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kernel, since it takes into account the support of the unknown density f , to be estimated.
All associated kernel density estimators must be without edge effect. For illustrating this,
we introduce the extended beta kernel, which is a typical model of kernels with bounded
supports. However, in the presence of a large bias of the density estimator, we propose
a general but light modification in the same type of the first associated kernel; it leads to
improve the mean integrated square error of the new estimator. Some properties of two
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Résumé. Nous introduisons l’approche mode-dispersion pour la construction des noyaux
associés continus (asymétrique) à partir des fonctions de densité de probabilités (f.d.p.)
paramétrées que nous appelons type de noyau. Ceci nous conduit à valoriser le choix du
noyau associé puisque celui-ci tient compte du support de la densité inconnue f , à estimer.
Tous les estimateurs à noyaux associés de densité sont sans effet de bord. Pour illustrer
ceci, nous introduisons le noyau associé bêta étendu, qui est un modèle type des noyaux
à supports bornés. Cependant, en présence d’un grand biais de l’estimateur à noyaux
associés de densité, nous proposons une technique de modification générale mais légère
dans le même type du premier noyau associé ; Cela conduit à réduire l’erreur quadratique
moyenne intégrée du nouvel estimateur. Certaines propriétés de deux estimateurs sont
étudiées et comparées, en particulier des propriétés asymptotiques ponctuelles et globales.
Plusieurs formes de types de noyaux et leurs estimateurs à noyaux associés sont ensuite
examinés en détail. Des études de simulation sont faites sur trois estimateurs de densité à
noyau log-normal pour souligner les comportements aux bords.

1. Introduction

Let X1, · · · ,Xn be independent and identically distributed (iid) random variables with an
unknown probability density function (p.d.f.) f onT, a subset of the real lineRd. The kernel
estimator f̂n of the p.d.f. f is classically defined by

f̂n(x) =
1

nh

n∑
i=1

K

(x − Xi

h

)
, x ∈ T = R. (1)

The continuous kernel function K (·) in (1) is in general a symmetric p.d.f., independent of
the target x and the bandwidth h with zero mean and finite variance; see Rosenblatt (1956),
Parzen (1962), Sylverman (1986), Devroye (1987), Scott (1992), Tsybakov (2004) for a review.
This popular kernel K (·) has been imagined for estimating f with unbounded support
T = R. From the works of Chen (1999) and Chen (2000) on beta and gamma kernels,
respectively for densities on T = [0, 1] and T = [0,∞), Scaillet (2004) on inverse Gaussian
kernel and its reciprocal for densities on T = [0,∞) and as well as Kokonendji and Senga
Kiessé (2011) for the discrete case (i.e.T ⊆ Z), is borned a kind of kernel estimators (that we
call associated kernel estimators) where the kernel function is parameterized by the estimated
point x and the smoothing parameter h. In order to harmonize writing as in Kokonendji
and Senga Kiessé (2011), one can define a continuous associated kernel estimator f̂n of the
p.d.f. f by

f̂n(x) =
1
n

n∑
i=1

Kx,h(Xi), x ∈ T ⊆ R. (2)

It is well known that K (·) of (1) becomes a particular case of the continuous associated
kernel Kx,h which is intrinsically dependent on x and h, through the following relation:

Kx,h(·) =
1
h
K

(x − ·
h

)
. (3)

This opened the way for several authors to refine the properties of these associated
kernel estimators in many particular cases. See Bouezmarni and Rolin (2003), Bouezmarni
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et al. (2005), Kokonendji et al. (2009), Kokonendji and Zocchi (2010), Senga Kiessé and
Rivoire (2010), Bertin and Klutchnikoff (2011), Zougab et al. (2012), Zougab et al. (2013)
and Libengué Dobélé-Kpoka (2013) for details. These special cases dealt show that the
associated kernel estimators are without edge effects but they do not cover all types of T.
In addition, it is worth noting the absence of a general definition for classical continuous
kernel and a method for constructing them. Actually, for 0 < t1 < t2 with t2 , 1, the
support T = [t1, t2] corresponds, for example, to the real human size distribution between
[0.5, 2.5] (unit by meter) or many other observed natural distributions for which there
does not exist an appropriate kernel function. This leads us to introduce, for T = [t1, t2]
(t1 < t2), the “extended beta kernel”, which belongs to the family of continuous associated
kernels, asymmetric, without edge effect, and very useful for smoothing some observed
distributions on known compact support T ⊆ R.

In this paper, the main goal is to homogenize the theory concerning the associated
kernels estimators by pointing out a systematical technique for constructing them without
boundary effects for any type of support T of f , to be estimated. The rest of the paper
is organized as follows. Section 2 gives a general definition of the continuous associated
kernel which includes the classical one. A1so, we provide a principle for constructing any
continuous associated kernel from a parametric p.d.f. and we illustrate this with some
examples from the literature, as well as new ones. In Section 3, we apply the continuous
associated kernel for smoothing an unknown given p.d.f. Some pointwise properties will
be investigated, in particular the convergence in sense of asymptotic mean integrated
squared error (AMISE) and the bias reduction algorithm. In Section 4, some illustrations
with the types of kernels such as Pareto, lognormal, beta and its extended version, gamma
and its inverse and also, inverse Gaussian and its reciprocal are derived.Section 5 provides
a simulation study in which the finite-sample properties of three lognormal estimators are
investigated. In particular, we explore in more detail the role of the smoothing parameter
or bandwidth. The three estimators are critically compared in the sense of the MISE. Main
conclusions and a final discussion are given in Section 6.

To finish, we let know the reader that all the tables are postponed after the bibliography at
the end of the document.

2. Continuous associated kernels

We provide here some definitions and construction of the continuous associated kernel. We
investigate their basic properties and finally give some illustrations.

2.1. Definitions and construction

Let us start by a general definition of continuous associated kernels as in Libengué Dobélé-
Kpoka (2013).

Definition 1. Consider x ∈ T ⊆ R and h > 0 with T the support of the p.d.f. f , to be
estimated. A parametrized p.d.f. Kx,h of support Sx,h ⊆ R is called “associated kernel” if the
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following conditions are satisfied:

x ∈ Sx,h, (4)
E(Zx,h) = x + A(x, h), (5)
Var(Zx,h) = B(x, h), (6)

withZx,h a random variable with p.d.f. Kx,h, and both A(x, h) and B(x, h) go to 0 as h goes to
0.

Let us remark that:

(i) The support Sx,h is not necessary symmetric with respect to 0 or to x as in the classical
case. It can depend or not on x and h.

(ii) The condition (4) can be replaced by ∪x∈TSx,h ⊇ T and implies that the associated
kernel takes first into account the support T of the p.d.f. f , to be estimated.

(iii) If ∪x∈TSx,h ! T, then this is the classical problem of boundary bias.
(iv) The conditions (5) and (6) indicate that the associated kernel is more and more con-

centrated around x as h goes to 0. This highlights the peculiarity of associated kernel
which can change its shape according the target position.

The following proposition transforms all classical kernels to associated kernels, and points
out the shape of their support.

Proposition 1. LetK be a classical (symmetric) kernel with support S, mean µK = 0 and variance
σ2

K < ∞. For a given x ∈ T = R and h > 0, then the classical associated kernel is defined by (3) and
Sx,h = x − hS with

E(Zx,h) = x and Var(Zx,h) = h2σ2
K. (7)

In other words (7) corresponds to the following characteristics A and B of classical associated kernel
Kx,h:

A(x, h) = 0 and B(x, h) = O(h2). (8)

Proof. From (3), for a fixed x in T and for all t in T, there exists u in S such that u = (x− t)/h.
This implies that t = x − uh. Since t ∈ T, it comes from (4) that Sx,h = x − hS. The last
two results are derived from calculating the variance and the mean of Kx,h by making the
change of variables u = (x − t)/h.�

The following definition introduces the notion of type of kernel that we need for constructing
any associated kernel.

Definition 2. A type of a (continuous) kernel K is a squared integrable p.d.f. K = Kθ,
depending on (parameters) θ ∈ Θ ⊆ R2 and with support SK = Sθ.

In what follows, we consider only the type of uni-modal kernels K = Kθ with mode Mθ and
having a dispersion parameter Dθ. Since Θ is of two dimensions, we shall denote θ = θ(a, b),
Mθ = M(a, b) and Dθ = D(a, b) where a and b are two positive reals.

Remark 1. It is important to have:

(i) The mode M(a, b) always belongs in Sθ(a,b).

Journal home page: www.jafristat.net, www.projecteuclid.org/as



Ligengue Dolele-Kpoka F.G.B and Kokonendji C., Afrika Statistika, Vol. 12 (3), 2017, pages 1417 –
1446. The mode-dispersion approach for constructing continuous associated kernels. 1421

(ii) Obviously, the probability of the mode is equal or always greater than the probability
of the mean.

(iii) When the dispersion parameter around the mode tends to zero, this implies that the
dispersion parameter around the mean goes also to zero.

There are several definitions about the concept of dispersion parameters; see Jørgensen
(1997), Jørgensen et al. (2010) and Jørgensen and Kokonendji (2011) for further details. Now,
we are able to construct some associated kernels using any p.d.f. which satisfies Definition
1. Let us give a general method of construction.

Principle (mode-dispersion). Let Kθ(a,b) be a type of unimodal kernel on Sθ(a,b), with mode
M(a, b) and dispersion parameter D(a, b). The mode-dispersion method allows the construc-
tion of the function Kθ(x,h) by solving in term a and b the equations{

M(a, b) = x
D(a, b) = h.

Then θ(x, h) = θ (a(x, h), b(x, h)) where a(x, h) and b(x, h) are solutions of the previous
equations, for h > 0 and x in T.

In the following proposition we show that Kθ(x,h) satisfies Definition 1.

Proposition 2. Let T be the support of the density f to be estimated. For all x ∈ T and h >
0, the kernel function constructed by the mode-dispersion method Kθ(x,h) with support Sθ(x,h) =
Sθ(a(x,h),b(x,h)), is such that

x ∈ Sθ(x,h), (9)
E(Zθ(x,h)) − x = Aθ(x, h), (10)
Var(Zθ(x,h)) = Bθ(x, h), (11)

whereZθ(x,h) is a random variable with p.d.f. Kθ(x,h) and Aθ(x, h)→ 0 and Bθ(x, h)→ 0 as h→ 0.

Proof. Firstly, from the mode-dispersion method one has θ(x, h) = θ (a(x, h), b(x, h)) which
leads to Sθ(x,h) = Sθ(a(x,h),b(x,h)). Since Kθ(a,b) is unimodal of mode M(a, b) ∈ Sθ(a,b) (from Part (i)
of Remark 1), we obtain from the mode-dispersion method the first result (9) as follows:

M(a, b) = x ∈ Sθ(a,b) = Sθ(a(x,h),b(x,h)).

In addition, for a given random variableZθ(a,b) associated to the type of the unimodal kernel
Kθ(a,b), we can write E(Zθ(a,b)) = M(a, b) + ε(a, b), where ε(a, b) is the difference between the
mode and mean of Kθ(a,b). From the mode-dispersion method, we have M(a, b) = x and
ε(a, b) = ε(a(x, h), b(x, h)). Next, we can write

E(Zθ(x,h)) − x = ε(a(x, h), b(x, h)).

Taking Aθ(x, h) = ε(a(x, h), b(x, h)) and using the definition of the dispersion parameter
around the mode, this leads to the second result (10). Finally, since Kθ(a,b) admits a moment
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of second order, this implies that the variance of Kθ(x,h) exists in terms of x and h. We can
write it as

Var(Zθ(x,h)) = Bθ(a(x,h),b(x,h)),

with Bθ(a(x,h),b(x,h)) which tends to zero as h → 0 from Part (iii) of Remark 1. We obtain the
last result (11) by taking Bθ(x, h) = Bθ(a(x,h),b(x,h)).�

Note that in practice, both characteristics Aθ(x, h) and Bθ(x, h) are derived from the
calculation of mean and variance of Kθ(x,h) in term of a(x, h) and b(x, h). We show how to
calculate them in Section 2.2.

However, it is worth noting that some types of kernels do not satisfy the mode-dispersion
method. For instance, we have the Weibul type of kernel, with shape and scale pa-
rameters a > 1 and b > 0. It has as mean and variance, respectively bΓ(1 + 1/a) and
b2 {

Γ(1 + 2/a) − (2/a) log(2)
}
, where Γ(·) is the gamma function. This type of kernel is defined

by

Wθ(a,b)(u) =
a
ba ua−1 exp

{
−

(x
b

)a}
I[0,∞)(u).

Its mode and dispersion parameter are b(1 − 1/a)1/a and b respectively. Using the mode-
dispersion method we have {

(1 − 1/a)1/a = x/h
b = h.

Here b(x, h) = h is not depending on x, but a(x, h) is an implicit expression depending on x
and h.

Another example is the Birnbaum-Saunders type of kernel with shape and scale parameters
a > 0 and b > 0 respectively, and defined by

BSθ(a,b)(u) =
1

2ab
√

2π


(

b
u

)1/2

+

(
b
u

)3/2
 exp

(
−1
2a2

[
u
b

+
b
u
− 2

])
I[0,∞)(u).

Its mean and variance are b(1 + a2/2) and (ab)2(1 + a2/2) respectively. From the mode-
dispersion method, we here have{

arg maxu>0 BSθ(a,h)(u) = x
b = h.

However, the mode M(a, h) = arg maxu>0 BSθ(a,h)(u) cannot be obtained in explicit form. It
has to be obtained by solving a non-linear equation in terms of the shape parameter a. In
Balakrishnan et al. (2011), some modal values of this kernel type are calculated by varying
a from 0.5 to 5.0. Let us precise here that there exists other methods to construct associated
kernels; see, e.g., Jin and Kawczak (2003) for Birnbaum-Sanders and lognormal type of
kernels.
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2.2. Examples of non classical kernels

We now show in detail the case of the extended beta kernel because it has a general support
from which many other cases can be deduced. The remaining examples are summarized in
Table 3 which will be commented below.

2.2.1. Extended beta kernel

This kernel belongs to the family of beta densities on the support SEB = [t1, t2] with 0 ≤
t1 < t2. It is unknown in nonparametric statistics but it is often used in Operation Research;
see Grubbs (1962) for details. Introduced in Libengué Dobélé-Kpoka (2013), the type of
unimodal extended beta kernel, with shape parameters a > 1 and b > 1, is defined by

BEθ(a,b;t1,t2)(u) =
1

B(a, b)(t2 − t1)a+b−1
(u − t1)a−1(t2 − u)b−1I[t1,t2](u).

Its mode and dispersion parameter are {(a − 1)t2 + (b − 1)t1} /(a + b − 2) and 1/(a + b − 2)
respectively. From the mode-dispersion method, we obtain a(x, h) = 1 + (x − t1)/{(t2 − t1)h},
b(x, h) = 1 + (t2 − x)/{(t2 − t1)h} and

θ(x, h; t1, t2) =

(
x − t1

(t2 − t1)h
+ 1,

t2 − x
(t2 − t1)h

+ 1
)
,∀x ∈ [t1, t2], h > 0. (12)

This leads to the associated extended beta kernel defined on SEBθ(x,h,t1 ,t2) = [t1, t2] by

EBθ(x,h,t1 ,t2)(u) =
(u − t1)(x−t1)/{(t2−t1)h}(t2 − u)(t2−x)/{(t2−t1)h}

(t2 − t1)1+h−1B (1 + (x − t1)/{(t2 − t1)h}, 1 + (t2 − x)/{(t2 − t1)h})
.

From the mean and variance of EBθ(a,b;t1,t2) defined respectively by t1 + a(t2 − t1)/(a + b) and
ab(t2 − t1)2/{(a + b)2(a + b + 1)} , it follows that

Aθ(x, h; t1, t2) =
h{(t1 + t2) − 2x}

1 + 2h
(13)

Bθ(x, h; t1, t2) =
h{x − t1 + h(t2 − t1)}{(t2 − x) + h(t2 − t1)}

(1 + 2h)2(1 + 3h)
. (14)

2.2.2. Other kernels

Table 3 summarizes the results of calculation obtained from the construction of some as-
sociated kernels using mode-dispersion method. Table 1 and Table 2 provide different
ingredients from which one constructs the associated kernels with the mode-dispersion
method. We specify here that the quantity Zθ(a,b) in the tables aforementioned denotes a
random variable with density Kθ(a,b) on Sθ(a,b). Regarding beta and gamma kernels, our re-
sults match with those of Chen (1999) and Chen (2000). We specify in the case of inverse
Gaussian kernels and its reciprocal that the version of Scaillet (2004) is in fact our modified
version that we present in Table 7. Also, we introduced inverse gamma and lognormal
kernels for densities with support (0,∞) as well as the Pareto kernel for extreme cases (e.g.
Markovich (2007)). From Part (b) of Figure 1 one can observe the inside disfunctioning of
inverse Gaussian and inverse gamma kernels.
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3. Associated kernel density estimators

We now investigate the main properties of the associated kernel estimators for density
functions. Let X1,X2, · · · ,Xn be a sequence of a random variable X of an unknown p.d.f. f
in T ⊆ R. The associated kernel estimator f̂n of f is defined by

f̂n(x) =
1
n

n∑
i=1

Kθ(x,h)(Xi), ∀x ∈ T. (15)

This estimator (15) is similar to that of (2), except that (15) denotes the kernel estimator
derived from the mode-dispersion method in the remainder of the paper.

3.1. Properties

The non-standardization of the associated kernel estimators comes, for instance, from the
fact that its total mass is not always equal to 1 and it should be normalized before using for
density estimation but not for regression estimation. Which does not the case with regard
to the classical estimators (18).

Proposition 3. Let f̂n be an associated kernel estimator (15) of f . For all x ∈ T, h > 0, one has:

E
{

f̂n(x)
}

= E
{

f (Zθ(x,h))
}
, (16)∫

T

f̂n(x)dx =: Λ(n, h,K), (17)

where the total mass Λ(n, h,K) depends on the sample, type of kernel and smoothing parameter such
that it is not always equal to 1.

Proof. The first result (16) is obtained in a straightforwardly way as follows:

E
{

f̂n(x)
}

=

∫
Sθ(x,h)∩T

Kθ(x,h)(t) f (t)dt =

∫
Sθ(x,h)∩T

f (t)Kθ(x,h)(t)dt = E
{

f (Zθ(x,h))
}
.

The second result (??) stems from the fact that Kθ(x,h) is a p.d.f. Finally we have (17) as∫
T

f̂n(x)dx =
1
n

n∑
i=1

∫
T

Kθ(x,h)(Xi)dx,

since with respect to x, Kθ(·,h)(t) is not necessarily a probability density for a given t = Xi.�

From this proposition, one can note that for non-classical kernels, the total mass Λ(n, h,K) =

Λn of f̂n is positive and fails to be equal to 1 in general see, e.g., Cherfaoui et al. (2015). Table
5 permit to observe that Λn ∈ [0.9, 1.1]. Since Λn is around 1, we study x 7→ f̂n(x) without
normalizing constant which can be used at the end of the estimation process of density.
In the classical case, it is easy to check that Λn = 1 by making the change of variables
u = (x − Xi)/h as follows:
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∫
T=R

f̂n(x)dx =
1
n

n∑
i=1

∫
T=R

K
(x − Xi

h

)
dx =

1
h

∫
T=R

K (u) hdu = 1. (18)

Proposition 4. Let f̂n be an associated kernel estimator (15) of f in the class C 2(T). For all x in T
and h = hn > 0, then

Bias
{

f̂n(x)
}

= Aθ(x, h) f ′(x) +
1
2

{
A2
θ(x, h) + Bθ(x, h)

}
f ′′(x) + o(h2). (19)

Furthermore, if f is bounded on T then

Var
{

f̂n(x)
}

=
1
n

f (x)
∥∥∥Kθ(x,h)

∥∥∥2

2
+ o

( 1
nhr2

)
, (20)

where r2 = r2

(
Kθ(x,h)

)
> 0 is the largest real number such that

∥∥∥Kθ(x,h)

∥∥∥2

2
=

∫
Sθ(x,h)∩T

K2
θ(x,h)(u)du ≤

c2(x)h−r2
n and 0 < c2(x) < ∞.

Proof. From (16) and by using Taylor’s formula successively around E
(
Zθ(x,h)

)
and x, the

result (19) can be shown by

Bias
{

f̂n(x)
}

= E
{

f (Zθ(x,h))
}
− f (x)

= f
{
E(Zθ(x,h))

}
+

1
2

Var(Zθ(x,h)) f ′′
{
E(Zθ(x,h))

}
− f (x)

+ o
(
E

{
Zθ(x,h) − E(Zθ(x,h))

}2
)

= f {x + Aθ(x, h)} +
1
2

Bθ(x, h) f ′′ {x + Aθ(x, h)} − f (x)

+ o {Bθ(x, h)}

= Aθ(x, h) f ′(x) +
1
2

{
A2
θ(x, h) + Bθ(x, h)

}
f ′′(x) + o(h2).

In fact, the rest o(h2) comes from (8) and o
(
E

{
Zθ(x,h) − E(Zθ(x,h))

}2
)

=

E
(
oP

{
Zθ(x,h) − E(Zθ(x,h))

}2
)

where oP(·) is the probability rate of convergence. Concerning

the variance we have

Var
{

f̂n(x)
}

=
1
n
E

{
K2
θ(x,h)(X1)

}
−

1
n

[
E

{
Kθ(x,h)(X1)

}]2

=
1
n

∫
Sθ(x,h)∩T

K2
θ(x,h)(u) f (u)du −

1
n

[
E

{
Kθ(x,h)(X1)

}]2

= I1 − I2.

From (16) and (19) one has the following behavior of the second term

I2 := (1/n)
[
E

{
Kθ(x,h)(X1)

}]2
' (1/n) f 2(x) ' O(1/n) since f is bounded for all x ∈ T. By using

Taylor’s expansion around x, the first term I1 gives

I1 :=
1
n

∫
Sx,h∩T

K2
θ(x,h)(u) f (u)du =

1
n

f (x)
∫
Sx,h∩T

K2
θ(x,h)(u)du + R(x, h),

Journal home page: www.jafristat.net, www.projecteuclid.org/as



Ligengue Dolele-Kpoka F.G.B and Kokonendji C., Afrika Statistika, Vol. 12 (3), 2017, pages 1417 –
1446. The mode-dispersion approach for constructing continuous associated kernels. 1426

with

R(x, h) =
1
n

∫
Sx,h∩T

K2
θ(x,h)(u)

[
(u − x) f ′(x) +

(u − x)2

2
f ′′(x) + o{(u − x)2

}

]
du.

Under the assumption of
∥∥∥Kθ(x,h)

∥∥∥2

2
≤ c2(x)h−r2

n we deduce successively

0 ≤ R(x, h) ≤
1

nhr2

∫
Sx,h∩T

c2(x)
{

(u − x) f ′(x) +
(u − x)2

2
f ′′(x)

}
du ' o(n−1h−r2 ).�

An illustration of the calculation of r2 will be given on the particular case of the modified
lognormal kernel for edge points in Section 5.

Here, we define the appropriate measure for assessing the similarity of the associated kernel
estimator f̂n with respect to the true density f , to be estimated. We remind the reader that
the most natural measure is the mean integrated square error (MISE). Thus, we first define
the mean squared error (MSE) by

MSE(x) = Var
{

f̂n(x)
}

+ Bias2
{

f̂n(x)
}
. (21)

The integrated form of MSE on T and its approximate expressions are respectively given
by:

MISE( f̂n,h,K, f ) =

∫
T

[
Var

{
f̂n(x)

}
+ Bias2

{
f̂n(x)

}]
dx

and

AMISE( f̂n,h,K, f ) =

∫
T

([
Aθ(x, h) f ′(x) +

1
2
{A2

θ(x, h) + Bθ(x, h)} f ′′(x)
]2)

dx

+
1
n

∥∥∥Kθ(x,h)

∥∥∥2

2
f (x)dx. (22)

The next proposition gives the rate of convergence in the sense of AMISE.

Proposition 5. Suppose that f ∈ C 2, with first and second derivative being bounded. Then the
optimal bandwidth that minimizes the AMISE is

h = C(x)n−1/(r2+2)

with r2 = r2

(
Kθ(x,h)

)
used in (20).

Proof. Definition 1 and Proposition 1 allow to say that there exists two positive and finite
constants c∗1(x) and c∗∗1 (x) such that Aθ(x, h) ≤ c∗1(x)h and Bθ(x, h) ≤ c∗∗1 (x)h2. Using Proposition
4, one has:

Bias
{

f̂n(x)
}
≤ hc1(x) and Var

{
f̂n(x)

}
≤ n−1h−r2 c2(x),

with c1(x) = supx∈T|c
∗

1(x) f ′(x) + c∗∗1 (x) f ′′(x)|. From (21), it follows that

MSE(x) ≤ h2c2
1(x) + n−1h−r2 c2(x).
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By integrating (22), one obtains

AMISE( f̂n,h,K, f ) ≤ h2C1(x) + n−1h−r2 C2(x),

with C1(x) and C2(x) the anti-derivatives of respectively, c2
1(x) and c2(x) on T. Taking the

second member equal to 0 leads to the result.�

3.2. Reduction of bias

Naturally, the presence of the non-null term Aθ(x, h) in (19) increases the bias of f̂n(x).
Thus, we propose in the following section an algorithm, inspired to the Chen (1999) and
Chen (2000), but especially developed in Libengué Dobélé-Kpoka (2013), for eliminating
the term Aθ(x, h) f (x) in the largest region of T. For reducing the bias of f̂n(x) defined in
(19), one proceeds in two steps. The first step consists to define both inside and boundary
regions and the second step deals to the modification of the associated kernel which leads
to the inside bias reduction.

First step : One divides this support T = [t1, t2] in two regions of order α(h) > 0 with
α(h)→ 0 as h→ 0;

(i) interior region (the largest one in order to contain at least 95% of observations) denoted
by Tα(h),0 and defined as interval

Tα(h),0 = (t1 + α(h), t2 − α(h)),

(ii) boundary regions (can be empty) denoted by two intervals Tα(h),−1 and Tα(h),+1 respec-
tively defined by

Tα(h),−1 = [t1, t1 + α(h)] (left boundary region),

and
Tα(h),+1 = [t2 − α(h), t2] (right boundary region).

We can denote them as the complementary sets of the interior region: Tc
α(h),0 =

Tα(h),−1 ∪ Tα(h),+1.

Second step : We modify the associated kernel Kθ(x, h) corresponding to A(x, h)
and B(x, h) with a new kernel function noted Kθ̃(x,h) corresponding to Ã(x, h) =(
Ã−1(x, h), Ã0(x, h), Ã+1(x, h)

)
and B̃(x, h) =

(
B̃−1(x, h), B̃0(x, h), B̃+1(x, h)

)
such that, for any fixed

h,

θ̃(x, h) =
(
θ̃−1(x, h), θ̃0(x, h), θ̃+1(x, h)

)
=


θ̃−1(x, h) if x ∈ Tα(h),−1

θ̃0(x, h) : Ã0(x, h) = 0 if x ∈ Tα(h),0

θ̃+1(x, h) if x ∈ Tα(h),+1

(23)

must be continuous onT and constant onTc
α(h),0 (form personal communication with Chen).

Some illustrations are given in Section 4. The following proposition shows that the modified
kernel function Kθ̃(x,h) with support Sθ̃(x,h) = Sθ(x,h) is an associated kernel.
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Proposition 6. The function Kθ̃(x,h) obtained from (23) is an associated kernel.

Proof. We are going to show that Kθ̃(x,h) satisfies all conditions of Definition 1. Since Kθ(x,h)

is an associated kernel and from the first step of the bias reduction we have for j ∈ J =
{−1, 0,+1},

x ∈ Tα(h), j ⇒ x ∈ T⇒ x ∈ Sθ(x,h) = Sθ̃(x,h).

Using Proposition 2 it follows that for a given random variable Zθ̃(x,h) with pdf Kθ̃(x,h) we
obtain the last two condition as,

E(Zθ̃(x,h)) = x + Aθ̃(x,h) and Var(Zθ̃(x,h)) = Bθ̃(x,h)

with both Aθ̃(x,h) and Bθ̃(x,h) go to 0 as h goes to 0. Taking Ã(x, h) = Aθ̃(x,h) and B̃(x, h) = Bθ̃(x,h)

it follows that for a fixed j ∈ J, Ã j(x, h) = Aθ̃ j(x,h) and B̃ j(x, h) = Bθ̃ j(x,h). In particular, from (23)
we have Aθ̃0(x,h) = 0.�

So, we define the modified associated kernel density estimator f̃n of f using Kθ̃(x,h) by

f̃n(x) =
1
n

n∑
i=1

Kθ̃(x,h) (Xi) . (24)

The following proposition gives the new expressions of bias and variance of f̃n.

Proposition 7. LetT = ∪ j∈JTα(h), j (J = {−1, 0,+1}) be the support of the p.d.f. f to be estimated, f̂n
and f̃n the associated kernel estimators of f defined in (15) and (24) respectively. For all x ∈ Tα(h),0
and h > 0 then,

Bias
{

f̃n(x)
}

=
1
2

B̃0(x, h) f ′′(x) + o(h2),

and
Var

{
f̃n(x)

}
' Var

{
f̂n(x)

}
as h→ 0.

Proof. We obtain the first result by replacing in (19) respectively, f̂n, Aθ and Bθ by f̃n, Ã0 and
B̃0. For the last result, considering (20) it suffices to show that∥∥∥Kθ(x,h)

∥∥∥2

2
'

∥∥∥∥Kθ̃(x,h)

∥∥∥∥2

2
as h→ 0.

Indeed, since Kθ(x,h) and Kθ̃(x,h) are associated kernels of the same type K, r2 = r2(Kθ(x,h)) and
r̃2 = r̃2(Kθ̃(x,h)), there exists a common largest real number r = r(K) such that∥∥∥Kθ(x,h)

∥∥∥2

2
≤ c2(x)h−r and

∥∥∥∥Kθ̃(x,h)

∥∥∥∥2

2
≤ c̃2(x)h−r,

with 0 < c2(x), c̃2(x) < ∞. Taking c(x) = sup{c2(x), c̃2(x)} we have
∥∥∥Kθ(x,h)

∥∥∥2

2
≤ c(x)h−2r and∥∥∥∥Kθ̃(x,h)

∥∥∥∥2

2
≤ c(x)h−2r. Since c(x)/nh2r = o(n−1h−2r) therfore

∥∥∥∥Kθ̃(x,h)

∥∥∥∥2

2
'

∥∥∥Kθ(x,h)

∥∥∥2

2
.�
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Thus, we define the asymptotic expression of the MISE of f̃n on Tα(h),0 as follows:

AMISE0( f̃n,h,K, f ) =

∫
Tα(h),0

[1
4

B̃2
0(x, h){ f ′′(x)}2 +

1
n

∥∥∥Kθ(x,h)

∥∥∥2

2
f (x)

]
dx.

3.3. Choices of associated kernel and bandwidth

In opposite to the classical associated kernel, the choice of the non-classical associated kernel
is very important. Firstly, it depends on a prior knowledge of the supportT of the density f ,
to be estimated, which has to coincide with the support Sθ of the (non-classical) associated
kernel. In addition, this choice must take into account the behavior of the associated kernel
according different positions of the target x in T. For several associated kernels with the
same support Sθ = T, the most appropriate kernel Kθ opt is one that checks for a fixed h > 0
if:

Kθ opt = arg minKθ on Tα(h),0,Tc
α(h),0

AMISE0( f̃n,h,K).

For T = R, then Kθ opt is the Epanechnikov kernel. The optimal bandwidth parameter
obtained in Proposition 5 cannot be used in practice because it depends on the unknown
density function. Several methods exist for selecting bandwidth parameters for associated
kernel density estimators. In our case, we propose to use for instance the least squares cross-
validation (LSCV) method to select the bandwidth. This technique has been developed by
several authors; see Rudemo (1982), Stone (1984),Bowman (1984), and Marron (1987) for
details. The LSCV method is based on the minimization of the integrated squared error
(ISE) which is defined as

ISE(h) =

∫
T

f̂n
2
(x)dx − 2

∫
T

f̂n(x) f (x)dx +

∫
T

f 2(x)dx.

Because the last term does not depend on the bandwidth parameters, minimizing the ISE
boils down to minimizing the two first terms. However, we need to estimate the second
term since it depends on the unknown density function f . The LSCV estimator of ISE(h) −∫
T

f 2(x)dx is

LSCV(h) =

∫
x∈T

{
f̂n(x)

}2
dx −

2
n

n∑
i=1

f̂n,−i(Xi)

=

∫
x∈T

1
n

n∑
i=1

Kθ(x,h)(Xi)


2

dx −
2
n

n∑
i=1

f̂n,−i(Xi),

where f̂n,−i(Xi) = (n− 1)−1
∑
j,i

Kθ(Xi,h)(X j) is being computed as f̂n(Xi) excluding the observa-

tion Xi. The bandwidth LSCV rule selection is defined as follows:

hcv = arg minh>0 LSCV(h).

Journal home page: www.jafristat.net, www.projecteuclid.org/as



Ligengue Dolele-Kpoka F.G.B and Kokonendji C., Afrika Statistika, Vol. 12 (3), 2017, pages 1417 –
1446. The mode-dispersion approach for constructing continuous associated kernels. 1430

4. Illustration of modified associated kernel density estimators

Now, we illustrate the bias reduction for particular continuous associated kernels already
used as examples in Section 2.2. Only the case extended beta is given in detail. Other results
are provided in Table ?? and Table 7.

4.1. Extended beta density estimators

This kernel estimator is appropriate for densities having support T = [t1, t2] = SEB. From
(13), (14) and (19) we have

Bias
{

f̂n;t1,t2 (x)
}

=
(t1 + t2 − 2x)h

1 + 2h
f ′(x) +

1
2

{
(t1 + t2 − 2x)h

1 + 2h

}2

f ′′(x)

+
{x − t1 + (t2 − t1)h}{t1 − x + (t2 − t1)h}

2(1 + 2h)2(1 + 3h)
f ′′(x) + o(h2).

Being large, this bias must be reduced. Using the first step of bias reduction one has the
three intervals

Tα(h),−1 = [t1, t1 + α(h)], Tα(h),0 = (t1 + α(h), t2 − α(h)) and Tα(h),+1 = [t2 − α(h), t2].

For the second step, we first consider the function ψ : T→ T defined by

ψ(z) = {z − α(h) + 1}α(h) for all z ≥ 0. (25)

We construct θ̃(x, h) = θ̃(x, h; t1, t2) in the mind of (23) as follows:

θ̃(x, h; t1, t2) =



(
ψ(x − t1)
(t2 − t1)h

,
x − t1

(t2 − t1)h

)
if x ∈ [t1, t1 + α(h)](

x − t1

(t2 − t1)h
,

t2 − x
(t2 − t1)h

)
if x ∈ (t1 + α(h), t2 − α(h))(

t2 − x
(t2 − t1)h

,
ψ(t2 − x)
(t2 − t1)h

)
if x ∈ [t2 − α(h), t2].

By calculating the mean and variance of BEθ̃(x,h;t1,t2) it follows that

Aθ̃(x, h, t1; t2) =



x(x − t1) + (1 − x)ψ(x − t1)
x − t1 + ψ(x − t1)

if x ∈ [t1, t1 + α(h)]

0 if x ∈ (t1 + α(h), t2 − α(h))
x(t2 − x) + (1 − x)ψ(t2 − x)

t2 − x + ψ(t2 − x)
if x ∈ [t2 − α(h), t2],
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and

Bθ̃(x, h, t1; t2) =



(x − t1)ψ(x − t1)h{x − t1 + ψ(x − t1)}−2

{x − t1 + ψ(x − t1) + h}
if x ∈ [t1, t1 + α(h)]

(x − t1)(t2 − x)h
1 + h

if x ∈ (t1 + α(h), t2 − α(h))

(t2 − x)ψ(t2 − x)}h{(t2 − x) + ψ(t2 − x)}−2

{(t2 − x) + ψ(t2 − x) + h}
if x ∈ [t2 − α(h), t2].

This allows us to obtain the reduced expression of the bias in interval (t1 + α(h), t2 − α(h)) as

Bias
{

f̃n;t1,t2 (x)
}

=
1
2

(x − t1)(t2 − x)h f ′′(x) + o(h2).

Moreover, the calculation of
∥∥∥∥BEθ̃(x,h;t1,t2)

∥∥∥∥2

2
yields:

∥∥∥BEθ(x,h;t1,t2)

∥∥∥2

2
=

B (1 + 2(x − t1)/(t2 − t1)h, 1 + 2(t2 − x)/(t2 − t1)h)

{B (1 + (x − t1)/(t2 − t1)h, 1 + (t2 − x)/(t2 − t1)h)}2
.

Therefore, from (20) the variance of f̂n;t1,t2 (x) is:

Var
{

f̂n;t1,t2 (x)
}

=
B (1 + 2(x − t1)/(t2 − t1)h, 1 + 2(t2 − x)/(t2 − t1)h)

{B (1 + (x − t1)/(t2 − t1)h, 1 + (t2 − x)/(t2 − t1)h)}2
1
n

f (x)

+ o
( 1

nhr2

)

In order to determine r2 and an explicit expression of the variance of f̂n;t1,t2 , let us introduce
the R function of Brown and Chen (1998) defined as follows, for z ≥ 0:

R(z) =
1

Γ(z + 1)

(z
e

)z √
2πz. (26)

It is shown in Brown and Chen (1998) that R is an increasing function such that R(z) < 1
and R(z)→ 1 as z→∞. Using (26) and similarly as in Chen (1999), one obtains

∥∥∥∥BEθ̂(x,h;t1,t2)

∥∥∥∥2

2
=


Γ(2c + 1)

22c+1Γ2(c + 1)
if

x − t1

(t2 − t1)h
or

t2 − x
(t2 − t1)h

→ c

(x − t1)−1/2(t2 − x)−1/2

2
√
π(t2 − t1)−1h1/2

if
x − t1

(t2 − t1)h
,

t2 − x
(t2 − t1)h

→∞,

Hence

Var
{

f̂n;t1 ,t2 (x)
}

=


Γ(2c + 1) f (x)

22c+1Γ2(c + 1)n
+ O(n−1) if

x − t1

(t2 − t1)h
or

t2 − x
(t2 − t1)h

→ c

(x − t1)−1/2(t2 − x)−1/2 f (x)

2
√
π(t2 − t1)−1nh1/2

+ o
( 1

nh1/2

)
if

x − t1

(t2 − t1)h
,

t2 − x
(t2 − t1)h

→∞.
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It follows that r2 = 1/2. From Proposition 7, one obtains the variance of f̃n;t1,t2 in the interior
region (t1 + α(h), t2 − α(h)) as

Var
{

f̃n;t1,t2 (x)
}

=
(x − t1)−1/2(t2 − x)−1/2

2
√
π(t2 − t1)−1nh1/2

f (x) + o
( 1

nh1/2

)
.

Taking t1 = 0 and t2 = 1, one deduces similar results of the (modified) beta density estimators
of Chen (1999), see Libengué Dobélé-Kpoka (2013) for more details.

4.2. Other associated kernel density estimators

Table ?? and Table 7 summarize the results of different calculation for bias reduction as in
the previous case. We indicate that our parametrizations at the edges are depending on
α(h) which is more general. The user can set the value of α(h) according to his objective.
For example, we have α(h) = 2h in Chen (1999), Chen (2000) and α(h) = h in Zhang and
Karunamuni (2009) and Zhang (2010). We clarify also that Scaillet did not use this concept
in his work on inverse Gaussian kernel and its reciprocal. He directly used the reduced
versions of these kernels that we give in Table 7. Also, the support of Pareto kernel should
be divided into [x, x + α(h)) ∪ [x + α(h),∞) but since the target x is always the left edge of
the support, then we directly study its modified version on [x,∞).

5. Simulation studies for lognormal kernel density estimators

This section presents the results of simulation studies for three lognormal kernel density
estimators f̂n,LN, f̃n,LN and f ∗n,LN of f on T = (0,∞) corresponding to the three following
lognormal kernels LNθ, LNθ̃ and LNθ∗ respectively. Before proceeding to these simulation
studies, we first describe the different associated kernels from which the estimators
mentioned above are defined. In particular, we prove r2 of Proposition 4 for the second
lognormal estimator at the boundary region.

From the parametrized lognormal density function in Table 2, the lognormal kernel LNθ

is constructed by the mode-dispersion method, LNθ̃ is its modified version and LNθ∗ is
the extracted version in the lognormal density estimator of Jin and Kawczak (2003). The
mode-dispersion lognormal kernel LNθ(x,h) is defined by

LNθ(x,h)(u) =
1

uh
√

2π
exp

(
−1
2h2

[
log u − log

{
x exp

(
h2

)}])
Iu>0, x > 0, h > 0. (27)

For α(h) > 0 bounding both left edge and inside regions of T = (0,∞) = (0, α(h)]∪ (α(h),∞),
the modified version LNθ̃(x,h) := L̃Nθ(x,h) of LNθ(x,h) is given by

LNθ̃(x,h)(u) = LNθ̃−1(x,h)(u) + LNθ̃0(x,h)(u)

=
1

uh
√

2π
exp

− 1
2h2

[
log(u) − log

{
α3(h) exp (−h2/2)

x2

}]2 I(0,α(h)](u)

+
1

uh
√

2π
exp

(
−

1
2h2

[
log(u) − log

{
x exp (−h2/2)

}]2
)
I(α(h),∞)(u), (28)
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where the left boundary part θ̃−1 (x, h) and the inside part θ̃0 (x, h) are given in Table ??. The
third version of lognormal kernel which has been considered by Jin and Kawczak (2003)
without showing the method of its construction is defined as follows:

LNθ∗(x,h)(u) =
1

2u
√

2π log(1 + h)
exp

− log2 (u/x)
8 log(1 + h)

 I(0,∞)(u). (29)

It is linked to the expression (27) by

LNθ∗(x,h) = LN
θ(x exp (h2),2

√
log(1+h))

, x > 0, h > 0;

thus, the expression 2
√

log(1 + h)) corresponds to h in the first one and both are proportional
for small h. Denoting by r̂2 = r2( f̂n,LN), r̃2 = r2( f̃n,LN) and r∗2 = r2( f ∗n,LN) the r2 of these
lognormal kernel estimators as in Proposition 4, we have the following results:

r̂2 = r̃2,0 = 2r∗2 = 1 and r̃2,−1 = r̃2,−1(α); (30)

in particular, if α(h) = α1hβ then r̃2,−1(α) = (3β
√

2 + 2)/2 for β > −
√

2/3. Indeed, we only
prove the last part of (30): r̃2,−1 = r̃2,−1(α). Since

E (Ym) = exp
[
m

{
h2 + log(x)

}
+ (mh)2 /2

]
, ∀m ∈ R,

for any lognormal random variableY ∼ LNθ(x,h), one gets consecutively

∥∥∥∥LNθ̃−1(x,hn)

∥∥∥∥2

2
=

∫
{α(hn)}

√
2

0

v−
√

2/2dv

vh2
nπ
√

8
exp

 −1
2h2

n

log v − log

 {α(hn)}3
√

2

x2
√

2e
√

2h2
n/2




2
6

1

2hn
√

2π
E

(
Y
−
√

2/2
?

)
=

1

2hn
√

2π

{
x2

α3(hn)

}√2/2

exp
( √

2 + 1
4

h2
n

)

6
x
√

2/2
[
1 +

{(√
2 + 1

)
/4

}
h2

n

]
2
√
πhn {α(hn)}3

√
2/2

,

withY? ∼ LNθ(x?,hn) such that

x? = x−
√

2/2
{α(hn)}3

√
2 exp

(
−

√

2h2
n/2 − h2

n

)
;

and, therefore, r̃2,−1(α) is the largest power in hn of hn {α(hn)}3
√

2/2.

These three associated kernels are positive and more flexible than the associated gamma
kernel in terms of their construction. We illustrate the finite sample behavior of these
three lognormal estimators, through simulation studies. We analyze the influence of the
bandwidth in the estimators mean integrated squared errors (MISEs), and we measure the
amount of efficiency which is gained through the bias reduction. We study both situations
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of boundary and interior behaviors of these estimators on two different models. The first
one is essentially the truncated normal density functionNt(µ, σ; a, b) on interval [a, b]

Model 1 : X ∼ Nt(0.5, 0.15; a, b);

and the second is a mixture of truncated normal with exponential densities

Model 2 : X ∼ 0.5Nt(0.25, 0.15; a, b) + 0.5Exp(2).

For each Model, we simulate 100 replications of size n = 50, 100, 500 or 1000, by taking
a = 0.01 and b = 0.5 for boundary region and a = 0.5 and b = 8.5 for inside region.

In Table 8 and Table 9, we report the optimal bandwidths (in the sense of the MISE) with
the corresponding times. It is seen that the optimal bandwidths decrease in general (for
both models) when increasing the sample size; besides, the modified lognormal estimator
f̃n,LN has the smallest optimal bandwidths than the two other lognormal estimators f̂n,LN
and f ∗n,LN.
Table 10 and Table 11 provide the biases and the variances of the these estimators at some
selected points, corresponding to the boundary and inside points, respectively for Model 1
and Model 2. It is seen that for the small size sample, the modified lognormal estimator f̃n,LN

behaves better than f̂n,LN and f ∗n,LN at the boundary and it becomes worse than them when
increasing the sample size. However, taking into consideration the bias-variance tradeoff,
we see that the lognormal estimator f̂n,LN constructed by the mode-dispersion method is
better at the boundary in comparison with other and this, whatever the size of the sample.
For both Models 1 and 2, we find that there are no significant differences between the
pointwise variances of these three estimators. This consolidates the results of Proposition
7 of Subsection 3.2, since the three lognormal kernels belong to the same family. Also,
observing the pointwise bias of these estimators, it is seen that the bias of the first two
estimators f̂n,LN and f ∗n,LN increase more and more inside. This is due to the presence of

non-zero term A(x, h) f ′(x) in (19). The exact difference between their bias and those of f̃n,LN
shows the interest of bias reduction algorithm proposed by in Subsection 3.2. So that the
modified lognormal estimator f̃n,LN undoubtedly remains better in the interior region.
Finally, we report in Table 12 the minimum MISEs of these estimators. We remind the reader
that the theoretical MISE function is well approximated by the average of the ISEs which
can be defined for N = 100 (number of trials) as

ÎSE =
1
N

N∑
n=1

∫
T

{
f̂n(x) − f (x)

}2
dx.

Comparing these models, one can appreciate that the density corresponding to the first one
is underestimated and the second is overestimated by these three estimators. This is because
we have negative and positive biases in first and the second model, respectively. However,
according to Model 1, the MISEs of these estimators are smallest than those according to
Model 2. The best estimators remains f̃n,LN inside and f̂n,LN at the edges.
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6. Concluding remarks

This paper proposes a new family of nonparametric estimators for density functions
having compact support or not. The estimator is based on associated kernels which are
dependent intrinsically on the estimated point x and the smoothing parameter h. All
associated kernels are free of boundary effects but they have a bias slightly different from
that Rosenblatt (1956) and Parzen (1962). We have provided a general definition and a
technique of construction called "mode-dispersion" for these associated kernels as well as
an algorithm of the reduction of their biases. We have illustrated this construction method
and the bias reduction algorithm on the extended beta kernel which is a more general case
with two boundary regions. We have examined the finite sample performance in several
simulations particularly on three lognormal kernel density estimators f̂n,LN, f̃n,LN and f ∗n,LN
where LNθ(x,h) is constructed by mode-dispersion method, LNθ̃(x,h) is its modified version
and LNθ∗(x,h) is the version proposed by Jin and Kawczak (2003). In these simulations, the
optimal bandwidths are obtained by the least squares cross validation method and we
found that the modified lognormal kernel density estimator f̃n,LN has the smallest optimal
bandwidths. In fact, it has been found that the modified lognormal kernel estimator
f̃n,LN is undoubtedly better in the interior region and its first version f̂n,LN resulting from
the mode-dispersion method is better at the boundary region. This leads us to strongly
recommend the use of f̂n,LN at the edge and f̃n,LN in the interior region.

It would be interesting to compare the performance of all associated kernels with support
(0,∞) at the edges and inside on densities satisfying the conditions of Shoulder as done
in Zhang (2010). Since the bandwidth h plays a very important role in the performance
of the associated kernel density estimators, an interesting topic for future research is to
investigate automatic bandwidth selectors. Bandwidth selectors can be derived from other
possible criteria as Bayesian (see, e.g., Zougab et al. (2012)) or the adaptative modified
Lepski methods. An other interesting topic is to extend this construction to the multivariate
data defined on more involved support. Finally, it would be important to combine the
present results with those obtained in Kokonendji and Senga Kiessé (2011) for estimating
densities defined on univariate and then multivariate time-scale sets by taking into account
or not the correlation for multivariate cases.
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Table 3. Some non-classical associated kernels for non-standard density estimators

Kθ(x,h) Ext. beta Beta Gamma Inv. gamma Inv. Gaussian

Sθ(x,h) [t1, t2] [0, 1] (0,∞) (0,∞) (0,∞)

θ(x, h) (12)
(x

h
+ 1,

1 − x
h

+ 1
) (x

h
+ 1, h

) ( 1
xh
− 1,

1
h

) (
x

√
1 − 3xh

,
1
h

)

Aθ(x, h) (13)
h(1 − 2x)

1 + 2h
h

2x2h
1 − 2xh

x
{

1
√

1 − 3xh
− 1

}

Bθ(x, h) (14)
h
{
x(1 − x) + h + h2}

(1 + 3h)(1 + 2h)2 h(x + h)
x3h(1 − 3xh)−1

(1 − 2xh)2

x3h
(1 + 3xh)3/2

r2(x) 1/2 1/2 1/2 1/2 1/2

Table 4. Some non-classical associated kernels for non-standard density estimators (Con-
tinuation of Table 3)

Kθ(x,h) Rec. inv. Gaussian Pareto Lognormal

Sθ(x,h) (0,∞) [x,∞) (0,∞)

θ(x, h)
(

1
√

x2 + xh
,

1
h

) (
x,

1
h

) (
log(x) + h2, h
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√
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xh
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x
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e(3h2)/2
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)
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Fig. 1. Behaviors of some non-classical kernels on positive real line; in (a) the behaviors at
the edges and in (b) the inside behaviors

Table 5. Some values of the total mass of f̂n, Λn , 1 defined in (17) for h = 0.05 and n = 1000

Type o f kernel sample 1 sample 2 sample 3 sample 4 sample 5
Beta 1.028727 1.037655 1.042822 1.045671 1.046681
Gamma 0.978753 0.982778 1.009463 1.056642 0.912753
Inverse gamma 0.970302 0.922467 0.976362 0.978275 0.967052
Inverse Gaussian 1.247213 0.978136 1.034702 1.003275 1.062435
Reciprocal inverse Gaussian 0.937992 0.998741 0.993740 0.990672 0.983422
Lognormal 1.056480 0.947233 0.887284 1.139463 0.874912
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Table 8. Boundary optimal bandwidths by LSCV for three lognormal kernel density esti-
mators

Model Size f ∗n,LN f̂n,LN f̃n,LN

n hlscv Time/s hlscv Time/s hlscv Time/s
1 50 0.121 0.456 0.412 0.360 0.002 2.153

100 0.111 0.494 0.376 0.416 0.003 2.829
500 0.110 1.409 0.367 1.090 0.004 3.922

1000 0.104 2.893 0.351 2.458 0.003 7.543
2 50 0.374 0.554 0.089 0.579 0.088 0.572

100 0.366 0.553 0.087 0.772 0.087 0.906
500 0.364 1.976 0.056 2.734 0.055 2.846

1000 0.327 4.251 0.025 5.858 0.025 5.664

Table 9. Optimal bandwidths in interior region by LSCV for three lognormal kernel density
estimators

Model Size f ∗n,LN f̂n,LN f̃n,LN

n hlscv Time/s hlscv Time/s hlscv Time/s
1 50 0.470 0.394 0.997 0.429 0.996 0.471

100 0.429 0.410 0.996 0.524 0.996 0.573
500 0.406 1.151 0.991 1.513 0.993 1.695

1000 0.400 2.605 0.991 3.456 0.991 3.718
2 50 0.456 0.639 0.997 0.630 0.996 0.622

100 0.429 0.582 0.996 0.812 996 0.849
500 0.410 2.021 0.994 2.570 993 2.951

1000 0.397 4.124 0.992 4.889 991 6.039
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Table 10. Some pointwise biases and variances of the three lognormal kernel density esti-
mators following Model 1

Size Target f ∗n,LN f̂n,LN f̃n,LN

n x Bias Variance Bias Variance Bias Variance
100 0.25 0.189 e+1 0.450 e-2 −0.207 e+1 0.248 e-2 −0.383 e+1 0.912 e-2

0.50 −0.111 e+1 0.683 e-2 −0.986 e+0 0.192 e-2 −0.330 e+1 0.820 e-2
2.50 −0.331 e+1 0.215 e-2 −0.329 e+1 0.533 e-2 −0.390 e+1 0.121 e-2
3.50 −0.381 e+1 0.265 e-2 −0.410 e+1 0.127 e-2 −0.396 e+1 0.368 e-2

500 0.25 0.126 e+1 0.781 e-2 −0.325 e+1 0.534 e-2 −0.168 e+1 0.091 e-2
0.50 −0.138 e+1 0.752 e-2 −0.519 e+1 0.186 e-2 −0.122 e+1 0.431 e-2
2.50 −0.374 e+1 0.504 e-2 −0.370 e+1 0.101 e-2 −0.481 e+1 0.136 e-2
3.50 −0.347 e+1 0.674 e-2 −0.529 e+1 0.307 e-2 −0.501 e+1 0.477 e-2

1000 0.25 0.123 e+1 0.912 e-2 −0.185 e+1 0.100 e-2 −0.124 e+1 0.081 e-2
0.50 −0.159 e+1 0.811 e-2 −0.208 e+1 0.487 e-2 −0.113 e+1 0.119 e-3
2.50 −0.376 e+1 0.785 e-2 −0.372 e+1 0.537 e-2 −0.584 e+1 0.652 e-2
3.50 −0.372 e+1 0.354 e-2 −0.641 e+1 0.154 e-2 −0.549 e+1 0.845 e-2
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Fig. 2. MSE values for x between 0 and 1.4 for five associated kernel density estimators
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Table 11. Some pointwise biases and variances of the three lognormal kernel density esti-
mators following Model 2

Size Target f ∗n,LN f̂n,LN f̃n,LN

n x Bias Variance Bias Variance Bias Variance

100 0.25 0.265 e-1 0.137 e-3 0.207 e-1 0.248 e-3 0.191 e-1 0.721 e-3

0.50 0.273 e-1 0.176 e-3 0.212 e-1 0.292 e-3 0.217 e-1 0.714 e-3

2.50 0.230 e-1 0.148 e-3 0.195 e-1 0.283 e-3 0.183 e-1 0.698 e-3

3.50 0.237 e-1 0.132 e-3 0.173 e-1 0.257 e-3 0.162 e-1 0.672 e-3

500 0.25 0.125 e-1 0.342 e-3 0.121 e-1 0.434 e-3 0.258 e-1 0.575 e-3

0.50 0.141 e-1 0.364 e-3 0.109 e-1 0.486 e-3 0.262 e-1 0.562 e-3

2.50 0.143 e-1 0.219 e-3 0.108 e-1 0.367 e-3 0.103 e-1 0.740 e-3

3.50 0.113 e-1 0.205 e-3 0.095 e-1 0.326 e-3 0.091 e-1 0.725 e-3

1000 0.25 0.060 e-1 0.428 e-3 0.058 e-1 0.600 e-3 0.321 e-1 0.379 e-3

0.50 0.054 e-1 0.454 e-3 0.046 e-1 0.687 e-3 0.347 e-1 0.360 e-3

2.50 0.038 e-1 0.325 e-3 0.034 e-1 0.437 e-3 0.031 e-1 0.795 e-3

3.50 0.035 e-1 0.318 e-3 0.021 e-1 0.414 e-3 0.019 e-1 0.781 e-3

Table 12. The average of the ISEs for three lognormal kernel density estimators

Model Size ÎSE at the edges ÎSE in interior

n f ∗n,LN f̂n,LN f̃n,LN f̂n,LN f ∗n,LN f̃n,LN

1 50 0.146 e-1 0.141 e-2 0.359 e-2 0.184 e-2 0.152 e-2 0.481 e-3

100 0.120 e-1 0.134 e-2 0.475 e-2 0.179 e-2 0.146 e-2 0.444 e-3

500 0.116 e-1 0.132 e-2 0.482 e-2 0.168 e-2 0.135 e-2 0.438 e-3

1000 0.828 e-2 0.121 e-2 0.485 e-2 0.165 e-2 0.132 e-2 0.416 e-3

2 50 0.124 e-2 0.340 e-3 0.277 e-3 0.312 e-3 0.396 e-3 0.808 e-4

100 0.917 e-3 0.305 e-3 0.288 e-3 0.302 e-3 0.311 e-3 0.786 e-4

500 0.891 e-3 0.287 e-3 0.308 e-3 0.298 e-3 0.287 e-3 0.751 e-4

1000 0.837 e-3 0.267 e-3 0.310 e-3 0.272 e-3 0.252 e-3 0.322 e-4
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