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Abstract. In the literature, there are two probabilistic models of bivariate Poisson : the
model according to Holgate and the model according to Berkhout and Plug. These two
models express themselves by their probability mass function. The model of Holgate puts in
evidence a strictly positive correlation, which is not always realistic. To remedy this prob-
lem, Berkhout and Plug proposed a bivariate Poisson distribution accepting the correlation
as well negative, equal to zero, that positive. In this paper, we show that these models are
nearly everywhere asymptotically equal. From this survey that the φ-divergence converges
toward zero, both models are therefore nearly everywhere equal. Also, the model of Hol-
gate converges toward the one of Berkhout and Plug. Some graphs will be presented for
illustrating this comparison.
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Résumé. Dans la littérature, il y a deux modèles probabilistes de Poisson bivariés: le modèle
selon Holgate puis le modèle selon Berkhout et Plug. Ces deux modèles sont définis par
leur fonction de masse. Le modèle de Holgate met en évidence une corrélation strictement
positive, ce qui n’est pas toujours réaliste. Pour remédier à ce problème, Berkhout et Plug
ont proposé une distribution de Poisson bivariée acceptant la corrélation aussi bien négative,
nulle que positive. Dans ce papier, nous montrons que ces modèles sont presque partout
asymptotiquement égaux car la φ−divergence de ces deux modèles converge vers zéro. Aussi,
le modèle de Holgate converge vers celui de Berkhout et Plug. Les graphes seront présentés
pour illustrer cette comparaison.

1. Introduction

The bivariate Poisson distribution has been introduced by Campbell (1934) who considered
the limit of the distribution of a contingency table with two dimensions. Practically at the
same time, Guldberg (1934) obtains the independent binomial distributions. The explicit
form of the distribution is due a few years later in 1944 (Morin (1993)) to Aitken (1994).
It is however necessary to await Holgate (1934) in 1964 to obtain a bivariate variables
starting from three univariate variables of Poisson independent, that is with a matrix of
variance-covariance not diagonal. Contrary to what is said in the paper of Elion et al.
(2016), one cannot assign this find to Johnson and Kotz (1969) whose research are belated.
Besides, the literature informs that several bivariate Poisson distributions have been put
in evidence. The applied statistics makes use of the bivariate Poisson distribution more
according to Holgate (1934) and a lot of scientist works ( Kawamura (1973), Kocherlakota
et al. (1992)) rest on this distribution. It permits to have a log-likelihood function with
a difficult expression to manipulate of which the maximum of likelihood is estimated by
means of the Hessian matrix. But, outside of the difficult matrix manipulations that it
requires to estimate the parameters, the model of Holgate puts in evidence a strictly
positive correlation. To remedy this problem, Berkhout et al. (2004) proposed a bivariate
Poisson distribution accepting the correlation as well negative, equal to zero, that positive.
Otherwise, in their paper, Berkhout and Plug reviewed the model of Holgate without
comparing it to their model. (Elion et al. (2016)) passed in magazine the two models
without saying a word on the relation that exists between the two. We wondered if these
two models are identical or not. The model of Holgate (1934) and the one of Berkhout and
Plug express themselves by their probability mass function (pmf ).

Cuenin et al. (2016) proposed also a model of bivariate Poisson based on the distribution
of Tweedie of which one knows that the pmf is not easy to calculate. In the literature,
we raised an instrument permitting to compare two densities of probabilities to know: the
φ-divergence (Toma (2009)).

We show, in this work, that the φ-divergence from model of Berkhout et al. (2004) to model
of Holgate (1934) converge toward zero: therefore the model of Hogate is nearly everywhere
asymtotically equal to the the model of Berkhout and Plug. We also shows that the model
of Berkhout et al. (2004) is the asymptotic distribution of the model of Holgate (1934).
Some graphs will be presented at the end of this paper to illustrate the comparison of these
two models.
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2. Generality

2.1. The bivariate Poisson distribution according to Holgate.

Let us consider three independent variables V1, V2 and U which follow the univariate Poisson
distribution of respective parameters λ1, λ2 and λ3. With these three variables, one builds
two new variables dependent Y1 and Y2 such as:

Yj = Vj + U, j = 1, 2. (1)

Then the pmf of the bivariate Poisson distribution is written:

P (Y1 = y1, Y2 = y2) = e−λ1−λ2−λ3 .

min(y1,y2)∑
l=0

λl3
l!
.
λy1−l1

(y1 − l)!
.
λy2−l2

(y2 − l)!
.

The disribution of bivariate Poisson according to Holgate will be noted by

fH (y1, y2;λ1, λ2, λ3) .

We have the following the following class of properties.

Class of Property (I).

(a) The covariance between Y1 and Y2 gives:

cov (Y1, Y2) = cov (V1 + U, V2 + U) = λ3.

(b) The correlation between Y1 and Y2 is equal to:

cor (Y1, Y2) =
λ3√

(λ1 + λ3) (λ2 + λ3)
.

(c) The marginal distributions follow:

P (Y1 = y1) = e−λ1−λ3
(λ1 + λ3)

y1

y1!
and P (Y2 = y2) = e−λ2−λ3

(λ2 + λ3)
y2

y2!
.

(d) The conditional distribution is equal to:

P (Y1 = y1|Y2 = y2) = P (Y1 = y1, Y2 = y2)×
[

(λ2 + λ3)
y2

y2!
e−λ2−λ3

]−1
= e−λ1 ×

min(y1,y2)∑
l=0

(
l
y2

)( λ3
λ3 + λ2

)l(
λ2

λ3 + λ2

)y2−l λy1−l2

(y1 − l)!
,
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and has characteristics:

E (Y1|Y2) = λ1 + y2.
λ3

λ3 + λ2
var (Y1|Y2)

= λ1 +
y2λ2λ3

(λ3 + λ2)
2 .

To finish, let us retain that the conditional law of Y1 knowing Y2 is the convolution of the
variable of Poisson U of parameter λ1 and of the variable binomial V of parameters y2 and
λ3/ (λ3 + λ2).

2.2. The bivariate Poisson distribution according to Berkhout and Plug.

Let us consider a couple of dependent positive integer whole random variables (Y1, Y2).
According to theory of conditional probabilities, their joined density can be written like the
product of a distribution marginal and of a conditional distribution, such as:

P (Y1 = y1, Y2 = y2) = f (y1, y2) = g1 (y1) .g2 (y2|y1)

P (Y1 = y1, Y2 = y2) = f (y1, y2) = g∗1 (y1) .g∗2 (y1|y2)

This decomposition of the joined density can take several forms compared to permutations
of Y1 and Y2. In this bivariate case, we have two permutations:

That is to say π an indicator of permutation taking value 0 and 1; z1 and z2 can be written
like permutations realized by y1 and y2, such as:

z1 = (1− π) y1 + πy2 and z2 = πy1 + (1− π) y2

où π ∈ {0, 1}.
Let us suppose gπ1 and gπ2 two Poisson distribution, for any joined distribution fπ. For the
choice of the permutation, the existing data enable us to fix the density fπ (z1, z2). Then
the joined density is written:

f (y1, y2) = fπ (z1, z2) = gπ1 (z1) .gπ2 (z2|z1) for π ∈ {0, 1} .

When the marginal one of z1 is equal to:

gπ1 (z1) =
µz11
z1!

e−µ1 , (2)

and the conditional distribution z2|z1 which:
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gπ2 (z2|z1) =
µz22
z2!

e−µ2 (3)

where µ1 = exp (x′β1) and µ2 = exp (x′β2 + ηz1), with β1, β2 and η are parameters of gπ1
and gπ2 and x′ = (x1, x2, ..., xp) the vector of the explanatory variables or factors. Then
joined density of the permutations zπ:

fπ (z1, z2) =
ez1(x

′β1)−exp(x′β1)+z2(x′β2+ηz1)−exp(x′β2+ηz1)

z1!z2!

is called pmf of the bivariate Poisson distribution according to Berkhout and Plug, and will
be denoted

fBP (z1, z2;µ1, µ2) .

Likely, it is difficult to handle such an expression is a direct way, but that is possible to see
that by using the factorial moment (r, s)

th
of the joint distribution, we get this second class

of properties.

Class of Property (II).

(a) The factorial moment (r, s) of the joined distribution can be written:

E [Z1 (Z1 − 1) · · · (Z1 − r + 1)Z2 (Z2 − 1) · · · (Z2 − s+ 1)] (4)

=

+∞∑
z1=r

+∞∑
z2=s

ez1(x
′β1)−exp(x′β1)+z2(x′β2+ηz1)−exp(x′β2+ηz1)

z1!z2!

= e− exp(x′β1)+exp(x′β1+sη)+rx′β1+sx
′β2+rsη

= µ1e
µ1(exp(sη)−1)+sx′β2+rsη (5)

(b) From the expression (5), we can now calculate every moment of the distribution joined
just by the choice of r and s, one has what follows:
(b1) For s = 1 and r = 0,

E (Z2) = exp [x′β2 + µ1 (exp (η)− 1)] .

(b2) For s = 2 and r = 0, one has for the variable Z2:

E
(
Z2
2

)
= E (Z2) + e2x

′β2+µ1(exp(2η)−1),

var (Z2) = E (Z2) + (E (Z2))
2
(
eµ1(exp(η)−1)2 − 1

)
.

We note that for all η 6= 0, var (Z2) − E (Z2) > 0, which implies that Z2 is overdispersed
(Castillo et al. (1998)).
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(c) Let us pose s = 0 and r = 1, r = 2, r = 0 successively, we have for the Z1 variable:

E (Z1) = µ1 , var (Z1) = µ1, E (Z1Z2) = µ1e
µ1(e

η−1)+x′β2+η.

We have
E (Z1)× E (Z2) = µ1e

µ1(e
η−1)+x′β2 ,

and then

cov (Z1, Z2) = E (Z1Z2)− E (Z1)E (Z2) = µ1E (Z2) (exp (η)− 1) .

(d) Thus the correlation, between Z1 and Z2, can be obtained as follows

cor (Z1, Z2) =
µ1E (Z2) (exp (η)− 1)√

µ1 [E (Z2) + E2 (Z2)]
(
eµ1(exp(η)−1) − 1

) .
We note that the correlation is positive (resp. negative) if η > 0 (resp. η < 0). However for
η = 0, we have

E (Z2) = var (Z2) = µ2

and cov (Z1, Z2) = 0. Then, to respect with the interdependence of the variables Z1 and Z2,
it is necessary that η 6= 0. �

Remark 1. We will suppose in all that follows that the permutation is equal to π = 0,
which provides that z1 = y1 and z2 = y2.

3. Comparison of the densities of probabilities fH and fBP .

We are going to show here that the densities fH and fBP are nearly everywhere equal
asymptotycally.

3.1. functional relation between fH and fBP .

Proposition 1. While taking µ1 = λ1 +λ3 and µ2 = λ2 +λ3 the pmf fH decompose himself
in a product of factors:

fH (y1, y2;µ1, µ2, λ3) =

(
µy11
(y1)!

e−µ1

)(
µy22
(y2)!

e−µ2

)
× b (y1, y2;µ1, µ2, λ3) (6)

with

b (y1, y2;µ1, µ2, λ3) = eλ3

(
1− λ3

µ1

)y1 (
1− λ3

µ2

)y2 min(y1,y2)∑
l=0

(−y1)l (−y2)l
zl

l!
(7)

and

z =
λ3

(µ1 − λ3) (µ2 − λ3)
. (8)
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Proof of Proposition 1.
Let us put µ1 = λ1 + λ3, µ2 = λ2 + λ3, we have:

fH (y1, y2;µ1, µ2, λ3) = e−µ1−µ2+λ3

min(y1,y2)∑
l=0

(µ1 − λ3)
y1−l

(y1 − l)!
(µ2 − λ3)

y2−l

(y2 − l)!
λl3
l!

= e−µ1−µ2eλ3

min(y1,y2)∑
l=0

(µ1 − λ3)
y1

(µ1 − λ3)
l

(µ2 − λ3)
y2

(µ2 − λ3)
l

λl3
l!

1

(y1 − l)! (y2 − l)!

=
µy11
(y1)!

µy22
(y2)!

e−µ1−µ2
(y1)!

µy11

(y2)!

µy22
eλ3

min(y1,y2)∑
l=0

(µ1 − λ3)
y1 (µ1 − λ3)

y2

(y1 − l)! (y2 − l)!
zl

l!
,

with

z =
λ3

(µ1 − λ3) (µ2 − λ3)
.

We have:

fH (y1, y2;µ1, µ2, λ3) =
µy11
(y1)!

µy22
(y2)!

e−µ1−µ2eλ3

min(y1,y2)∑
l=0

(
1− λ3

µ1

)y1 (
1− λ3

µ2

)y2 (−1)
l
y1

(y1 − l)!
(−1)

l
y2

(y2 − l)!
zl

l!

fH (y1, y2;µ1, µ2, λ3) =

(
e−µ1

µy11
y1!

)(
e−µ2

µy22
y2!

)(
1− λ3

µ1

)y1 (
1− λ3

µ2

)y2
eλ3

min(y1,y2)∑
l=0

(−y1)l (−y2)l
zl

l!
.

While putting

b (y1, y2;µ1, µ2, λ3) =

(
1− λ3

µ1

)y1 (
1− λ3

µ2

)y2
eλ3

min(y1,y2)∑
l=0

(−y1)l (−y2)l
zl

l!
,

with (−y1)l represent Pochhammer’s symbol (Johnson et al. (1993)). The proof is finished.�

The following results are easily derived for previous ones.

Corollary 1. In the expression (6), while taking (see expressions (2) and (3)):

µy11
(y1)!

e−µ1 = P [Y1 = y1] ,

the density marginal of Y1 with lnµ1 = x′β1 and

µy22
(y2)!

e−µ2 = P [Y2 = y2/Y1 = y1] ,

the conditional distribution of Y2 when one considers Y1 = y1, with lnµ2 = x′β2 + ηy1.
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Indeed, we have

P [Y1 = y1, Y2 = y2] = P [Y1 = y1]P [Y2 = y2/Y1 = y1] = fBP (y1, y2;µ1, µ2) ,

and therefore:

fH (y1, y2;µ1, µ2, λ3) = fBP (y1, y2;µ1, µ2)× b (y1, y2;µ1, µ2, λ3) . (9)

Proposition 2. Let us consider two generalized linear models lnµ1 = x′β1 and
lnµ2 = x′β2 + ηy1.The response variables Y1 and Y2 which follows the densities of
Poisson of parameters µ1 and µ2.
Let us put λ3 = 1

n with n ∈ N∗; we construct a family of pmf {fH,n/n ∈ N∗} of Holgate,
with fH,n (y1, y2;µ1, µ2) = fH

(
y1, y2;µ1, µ2,

1
n

)
.

Then we have the following result:

lim
n−→+∞

b

(
y1, y2;µ1, µ2,

1

n

)
= 1. (10)

Proof of Proposition 2.

According to the expressions (7) and (8), we have:

b

(
y1, y2;µ1, µ2,

1

n

)
= e

1
n

(
1−

1
n

µ1

)y1 (
1−

1
n

µ2

)y2 min(y1,y2)∑
l=0

(−y1)l (−y2)l
zl

l!

with

z =
1
n(

µ1 − 1
n

) (
µ2 − 1

n

) .
Let us zn = z. We have

b

(
y1, y2;µ1, µ2,

1

n

)
= e

1
n

(
1−

1
n

µ1

)y1 (
1−

1
n

µ2

)y2 (−y1)0 (−y2)0 +

min(y1,y2)∑
l=1

(−y1)l (−y2)l
(zn)

l

l!


= e

1
n

(
1−

1
n

µ1

)y1 (
1−

1
n

µ2

)y2 1 +

min(y1,y2)∑
l=1

(−y1)l (−y2)l
(zn)

l

l!


as lim

n−→+∞
zn = 0, then

lim
n−→+∞

b

(
y1, y2;µ1, µ2,

1

n

)
= 1.

The proof is complete. �

The two following corollaries are easy to derive from the above results.
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Corollary 2. While taking into account the expressions (9) and (10), we have the result

lim
n−→+∞

fH,n (y1, y2;µ1, µ2) = fBP (y1, y2;µ1, µ2) .

Corollary 3. Let us consider FH,n and FBP the cumulative distributions functions associ-
ated to fH,n and fBP . We have the following result.

∀ (x1, x2) ∈ R2, lim
n−→+∞

FH,n (x1, x2) = FBP (x1, x2) .

3.2. φ-divergence from fBP to fH

We have

Proposition 3. For the distances of the Kullback-Leibler, χ2, Hellinger and the variational
distance (L1-distance) not belonging to the class introduced by Cressie and Read (Csiszár
(1967)),

lim
n−→+∞

Dφ (fH,n, fBP ) = 0.

Therefore, the pmf fH,n and fBP are nearly everywhere equal asymptotically (Csiszár
(1967)).

Proof Proposition 3.

By definition, while considering the distance associated to the divergence of Kullback-Leibler
(Csiszár (1967))),

Dφ (fH,n, fBP ) =

+∞∑
y1=0

+∞∑
y2=0

fH,n ln

(
fH,n
fBP

)

=
∑
y1,y2

(
µy11
(y1)!

e−µ1

)(
µy22
(y2)!

e−µ2

)
× b

(
y1, y2;µ1, µ2,

1

n

)
×

× ln b

(
y1, y2;µ1, µ2,

1

n

)
.

Knowing that lim
n−→+∞

b

(
y1, y2;µ1, µ2,

1

n

)
× ln b

(
y1, y2;µ1, µ2,

1

n

)
= 0. We are assured of

the answer.

Besides, while considering the distance of the χ2 (Csiszár (1967)),

Dφ (fH,n, fBP ) =

+∞∑
y1=0

+∞∑
y2=0

(
fH,n
fBP

− 1

)2

fBP .

However, we have
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lim
n−→+∞

fH,n
fBP

= lim
n−→+∞

b

(
y1, y2;µ1, µ2,

1

n

)
= 1,

and therefore

lim
n−→+∞

Dφ (fH,n, fBP ) = 0.

Otherwise, while considering the distance of Hellinger (Csiszár (1967)), we have

Dφ (fH,n, fBP ) =

+∞∑
y1=0

+∞∑
y2=0

(√
fH,n
fBP

− 1

)2

fBP .

Therefore, the result is proved.

Finally, as considering the L1 distance, we have:

Dφ (fH,n, fBP ) =

+∞∑
y1=0

+∞∑
y2=0

fBP

∣∣∣∣fH,nfBP
− 1

∣∣∣∣ .
It follow that:

lim
n−→+∞

Dφ (fH,n, fBP ) = 0.

While being based on the distance of Kolmogorov-Smirnov, we propose a new divergence
that we call divergence of Kolmogorov-Smirnov below:

Definition 1.

DKS (FH,n, FBP ) =

+∞∑
y1i=0

+∞∑
y2i=0

Supy1i6x1
y2i6x2

|FH,n (x1, x2)− FBP (x1, x2)| , ∀ (x1, x2) ∈ R2.

With y1i (y2i) the ith realization of Y1 (Y2).

Here is the result based on that divergence measure.

Proposition 4. We have the following results :

lim
n−→+∞

DKS (FH,n, FBP ) = 0

and

DKS (FH,n, FBP ) = DL1 (fH,n, fBP ) .

Journal home page: www.jafristat.net, www.projecteuclid.org/as



Nganga P.C.B, Bidounga R., Mizère, D. and Kokonendji, C.C., Afrika Statistika, Vol. 12 (3), 2017,
pages 1481 – 1494. Comparison between two bivariate Poisson distributions through the
phi-divergence. 1491

Proof of Proposition 4.

The first point of the proposition is obvious and then, omited.

As to the second, we have, by definition: ∀ (x1, x2) ∈ R2, FH,n (x1, x2) =
∑

y1i6x1
y2i6x2

fH,n (y1i, y2i),

FBP (x1, x2) =
∑

y1i6x1
y2i6x2

fBP (y1i, y2i),

and:

|FH,n (x1, x2)− FBP (x1, x2)| =

∣∣∣∣∣∣∣∣
∑

y1i6x1
y2i6x2

fH,n (y1i, y2i)− fBP (y1i, y2i)

∣∣∣∣∣∣∣∣
6

∑
y1i6x1
y2i6x2

|fH,n (y1i, y2i)− fBP (y1i, y2i)| ,

and therefore,

Supy1i6x1
y2i6x2

|FH,n (y1, y2)− FBP (y1, y2)| = |fH,n (y1i, y2i)− fBP (y1i, y2i)| .

Finally, we have

DKS (FH,n, FBP ) =

+∞∑
y1i=0

+∞∑
y2i=0

|fH,n (y1i, y2i)− fBP (y1i, y2i)|

=

+∞∑
y1i=0

+∞∑
y2i=0

fBP (y1i, y2i)

∣∣∣∣fH,n (y1i, y2i)

fBP (y1i, y2i)
− 1

∣∣∣∣
= DL1 (fH,n, fBP ) .

This closes the proof. �

We present the following graph to illustrate this comparison (see figures 1 and 2).

Conclusing remarks

If we note DH , DKL, Dχ2 and DL1 the divergences according to the respective distances of
Hellinger, Kullback-Leibler, Khi-2 and L1; it takes out again of the following figures that
DH 6 DKL 6 Dχ2 6 DL1 . The graphs of the function (or sequences) n 7−→ Dφ (fH,n, fBP ),
φ ∈ I, with I =

{
H,KL,χ2, L1

}
are monotonic decreasing to the lower bound zero :

∀ε > 0, ∃Nφ (ε) ∈ N, such as ∀n > Nφ (ε) ⇒ Dφ (fH,n, fBP ) 6 ε. The integers Nφ (ε),
φ ∈ I, inform us on the speed of convergence of the sequences.

Journal home page: www.jafristat.net, www.projecteuclid.org/as



Nganga P.C.B, Bidounga R., Mizère, D. and Kokonendji, C.C., Afrika Statistika, Vol. 12 (3), 2017,
pages 1481 – 1494. Comparison between two bivariate Poisson distributions through the
phi-divergence. 1492

For ε (arbitrarily small) given, a graphic resolution allows us to determine the Nφ (ε), φ ∈ I.
We found, for ε = 10−4, NH (ε) = 100, NKL (ε) = 150, Nχ2 (ε) = 200 et NL1 (ε) > 2000.
For the smallest integer NH (ε) = 100, we cannot say that DH converge very quickly toward
zero. On the other hand, one can compare the speeds of convergence as follows:

DH converge more quickly than DKL toward zero ; DKL converges more quickly than Dχ2

toward zero and that Dχ2 converges more quickly than DL1 toward zero. The divergences
tend to zero. It attests that the two distributions are nearly everywhere equal asymptotically.

The pmf of the bivariate Poisson distribution according to Berkhout and Plug is the asymp-
totic density of the couple (Y1, Y2), while the pmf of the bivariate distribution according to
Holgate is her exact density.
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Fig. 1. µ1 = 0.4, µ2 = 0.6, y1 = y2 ∈ [0, 32] and n ∈ [80, 500]

Fig. 2. µ1 = 0.4, µ2 = 0.6, y1 = y2 ∈ [0, 32] and n ∈ [80, 2000]
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