hn

)
x ∈ Rm, (3)

where K : Rm −→ R+ is a kernel function and (hn) is a sequence of bandwidths
and f : Rm −→ R+.

2. Multivariate ARFIMA model

The multivariate ARFIMA model was introduced by Sowell (1989). We consider an
m-dimensional ARFIMA stationary process (y1(t), . . . , ym(t)) following d < 1

2 which
is generated by

A(L)D(L) (y1(t), . . . , ym(t))
′

= B(L) (ε1(t), . . . , εm(t))
′

(4)

where M ′ denotes the transpose of the matrix M . L is the backward shift operator
which, to any element of a time series, associates the previous observation as

LjXt = Xt−j , j ∈ N,
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{ε1(t), . . . , εm(t)} are white noise processes that follow the normal law of mean zero
and covariance

r {εi(t), εj(s)} = δ (t, s) kij , i, j = 1, . . . ,m.

Denote by K = (kij) the positive definite covariance matrix. The expression D(L)
defined in (4) represents a diagonal (m × m)-matrix of the fractional difference
operators of backward shift defined by

D(L) =


(1− L)d1 0 · · ·

0
. . . 0

... 0 (1− L)dm

 ,

with (1− L)
d

= 1 +
∑+∞
k=1

Γ(k − d)

Γ(−d)k!
Lk and d1, . . . , dm ∈

(
− 1

2 ,
1
2

)
. Γ(.) is the gamma

function such as Γ (j + 1) = j!..

Let A(.) and B(.) be matrix polynomials in L of degrees p and q respectively defined
as hereinafter by :

A(L) = I −A1L− . . .−ApLp,

B(L) = I +B1L+ . . .+BqL
q,

where I represents the (m×m)−identity matrix. The detA(L) 6= 0 and detB(L) 6= 0
are, respectively, the characteristic polynomial of the matrix polynomials A(.) and
B(.). We assume that the roots of characteristic polynomial are all outside the unit
disk.

Odaki (1993) and Hosking (1981) showed that the process is invertible for d > −1
and stationary for d < 1

2 . Taking into account the conditions on the polynomials,
the process (4) is invertible and causal and admits a representation of an autore-
gressive process of infinite order as following :

B(L)

 ε1(t)
...

εm(t)

 = A(L)D (L)

 y1(t)
...

ym(t)

 ,

 ε1(t)
...

εm(t)

 = (B(L))−1A(L)D(L)

 y1(t)
...

ym(t)

 . (5)

Let (B(L))
−1
A(L) = C(L), the equality (5) can be written as follows ε1(t)

...
εm(t)

 =

 c11(L, θ) · · · c1m(L, θ)
... · · ·

...
cm1(L, θ) · · · cmm(L, θ)

D(L)

 y1(t)
...

ym(t)
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and ε1(t)
...

εm(t)

 =

∞∑
j=0

Ψj(θ)

 y1(t− j)
...

ym(t− j)


where θ = (Ai, dl, Bj) ∈ Θ ⊂ Rn is the vector parameters of interest. For 0 ≤ i ≤ p,
1 ≤ l ≤ m and 0 ≤ j ≤ q. Θ is a compact set. n = m [m(p+ q) + 1]. {Ψj(θ)}∞j=0
are (m × m)-matrix associated with the entire series development of the matrix
polynomial C(L)D(L) in power of L such as

∑
j∈Z |ψr,s(j)| <∞ for 1 ≤ r, s ≤ m.

Let y
i

for 1 ≤ i ≤ n be the observations. The innovations (ε1(t), . . . , εm(t))
′
are not

observable, they are estimated by ε̂1(t)
...

ε̂m(t)

 =

n∑
j=0

Ψj (θ)

 y1(t− j)
...

ym(t− j)

 .

3. Parameter estimation

To establish the consistency and limit law of the parameter, we need the following
assumptions :

Assumption (A1)

1. E(|εt|s) < +∞ for s ≥ 1.
For all (u, v) ∈ R2m, we have :

2.
∫
Rm K

2(u)du <∞,
∫
Rm uiK(u)du = 0 for 1 ≤ i ≤ m ;

3.
∫
Rm uiujK(u)du = 0,

∫
Rm u

2
iK(u)du <∞ for 1 ≤ j ≤ m ;

4. There exists c > 0 such as supu∈Rm |K(u+ v)−K(u)| ≤ c|v|.

Assumption (A2). For each θ ∈ Θ and each x ∈ Rm, the functions x 7→ fθ(x) and
θ 7→ f

1
2

θ (x) are continuously differentiable and εt’s admits a density absolutely
continuous with respect to the Lebesgue measure Rm, positive in a neighborhood
of the origin.

Assumption (A3). For each x ∈ Rm, the functions θ 7→ ∂
∂θj

f
1
2

θ (x), for 1 ≤ j ≤ q and

θ 7→ ∂2

∂θj∂θk
f

1
2

θ (x), for 1 ≤ j, k ≤ q are finished, continuous and defined in L2(Rq).

Assumption (A4). hn = nαL(n), where −1 < α < 0 with L a slowly varying function.

lim
n→+∞

hn = 0, lim
n→+∞

nhn = +∞, lim
n→+∞

L(an)

L(n)
= 1, a > 0

For each θ ∈ Θ , supx∈Rm |
∂ifθ
∂xik

(x) |<∞, i = 0, 1, 2, · · · and k = 1, · · · ,m.
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Assumption (A5). For θ, θ′ ∈ Θ, θ 6= θ
′ implies that {x ∈ Rm/fθ(x) 6= fθ′ (x)} is a set

of positive Lebesgue measure.

Assumption (A6). We suppose that there is a constant M such as
supx∈Rm f(x) ≤ M <∞.

We obtain the following almost-sure convergence theorem and asymptotic distri-
bution laws.

Theorem 1. Supposing that assumptions (A1)-(A6) are satisfied. Then θ̂n converges
almost surely to θ for all x ∈ Rm. We denote by :

gθ(x) = f
1
2

θ (x), ġθ(x) =
∂gθ(x)

∂θ
, g̈θ(x) =

∂2gθ(x)

∂θ∂θt
, Sθ(x) =

[∫
Rm

ġθ(x)ġtθ(x)dx

]−1

ġθ(x).

when these quantities exist.

Theorem 2. labeltheoremHA2 Supposing that assumptions (A1)-(A6) are satisfied
and that the following conditions:

Condition C1 : The components of ġθ and g̈θ are in L2 and if the norms of these
components are continuous functions of θ.

Condition C2 :
∫
Rm g̈θ(x)gθ(x)dx is a non-singular (n× n)-matrix,

hold. Then the limit distribution of
√
n
(
θ̂n − θ

)
is N

(
0,Σ2

)
, where

Σ2 =
1

4

[∫
Rm

ġθ(x)ġtθ(x)dx

]−1 ∫
Rm

K2(u)du.

4. Proof of the theorems

We need the following lemma to prove Theorem 1.

Lemma 1. Supposing that assumptions (A1) and (A2) are satisfied. Then

fn(x)− fθ(x)→ 0 a.s when n→ +∞.

Proof. By the triangular inequality, we have

sup
x∈Rm

|fn(x)− fθ(x)| ≤ (a) + (b) + (c)

where
(a) = sup

x∈Rm
|fn(x)− f̃n(x)|

(b) = sup
x∈Rm

|f̃n(x)− Ef̃n(x)|
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(c) = sup
x∈Rm

|Ef̃n(x)− fθ(x)|.

Let us split the proof in three steps.

Step 1 : The convergence of (a) to zero after inversion of the process (4).

Considering the conditions on the polynomial functions A(L) and B(L), the pro-
cess (4) is invertible and can be rewritten as a representation of a autoregressive
process of infinite order.

We consider two density functions fn(.) and f̃n(.) respectively of ε̂t and εt. By as-
sumption (A1), we have

sup
x∈Rm

|fn(x)− f̃n(x)| ≤ c

nhm+1
n

n∑
t=1

‖η
t
‖,

where

η
t

=

 η1(t)
...

ηm(t)

 =

 ε1(t)− ε̂1(t)
...

εm(t)− ε̂m(t)

 ,

where η
t

represents the rest when truncating the series from n,

η
t

=

∞∑
j=n+1

Ψj(θ)yt−j .

We adapt the notion of invertibility according to Granger and Andersen (1978) as
below

lim
t→+∞

E (εt − ε̂t)
2

= Σ2
+∞∑

j=n+1

Ψ2
j,n−1 <∞.

Let’s examine the following expression

E

(
1

nhm+1
n

n∑
t=1

‖η
t
‖

)2

.

We note by

χ =
1

nhm+1
n

n∑
t=1

‖η
t
‖

E (χ)
2

= E

(
1

n2h2m+2
n

n∑
t=1

‖η
t
‖2
)

+ 2E

 1

n2h2m+2
n

n∑
t=1

n∑
s=1
t<s

‖η
t
‖‖η

s
‖

 .
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For all reals u > 0 and v > 0,

uv ≤ 1

2

(
u2 + v2

)
(6)

then

E (χ)
2 ≤ E

(
1

n2h2m+2
n

n∑
t=1

‖η
t
‖2
)

+
1

n2h2m+2
n

E

 n∑
t=1

‖η
t
‖2 +

n∑
s=1
t<s

‖η
s
‖2


thus

E (χ)
2 ≤ 2

n2h2m+2
n

E

(
n∑
t=1

‖η
t
‖2
)

+
1

n2h2m+2
n

E

 n∑
s=1
t<s

‖η
s
‖2


≤ 2

n2h2m+2
n

E

(
n∑
t=1

‖η
t
‖2
)

+
2

n2h2m+2
n

E

 n∑
s=1
t<s

‖η
s
‖2


≤ 2

n2h2m+2
n

E( n∑
t=1

‖η
t
‖2
)

+ E

 n∑
s=1
t<s

‖η
s
‖2




≤ 2

n2h2m+2
n

(d+ e) .

We will now focus on the expressions of (d) and (e).

d = E

 n∑
t=1

‖
∞∑

j=n+1

Ψj(θ)yt−j‖
2

 e = E

 n∑
s=1

‖
∞∑

j=n+1

Ψj(θ)yt−j‖
2

 .

Let’s consider
∑∞
j=n+1 Ψj(θ)yt−j a vectorial series in Rm vectorial space.

∞∑
j=n+1

Ψj(θ)yt−j = lim
N→∞

N∑
j=n+1

Ψj(θ)yt−j .

By the triangular inequality, we have

d ≤ E

 n∑
t=1

lim
N→∞

 N∑
j=n+1

‖Ψj(θ)yt−j‖

2
 .

Therefore

d ≤ E

 n∑
t=1

lim
N→∞

 N∑
j=n+1

‖Ψj(θ)yt−j‖
2 + 2

N∑
J=n+1

N∑
l=n+1
j<l

‖Ψj(θ)yt−j‖‖Ψl(θ)yt−l‖


 .
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Using inequality (6), we have

2

N∑
J=n+1

N∑
l=n+1
j<l

‖Ψj(θ)yt−j‖‖Ψl(θ)yt−l‖ =

N∑
J=n+1

‖Ψj(θ)yt−j‖
2 +

N∑
l=n+1
j<l

‖Ψl(θ)yt−l‖
2.

Consequently

d ≤ 2E

 n∑
t=1

lim
N→∞

 N∑
j=n+1

‖Ψj(θ)yt−j‖
2 +

N∑
l=n+1
j<l

‖Ψl(θ)yt−l‖
2




≤ 2E

 n∑
t=1

lim
N→∞

 N∑
j=n+1

(
m∑
i=1

ψ2
i,tj

)
+

N∑
l=n+1
j<l

(
m∑
i=1

ψ2
i,tl

)
 , (7)

where ψi,tj and ψi,tl are the coefficients of the vector Ψj(θ)yt−j . By using the same
argument as in (d), we obtain

e = E

 n∑
s=1

‖
∞∑

j=n+1

Ψj(θ)ys−j‖
2



≤ 2E

 n∑
s=1

lim
N→∞

 N∑
j=n+1

‖Ψj(θ)ys−j‖
2 +

N∑
l=n+1
j<l

‖Ψl(θ)ys−l‖
2




≤ 2E

 n∑
s=1

lim
N→∞

 N∑
j=n+1

(
m∑
i=1

ψ2
i,sj

)
+

N∑
l=n+1
j<l

(
m∑
i=1

ψ2
i,sl

)
 , (8)

where ψi,sj and ψi,sl are the coefficients of the vector Ψj(θ)ys−j. Odaki (1993) char-
acterized the invertibility of the process by a function fn(d) defined as following

fn(d) =


1/n for 0 <| d |< 1

2
log(n)
n for d = − 1

2

1/n2(1+d) for d < − 1
2

.

Odaki (1993) also showed that the order of magnitude of the sum of squares of
these coefficients is
+∞∑
i=0

ψ2
i,tj = o

(
1

n

)
if d ∈ (−1/2 ; 1/2) . (9)

By (7), (8) and (9), we have
c

n2h2m+2
n

o

(
1

n

)
= o

(
1

n3h2m+2
n

)
= o

(
1

n2mα+2α+3L2m+2(n)

)
.
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Then

sup
x∈Rm

|fn(x)− f̃n(x)| = o

(
1

n2mα+2α+3L2m+2(n)

)
when n→∞

sup
x∈Rm

n
1
4 |fθn(x)− f̃n(x)| = o

(
1

n2mα+2α+ 11
4 L2m+2(n)

)
when n→∞.

Hence the convergence of (a) to o
(

1

n2mα+2α+ 11
4 L2m+2(n)

)
where 2mα+ 2α+ 11

4 > 0.

Step 2 : We will now prove the almost sure convergence of (b) using the Prakasa-
Rao’s (1983) inequality

By Prakasa-Rao’s (1983)’s inequality , we have

P

(
| fn(x)− Efn(x) |> ε

√
snlogm

m

)
≤ 2exp

−nsnlogmm
ε2

8c0M

 .

Let’s consider a sequence (sn)n∈N∗ defined by

Sn = nhn

where hn is a sequence of bandwidths satisfaying Assumption (A4). Let choose (hn)
such that

hn = nαln(n) ; sn = n1+αln(n) with − 1 < α < 0.

−1 < α < 0 ⇔ 0 < 1 + α < 1

⇔ 0 < n1+α < n.

Then for n > 1, the general term sequence sn is positive. Let’s examine the limit of

Sn = n1+αln(n) and
Snln(n)

n
.

0 < 1 + α < 1 ⇒ lim
n→+∞

Sn = +∞

0 < 1 + α < 1 ⇒ lim
n→+∞

Snln(n)

n
= 0.

Let be δm (x, εt) =
1

hmn
K
(
x−εt
hn

)
, there is a positive constant c0 such as

sup
x∈Rm

1

hmn
K

(
x− εt
hn

)
≤ c0sn → +∞.
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We can rewrite the Prakasa-Rao’s (1983) inequality as following

P

(
| f̃n(x)− Ef̃n(x) |> ε

√
snln(n)

n

)
≤ 2exp

(
−snln(n)ε2

8c0M
m
n

)
,

f̃n(x) =
1

nhmn

n∑
t=1

K

(
x− εt
hn

)
x ∈ Rm.

By Assumption (A6), we have

Q = 8c0M
m

n
<∞,

and it follows,

P
(
| f̃n(x)− Ef̃n(x) |> n

α
2 εln(n)

)
≤ 2exp

(
−ε

2nα+1ln2(n)

Q

)

P
(
n

1
4 sup
x∈Rm

| f̃n(x)− Ef̃n(x) |> n
2α+1

4 εln(n)

)
≤ 2exp

(
−ε

2n
2α+3

2 ln2(n)

Q

)
. (10)

We will now dominate the next expression

P
(
n

1
4 sup
x∈Rm

| f̃n(x)− Ef̃n(x) |> n
2α+1

4 εln(n)

)
.

By Assumption (A4), we obtain

−1 < α < 0 ⇔ 1 < 2α+ 3 < 3

⇔ 1 < n
2α+3

2 <∞

⇔ 0 <
ε2nµln2(n)

Q
<∞

where µ = 2α+3
2 > 0. There exists a sequence (Vn) such as Vn = βln(n) with β ≥ 2

for a certain rank

ε2nµln2(n)

Q
> βln(n)

under the constraints


ε > 1

n > 1

Q > 0

µ > 0

.

Then

exp

(
ε2nµln2(n)

Q

)
> nβ .
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Therefore

exp

(
−ε

2nµln2(n)

Q

)
<

1

nβ
.

By Inequality (10), we have

P
(
n

1
4 sup
x∈Rm

| f̃n(x)− Ef̃n(x) |> n
2α+1

4 εln(n)

)
≤ 2

nβ∑
n≥1

P
(
n

1
4 sup
x∈Rm

| f̃n(x)− Ef̃n(x) |> n
2α+1

4 εln(n)

)
≤
∑
n≥1

2

nβ∑
n≥1

P
(
n

1
4 sup
x∈Rm

| f̃n(x)− Ef̃n(x) |> n
2α+1

4 εln(n)

)
< +∞.

By using the Borel-Cantelli’s Lemma, we have

n
1
4 sup
x∈Rm

| f̃n(x)− Ef̃n(x) |= 0 a.s whenn→∞.

Hence the almost sure convergence of
(
f̃n(x)− Ef̃n(x)

)
to zero.

Step 3 : Let us show the convergence of the bias (c). By (3) we have

E
(
f̃n(x)

)
=

1

nhmn
E

(
n∑
t=1

K

(
x− ε1

hn

))

=
1

hmn
E

(
K

(
x− ε1

hn

))
=

1

hmn

∫
Rm

K

(
x− z
hn

)
fθ(z)dx

=

∫
Rm

K(v)fθ (x− vhn) dv.

By using the Taylor’s expansion in a neighbourhood of x and under Point (3) of
(A1), we obtain

fθ (x− vhn) = fθ(x) +

m∑
k=1

∂fθ
∂xk

(x) (−hn) vk +
h2
n

2

m∑
j=1

m∑
k=1

∂2fθ
∂xj∂xk

(x)vjvk + o
(
h2
n

)

E
(
f̃n(x)

)
− fθ(x) =

∫
Rm

K(v)fθ (x− vhn) dv − fθ(x)

∫
Rm

K(v)dv

=

∫
Rm

K(v) [fθ (x− vhn)− fθ(x)] dv

sup
x∈Rm

|Ef̃n(x)− fθ(x)| ≤
∫
Rm

K(v)

[
h2
n

2

m∑
k=1

|∂
2fθ
∂x2

k

(x)|v2
k + o

(
h2
n

)]
dv

≤ ∆h2
n

∫
Rm

K(v)
[
v2
k + o(1)

]
dv,
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where

∆ =
1

2

m∑
k=1

∂2fθ
∂x2

k

(x).

Under (A1) and (A4), supx∈Rm |Ef̃n(x)− fθ(x)| → 0 a.s when n→∞

The convergence of (a),(b) and (c) implies Lemma 1. �

Beran (1977) and Hili (1995) consider F the set of all densities with respect
Lebesgue measure on R. We define the functional T : F → Θ as following Let be
g ∈ F we set

A(g) =

{
θ ∈ Θ : H2 (g, fθ) = min

θ∈Θ
H2 (g, fθ)

}
where H2 is the Hellinger Distance. If A(g) is unique, then T (g) is defined as the
value of this element. Elsewhere, they choose an arbitrary but unique element of
A(g) and call it T (g).

proof of Theorem 1. Theorem 1 is a consequence of Lemma 1 and Lemma 3.1 in
Hili (1995). We have

sup
x∈Rm

|fn(x)−fθ(x)| ≤ sup
x∈Rm

|fn(x)− f̃n(x)|+ sup
x∈Rm

|f̃n(x)−Ef̃n(x)|+ sup
x∈Rm

|Ef̃n(x)−fn(x)|.

By Lemma 1

|fn(x)− fθ(x)| → 0 a.s when n→ +∞.
Hence

P
{

lim
n→+∞

f
1
2
n (x) = f

1
2

θ (x) for all x

}
= 1.

Since ∫
Rm

fn(x)dx =

∫
Rm

fθ(x)dx = 1.

Consequently

H2 (fn, fθ) =

{∫
Rm
|f

1
2
n (x)− f

1
2

θ (x)|2dx
} 1

2

→ 0 a.s when n→∞.

By Lemma 3.1 in Hili (1995), T (fθ) = θ uniquely on Θ, then the functional T is
continuous at fθ in the Hellinger topology. Therefore

θ̂n = T (fn(x))→ T (fθ(x)) = θ

almost surely when n→∞.
This achieves the proof of Theorem 1. �

Proof of Theorem 2. Lemma 2 and Lemma 3 below were respectively proved by
Beran (1977) and by Wu and Mielniczuk (2002).
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Lemma 2. Let’s suppose that assumptions (A2) and (A5) and the conditions C1
and C2 of Theorem 2 are satisfied and that θ lies in interior of Θ. So for any density
sequence {fn} convergent to fθ in the Hellinger metric, we have

T (fn(x)) = θ +

∫
Rm

Sθ(x)
[
f

1
2
n (x)− f

1
2

θ (x)
]
dx+Rn

∫
Rm

ġθ(x)
[
f

1
2
n (x)− f

1
2

θ (x)
]
dx.

where Rn is a non-singularm [m(p+ q) + 1]−matrixwhose components of
√
nRn tend

to zero when n −→ +∞.

Lemma 3. Let’s suppose that assumptions (A1), (A2) and (A4) are satisfied, then
N
(
0, fθ(x)

∫
Rm K

2(u)du
)

is the limit distribution of
√
nhn [fn(x)− fθ(x)].

Proof. Let us focus now on the proof Theorem 2, referring to the above lemmas. By
Lemma 2, we have

T (fn(x)) = θ +

∫
Rm

Sθ(x)
[
f

1
2
n (x)− f

1
2

θ (x)
]
dx+Rn

∫
Rm

ġθ(x)
[
f

1
2
n (x)− f

1
2

θ (x)
]
dx.

Since T (fn(x)) = θ̂n and by multiplying the equation above by
√
n, we have

√
n
(
θ̂n − θ

)
=
√
n

∫
Rm

Sθ(x)
[
f

1
2
n (x)− f

1
2

θ (x)
]
dx+

√
nRn

∫
Rm

ġθ(x)
[
f

1
2
n (x)− f

1
2

θ (x)
]
dx.

The components of
√
nRn → 0, when n→∞. Then

√
n
(
θ̂n − θ

)
= Ln + op(1),

where
Ln =

√
n

∫
Rm

Sθ(x)
[
f

1
2
n (x)− f

1
2

θ (x)
]
dx.

Let’s examine the limit law of Ln to deduce the limit law of
√
n
(
θ̂n − θ

)
, where

Sθ(x) ∈ L2 and Sθ⊥f
1
2

θ where ⊥ means orthogonality in L2. By assumption (A2),
f

1
2

θ (x) > 0 and the following algebraic equality we can rewrite Ln.

f
1
2
n (x)− f

1
2

θ (x) =
fn(x)− fθ(x)

2f
1
2

θ (x)
− (fn(x)− fθ(x))

2

2f
1
2

θ (x)
(
f

1
2
n (x) + f

1
2

θ (x)
)2 .

Ln =
√
n

∫
Rm

Sθ(x)

fn(x)− fθ(x)

2f
1
2

θ (x)
−

(
f̂n(x)− fθ(x)

)2

2f
1
2

θ (x)
(
f̂

1
2
n (x) + f

1
2

θ (x)
)2

 dx, (11)

by distributivity in (11), we have

Ln =
√
n

∫
Rm

Sθ(x)
fn(x)− fθ(x)

2f
1
2

θ (x)
dx+ En, (12)
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where
En = −

√
n

∫
Rm

Sθ(x)

2f
1
2

θ (x)
(
f

1
2
n (x) + f

1
2

θ (x)
)2 (fn(x)− fθ(x))

2
dx.

Using inequality

2f
1
2

θ

(
f

1
2
n + f

1
2

θ

)2

= 2f
3
2

θ + γ > 2f
3
2

θ with γ > 0,

and posing δ = infx∈Rmf(x), we can take En in absolute value as following

|En| ≤
√
n

∫
Rm

|Sθ(x)|

2f
1
2

θ (x)
(
f

1
2
n (x) + f

1
2

θ (x)
)2 (fn(x)− fθ(x))

2
dx.

|En| ≤
√
n

∫
Rm

|Sθ(x)|
2δ

3
2

(fn(x)− fθ(x))
2
dx

≤ 1

2
δ
−3
2

∫
Rm
|Sθ(x)|

√
n (fn(x)− fθ(x))

2
dx.

By Lemma 1
n

1
4 sup
x∈Rm

| fn(x)− fθ(x) |→ 0 a.s when n→∞

then √
n (fn(x)− fθ(x))

2 → 0 a.s whenn→∞.

Sθ is continuous and bounded (for θ fixed). By applying Vitali’s Theorem on the
sequence

Wn(x) = |Sθ(x)|
√
n (fn(x)− fθ(x))

2

|En| → 0 in probability when n→∞.

Let us consider the first term on the right of equation (12)
√
n

∫
Rm

Sθ(x)
fn(x)− fθ(x)

2f
1
2

θ (x)
dx. (13)

Therefore, by Lemma 3, the limit distribution of (13) is N
(
0,Σ2

)
, where

Σ2 =

∫
Rm

(
Sθ(x)

2f
1
2

θ

)(
Sθ(x)

2f
1
2

θ

)t ∫
Rm

K2(u)dufθ(x)dx

=
1

4

∫
Rm

Sθ(x)Stθ(x)dx

∫
Rm

K2(u)du

=
1

4

[∫
Rm

ġθ(x)ġtθ(x)dx

]−1 ∫
Rm

K2(u)du.
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Hence, we get the result. �
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