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Abstract. . This work considers a perturbed risk process with investment, where
the investments are risky and risk-less assets. A third order differential equation for
the ruin probability is derived from the resulting integro-differential equation. This
equation is further decomposed into two equations describing the contributions of
the claim and oscillation to the ruin probability. These two equations are solved
separately using suitable transformations as well as theory of Kummer confluence
hypergeometric equations. We further investigated these solutions and were able
to conclude that the higher the fraction of investment into risky assets, the higher
the ruin probability, provided all other parameters are kept constant.

Résumé (Franch) Ce travail considère un processus de risque perturbé avec in-
vestissement, où les investissements sont investis dans des actifs risqués et sans
risque. En utilisant la théorie des équations hypergéométriques de confluence de
Kummer, nous aboutissons à la conclusion que plus la fraction de l’investissement
dans les actifs risqués est élevée, plus la probabilité de ruine est grande, les autres
paramètres restent constants.
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1. Introduction

Consider the perturbed risk process (1)

Y (t) = u+ π(t)−
N(t)∑
i=1

Xi + ε(t) (1)

where π(t) is a non-negative linear premium function, X1, X2, ..., XN(t) are indepen-
dent and identically distributed non-negative random variables denoting the claim
size, N(t) is the number of arrivals at time t assumed to be a Poisson process
with rate λ and ε(t) is a Gaussian white noise process modeling the uncertainty
in both the claim sizes and premiums. Assume that the linear premium function
is represented by pt, p > 0 and ε(t) is a linear function σp ε t with values that are
independent at every distinct time interval t, where σp is a diffusion volatility
parameter and ε is normally distributed random error with zero mean and unity
variance.

Suppose the reserve is continuously invested in both risky and risk-less assets and
that the return from the risky assets is govern by the geometric Brownian motion
below;

dY = aY dt+ σY dWt. (2)

If the interest on fixed returned investment is denoted by a non-negative parameter
r, then the income process in a short time interval can be modeled as

cdt+ σp dW + rY (t) (1− ϕ) dt+ aϕY (t)dt+ σRϕY (t)dW. (3)

where ϕ is the fraction of the reserve invested in markets with stochastic return,
W is a Weiner process and σR is volatility of the geometric Brownian motion. Thus,
the reserve (1) becomes;

Y (t) = u+ ct+ r (1− ϕ)

∫ t

0

Y (s)ds

+ aϕ

∫ t

0

Y (s)ds+

∫ t

0

(σp + σRϕY (s))dW (s) +

N(t)∑
i=1

Xi (4)

In perturbed risk reserve process, ruin can be caused by a claim or by oscillation
(Cai and Yang, 1986). Suppose the time of ruin of the reserve is denoted by the ran-
dom variable τ(u), where τ(u) = inf{t : Xt < 0}. Then, the infinite ruin probability
of the reserve is given as

ψ(u) = P{τ(u) <∞|Y0 = u} (5)

Since the work of Segerdahl (2005) where the first investigation on risk model with
investment income was carried out, several authors have investigated various ver-
sions of the model. Segerdahl considered a situation where capital earns interest
at a fixed rate r. Harrison (1977) elaborated on the model by assuming that interest
is earned continuously on the firm’s assets. A more general form of the model was
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studied by Delbaen and Haezendonck (1987) where inflation factor was incorpo-
rated into the model. Other early works which incorporated return from investment
at a fixed rate are Taylor (1979) and Kahane (1979).
One of the earliest works which considered capital invested in risky assets is
Paulsen (1993). The work basically considered model with stochastic rate of re-
turn on investment as well as stochastic level of inflation. A basic risk process P
and return from investment R were considered independent and of the form

Pt = y + pt+WP,t −
NP,t∑
i=1

SP,i (6)

Rt = rt+WR,t −
NR,t∑
i=1

SR,i, (7)

where WP,t is a Brownian motion. A similar form was also adopted for the inflation.
A somewhat generalization of the model was considered by Paulsen (1998), Yuen et
al. (2004) and Yuen and Wang (2005). These works incorporated the volatility term
σ into the return from investment. Paulsen (1997) also considered considered this
model incorporating the volatility term in both the reserve and the investment.
Another form of the reserve when uncertainty in the reserve is not considered
was studied by Belkina et al. (2014). Belkina et al. incorporated both risk and
risk-less asset into the model and assume that investment in risky assets is gov-
erned by Black-Scholes equation and can only be done at a limited leveraging level.
Some other researchers who have investigated different variations of this model are
Zhang and Xiao (2015), Cai and Yang (1986) and Romera and Runggaldier (2012).

2. Integro-Differential Equation

The derivation of the integro-differential equation for model (4) involves the deter-
mination of infinitesimal generator A defined by

(Af)(x) = lim
s→0

(Tsf)(x)− f(x)

s
(8)

where
(Tsf)(x) = E[f(X(s))|X(0) = x] =

∫
f(y)p(s;x, dy) (s > 0)

is a transition operator. One way to do this is splitting the model into a jump process
and diffusion process as shown below

Y (t) = U(t)

+

∫ t

0

(c+ r (1− ϕ)Y (s) + aϕY (s)) ds+ (σp + σRϕ

∫ t

0

Y (s))dW (s) (9)

U(t) = u−
N(t)∑
i=1

Xi (10)

Using a different notation, equation (9) can be represented as

dY (t) = dU(t) + (c+ r (1− ϕ)Y (s) + aϕY (s)) ds+ (σp + σRϕY (s))dW (s) (11)
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Lemma 1. Suppose a jump process U(t) is defined by equation (10) shown below;

U(t) = u−
N(t)∑
i=1

Xi

Let g be a bounded twice continuously differentiable function, then

(Ag)(u) = −λg(u) + λ

∫ ∞
0

g(u− x)dF (x) (12)

Proof. The conditional expectation of the jump process (10) is

E [g(U(t))|U(0) = u] = E

g(u−
N(t)∑
i=1

Xi)

 (13)

But N(t) is Poisson distributed, thus one obtains

E [g(U(t))|U(0) = u] =E [g(u)] e−λt + E [g(u−Xi)|N(t) = 1]λte−λt

+ E

g(u−
N(t)∑
i=2

Xi)|N(t) ≥ 2

 o(t) (14)

Subtracting g(u) from both sides and dividing by t, one obtains;

E [g(U(t))|U(0) = u]− g(u)

t
=
E [g(u)] e−λt − g(u)

t

+ E [g(u−Xi)|N(t) = 1]λe−λt

+ E

g(u−
N(t)∑
i=2

Xi)|N(t) ≥ 2

 o(t)
t

(15)

Expanding equation (15) further and taking the limits at t→ 0 completes the proof.

Theorem 1. Let g be a bounded twice continuously differentiable function of Y (t)
on S. If Y (t) is a diffusion process with drift coefficient c+ r (1− ϕ)Y (t) + aϕY (t) and
diffusion coefficient (σp + σRϕY (t))

2 defined on S, then,

(Af)(u) =
1

2
(σ2
p + (σRϕ)

2
u2)g′′(u) + (c+ r (1− ϕ)u+ aϕu) g′(u)

− λg(u) + λ

∫ ∞
0

g(u− x)dF (x) (16)

Proof. Suppose Y (s) = y ∈ S is fixed. Let η > 0 be an arbitrary small number. Since
g is continuous, there exist ε > 0 such that |z − y| ≤ ε whenever |g′′(z) − g′′(y)| ≤ η
for all z. Thus

(Ttg)(y) = E[g(Y (t))1|Y (t)−Y (s)|≤ε|Y (s) = y] + E[g(Y (t))1|Y (t)−Y (s)|>ε|Y (s) = y] (17)
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where 0 ≤ s < t, 1|Y (t)−Y (s)|≤ε is an indicator function and (Ttg)(y) is a transition
operator. Expanding the first term on the RHS of equation (17) into Taylor’s series
around y and the expanding over the expectation, one obtains;

(Ttg)(y) =E[g(y)1|Y (t)−Y (s)|≤ε|Y (s) = y]

+ E[(Y (t)− y)g′(y)1|Y (t)−Y (s)|≤ε|Y (s) = y]

+
1

2
E[(Y (t)− y)2g′′(y)1|Y (t)−Y (s)|≤ε|Y (s) = y]

+ o(t) + E[g(Y (t))1|Y (t)−Y (s)|>ε|Y (s) = y] (18)

Using some properties of diffusion processes and expanding over the outer expec-
tation gives

(Ttg)(u) =E
[
E
[
g(y)1|Y (t)−Y (s)|≤ε|Y (s) = y

]∣∣Y (0) = u
]

+ E
[(
c+ r (1− ϕ)Y (s) + aϕY (s)

)
tg′(y)

∣∣Y (0) = u
]

+
1

2
E
[((

σ2
p + (σRϕY (s))2

)
tg′′(y) + o(t)

)∣∣Y (0) = u
]

+ o(t) (19)

Taking the limit as t→ 0, after some computation, gives

lim
t→0

(Ttg)(u)− g(u)

t
= lim
t→0

E
[
E
[
g(y)1|Y (t)−Y (s)|≤ε|Y (s) = y

]∣∣Y (0) = u
]
− g(u)

t

+ lim
t→0

E
[(
c+ r (1− ϕ)Y (s) + aϕY (s)

)
g′(y)

∣∣Y (0) = u
]

+ lim
t→0

1

2
E
[((

σ2
p + (σRϕY (s))2

)
g′′(y) +

o(t)

t

)∣∣Y (0) = u
]

+ lim
t→0

o(t)

t
(20)

But lim
t→0

o(t)
t = 0, Y (0) = U(0) = u and t→ 0 implies s→ 0, thus

lim
t→0

(Ttg)(u)− g(u)

t
= lim
t→0

E
[
E
[
g(U)

∣∣U(0) = u
]
− g(u)

]
t

+
(
c+ r (1− ϕ)u+ aϕu

)
g′(u) +

1

2

(
σ2
p + (σRϕu)2

)
g′′(u) (21)

Substituting equation (12) in lemma 1 using the definition infinitesimal generator
completes the proof.

Using theorem (2.1) on page 968 of Paulsen (1997), the integro-differential equation
for the model is

1

2
(σ2
p + (σRϕ)

2
u2)ψ′′(u) + (c+ r (1− ϕ)u+ aϕu)ψ′(u)

− λψ(u) + λ

∫ ∞
0

ψ(u− x)dF (x) = 0 (22)
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with the following boundary conditions

ψ(+∞) = 0

ψ(0) = 1

σ2
p

2
ψ′′(0) + cψ′(0)− λ = 0 (23)

Equation (22) above is a Hamilton Jacobi-Bellman equation (HJB) and we consider
the situation when the distribution of claim size F (x) is exponential.

3. Exponential Claim Size

Explicit solutions of similar equations with exponential claim sizes have been de-
rived by Paulsen (1997) and Cai and Yang (1986). We adopt method of derivation
similar to those of these authors. A more generalized equation from part (ii) of
theorem 2.1 of Paulsen (1997) is given below

1

2
(σ2
p + (σRϕ)

2
u2)q′′α(u) + (c+ r (1− ϕ)u+ aϕu) q′α(u)

+ λ

∫ ∞
0

(qα(u− x)− qα(u))dF (x) = αqα(u) (24)

where qα = E(e−ατu), with the boundary conditions

qα(u) = 1 on u < 0

lim
t→∞

qα(u) = 0

σ2
p

2
q′′α(0) + cq′α(0)− λ = αqα

Theorem 2. Given that the claim size distribution f(x) is exponentially distributed
with mean 1/θ, then the integro-differential equation (24) is equivalent to the third
order differential equation below.

1

2
(σ2
p + (σRϕ)

2
u2)q′′′α (u) +

(
c+ [(σRϕ)2 + r̄]u+

1

2
θ(σ2

p + (σRϕ)
2
u2)

)
q′′α(u)

+

(
r̄ − λ− α+ cθ + r̄θu

)
q′α(u)− αθq(u) = 0 (25)

where r̄ = r (1− ϕ) + aϕ, with boundary conditions given in (23)

Proof. Since f(x) is exponentially distributed, then

dF (x) = θe−θxdx

thus, equation (22) becomes
1

2
(σ2
p + (σRϕ)

2
u2)q′′α(u) + (c+ r (1− ϕ)u+ aϕu) q′α(u)

= −λθ
∫ ∞

0

(qα(u− x)− qα(u))e−θxdx+ αqα(u) (26)
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Simplifying, rearranging and differentiating both sides of (26) gives

1

2
(σ2
p + (σRϕ)

2
u2)q′′′α (u) +

(
c+ [(σRϕ)2 + r (1− ϕ) + aϕ]u

)
q′′α(u)

+ (r (1− ϕ) + aϕ− λ− α)q′α(u) = −θ
(
λqα(u)− λθe−θu

∫ u

0

qα(x)eθxdx

)
(27)

Substituting equation (26) into (27) one obtains

1

2
(σ2
p + (σRϕ)

2
u2)q′′′α (u)

+

(
c+ [(σRϕ)2 + r (1− ϕ) + aϕ]u+

θ

2
(σ2
p + (σRϕ)

2
u2)

)
q′′α(u)

+

(
r (1− ϕ) + aϕ− λ− α+ cθ + [r (1− ϕ) + aϕ]θu

)
q′α(u)− αθq(u) = 0 (28)

substituting r̄ = r (1− ϕ) + aϕ completes the proof.

The solution of (25) is very difficult to obtain hence we examine specific cases of
the equation.

Case 1: Consider a case when σp = σR = 0. The equation (25) takes the form

(c+ r̄u) q′′α(u) +

(
r̄ − λ− α+ cθ + r̄θu

)
q′α(u)− αθq(u) = 0 (29)

with boundary conditions

qα(u) = 1 on u < 0

lim
t→∞

qα(u) = 0

cq′′α(0) + (r̄ − λ− α+ cθ)q′α(0) = αθ

Equation (29) can be reduced to hypergeometic equation using appropriate trans-
formation. We utilize the same transformation used by Paulsen (1997). Let

u = −x/θ − c/r̄ and v(x) = qα(u) then

q′α(u) = −θv′(x)

q′′α(u) = θ2v′′(x) (30)

Substituting the transformation into equation (29), gives

xv′′(x) +

(
1− λ+ α

r̄
− x
)
v′(x)−

(
−α
r̄

)
v(x) = 0 (31)

Equation (31) is a confluence hypergeometric equation, hence by Slater (2011),

v0(x) = x1−bexM(1− a, 2− b;−x)

v1(x) = exU(b− a, b;−x) (32)
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are solutions of equation (31) where a = −α/r̄, b = 1− (λ+ α)/r̄, M(1− a, 2− b;−x)
is a confluent hypergeometric function and U(b − a, b;−x) is the second form of
confluent hypergeometric function. Thus, we have,

v0(x) = x(λ+α)/r̄exM

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;−x

)
v1(x) = exU(1− λ

r̄
, 1− λ+ α

r̄
;−x) (33)

Furthermore, v0(x) and v1(x) are two linearly independent solutions. Following the
same rational as Cai and Yang (1986), then it can be shown that if v0(x) is a solution
of equation (31) which is linearly independent of v1(x), then so is

v2(x) = −v0(x) = −x(λ+α)/r̄exM

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;−x

)
(34)

Thus, the general solution of (31) is

v(x) = C1v1(x) + C2v2(x)

= C1e
xU(1− λ

r̄
, 1− λ+ α

r̄
;−x)− C2x

(λ+α)/r̄exM

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;−x

)
(35)

where C1 and C2 are constant. Re-applying the transformation above gives the
solution of equation (29) as

qα(u) = C1e
−(ur̄+c)θ/r̄U

(
1− λ

r̄
, 1− λ+ α

r̄
;

(ur̄ + c)θ

r̄

)
+ C2

(
(ur̄ + c)θ

r̄

)(λ+α)/r̄

e−(ur̄+c)θ/r̄M

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;

(ur̄ + c)θ

r̄

)
(36)

To determine the constants C1 and C2, we substitute the boundary condition to get
the following two equations

C1U

(
1− λ

r̄
, 1− λ+ α

r̄
;
cθ

r̄

)
+ C2

(
cθ

r̄

)(λ+α)/r̄

M

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;
cθ

r̄

)
= e−cθ/r̄ (37)

and

C1(cH21 + (r − λ− α− cθ)H11) + C2

(
cH22 + (r − λ− α− cθ)H12

)
= αθ (38)

where

H11 = −θe−cθ/r̄U
(

1− λ

r̄
,1− λ+ α

r̄
;
cθ

r̄

)
− θ
(

1− λ

r̄

)
e−cθ/r̄U

(
2− λ

r̄
, 2− λ+ α

r̄
;
cθ

r̄

)
, (39)
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H12 = θ

(
λ+ α

r

)(
cθ

r̄

)(λ+α)/r−1

e−cθ/r̄M

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;
cθ

r̄

)
− θ
(
cθ

r̄

)(λ+α)/r

e−cθ/r̄M

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;
cθ

r̄

)
+ θ

(
cθ

r

)(λ+α)/r̄(
λ+ α+ r

α+ r

)
e−cθ/r̄M

(
2 +

α

r̄
, 2 +

λ+ α

r̄
;
cθ

r̄

)
(40)

H21 = θ2e−cθ/r̄U

(
1− λ

r̄
, 1− λ+ α

r̄
;
cθ

r̄

)
+ 2θ2

(
1− λ

r̄

)
e−cθ/r̄U

(
2− λ

r̄
, 2− λ+ α

r̄
;
cθ

r̄

)
− θ2

(
1− λ

r̄

)(
2− λ

r̄

)
e−cθ/r̄U

(
3− λ

r̄
, 3− λ+ α

r̄
;
cθ

r̄

)
(41)

H22 = θ2

(
λ+ α

r

)(
λ+ α

r
− 1

)(
cθ

r̄

)(λ+α)/r−2

e−cθ/r̄M

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;
cθ

r̄

)
− 2θ2

(
λ+ α

r

)(
cθ

r̄

)(λ+α)/r−1

e−cθ/r̄M

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;
cθ

r̄

)
+ 2θ2

(
λ+ α

r

)(
cθ

r̄

)(λ+α)/r−1(
λ+ α+ r

α+ r

)
e−cθ/r̄M

(
2 +

α

r̄
, 2 +

λ+ α

r̄
;
cθ

r̄

)
+ θ2

(
cθ

r̄

)(λ+α)/r

e−cθ/r̄M

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;
cθ

r̄

)
− 2θ2

(
cθ

r

)(λ+α)/r̄(
λ+ α+ r

α+ r

)
e−cθ/r̄M

(
2 +

α

r̄
, 2 +

λ+ α

r̄
;
cθ

r̄

)
+ θ2

(
cθ

r

)(λ+α)/r̄(
λ+ α+ r

α+ r

)(
λ+ α+ 2r

α+ 2r

)
e−cθ/r̄M

(
3 +

α

r̄
, 3 +

λ+ α

r̄
;
cθ

r̄

)
(42)

Equations (37) and (38) are then solve simultaneously to give

C2 =

αθU

(
1− λ

r̄ , 1−
λ+α
r̄ ; cθr̄

)
−
(
cH21 + (r − λ− α− cθ)H11

)
e−cθ/r̄

K

C1 =

(cH22 + (r − λ− α− cθ)H12)e−cθ/r̄ − αθM
(

1 + α
r̄ , 1 + λ+α

r̄ ; cθr̄

)
K

(43)
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where

K =

(
cH22+(r − λ− α− cθ)H12

)
U

(
1− λ

r̄
, 1− λ+ α

r̄
;
cθ

r̄

)
−
(
cH21 + (r − λ− α− cθ)H11

)
M

(
1 +

α

r̄
, 1 +

λ+ α

r̄
;
cθ

r̄

)
, H11, H12, H21 and H22 are as defined above.

Case 2 Consider a case when σp = α = 0. The equation (25) becomes

1

2
σ2
pψ
′′′
s (u) +

(
θ

2
σ2
p + c+ r̄u

)
ψ′′s (u) +

(
r̄ + cθ + r̄θu

)
ψ′s(u) = 0 (44)

with the boundary conditions

ψs(u) = 1 on u < 0

ψs(+∞) = 0

cψ′′s (0) + (r̄ − α)ψ′s(0) = 0

This equation can be reduced an easily solvable form after some transformation.
Firstly, we reduce the third order differential equation (44) to second order differ-
ential equation using the transformation

ψ′(u) = v(z)e−θz where z = u+ c/r − θσ2/2r (45)

The resulting equation is given below

1

2
σ2
pv
′′(u) + rzv′(u) + rv(u) = 0 (46)

Then applying another transformation,

v(z) = h(x) where x = −rz2/σ2 (47)

results in the confluence hypergeometric equation below

xh′′(x) +

(
1

2
− x
)
h′(x)− 1

2
h(x) = 0 (48)

Using Slater (2011), the following solutions are obtained

h0(x) =
√
x exM

(
1

2
,

3

2
;−x

)
h1(x) = ex U

(
0,

1

2
;−x

)
(49)

Clearly, if h0(x) is a solution of equation (48), so also is
√
−1h0(x), thus

h2(x) =
√
−x exM

(
1

2
,

3

2
;−x

)
(50)
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is a solution of 48. Therefore the general solution is given by

h(x) = C1

√
−x exM

(
1

2
,

3

2
;−x

)
+ C2 e

x U

(
0,

1

2
;−x

)
(51)

where C1 and C2 are arbitrary constants. But,

v(z) = h(x) = C1

√
rz

σ
e−rz

2/σ2

M

(
1

2
,

3

2
;
rz2

σ2

)
+ C2 e

−rz2/σ2

U

(
0,

1

2
;
rz2

σ2

)
(52)

where z is related to x as given (47), But

ψ′(u) = v(z)e−θz = C1

√
r(u+ ā)

σ
e−θāe−(θu+r(u+ā)2/σ2)M

(
1

2
,

3

2
;
r(u+ ā)

2

σ2

)
+ C2 e

−θāe−(θu+r(u+ā)2/σ2) U

(
0,

1

2
;
r(u+ ā)

2

σ2

)
(53)

where ā = c/r − θσ2/2r.
Thus,

ψ′(u) = C∗1 H
′
1 + C∗2 H

′
2 (54)

where

C∗1 = C1

√
r

σ
e−θā,

C∗2 = C2 e
−θā,

H ′1 = (u+ ā) e−(θu+r(u+ā)2/σ2)M

(
1

2
,

3

2
;
r(u+ ā)

2

σ2

)
and

H ′2 = e−(θu+r(u+ā)2/σ2) U

(
0,

1

2
;
r(u+ ā)

2

σ2

)
Integrating both sides of (54), using equation (4.12) in Cai and Yang (1986) on
obtains

ψ(u) =

∫ ∞
u

ψ′(x)dx = C∗1 H1 + C∗2 H2 (55)

where

H1(u) =

∫ ∞
u

(x+ ā) e−(θx+r(x+ā)2/σ2)M

(
1

2
,

3

2
;
r(x+ ā)

2

σ2

)
dx and

H2(u) =

∫ ∞
u

e−(θx+r(x+ā)2/σ2) U

(
0,

1

2
;
r(x+ ā)

2

σ2

)
dx

To determine C∗1 and C∗2 in terms of the parameters we proceed to obtain ψ(u)′′,

ψ′′(u) = C∗1 H
′′
1 + C∗2 H

′′
2 (56)
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where

H ′′1 = ā e−(θx+r(x+ā)2/σ2)M
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2
;
r(x+ ā)
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2

σ2

)
H ′′2 = − (θ + 2r(x+ ā))
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)
Using the boundary conditions as shown in equation (44) together with equations
(54), (55) and (56), one gets

C∗1 H1(0) + C∗2 H2(0) = 1

C∗1

(
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)
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)
= 0 (57)

where
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2/σ2

M

(
1

2
,

3

2
;
rā2
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)
Solving equation (57) simultaneously gives

C∗1 = −

(
cH ′′2 (0) + (r̄ − α)H ′2(0)

)
H2(0)

(
cH ′′1 (0) + (r̄ − α)H ′1(0)

)
−H1(0)

(
cH ′′2 (0) + (r̄ − α)H ′2(0)

)

C∗2 =

(
cH ′′1 (0) + (r̄ − α)H ′1(0)

)
H2(0)

(
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)
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(
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) (58)

and

(59)
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Thus the ruin probability due to oscillation for this model is given as

ψ(u) =

H2(u)

(
cH ′′1 (0) + (r̄ − α)H ′1(0)

)
−H1(u)

(
cH ′′2 (0) + (r̄ − α)H ′2(0)

)
H2(0)

(
cH ′′1 (0) + (r̄ − α)H ′1(0)

)
−H1(0)

(
cH ′′2 (0) + (r̄ − α)H ′2(0)

) (60)

where H1(u), H2(u), H ′1(0), H ′2(0), H ′′1 (0) and H ′′2 (0) are as defined in equations (55)
and (57)

The two cases examined above could represent situations where ruin is caused
by claim and when ruin is caused by oscillation respectively. For these cases, the
claims arrival rate is assumed to be a constant λ. However, it is possible to have
arrival rate dependent on time which will lead to Cox processes. The simplest ex-
ample of such process is the mixed Poisson process where λ(t) = V and V is a
random process. Such situations are not considered in the present study. It is our
intention to consider such process in future studies. Below are numerical exam-
ples to show the behaviors of solutions derived from the two cases considered. In
each of the examples, a parameter is varied while others are kept constant. The
values of the constant parameters are assumed to be c = 1.1, λ = 1, r = 0.12, θ = 1,
ϕ = 0.6, σp = σR = 0.2, a = 0.21 and α = 0

Example 1. Suppose ϕ is varied while other parameters are kept constant. The
table 1 below shows the ruin probabilities due to claim for various values of ϕ.
Figure 1 shows the behaviour of these probabilities as the capital increases u and
as ϕ is being varied. Similarly, table 2 shows the ruin probabilities due to oscillation
for various values of ϕ. The graph of the values in table 2 is shown if figure 2.

From figure 1, it can be deduced that the higher the fraction of the resources that
is invested in the competing risky investment, the higher the effect of claims on
probability of ruin. Expectedly, as the capital u increases, the effect of claims on
the ruin probability reduces. Also, considering figure 2, it can also be deducted
that increasing the fraction of investment in risky asset increases the ruin proba-
bility due to oscillation. Thus, one arrives at that conclusion that ruin probability
reduces as the fraction of investment in risky assets increases, provided all other
parameters are kept constant.
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Table 1. Ruin probabilities for various values of ϕ when σp = σR = 0

u ϕ = 0 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

0 1.09E-08 1.19E-07 7.50E-07 3.23E-06 1.06E-05 2.82E-05
0.5 9.13E-09 9.86E-08 6.14E-07 2.61E-06 8.46E-06 2.24E-05

1 7.54E-09 8.04E-08 4.95E-07 2.08E-06 6.67E-06 1.74E-05
1.5 6.17E-09 6.48E-08 3.94E-07 1.64E-06 5.18E-06 1.34E-05

2 4.99E-09 5.17E-08 3.10E-07 1.27E-06 3.98E-06 1.02E-05
2.5 3.99E-09 4.08E-08 2.41E-07 9.75E-07 3.02E-06 7.63E-06

3 3.17E-09 3.18E-08 1.85E-07 7.41E-07 2.26E-06 5.66E-06
3.5 2.49E-09 2.46E-08 1.41E-07 5.57E-07 1.68E-06 4.16E-06

4 1.94E-09 1.89E-08 1.07E-07 4.16E-07 1.24E-06 3.03E-06
4.5 1.50E-09 1.44E-08 8.01E-08 3.07E-07 9.04E-07 2.18E-06

5 1.16E-09 1.09E-08 5.96E-08 2.26E-07 6.55E-07 1.57E-06
5.5 8.81E-10 8.15E-09 4.40E-08 1.64E-07 4.72E-07 1.11E-06

6 6.68E-10 6.07E-09 3.23E-08 1.19E-07 3.37E-07 7.88E-07
6.5 5.03E-10 4.49E-09 2.35E-08 8.56E-08 2.40E-07 5.54E-07

7 3.76E-10 3.31E-09 1.71E-08 6.12E-08 1.69E-07 3.87E-07
7.5 2.80E-10 2.42E-09 1.23E-08 4.36E-08 1.19E-07 2.69E-07

8 2.07E-10 1.76E-09 8.83E-09 3.08E-08 8.33E-08 1.87E-07
8.5 1.53E-10 1.28E-09 6.30E-09 2.17E-08 5.80E-08 1.29E-07
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10 5.93E-11 4.72E-10 2.23E-09 7.40E-09 1.91E-08 4.11E-08

Table 2. Ruin probabilities for various values of ϕ when σR = α = 0

u ϕ = 0 ϕ = 0.2 ϕ = 0.4 ϕ = 0.8 ϕ = 1

0.5 5.98E-12 1.81E-11 5.61E-11 5.63E-10 1.82E-09
1 2.62E-25 7.94E-25 2.46E-24 2.46E-23 7.97E-23

1.5 1.30E-39 3.92E-39 1.22E-38 1.23E-37 3.95E-37
2 7.31E-55 2.22E-54 6.87E-54 6.90E-53 2.23E-52

2.5 4.73E-71 1.42E-70 4.38E-70 4.42E-69 1.43E-68
3 3.40E-88 1.03E-87 3.20E-87 3.23E-86 1.04E-85

3.5 2.80E-106 8.50E-106 2.65E-105 2.66E-104 8.57E-104
4 2.64E-125 8.02E-125 2.48E-124 2.49E-123 8.08E-123

4.5 2.81E-145 8.53E-145 2.65E-144 2.66E-143 8.59E-143
5 3.45E-166 1.03E-165 3.19E-165 3.23E-164 1.04E-163

5.5 4.65E-188 1.42E-187 4.41E-187 4.42E-186 1.44E-185
6 7.33E-211 2.22E-210 6.90E-210 6.97E-209 2.24E-208

6.5 1.31E-234 3.92E-234 1.23E-233 1.23E-232 4.00E-232
7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

7.5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Fig. 1. The behavior of the ruin probability from claims with respect to capital when
fraction of investment into risky assets is varied

Fig. 2. The behavior of the ruin probability from oscillation with respect to capital
when fraction of investment into risky assets is varied
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