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Abstract. We study a Cumulative Sum (CUSUM)-type test to detect a change in the
unconditional variance of GARCH models. We show that, under the null hypothesis (no
change), the CUSUM test statistic converges to the supremum of a standard Brownian
bridge. Using Monte Carlo simulation, we demonstrate that the asymptotic power of the
test is almost 1 and compare the test result with existing results in the literature. Finally,
the test procedure is applied to real-world situation namely stock market returns where we
are able to detect a change in the unconditional variance at a very early stage of the financial
crisis in comparison to other previous analyses of the same dataset.

Key words: GARCH model ; Change-point ; Squared cusum test ; Brownian bridge ;
Weak convergence.
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Résumé. Nous étudions un test de type CUSUM pour la détection de rupture dans la
variance inconditionnelle des modèles GARCH. Nous montrons que sous l’hypothèse nulle,
notre statistique de test converge vers le supremum d’un pont Brownien standard. Utilisant
des simulations de type Monte Carlo, nous démontrons que la puissance asymptotique du
test est presqu’égale à 1 et comparons le résultat du test avec les résultats existants dans
la littérature. Enfin, un exemple d’application sur les données réelles des rendements du
marché boursier nous a permis de détecter une rupture dans la variance inconditionnelle à
un stade très précoce de la crise financière par rapport à d’autres analyses précédentes du
même ensemble de données.
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1. Introduction

The autoregressive models introduced by Yule (1927) play a very important role in the
study of the modelling and forecasting of temporal data. The Generalized Autoregressive
Conditional Heteroscedasticity models (GARCH), introduced by Bollerslev (1986), which
are special cases of autoregressive models, are applied to time series with no constant
variance (hence the term heteroscedasticity) commonly present in the financial world (e.g.
exchange rates, stock prices, etc). With heavy consequences sometimes, the distribution of
the underlying stochastic process of the time series can change abruptly at a given time.
In particular, the mean or covariance structure of this process may change abruptly at
unknown dates. Several authors have pointed out the dangers faced if these moments of
change are neither studied nor identified.

Therefore, since Page (1955), the problem of abrupt change detection has received much
attention in the literature. A large number of articles have been published in various journals
(See, e.g. Iclán and Tiao (1994), Csörgő and Horváth (1997), Chen and Gupta (2011), and
the references therein). Recently, statistical theory on unique change-point in autoregressive
models has been considered. We can cite, for example, Chalmond (1981) on the detection of
a change in mean of an ARMA process. Bai (1994) obtained the weak convergence of the se-
quential empirical process of the estimated residuals in ARMA(p, q) models and applied the
rusult to a change-point problem. Horváth et al. (2001) obtained the asymptotic law of the
sequential empirical process of the squares of the residuals of an ARCH model and applied
the results to change-point detection. Boldin (2002) established an asymptotic development
of the residual empirical process of an ARCH model and constructed a Kolmogorov-Smirnov
type test to detect change point in the residual distribution of the ARCH model. Kokoszka
and Teyssière (2002) proposed two classes of tests to detect changes in volatility of a
GARCH process. Procedures based on squared model residuals and on the likelihood ratio
are considered. Lee et al. (2003) consider the problem of testing for a parameter change in
GARCH(1,1) models based on the residual cusum test. Berkes et al. (2004) suggested a
sequential monitoring scheme to detect changes in the parameters of a GARCH(p, q) se-
quence. Their procedure is based on quasi-likelihood scores and does not use model residuals.

The GARCH processes are uncorrelated, but the sequence of their squares are correlated.
In pratice, using financial data, the squares of the returns are used to estimate the so-called
volatility, which is an important parameter in asset pricing models. Unlike all the methods
used for change-point detection by the aforementioned authors, the fact that the squares
obtained from the GARCH are ARMA inspired us to construct our CUSUM-type test
statistic based on squared observations of the GARCH, thus generalising the work of
Chalmond (1981).

The remainder of the paper is organised as follows. In section 2 we present how the
CUSUM test statistic is constructed. In Section 3, we establish the asymptotic distribution
of the test statistic under the null hypothesis. In Section 4, we perform a simulation study
and apply our test procedure to S&P 500 stock market returns and we conclude in Section 5.
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2. CUSUM test statistic

Let us observe a stochastic phenomenon (z1, z2, . . . , zn) which is known to be generated by
the square of a GARCH process. The model formally is as

zt = u2t , (1)

where
ut = σtεt, (2)

with
E(εt) = 0, E(ε2t ) = 1,

σ2
t = α0 +

q∑
i=1

αiu
2
t−i +

p∑
j=1

βjσ
2
t−j , t = 1, 2, . . . (3)

where the αi, i = 1, 2, . . . , q and βj , j = 1, 2, . . . , p are nonnegative constants and α0 is a
(strictly) positive constant, which guarantees the strict positivity of the conditional variance,
and

q∑
i=1

αi +

p∑
j=1

βj < 1 (4)

which guarantees the stationarity of the process ut (see Gouriéroux (1997)).

Let us introduce the innovation corresponding to the square of the process : νt = u2t − σ2
t .

Replacing σ2
t−j by u2t−j − νt−j in (3), we obtain

u2t = α0 +

max(p,q)∑
i=1

θiu
2
t−i + νt −

p∑
j=1

βjνt−j , (5)

where θi = αi + βi and with the convention θi = βi (resp. θi = αi) if i > q (resp. j > p).

If L denotes the lag-operator
(
LjXt = Xt−j

)
, then (5) becomes

u2t = α0 +

max(p,q)∑
i=1

θiL
iu2t + νt −

p∑
j=1

βjL
jνt

i.e., 1−
max(p,q)∑
i=1

θiL
i

u2t = α0 +

1−
p∑
j=1

βjL
j

 νt. (6)

According to (4), the roots of the characteristic polynomial of

Θ(L) =

1−
max(p,q)∑
i=1

θiL
i
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are strictly outside the unit circle, thus Θ(L) is invertible (see Gouriéroux (1997)). We then
obtain

u2t = ω + νt +

∞∑
j=1

bjνt−j , (7)

with

ω =

1−
max(p,q)∑
i=1

θi

−1 α0

and the bj , j > 1 are defined by the generating function1−
max(p,q)∑
i=1

θix
i

−11−
p∑
j=1

βjx
j

 = 1 +

∞∑
j=1

bjx
j .

It is therefore a question of knowing if the phenomenon zt = u2t has not undergone an
abrupt change at a certain date t∗ unknown, which can be interpreted as an abrupt change
in the unconditional variance of the process (ut).

Let us define the change-point problem by :

E(zt) =

{
ω if t < t∗

ω + δ if t ≥ t∗.

We then consider the testing problem of the null hypothesis given by

H0 : E(zt) = ω,

against the alternative hypothesis

H1 : E(zt) = ω + δ,

where δ denotes a nonzero real number.

Denote, respectively by deviations and cumulative sum of the deviations, the two statistics
below :

dr = zr − z

where z =
1

n

n∑
i=1

zi =
1

n

n∑
i=1

u2i , and

Sr =

r∑
i=1

di.

Under H0 the sums Sr have zero mean, whereas an abrupt change in the mean of zt (which
is equivalent to an abrupt change in the unconditionnal variance of the GARCH process ut)
propagates bias after t∗. Indeed, it is shown that

E(Sr) = t∗(r − t∗)(w + δ).
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This specifies the sensibility of the cumulative sum to a possible abrupt change. Thus we
define the test statistic by

Kn = sup
06t61

|Xn(t)|, (8)

where

Xn(t) =
1√
n
S[nt]

and [x] denotes the largest integer smaller than or equal to x. Let D[0; 1] be the space
of functions on [0; 1] that are right-continuous and have left-hand limits endowed with
the Skorokhod topology. From Billingsley (1968), Xn is a random element of D[0; 1].
In the next section, we study the asymptotic behaviour of the test statistic Kn. Before
we go further, we stress that the theory of weak convergence we will be dealing takes
places in the Skorokhod space. But later, we will have the opportunity to deal with
it in the more concenient space of bounded functions `+∞ endowed with the uniform
topology as made fashion by the book of van der Vaart and Wellner (1996). The paper
by Lo (2014) and the book of Lo et al. (2016). would be interesting introductionary readings.

3. Asymptotic distribution of Kn

In all the sequel, we assume that

∞∑
j=0

bj 6= 0. From now on, let us make the following

assumptions :

A.1 E
(
u4t
)
<∞.

A.2

∞∑
j=1

j|bj | <∞.

A.3 There is a random variable (r.v.) Y dominating νi and satisfying
i) EY 2 < +∞
ii) E(Y 2 ln+ |Y |) < +∞.

A.4 The sequence of r.v. (νi) is uniformly integrable such that
i) P [|νi| > x] 6 cP [|Y | > x] , for each x > 0, i > 1 and for some nonnegative constant
c.

ii)
1

n

n∑
i=1

E(ν2i |νi−1)
a.s.→ σ2

ν , n→∞, where νi denotes the σ−field genereted by νi′ , i
′ 6 i

and
a.s.→ denotes the almost sure convergence.

iii) sup
k

E
(
|νk|2+η

)
<∞, ∀η > 0.

These assumptions are quite standard and are required to ensure the invariance principle in
the case of a sequence of non independent r.v. as stated in Lemma 1 below.
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Theorem 1. Let : b =

∞∑
j=0

bj and τ = σνb. If Assumptions A.1 - A.4 hold then under H0,

in D[0; 1],
1

τ
sup

06t61
Xn(t)

d→ sup
06t61

W 0(t)

and
1

τ
Kn

d→ sup
06t61

|W 0(t)|,

where W 0(t) is a standard Brownian bridge and
d→ denotes the convergence in distribution.

Proof
The proof of Theorem 1 is based on two lemmas, which we present after introducing a
simple polynomial decomposition (see Phillips and Solo (1992)).

Let

B(L) =

∞∑
j=0

bjL
j .

Then

B(L) = B(1)− (1− L)B̃(L) = b− (1− L)B̃(L), (9)

where

B̃(L) =

∞∑
j=0

b̃jL
j , b̃j =

∞∑
k=j+1

bk.

Let

Zi = zi − E(zi),

from (7),

Zi = B(L)νi,

where νi is the innovation of the process u2i with variance σ2
ν . Then we have

Xn(t) =
1√
n

[nt]∑
i=1

(
Zi − Z

)
. (10)

From (7) and (9),

Zi = bνi + Z̃i−1 − Z̃i, (11)

where

Z̃i = B̃(L)νi =

∞∑
j=0

b̃jνi−j , b̃j =

∞∑
k=j+1

bk.
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Lemma 1. If Assumptions A.1 - A.4 hold, then under H0 we have in D[0; 1]

1√
n

[nt]∑
i=1

Zi
d→ bσνW (t),

where σν is the standard deviation of {νi} and W (t) a standard Brownian motion.

Proof of Lemma 1
We check that (νi) is a martingale difference sequence (m.d.s.). Indeed, denoting by ui the
σ−field generated by ui′ , i

′ 6 i, it’s clear that νi−1 ⊂ ui−1 and that the sequence (νi) is
adapted to the filtration (νi). By Assumption A.4 i), (νi) is uniformly integrable hence it is
bounded in L1 i.e. E|νi| <∞, ∀i. Moreover we have

E
(
νi|νi−1

)
= E

(
E(νi|ui−1)|νi−1

)
= E

(
E((u2i − σ2

i )|ui−1)|νi−1
)

= E
(
(Eu2i |ui−1 − σ2

i )|νi−1
)

= E((σ2
i − σ2

i )|νi−1)

= 0.

Since (νi) is m.d.s., uniformly integrable, all the conditions in Theorem 3.15 in Phillips and
Solo (1992) are satisfied under the assumptions A.1 - A.4. Hence Lemma 1 follows. �

Lemma 2. . If the assumptions of Lemma 1 hold, then

1√
n

[nt]∑
i=1

Z
d→ bσνtW (1).

Proof of Lemma 2. We have,

1√
n

[nt]∑
i=1

Z =
1

n

[nt]∑
i=1

1√
n

n∑
j=1

Zj =
[nt]

n

 1√
n

n∑
j=1

Zj


and Lemma 2 follows from Lemma 1 and the fact that

[nt]

n
−→ t as n −→ +∞. �

{Xn(t)} satisfies the invariance principles in D[0; 1] under the null hypothesis. Thus by
Kokoszka and Leipus (1999), page 183, the asymptotic theory for the standard statistic
sup

06t61
|Xn(t)| and its modifications follows automatically. This ends the proof of Theorem

1. �

4. Simulations and applications

In practice, a large value of Kn implies a change in the variance. At the level α = 0.05
we reject the null hypothesis, under which no variance change is assumed to occur, if

(Kn/τ) > 1.358 (see Iclán and Tiao (1994)). Also note that with t =
k

n
we have t∗ =

k∗

n

and
Kn

τ
= max

16k6n
Ck.
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4.1. Simulation study

In this subsection, we evaluate the performance of the test statistic Kn. In order to apply
the asymptotic result of Theorem 1 we have to estimate τ2 racalling that zt has a MA(q)
approximation. In the case of a MA(q), γh = 0 if h > q. We estimate τ2, as in Berkes et
al. (2009), by

τ̂2n =
1

n

n∑
i=1

(zi − z)2 + 2

q∑
j=1

(
1− j

q + 1

)
1

n− j

n−j∑
i=1

(zi − z)(zi+j − z)

and it can be shown (see Giraitis et al. (2003)) that

|τ̂n − τ2| = op(1).

According to Kokoszka and Leipus (1999), if q(n) is a numerical sequence that q(n) →

∞, and
q(n)

n
→ 0 (n→∞) then by replacing τ with τ̂n, Theorem 1 remains true.

In these simulations, we consider GARCH(1, 1) models. We denote by θ = (α0, α, β) the
parameter and by σ2 the unconditional variance of the model considered obtained by

σ2 =
α0

1− α− β
. σ2

0 and σ2
1 are respectively the unconditional variance under the null

hypothesis (no change) and alternative hypothesis. We will take q(n) =
[
(ln(n))2

]
as in Lee

et al. (2003).

Figure 1 shows two scenarios of GARCH(1, 1) model : a scenario without change (Figure 1(a)
and Figure 1(c)) and the same series with change at k∗ = 500 (Figure 1(b) and Figure 1(d)).
Figure 1(a) represents a sample of GARCH(1, 1) model of size 1000 for σ2

0 = 4.255 (θ0 =
(2, 0.03, 0.5)) (without change) and Figure 1(b) the same series but now the variance, at
k∗ = 500, changes from σ2

0 = 4.255 to σ2
1 = 6.666 (θ1 = (2, 0.2, 0.5)). On the plot of Ck

(Figure 1(c)) we can see that all values (then the maximum) of Ck are less than the limit of
the critical region which is represented by the horizontal red line, confirming that there is
no change. On the other hand, on Figure 1(d), around the point where the change occurs,
Ck is greater than the critical value of the test and the place of the maximum is taken is the
time k∗ where the change occurs. As the maximum of Ck (which is our test statistic value)
is large, we may conclude that a change occurs and reject the null hypothesis. Furthermore,
on Figure 1(b) the change is not apparent but our proposed test statistic detects it ; which
confirms its performance.
Figure 2 shows one scenario of GARCH(1, 1) model with change where the unconditional
variance changes from σ2

0 = 10 (θ0 = (1, 0.1, 0.8)) to σ2
1 = 3.333 (θ1 = (1, 0.1, 0.6)) at

different times. The first at k∗ = 300 (Figure 2, (a) and (c)) and the second at k∗ = 700
(Figure 2, (b) and (d)). In Figure 2(b) and Figure 2(d) we observe the same thing like in
Figure 1(d) ; the maximum value of Ck which is our test statistic value has taken place at
the change-point. This value is greater than the critical value of the test, hence confirms
that a change occurs at these different points in time.

Table 1 presents the results of a simulation study intended to assess the performance of
the change-point detection in the unconditional variance. The empirical levels computed
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(a)  1000 observations of a GARCH(1,1) model without change 

Temps

0 200 400 600 800 1000

−
6

−
4

−
2

0
2

4
6

(b)   1000 observations of a GARCH(1,1) model with change at k*=500

Temps

0 200 400 600 800 1000

−
10

−
5

0
5

500

(c)  Ck=|Xn(k n)| τ for a  GARCH(1,1) model without change  

k

C
k

0 200 400 600 800 1000

0.
0

1.
0

2.
0

3.
0

(d)  Ck=|Xn(k n)| τ for a GARCH(1,1) model with change at k*=500

k

C
k

0 200 400 600 800 1000

0.
0

1.
0

2.
0

3.
0

Fig. 1. Realisation of 1000 obsevations of a GARCH(1,1) process and the corresponding curve

Ck =
1

τ̂n
|Xn(k/n)|. (a) is a GARCH(1, 1) without change-point, where the unconditional variance

σ2
0 = 4.255. (b) is a GARCH(1, 1) with change-point where the unconditional variance σ2

0 = 4.255

changes to σ2
1 = 6.666 at k∗ = 500. (c) and (d) are their corresponding curves Ck . The horizontal

red line represents the limit of the critical region of the test.

when the unconditional variance is σ2
0 (without change) and the empirical powers computed

when when the unconditional variance σ2
0 changes to σ2

1 at k∗ = 0.3n, 0.5n, 0.7n where,
n = 500, 1000 is the sample size. The results of the empirical levels and powers calculations
are obtained after 200 replications. For the powers, we considered various data generating
models named Si, i = 1, 2, 3, 4 of GARCH (1,1).

S1 : GARCH(1,1) where the unconditional variance remains constant (σ2 = 0.222)

σ2
0 = 0.222 for θ0 = (0.100, 0.050, 0.500)
σ2
1 = 0.222 for θ1 = (0.150, 0.030, 0.295).

S2 : GARCH(1,1) where the unconditional variance changes (small change) from σ2
0 = 0.222

(for θ0 = (0.10, 0.05, 0.50)) to σ2
1 = 0.400 (for θ1 = (0.10, 0.05, 0.70)).

S3 : GARCH(1,1) where the unconditional variance changes (large change) from σ2
0 = 4.255

(for θ0 = (2.00, 0.03, 0.50)) to σ2
1 = 2.127 (for θ1 = (1.00, 0.03, 0.50)).

S4 : GARCH(1,1) where the unconditional variance changes (large change) from σ2
0 = 4.255

for (θ0 = (2.00, 0.03, 0.50)) to σ2
1 = 6.666 (for θ1 = (2.00, 0.2, 0.50)).

It can be observed that empirical levels approach the nominal one when n increases and
the power increases as n increases. The power of the test is close to the nominal level of
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(a)  1000 observations of a GARCH(1,1) model with change at k*=300 

Temps

0 200 400 600 800 1000

−
5

0
5

(b)   1000 observations of a GARCH(1,1) model with change at k*=700

Temps

0 200 400 600 800 1000

−
20

−
10

0
5

10
15

500

(c)  Ck=|Xn(k n)| τ for a  GARCH(1,1) model with change at k*=300  

k

C
k

0 200 400 600 800 1000

0
1

2
3

4

(d)  Ck=|Xn(k n)| τ for a GARCH(1,1) model with change at k*=700

k

C
k

0 200 400 600 800 1000

0
1

2
3

4

Fig. 2. Realisation of 1000 obsevations of a GARCH(1,1) with change-point and their corresponding

curve Ck =
1

τ̂n
|Xn(k/n)|. (a) curve with change-point where the unconditional variance σ2

0 = 10

changes to σ1 = 3.333 at k∗ = 300. (b) curve with change-point where the unconditional variance

σ2
0 = 10 changes to σ2

1 = 3.333 at k∗ = 700. (c) and (d) are their corresponding curves Ck. The

horizontal red line represents the limit of the critical region of the test.

the test when the unconditional variance remains unchanged even if the parameters of the
model change. It can also be observed that our procedure is sensitive to a slight variation
of the unconditional variance. Moreover, without surprise, if the change in unconditional
variance is greater, then it is easier to detect it. The powers diminish compared to the case
in which the change point is at the middle of the series. It can also be observed that when
α0 and β change, the test also achieves good powers. These results enable us to conclude
that the test performs well.

In Table 2 we present the results of a simulations study intended to compare the performance
of our change point-detection procedure to that of Lee et al. (2003) (method based on the
Residual CUSUM test), even though their work does not rely directly on the detection of
change in the unconditional variance of the model but rather on the detection of changes in
the parameters of the model. The results of the empirical power calculations are obtained
after 1000 replications. Our results are those in bold in the table. In regard of the results,
our methode perform better than the one proposed by Lee et al. (2003).
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Table 1. Empirical levels and powers at the nominal level 0.05 of test for unconditional variance

changes of GARCH(1,1) model with one change-point.

n = 500 n = 1000
Empirical levels :

σ
2
= 0.222 0.060 0.055

σ
2
= 4.255 0.080 0.045

Empirical powers :

σ
2
0 = 0.222; σ

2
1 = 0.222; k

∗
= 0.3n 0.065 0.060

k
∗
= 0.5n 0.055 0.050

k
∗
= 0.7n 0.045 0.055

σ
2
0 = 0.222; σ

2
1 = 0.400; k

∗
= 0.3n 0.940 0.980

k
∗
= 0.5n 0.975 1.000

k
∗
= 0.7n 0.95 0.995

σ
2
0 = 4.255; σ

2
1 = 2.127; k

∗
= 0.3n 1.000 1.000

k
∗
= 0.5n 1.000 1.000

k
∗
= 0.7n 0.980 1.000

σ
2
0 = 4.255; σ

2
1 = 6.666; k

∗
= 0.3n 0.700 0.950

k
∗
= 0.5n 0.855 0.990

k
∗
= 0.7n 0.735 0.905

Table 2. GARCH(1,1) process with abrupt change-point in the middle of the sample (small

and large change in unconditional variance) ; the unconditional variance σ2
0 = 0.500 (for θ0 =

(0.10, 0.40, 0.40)) changes to σ2
1 = 0.200 (for θ1 = (0.10, 0.10, 0.40)) ; the unconditional variance

σ2
0 = 0.833 (for θ0 = (0.50, 0.20, 0.20)) changes to σ2

1 = 2.500 (for θ1 = (0.50, 0.60, 0.20)).

n = 500 n = 1000

Empirical powers

σ
2
0 = 0.500 ; σ

2
1 = 0.200 0.974 (0.526) 0.999 (0.928)

σ
2
0 = 0.833 ; σ

2
1 = 2.500 0.953 (0.493) 0.993 (0.901)

4.2. Real data analysis

In this subsection, we intend to demonstrate the validity of our method in actual practice.
For this task, we analyse the daily returns of S&P 500 stock market from September 16,
1980 to January 31, 2008 which were also analysed recently by Kouamo et al. (2010). Recall

that the T̃ k1,k2J1,J2
(k) plot, defined in Kouamo et al. (2010), is a useful tool to detect multiple

changes. In our case, we are only focused on a single and most significant change in the data.
Our procecdure detects a change at the vertical blue line in Figure 3. It corresponds to a
volatility change held in March 1997. Remark that change volatility coincides with the Asian
Crisis in July 1997 which turns into an economic crisis. These results are in accordance with
those obtained by Kouamo et al. (2010).
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Fig. 3. (a) is a Standard and Poor daily return 09/16/1980-01/31/2008. (b) is the corresponding

curve Ck =
1

τ̂n
|Xn(k/n)|. The horizontal red line represents the limit of the critical region of the

test. The vertical blue line represents the time where the change occurs.

5. Conclusion

In this article, we proposed a CUSUM-type test based on the square of GARCH to detect
a change in the unconditional variance of a GARCH. Using a polynomial decomposition
like Phillips and Solo, we showed that our test statistic converges to the supremum of
a standard Brownian bridge. The results of the simulations enabled us to confirm the
performance of our procedure. This method, applied to real data of type S&P 500 stock
market returns (09/16/1980 to 01/31/2008), permit to detect a change in the data ; which
can be interpreted as the financial crisis in Asia in March 1997. For future study, we will
extend our procedure to detect multiple changes in GARCH models and achieve a CUSUM
type test based on the absolute value of the GARCH to detect changes in the parameters
of GARCH models.
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