
Afrika Statistika

Vol. 12 (2), 2017, pages 1275–1286.
DOI: http://dx.doi.org/10.16929/as/2017.1273.104

Afrika Statistika

ISSN 2316-090X

Progressive Censored Burr Type-XII
Distribution Under Random Removal Scheme:
Some Inferences

Gyan Prakash∗

Department of Community Medicine, M. L. N. Medical College, Allahabad, U. P., India

Received January 11, 2017; Accepted May 05, 2017

Copyright c© 2016, Afrika Statistika and Statistics and Probability African Society (SPAS).
All rights reserved

Abstract. When some sample values at either or both the extremes might have been as-
sorted, a censoring scheme is much useful. Nevertheless, in some reliability experiments, the
number of items fell out the experiment cannot be prefixed random in some situations. For
such situations, a random removal scheme with censoring scheme may offer a good result.
Here, a random removal scheme with the Progressive censoring plan is assumed for statis-
tical inference, when fill out items of the experiments cannot be prefixed. The analysis of
the present discussion has carried out with the help of a real data set for the Burr Type-XII
distribution.

Résumé. Lorsque certaines valeurs d’échantillon à l’une ou l’autre des deux extrêmes ont
pu être assorties, un schéma de censure est très utile. Néanmoins, dans certaines expériences
de fiabilité, le nombre d’articles tombés en panne ne peut pas être préfixé. Dans de telles
situations, un système de suppression aléatoire avec un système de censure peut offrir un
bon résultat. Ici, un système de suppression aléatoire avec un plan de censure progressif
est supposé pour l’inférence statistique, lorsque le nombre de pannes ne peut être préfixé.
L’analyse de la présente discussion a été effectuée à l’aide d’un ensemble de données réelles
issues de la distribution Burr Type-XII.
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1. Introduction

In much life testing experiments, the experimenter may not be observing the lifetimes of all
inspected units in life test. This may be because of time limitation and/or cost or material
resources for data collection. One of the most common censored tests is Type-II censoring.
It is noted that one can use Type-II censoring for saving time and money. However, when
the lifetimes of products are very high, the experimental time of a Type-II censoring life
test can be still too long. A generalization of this censoring is named as Progressive Type-II
censoring, which is useful when the loss of life test units at the point other than the
termination point is unavoidable. Recently, the Progressively Type-II censoring scheme has
received much interest among the statisticians.

The cumulative density and probability density function of Burr Type-XII distribu-
tion are given as

F (x; θ, σ) = 1− (1 + xσ)
−θ

; θ > 0, σ > 0, x ≥ 0 (1)

and

f (x; θ, σ) = σθxσ−1 (1 + xσ)
−θ−1

; θ > 0, σ > 0, x ≥ 0 (2)

The two-parameter Burr Type-XII distribution has unimodal or decreasing failure rate func-
tion given as

ρ (x) = σθxσ−1 (1 + xσ)
−1

; θ > 0, σ > 0, x ≥ 0.

It is clear that the parameter θ does not affect the shape of the failure rate function ρ (x)
and σ is the shape parameter. Also, ρ (x) has a unimodal curve when σ > 1 and it has
decreased failure rate function when σ ≤ 1. It has been applied in areas of quality control,
reliability studies, duration and failure time modeling. Other areas of application include
the analysis of business failure data, the efficacy of analgesics in clinical trials, and the
times to failure of electronic components. Zimmer et al. (1998) discussed the statistical
and probabilistic properties of the Burr Type-XII distribution and its relationship to other
distributions used in reliability analyses.

Rodriguez (1977) presented complete guides about the Burr Type-XII distributions. Lots
of work has done on underlying distribution, a little few of them are discussed here. Nigm
(1988) presents some prediction bounds for the Burr Model. Al-Huesaini & Jaheen (1995)
stated about the Bayes prediction bounds for the Burr Type-XII failure model. Ali-Mousa
& Jaheen (1995) extend the results of the underlying model. Wu et al. (2010) obtained
maximum likelihood (ML) estimates, exact confidence intervals and exact confidence
regions for the parameters of the Gompertz and Burr Type-XII distributions based on
failure-censored sampling, respectively.

Lee et al. (2009) obtained the Bayes and empirical Bayes estimators of reliability perfor-
mances of this model under progressively Type-II censored samples. Soliman et al. (2012)
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obtained some Bayes estimation from Burr Type-XII distribution by using progressive
first-failure censored data.

Jang et al. (2014) discussed some estimation based on Bayesian setup for Burr Type-XII
distribution under progressive censoring. Danish & Aslam (2014) deals with Bayesian
estimation of unknown parameters of Burr Type-XII distribution under the Koziol-Green
model of random censorship assuming both the informative and non-informative priors.
Recently, Rao et al. (2015) discussed about the multi-component stress strength reliability
by assuming Burr Type-XII distribution. The research methodology they adopted for
estimation of the parameter is ML estimation.

There are several situations in the life testing and reliability experiments or the sur-
vival analysis, in which units are lost or removed from the experiments while they are still
alive. Either the loss may occur out of control or it is preassigned. The out of control case
can be happened when an individual under study drops out or so. Other cases may occur
because of limitation of funds or to save the time and cost.

However, in some reliability experiment, the number of items dropped out the experiment
cannot be prefixed and they are random. In such situations, a random removals scheme
is suited best with some censoring scheme. In this paper, random removals criteria have
been used under Progressive Type-II censoring plan for Burr Type-XII distribution. Some
statistical inferences have obtained and their performances are illustrated by a real life
example.

2. Progressive Censoring with Random Scheme

The progressive censoring appears to be a great importance in planned duration experiments
in reliability studies. In many industrial experiments involving lifetimes of machines or
units, experiments have to be terminated early and the number of failures must be limited
for various reasons. Progressively Type-II censored sampling is an important method of
obtaining data in such lifetime studies. Singh et al. (2013) estimates the parameters of
exponentiated Pareto distribution under random removals scheme. Azimi et al. (2014)
presents some statistical inference for the generalized Pareto distribution based on progres-
sive Type-II censored data with random removals.

Let us suppose an experiment in which n independent and identical units x1, x2, . . . , xn are
placed on a live test at beginning time and first m; (1 ≤ m ≤ n) failure items are observed.
At the time of each failure occurring prior to termination point, one or more surviving units
were removed from the test. The experiment is terminated at the time of mth failure, and
all remaining surviving units are removed from the test.

Let x(1) ≤ x(2) ≤ . . . ≤ x(m) are the lifetimes of completely observed units to fail
and R1, R2, . . . , Rm; (m ≤ n) are the numbers of units withdrawn at these failure times
(See Prakash (2015 a) for more details).

Following Prakash (2015 a), the joint probability density function under progressive
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Type-II censoring scheme is defined as

f(x(1:m:n),x(2:m:n),. . . ,x(m:m:n)) (x|θ) = Cp

m∏
i=1

f
(
x(i); θ, σ

) (
1− F

(
x(i); θ, σ

))ri
⇒ f(x(1:m:n),x(2:m:n),. . . ,x(m:m:n)) (x|θ) = Cpσ

mA∗p (x, σ) θm

× exp

(
−θ

m∑
i=1

(1 + ri) log
(

1 + xσ(i)

))
; (3)

where A∗p (x, σ) =
∏m
i=1

(
xσ−1
(i)

1+xσ
(i)

)
and the progressive normalizing constant Cp is

n (n− r1 − 1) (n− r1 − r2 − 1) ...
(
n+ 1−

∑m−1
j=1 rj −m

)
.

Suppose an individual unit being removed from the test at ith (= 1, 2, . . . ,m− 1)
failure, and is independent of others with probability p i.e., ri units removed at the ith

failure follows a Binomial distribution with parameters n−m−
∑i−1
k=1 rk and p. Hence,

P (Ri = ri|Ri−1 = ri−1, ..., R1 = r1) =
(

(n−m−
∑i−1
k=1 rk)Cri

)
× pri (1–p)

n−m−
∑i
k=1 rk ; ∀ i = 1, 2, ...,m− 1. (4)

Thus, P (R = r) is now defined and obtained as

P (R = r) = P (R1 = r1)P (R2 = r2|R1 = r1) ...

P (Rm−1 = rm−1|Rm−2 = rm−2, ..., R1 = r1)

⇒ P (R = r) = Ωp(
∑m−1
i=1 ri) (1− p)((m−1)(n−m)−

∑m−1
i=1 (m−i)ri) ; (5)

where Ω = (n−m)!

(n−m−
∑m−1
i=1 ri)!

∏m−1
i=1 ri!

3. The Point and Interval Estimation

In the present section, maximum likelihood research methodology is applied for point and
interval estimation. Hence, the likelihood function is defined and obtained as

L (θ, p) = L (θ;x|R = r) · P (R = r)

= Cpσ
mA∗p (x, σ) θm exp

(
−θ

m∑
i=1

(1 + ri) log
(

1 + xσ(i)

))

×Ω p(
∑m−1
i=1 ri) (1− p)((m−1)(n−m)−

∑m−1
i=1 (m−i)ri)
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⇒ L (θ, p) = C∗

{
θm exp

(
−θ

m∑
i=1

(1 + ri) log
(

1 + xσ(i)

))}

×
{
p(
∑m−1
i=1 ri) (1− p)((m−1)(n−m)−

∑m−1
i=1 (m−i)ri)

}
. (6)

The maximum likelihood (ML) estimators for the parameters θ and p are obtained respec-
tively as

∂

∂θ
logL (θ, p) = 0⇒ θ̂ML =

m∑m
i=1 (1 + ri) log

(
1 + xσ(i)

) (7)

and

∂

∂p
logL (θ, p) = 0⇒ p̂ML =

∑m–1
i=1 ri∑m−1

i=1 ri + (m− 1)(n−m)−
∑m−1
i=1 (m− i)ri

. (8)

Hence, the observed information matrix is now defined and obtained as

I =

 − ∂2

∂θ2 logL(θ, p) − ∂2

∂θ∂p logL(θ, p)

− ∂2

∂p∂θ logL(θ, p) − ∂2

∂p2 logL(θ, p)


⇒ I =


m
θ2 0

0
∑m−1
i=1 ri
p2 +

(m−1)(n−m)−
∑m−1
i=1 (m−i)ri

(1−p)2

 .
Thus, the variance covariance matrix is now approximated as

⇒ I =


m
θ2 0

0
∑m−1
i=1 ri
p2 +

(m−1)(n−m)−
∑m−1
i=1 (m−i)ri

(1−p)2


−1

. (9)

Now, the asymptotic distribution of ML estimator
(
θ̂ML, p̂ML

)
is given as θ̂ML

p̂ML

 ∼ N [ (θp) , V ]
.

The expression, V involves two unknown parameters θ and p. Hence, an estimate of V
(

= V̂
)

(say) is obtained by replacing the parameters θ and p by its ML estimators θ̂ML and p̂ML

respectively as

V̂ =


m
θ̂2ML

0

0
∑m−1
i=1 ri
p̂2ML

+
(m−1)(n−m)−

∑m−1
i=1 (m−i)ri

(1−p̂ML)2


−1

. (10)
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Thus approximate 100(1− ε)% confidence intervals for the parameters θ and p are derived

as (
θ̂ML ± Zε/2

√
V AR

(
θ̂
))

and (
p̂ML ± Zε/2

√
V AR (p̂)

)
where V AR

(
θ̂
)

and V AR (p̂) are determined respectively from equation (10).

4. Bayes Estimation

A Bayesian procedure is applied in the present section for estimating the parameters of the
Burr Type-XII distribution. The Two-parameter Gamma distribution is selected here as
conjugate prior for the unknown parameter θ (when shape parameter σ is considered to be
known), having a probability density function

π(θ) =
αβ

Γβ
θβ−1e−αθ ; α > 0, β > 0, θ ≥ 0. (11)

Similarly, the prior density for unknown parameter p is considered here as the Beta distri-
bution, having a probability density function

π(p) =
1

B (γ, λ)
pγ−1 (1− p)λ−1

; λ > 0, γ > 0, 0 ≤ p ≤ 1. (12)

Since, the parameters θ and p are independent (when the parameter σ is known) random
variables, therefore, the joint prior density is given as

π(θ,p) =
αβ

B (γ, λ) Γ (β)
θβ−1e−αθpγ−1 (1− p)λ−1

. (13)

Based on the Bayes theorem, the joint posterior and marginal posterior distributions are
obtained respectively as

π∗(θ,p) =
L (θ, p)× π(θ,p)∫

p

∫
θ
L (θ, p)× π(θ,p) dθ dp

π∗(θ,p) = Jθm+β−1 exp

{
−θ

(
α+

m∑
i=1

(1 + ri) log
(

1 + xσ(i)

))}

× P (γ+
∑m−1
i=1 ri)−1 (1− p)(λ+(m−1)(n–m)−

∑m−1
i=1 (m−i)ri)−1

(14)

π∗(θ) =

(
α+

∑m
i=1 (1 + ri) log

(
1 + xσ(i)

))m+β

Γ(m+ β)
θm+β−1
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× exp

{
−θ

(
α+

m∑
i=1

(1 + ri) log
(

1 + xσ(i)

))}
(15)

and

π∗(p) =
p(γ+

∑m−1
i=1 ri)−1 (1− p)(λ+(m−1)(n–m)−

∑m−1
i=1 (m−i)ri)−1

B
((
γ +

∑m−1
i=1 ri

)
,
(
λ+ (m− 1)(n–m)−

∑m−1
i=1 (m− i)ri

)) ; (16)

where J =

{
Γ(m+β)(

α+
∑m
i=1(1+ri) log

(
1+xσ

(i)

))m+βB
((
γ +

∑m−1
i=1 ri

)
, (λ+ (m− 1)(n–m)

−
∑m−1
i=1 (m− i)ri

))}−1

.

Wide varieties of loss functions have been discussed in the literature to describe various
types of loss structures. The symmetric squared-error (SE) loss is one of the most popular
loss functions. It is widely employed in inference, but its application is motivated by its
good mathematical properties, not by its applicability to representing a true loss structure.

A loss functions should represent the consequences of different errors. There are sit-
uations where overestimation and underestimation can lead to different consequences.
For example, when we estimate the average reliable working life of the components of
a spaceship or an aircraft, overestimation is usually more serious than underestimation.
Being symmetric, the SE loss equally penalizes overestimation and underestimation of the
same magnitude. A useful asymmetric loss known as the LINEX loss function (See Prakash
(2015 b) for more details), rises approximately exponentially on one side of zero, and

approximately linearly on the other side. The LINEX loss function LLF is defined as

L (∂) = ea∂ − a∂ − 1; ∂ = θ̂ − θ.

Here ′a′ is the shape parameter and θ̂ is any estimate of unknown parameter θ.

Following Prakash (2015 b), Bayes estimator corresponding to unknown parameter

θ is denoted by θ̂B , and obtained as

θ̂B = −1

a
ln E

{
e−aθ

}
=
m+ β

a
ln

1 +
a

α+
∑m
i=1 (1 + ri) log

(
1 + xσ(i)

)
 . (17)

Similarly, the Bayes estimator corresponding to the parameter p say p̂B is obtained by
simplifying following equality

p̂B = −1

a
ln

∫
p

e−app(γ+
∑m−1
i=1 ri)−1 (1− p)(λ+(m−1)(n−m)−

∑m−1
i=1 (m−i)ri)−1

B
((
γ +

∑m−1
i=1 ri

)
,
(
λ+ (m− 1)(n−m)−

∑m−1
i=1 (m− i)ri

))dp. (18)

The close form of p̂B and the associated minimum posterior risk of Bayes estimators θ̂B and
p̂B do not exist. A numerical technique is applied herewith for drawing inferences.
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5. Prediction of the Future Records

Since x =
(
x(1), x(2), ..., x(m)

)
be first m observed failure items from a sample of size n

under considered censoring plan for model (1). If we assume that Y =
(
y(1), y(2), ..., y(s)

)
be

another independent random sample of observations from the same model. Then the Bayes
predictive density of future observation Y is denoted by h (Y |x) and obtained by simplifying
the following relation

h (Y |x) =

∫
θ

f (y; θ)π∗θdθ

⇒ h (Y |x) =

(
α+

∑m
i=1(1 + ri)log

(
1 + xσ(i)

))m+β

(m+ β)σyσ−1

(1 + yσ)
(
α+

∑m
i=1(1 + ri)log

(
1 + xσ(i)

)
+ log (1 + yσ)

)m+β+1
. (19)

Let the lower and upper Bayes prediction limits are denoted by l1 and l2 for random variable
Y and (1− ε) is called the confidence prediction coefficient. Then one-sided Bayes prediction
lower and upper limits are obtained by solving following equality

Pr (Y ≤ l1) =
ε

2
= Pr (Y ≥ l2) . (20)

Using equation (19) in (20) the one sided Bayes prediction lower and upper limits of Y are
obtained as

l1 =

{
exp

{(
α+

m∑
i=1

(1 + ri)log
(

1 + xσ(i)

))
(ε∗ − 1)

}
− 1

}1/σ

and

l2 =

{
exp

{(
α+

m∑
i=1

(1 + ri)log
(

1 + xσ(i)

))
(ε∗∗ − 1)

}
− 1

}1/σ

;

where ε∗ =
(
1− ε

2

)−1/(m+β)
and ε∗∗ =

(
ε
2

)−1/(m+β)
.

Hence, the one-sided Bayes prediction bound length is obtained as

L = l2 − l1.

6. Numerical Analysis

The performance of the proposed procedures is studied by a numerical illustration based on
a real data set for a clinical trial describe a relief time (in hours) for 30 arthritic patients
considered here form data provided by Wingo (1993) and used recently by Wu et al.
(2010). The data are given in the Table (1).

We carry out this analysis by considering the censored data of size m (= 5, 10, 15)
with selected progressive censoring scheme (presented in Table (2). The maximum likeli-
hood estimates for both parameters are presented in Table (3) for σ = 1.00. It is observed
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Table 1. Relief Time (in hours) for 30 Arthritic Patients

0.70 0.58 0.54 0.59 0.71 0.55 0.63 0.84 0.49 0.87

0.73 0.72 0.62 0.82 0.84 0.29 0.51 0.61 0.57 0.29

0.36 0.46 0.68 0.34 0.44 0.75 0.39 0.41 0.46 0.66

that the values of ML estimator are increasing as censored sample size increases.

The risk corresponding to Bayes estimator θ̂ under LLF is obtained and presented in the Ta-
ble (4). The selected values of shape parameter ′a′ are 0.50 and 1.00. While the values of prior
parameters are selected as (β, α) = (0.50, 0.70), (1.00, 1.00), (2.50, 1.58), (5, 2.30), (10, 3.16)
and (0, 0). Here, the criterion behind the selection of these prior parameter values is that
the prior variance should be unity. Also, β = α = 0 reflect the study under non-informative
(Jeffrey’s) prior. Hence, all the results should be valid for both informative and non-
informative priors.

Table 2. Different Progressive Censoring Scheme

Case m Ri; i = 1, 2, ...,m

1 5 1 2 1 0 1
2 10 1 0 0 3 0 0 1 0 0 1
3 15 1 0 2 0 0 1 0 2 0 0 0 1 0 0 1

Table 3. Maximum Likelihood Estimates

σ = 1.00 m ↓
n = 30 5 10 15

θ̂ML 0.7567 0.7619 0.7815

p̂ML 0.8108 0.8211 0.8394

It is noted that the risk increases as the censored sample size m increases. Similar trend
also has seen when the values of shape parameter increases. Further, an opposite trend has
seen when the set of prior parameter value increases. However, the magnitudes of risks are
nominal.
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Similarly, the risk corresponding to Bayes estimator p̂ under LLF is obtained and
presented in Table (5). However, the selection of hyper parametric values does not provide
unity variance for prior defined in equation (12).

Similar properties have seen for risks of the Bayes estimator p̂ under LLF as dis-
cussed earlier for the case of Bayes estimator θ̂. It is further noted that the risk’s magnitude
is larger for Bayes estimator p̂ as compared to θ̂.

The Bayes prediction bound length and confidence interval are presented in Table
(6), for ε = 99%, 95%, 90%. It is noted that when confidence level ε decreases the length of
intervals tends to be closer. The bound’s length tends to be closer also as the set of prior
parameters increases when other parametric values are considered fixed. A decreasing trend
has been seen in length when censored sample size increases. It is noted further that the
bound length of based on ML procedure is closer than compared to Bayes procedure.

Table 4. Risk Corresponding to Bayes Estimator θ̂

n = 30 σ = 1.00 ← (β, α)→
a ↓ m ↓ 0.50, 0.70 1.00, 1.00 2.50, 1.58 5.00, 2.30 10, 3.16 0, 0

5 0.7211 0.7139 0.6686 0.6449 0.6048 0.6421
0.50 10 0.8517 0.8333 0.8013 0.7825 0.7701 0.7385

15 1.0206 1.0192 1.0101 0.9099 0.9016 1.0047

5 0.7392 0.7237 0.7032 0.6828 0.6583 0.6711
1.00 10 0.8769 0.8626 0.8503 0.8328 0.8027 0.8277

15 1.0741 1.0535 1.0317 1.0184 1.0088 1.0148

Table 5. Risk Corresponding to Bayes Estimator p̂

n = 30 σ = 1.00 ← (γ, λ)→
a ↓ m ↓ 0.50, 0.70 1.00, 1.00 2.50, 1.58 5.00, 2.30 10, 3.16 0, 0

5 0.8447 0.8309 0.8101 0.7929 0.7651 0.7103
0.50 10 0.9511 0.9252 0.8914 0.8596 0.8145 0.7417

15 1.1193 1.1426 1.0651 1.0296 1.0148 1.0018

5 0.9884 0.9707 0.9562 0.9251 0.8922 0.9425
1.00 10 1.0233 1.0174 1.0062 1.0004 0.9833 0.9875

15 1.2341 1.2107 1.1864 1.1337 1.1263 1.1081
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Table 6. Central Coverage Bayes Prediction Bound Lengths under Progressive Type-II
Censoring Plans (Based on Simulation Data)

Bayes Procedures ML Procedures

n = 30 ← (β, α)→
m ↓ ε 0.50, 0.70 1.00, 1.00 2.50, 1.58 5.00, 2.30 10, 3.16 0, 0 θ p

99% 3.1034 3.0855 3.0527 3.0492 3.0139 3.0672 2.4191 2.8916
5 95% 2.3542 2.3064 2.2243 2.1547 2.0191 2.2154 2.1147 2.8518

90% 2.0394 2.0118 1.9375 1.8983 1.6922 1.8112 1.5071 1.7215

99% 3.0745 3.0616 3.0194 2.9547 2.8949 3.0531 1.9311 2.8788
10 95% 2.3124 2.2922 2.1774 2.1251 2.0049 2.1815 1.8316 2.7311

90% 1.9057 1.8216 1.7998 1.7675 1.6868 1.7801 1.4711 1.6014

99% 2.8295 2.8058 2.7876 2.7566 2.6801 3.0102 1.8851 2.5801
15 95% 2.1553 2.1399 2.1003 1.0976 1.0921 2.1275 1.7303 2.5171

90% 1.7724 1.6402 1.5708 1.0558 1.0461 1.7109 1.4123 1.1404
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